Rotational with Constant Angular Acceleration

AKA "angular suvat equations" AKA " $\theta \omega_1 \omega_2 \alpha t$ equations"

We have seen the *suvat* equations concerning *linear motion* with constant acceleration:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

$$s = \frac{1}{2}(u + v)t$$

where s = Displacement (metres, m) u = Initial velocity (metres per second, ms⁻¹) v = Final velocity (metres per second, ms⁻¹) a = Acceleration (metres per second squared, ms⁻²) t = Time (seconds, s)

We could define a similar set of equations concerning *angular motion* with constant acceleration:

ĺ	() - () = (where	θ	=	Angular displacement (radians, rad)
	$\omega_2 = \omega_1 + \alpha t$		ω_1	=	Initial angular velocity (radians per second, rad s ⁻¹)
	$\theta = \omega_1 t + \frac{1}{2}\alpha t^2$		ω_2	=	Final angular velocity (radians per second, rad s $^{-1}$)
	2 2 2		α	=	Angular acceleration (radians per second squared, rad s ⁻²)
	$\omega_2{}^2 = \omega_1{}^2 + 2\alpha\theta$		t	=	Time (seconds, s)
	$\theta = \frac{1}{2}(\omega_1 + \omega_2)t$				

Multiplying by the radius, r, takes us from an angular variable to its linear equivalent:

 $s = r\theta$ $v = r\omega$ $a = r\alpha$ f<u>nb:</u> what distance do we travel if our angular displacement is 2π ?