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Chapter 1 Rotational dynamics 

1.1 Angular acceleration 

Learning objectives: 

 What do we mean by angular acceleration? 

 How can we calculate the angular acceleration of 
a rotating object when it speeds up or slows 
down? 

 How can we calculate the number of turns a 
rotating object makes in a certain time when it 
accelerates uniformly? 

Angular speed and angular acceleration 

There are many examples of rotating objects around us. Examples include the Earth spinning on 

its axis, the wheels of a moving car, a flywheel in motion and the rotation of the armature coil of 

an electric motor.  

For any rigid body rotating about a fixed axis: 

 Its angular speed, ω = 
T

π2
 where T is its period of rotation. 

 The unit of angular speed is the radian per second (i.e. rad
 
s

−1
).  

 Its angular acceleration, , is the change of its angular velocity per second.  

 The unit of angular acceleration is the radian per second per second (i.e. rad
 
s

−2
). 

Notes 

1 Angular speed is sometimes expressed in revolutions per minute or rpm. To convert to rad
 
s

−1
, 

multiply by 
60

π2
 as there are 2 radians per revolution and 60 seconds per minute. 

2 Angular velocity is angular speed in a certain direction of rotation. 

 

Figure 1 A flywheel in motion 
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Link  

See A2 Physics A Topic 2.1 for more about angular speed. 

When a flywheel rotates at constant angular speed, its angular acceleration is zero because its 

angular speed does not change. If ω is its angular speed, its period of rotation T = 


π2
. If the 

flywheel has a radius r, a point on the flywheel rim on a circular path moves at a speed v = ωr.  

When a flywheel speeds up, every point of the flywheel moves at increasing speed. If the 

flywheel speeds up from initial angular speed 1 to angular speed 2 in time t, then: 

 its angular acceleration 
 

t

12 



   

 the speed of any point on its rim increases from speed u = 1r to speed v = 2r in time t, 

where r is the radius of the flywheel. 

The speeding-up process accelerates such a point along a circular path of radius r. Therefore the 

acceleration, a, of the point along its path may be calculated from: 

   
r

t

r

t

rr

t

uv
a 











 1212  

In general, for any rotating body, for any point (small ‘element’) in the body at perpendicular 

distance r from the axis of rotation,  

 its speed v = ωr  

 its acceleration a = r 

Every part of a rotating object experiences the same angular acceleration. However, the 

acceleration, a, at a point in the body is along its circular path (i.e. its linear acceleration) and is 

proportional to r (because a = r). 

Note 

Every point of a rotating object experiences a centripetal acceleration equal to ω
2
r which acts 

directly towards the centre of rotation of that point.  

Worked example  

A flywheel is speeded up from 5.0 to 11.0 revolutions per minute in 100
 
s. The radius of the flywheel is 

0.080
 
m. Calculate: 

a the angular acceleration of the flywheel 

b the acceleration of a point on the rim along its circular path. 

Solution  

a Initial angular speed, 52.0
60

π2
0.51  rad

 
s

−1
 

angular speed after 100
 
s, 15.1

60

π2
0.112  rad

 
s

−1
 

angular acceleration, 
  312 103.6

100

52.015.1 






t


 rad

 
s

−2 
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b Acceleration tangential to the rim, 
43 100.5080.0103.6   ra  10

−4 
m

 
s

−1
 

 

Equations for constant angular acceleration  

These may be derived in much the same way as the equations for straight line motion with 

constant acceleration  

1 From the definition of angular acceleration  above, we obtain by rearrangement, 

 = 0 + t 

where 0 = initial angular speed, and  = angular speed at time t. 

2 The average value of the angular speed is obtained by averaging the initial and final values, 

giving an average value of  02
1   . 

