Answers to examination-style questions

AQA Physics A

Answers			S	Marks	Examiner's tips
1	(a)	n • [e v • [d	Diagram/description of electric wave and nagnetic wave in phase. Diagram/description/statement that electric wave is at 90° to the magnetic vave. Diagram/description/statement that lirection of propagation/travel is berpendicular to both waves.	1 3	It is a good idea to use a diagram, but very important that it is fully labelled. A 3D diagram is tricky to draw, but the perpendicular nature of the electric and magnetic parts can be indicated or described.
	(b)	(i)	 (Conduction) electron (in the metal) absorbs a photon and gains energy <i>hf</i>. Work function of a metal is the minimum energy needed by an electron to escape from the metal (surface). An electron can only escape if <i>hf</i> ≥ work function. 		One electron absorbs one photon; it is essential to stress the work function is a minimum energy.
		(ii)	 The photon is the quantum of e-m radiation/light. Classical wave theory could not explain threshold frequency. Classical wave theory was replaced by the photon theory. [<i>or</i> photons can behave as waves or particles][<i>or</i> photons have a dual wave/particle nature]. 	max 2	The overall significance of Einstein's explanation is the the photon model became accepted. It needs to explained in detail how this arises from the failure of the wave model.
2	(a)	(i)	 Emission of (conduction) electrons from a heated metal (surface) or filament/cathode. Work done on electron = eV 	2	
		(ii)	Gain of kinetic energy (or $\frac{1}{2}mv^2$) = eV ; rearrange to give required equation.	1	It is often useful to start this kind of explanation from a "word equation" rather than just jump into symbols to make it clear.

Turning Points in Physics

A2 AQA Physics A

Answers to examination-style questions

done = force × distance d in direction of force (due to magnetic field) is at angles to the direction of n/velocity [or no movement in rection of the magnetic force work done] rons do not collide with atoms tive for first and second netic) force has no component direction of motion celeration along direction of on or acceleration perpendicular ocity]		
netic) force has no component direction of motion sceleration along direction of on or acceleration perpendicular	r	
$\int_{C} \frac{mv^2}{r} \left(Bev = \frac{mv^2}{r} \right)$ $\frac{m^2v^2}{B^2e^2} = \frac{m^2}{B^2e^2} \times \frac{2eV}{m}$ $\frac{mV}{B^2e}$	3	Starting from a known equation, show a many steps as possible.
anging gives) $\frac{2 \times 530}{1 \times 10^{-3}} \times (25 \times 10^{-3})^2$ (6) × 10 ¹¹ C kg ⁻¹	2	Be careful to change the numbers to bas units. [You could work out e/m from the data sheet to see if it gives the same value.]
	$\frac{m^2 v^2}{B^2 e^2} = \frac{m^2}{B^2 e^2} \times \frac{2eV}{m}$ $\frac{mV}{B^2 e}$ nging gives) $\frac{2 \times 530}{\times 10^{-3}} \times (25 \times 10^{-3})^2$	$\frac{m^2 v^2}{B^2 e^2} = \frac{m^2}{B^2 e^2} \times \frac{2eV}{m}$ $\frac{mV}{B^2 e}$ nging gives) 2 $\frac{2 \times 530}{\times 10^{-3}} \times (25 \times 10^{-3})^2$

Turning Points in Physics

Answers to examination-style questions

Answers

Marks Examiner's tips

3 (i) $t = \left(\frac{\text{distance}}{\text{speed}} = \frac{34}{0.95 \times 3.0 \times 10^8}\right)$ =1.1(9) × 10⁻⁷ (s)

AQA Physics A

(ii) • Use of
$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

• where *t*₀=18 ns, and *t* is the half-life in the detectors' frame of reference.

•
$$\therefore t = \frac{18 \times 10^{-9}}{\sqrt{1 - 0.95^2}}$$

= 57.(6) × 10^{-9} s

- Time taken for π meson to pass from one detector to the other = 2 half-lives (approx) (in the detectors' frame of reference).
- 2 half-lives correspond to a reduction to 25%, so 75% of the π mesons passing the first detector do not reach the second detector.

Alternatives for first three marks:

1. Use of
$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 where $t_0 = 18$ ns

$$\therefore t = \frac{18 \times 10^{-9}}{\sqrt{1 - 0.95^2}}$$

$$= 57.(6) \times 10^{-9} \text{ s}$$
Journey time in detector frame
 $(= 2t) = 2 \times 57.6$ ns (≈ 2 half-lives)
2. Use of $t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$ where $t = 119$ ns

 $\therefore t_0 = 119\sqrt{(1 - 0.95^2)} = 37 \text{ ns}$ journey time in rest frame = 2 × 18 ns (which is 2 half-lives)

- 4 (a) The beam deflects towards Y
 - because each electron is acted on by an electric force towards Y (or is attracted to Y or repelled by X).
 - (b) (i) Each electron is acted on by a magnetic force in the opposite direction to the electric force.
 - When $B = B_0$ the magnetic force is equal (and opposite) to the electric force.

- 1 The measurements are in the rest frame of the detectors, so the time calculated is the dilated time, *t*.
- 4 The simplest method is to calculate the half-life in the frame of the mesons, then show how many half-lives this. Each half-life is a further 50% reduction, so two half-lives is 50% of 50%, i.e. 25% remaining.

2

Turning Points in Physics

Answers to examination-style questions

A2 AQA Physics A

Answers	Marks	Examiner's tips
(ii) • Magnetic force = Bev , electric force $\frac{eV}{d}$ • $B_0ev = \frac{eV}{d}$ (at $B = B_0$) • $\left(\therefore v = \frac{V}{B_0d} \right)$	2	
 (c) Work done on electron (or change of potential energy of electron) = eV_A (where V_A = 3800 V). ∴ (kinetic energy of electron), ¹/₂mv² = eV_A (rearranging this equation gives) ^e/_m (= v²/_{2V_A}) = (3.7 × 10⁷)²/_{2 × 3800} = 1.8 × 10¹¹ C kg⁻¹ 	3	
 5 (a) • Radio wave is an electromagnetic wave/ includes a magnetic (or electric) wave. • Magnetic flux (or field or wave) through the loop changes as the waves pass the loop. • Induced emf is due to changing magnetic flux through the loop. • Induced emf is alternating because flux (or field or wave) alternates. 	max 3	
 Alternatively: Electric wave passes the loop. Electrons in loop forced to oscillate by electric wave. Movement of electrons causes an induced emf. 		
 (b) • Radio waves from T are polarised. • Magnetic flux through loop decreases as it is rotated (or component of magnetic flux density perpendicular to loop decreases). • At 90°, no magnetic flux passes through loop, so induced emf is zero. 	3	

AQA Physics A

Answers to examination-style questions

		,			
Answers			Marks	Examiner's tips	
6 (a) (i) (ii)	 To see if they could detect the ether (or absolute motion of the Earth through space or absolute rest). Light reaches the observer from the light source via each mirror. There is a phase difference between the two light beams. Bright fringes are seen where the tw light beams are in phase (or dark fringes are seen where the two light beams are out of phase by 180°). 	(a)(II) 1		
(b		 Earth's motion through space was thought to affect the speed of light (along each arm of the apparatus). The distance travelled by each bear of light did not change. The difference in the time taken by light to travel along each arm woul change. The phase difference between the two lights beams would change. Earth's motion through space does 	(b)(ii)		
		not affect the speed of light (or ethe does not exist, or absolute motion does not exist, or all motion is relative, or absolute rest).	er		
7 (a) (i)	 Drag (or viscous) force acts upward on droplet. Drag (or viscous) force increases with speed. At this speed, drag (or viscous) for (+ upthrust) = weight of droplet (or force of gravity on it). No resultant force so acceleration i zero (and therefore velocity (or speed) is constant). 	ce	Use your AS mechanics here. The key is that forces produce acceleration, so zero resultant force is no acceleration.	
	(ii)	• Viscous force = $6\pi\eta rv$ weight (or mg) = $\frac{4}{3}\pi r^3 g\rho$ $\therefore \frac{4}{3}\pi r^3 g\rho = 6\pi\eta rv$ • $r^2 \left(=\frac{9\eta v}{2\rho g}\right)$ = $\frac{9 \times 1.8 \times 10^{-5} \times 7.8 \times 10^{-5}}{2 \times 960 \times 9.81}$ (= $6.7 \times 10^{-13} \text{ m}^2$) (which gives $r = 8.2 \times 10^{-7} \text{ m}$)	2	This is a very important derivation to learn. Balance up the weight with the viscous force from Stokes' law.	