The angle which the object turns through, the angular displacement , is equal to the average 

angular speed × the time taken which gives 

 t0
2

1
    

3 The two equations above can be combined to eliminate  to give 

2
0

2

1
tt    

4 Alternatively, the first two equations may be combined to eliminate t, giving 

2
 = 0

2
 + 2 

Note 

The four equations above are directly comparable with the four linear dynamics equations. The 

task of using the angular equations is made much easier by ‘translating’ between linear and 

angular terms, as follows: 

Linear equations  Angular equations 

displacement 
s 

 

 

angular displacement 

 

speed or velocity 
u 
v 

 

 

 

angular speed 

0 

 

acceleration 
a 

 

 

angular acceleration 

 

For example 

 v = u + at                                = 0 + t 
 

 s = ut + 
2
1 at

2
                          = 0t + 

2
1 t

2
 

 

 v
2
 = u

2
 + 2as                          

2
 = 0

2
 + 2 

 

Link  

See AS Physics A Topic 8.3 for the linear dynamics equations 

with constant acceleration. 
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Summary questions  

1 A flywheel accelerates uniformly from rest to 12
 
rad

 
s

−1
 in 60 seconds. Calculate: 

 a its angular acceleration  

 b i the angle it turned through in this time  

  ii the number of turns it made. 

2 A child’s spinning top, spinning at a frequency of 12
 
Hz, decelerated uniformly to rest in 50

 
s. 

Calculate: 

 a its initial angular speed 

 b its angular deceleration 

 c the number of turns it made when it decelerated.  

3 A spin drier tub accelerated uniformly from rest to an angular speed of 1100 revolutions per second in 

50 seconds. Calculate: 

 a the angle which the tub turned through in this time 

 b the number of turns it made as it accelerated.  

4 A vehicle with wheels of diameter 0.45
 
m decelerated uniformly from a speed of 24

 
m

 
s

−1
 to a standstill 

in a distance of 60
 
m. Calculate: 

 a the angular speed of each wheel when the vehicle was moving at 24
 
m

 
s

−1
 

 b i the time taken by the vehicle to decelerate to a standstill from a speed of 24
 
m

 
s

−1
 

  ii the number of turns each wheel made during the time the vehicle slowed down. 

 c the angular speed of the vehicle one second before it stopped.  
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1.2 Moment of inertia 

Learning objectives: 

 What is torque?  

 What do we mean by moment of inertia?  

 How does the angular acceleration of a rotating 
object depend on its moment of inertia?  

Torque 

To make a flywheel rotate, a turning force must be applied to it. The turning effect depends not 

just on the force but also on where it is applied. The torque of a turning force is the moment of the 

force about the axis. Therefore, torque is defined as follows. 

Torque = force × perpendicular distance from the axis to the line of action of the force 

The unit of torque is the newton metre (N
 
m). 

 

Figure 1 Applying a torque 

Link  

See AS Physics A Topic 7.3 for the moment of a force. 

The inertia of an object is its resistance to change of its motion. If a large torque is required to 

start a flywheel turning, the flywheel must have considerable inertia. In other words, its resistance 

to change of its motion is high. 

Every object has the property of inertia because every object has mass. However, the inertia of a 

rotating body depends on the distribution of its mass as well as the amount of mass. 

Consider a flat rigid body which can be rotated about an axis perpendicular to its plane, as shown 

in Figure 2. Suppose it is initially at rest and a torque is applied to it to make it rotate. Assuming 

there is no friction on its bearing, the applied torque will increase its angular speed. When the 

torque is removed, the angular speed stops increasing so it turns at constant frequency once the 

torque is removed. 
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Figure 2 A rigid body considered as a network of point masses  

The body in Figure 2 may be thought of as a network of point masses, m1, m2, m3, etc., at 

distances r1, r2, r3, etc. from the axis. Each point turns on a circular path about the axis.  

At angular speed , the speed of each point is given by v = r so: 

 the speed of m1 is r1 

 the speed of m2 is r2, etc. 

When the body speeds up, every point in it accelerates. If the angular acceleration of the body is 

, then the acceleration of each point mass is given by a = r 

So:  

 the acceleration of m1 is r1 

 the acceleration of m2 is r2, etc. 

Using F = ma, the force needed to accelerate each point mass is therefore given by: 

 F1 = m1r1 for m1 

 F2 = m2r2 for m2, etc. 

The moment needed for each point mass to be given angular acceleration  is given by force 

F × distance, r, since moment = force × perpendicular distance from the point mass to the axis. 

Thus: 

 the moment for m1 = (m1r1)r1 

 the moment for m2 = (m2r2)r2 etc.  

The total moment (torque T) needed to give the body angular acceleration  = the sum of the 

individual moments needed for all the point masses. 

Hence torque T = (m1r1
2
) + (m2r2

2
) + (m3r3

2
) +……….+ (mNrN

2
) 

                         = [(m1 r1
2
) + (m2 r2

2
) + (m3 r3

2
) +……….+ (mNrN

2
)] 

                         = I 

where I = [(m1r1
2
) + (m2r2

2
) + (m3r3

2
) + ……….+ (mNrN

2
)] is the moment of inertia of the body 

about the axis of rotation. 

The summation (m1r1
2
) + (m2r2

2
) + (m3r3

2
) +….+ (mNrN

2
) is written in ‘short form’ as mr

2
  

(pronounced ‘sigma m r squared’) 
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The moment of inertia I of a body about a given axis is defined as mr
2
 for all the 

points in the body, where mi is the mass of each point and ri is its perpendicular 

distance from the axis. 

The unit of I is kg
 
m

2
.  

In general, T is the resultant torque. For example, if a torque T1 is applied to a flywheel which is 

also acted on by a frictional torque T2, the resultant torque is T1 − T2. 

Therefore when a body undergoes angular acceleration , the resultant torque T acting on it is 

given by: 

T = I 

 

The derivation of I = mr
2
 is not required in this 

specification. 

Worked example 

A flywheel of moment of inertia 0.45
 
kg

 
m

2
 is accelerated uniformly from rest to an angular speed of 

6.7
 
rad

 
s

−1
 in 4.8

 
s. Calculate the resultant torque acting on the flywheel during this time.  

Solution 

Angular acceleration 
 

4.1
8.4

07.612 






t


 rad

 
s

−2  

Resultant torque T = I = 0.45 × 1.4 = 0.63
 
N

 
m 

 

Moment of inertia and angular acceleration  

When a resultant torque is applied to a body, the angular acceleration,, of the body is given by 

 = 
I

T
. Thus the angular acceleration depends not just on the torque T but also on the moment of 

inertia I of the body about the given axis which is determined by the distribution of mass about 

the axis.  

Two bodies of equal mass distributed in different ways will have different values of I. For 

example, compare a hoop and a disc of the same mass, as in Figure 3.  
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Figure 3 Distribution of mass  

About the axis shown: 

 the moment of inertia of the hoop is simply MR
2
 where M is its mass and R is its radius. This 

is because all the mass of the hoop is at the same distance (= R) from the axis. The moment of 

inertia, I, about the axis shown, mr
2
, is therefore just MR

2
 for the hoop.  

 the moment of inertia of the disc about the same axis is less than MR
2
 because the mass of the 

disc is distributed between the centre and the rim. Detailed theory shows that the value of I 

for the disc about the axis shown is 
2
1 MR

2
. 

In general:  

the further the mass is distributed from the axis, the greater is the moment of inertia 

about that axis. 

The moment of inertia about a given axis of an object with a simple geometrical shape can be 

calculated using an appropriate mathematical formula for that shape and axis. In general terms, 

such formulae include geometrical factors as well as mass. For example:  

 the hoop as shown in Figure 3 has a moment of inertia given by MR
2
 

 the disc shown in Figure 3 has a moment of inertia given by 
2
1 MR

2
 

 a uniform beam of length L and mass M has a moment of inertia about an axis perpendicular 

to its length given by: 

 
12

2ML
 if the axis is through its centre 

 
3

2ML
 if the axis is through its end. 