AQA Physics A

AQA Physics A	-	Furning Points in Physics		
Answers to examination-style questions				
Answers	Marks	Examiner's tips		
(iii) Mass, $m (= \frac{4}{3}\pi r^{3} \rho)$ $= \frac{4}{3}\pi \times (8.2 \times 10^{-7})^{3} \times 960$ $(= 2.2 \times 10^{-15} \text{ kg})$ Alternatively: $m \left(= \frac{6\pi\eta rv}{g}\right)$ $= \frac{6\pi \times 1.8 \times 10^{-5} \times 8.2 \times 10^{-7} \times 7.8 \times 10^{-5}}{9.81}$ $(= 2.2 \times 10^{-15} \text{ kg})$	1	Even if you couldn't do the previous part, you can use the radius that has been given to work out the mass of the spherical drop.		
 (b) (i) Electric force acts upwards and slows droplet. Electric force depends on/varies with speed. Pd adjusted until electric force = weight so droplet becomes stationary (or droplet becomes stationary when electric force = weight) 	max 2			
(ii) (electric force = weight) $\frac{QV}{d} = mg$ $Q = \frac{mgd}{V}$ $= \frac{2.2 \times 10^{-15} \times 9.81 \times 6.0 \times 10^{-3}}{410}$ (= 3.2 × 10^{-19} C)	2	You need to know about electric fields to complete this part of the question.		
 (iii) • Droplet charge is always a whole number × 1.6 × 10⁻¹⁹ C or • 1.6 × 10⁻¹⁹ C is the basic quantum of charge (or the charge of the electron) 				

A2 AQA Physics A

Answers to examination-style questions

Marks Examiner's tips

8 (a)
$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 gives $9.5 \times 10^{-28} = \frac{1.9 \times 10^{-28}}{\sqrt{1 - \frac{v^2}{c^2}}}$
 $\therefore \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{9.5}{1.9} = 5.0$
 $\frac{v}{c} = 0.98 \times 3.0 \times 10^8 = 2.94 \times 10^8 \,\mathrm{m s^{-1}}$
 $v = 2.94 \times 10^8 \,\mathrm{m s^{-1}}$

Alternative for (a)

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \text{ gives}$$
$$\frac{v}{c} = \sqrt{1 - \frac{m_0^2}{m^2}}$$

Correct substitution of m, m_0 and c gives $v = 2.94 \times 10^8 \text{ m s}^{-1}$

(b) $E_K (= (m - m_0)c^2)$ = $(9.5 \times 10^{-28} - 1.9 \times 10^{-28}) \times (3 \times 10^8)^2$ = $6.8(4) \times 10^{-11}$ J 4 Always work in terms of $\frac{v}{c}$ until the final part of the question. Putting in a value of c too early makes it much more difficult. Remember you are expecting a value close to the speed of light.

2 Don't use
$$E_k = \frac{1}{2}mv^2$$
 !

Nelson Thornes is responsible for the solution(s) given and they may not constitute the only possible solution(s).