The formulae above and for other bodies with simple shapes are derived using the mathematical 

technique of integration to obtain mr
2
 for all points in the body. The emphasis in physics and 

engineering is on the use rather than the derivation of the formulae. By using the appropriate 

formula, the moment of inertia of a simple shape can be calculated from its dimensions and mass. 
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Then, when subjected to torque, the effect on the motion can be determined. Apart from a circular 

hoop, you are not expected to recall the formula for the moment of inertia of any object and 

questions will supply, if necessary, any such formula. 

Worked example  

A solid circular drum of mass 4.0
 
kg and radius 0.15

 
m is rotating at an angular speed of 22

 
rad

 
s

−1
 about 

an axis as shown in Figure 4 when a ‘braking’ torque is applied to it which brings it to rest in 5.8
 
s.  

 

Figure 4 

Calculate: 

a its angular deceleration when the braking torque is applied 

b the moment of inertia of the drum about the axis shown 

c the resultant torque that causes it to decelerate.  

Moment of inertia of drum about the axis shown = 
2
1 MR

2
 

Solution  

a Angular acceleration 
 

8.3
8.5

22012 






t


  

rad
 
s

−2  

b I = 
2
1 MR

2
 = 0.5 × 4.0 × 0.15

2
 = 0.045

 
kg

 
m

2
  

c Resultant torque T = I = 0.045 × 3.8 = 0.17
 
N

 
m 



 

AQA A2 Physics  © Nelson Thornes 2009 

Applied physics 

 

Summary questions 

1 The rotating part of an electric fan has a moment of inertia of 0.68
 
kg

 
m

2
. The rotating part is 

accelerated uniformly from rest to an angular speed of 3.7
 
rad

 
s

−1
 in 9.2

 
s. Calculate the resultant torque 

acting on the fan during this time. 

2 A solid circular disc of mass 7.4
 
kg and radius 0.090

 
m is mounted on an axis as in Figure 1. A force of 

7.0
 
N is applied tangentially to the disc at its rim as shown in Figure 1 to accelerate the disc from rest. 

 a Show that: 

  i the moment of inertia of the disc about this axis is 0.030
 
kg

 
m

2
 

  ii the torque applied to the disc is 0.63
 
N

 
m. 

 b The force of 7.0
 
N is applied for 15.0

 
s. Calculate: 

  i the angular acceleration of the disc at the end of this time 

  ii the number of turns made by the disc in this time. 

Moment of inertia of disc about the axis shown = 
2
1 MR

2
 

3 Figure 5 shows cross-sections of two discs X and Y which have the same mass and radius. 

State and explain which disc has the greater moment of inertia about the axis shown. 

 

Figure 5 

4 A flywheel is accelerated by a constant torque for 18
 
s from rest. During this time it makes 36 turns. It 

then slows down to a standstill 92
 
s after the torque is removed, making 87 turns during this time. 

 a i Show that in the time it accelerated, its angular acceleration was 1.40
 
rad

 
s

−2
. 

  ii Show that in the time it slowed down, its angular deceleration was 0.13
 
rad

 
s

−2
. 

 b The torque applied to it when it accelerated was 26
 
N

 
m. 

  i Show that the frictional torque that slowed it down was 2.2
 
N

 
m. 

  ii Calculate the moment of inertia of the flywheel. 
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1.3 Rotational kinetic energy  

Learning objectives: 

 What does the kinetic energy of a rotating object 
depend on?  

 How much work does a torque do when it makes 
a rotating object turn?  

 How can we measure the moment of inertia of a 
flywheel?  

Kinetic energy  

To make a body which is initially at rest rotate about a fixed axis, it is necessary to apply a torque 

to the body. The torque does work on the body and, as long as the applied torque exceeds the 

frictional torque, the work done increases the kinetic energy of the body and the faster the body 

rotates. 

The kinetic energy, EK, of a body rotating at angular speed  is given by: 

EK = 
2
1 I2 

where I is its moment of inertia about the axis of rotation.  

To prove this equation, consider the body as a network of point masses m1, m2, m3, m4, etc. When 

the body rotates at angular speed , the speed of each point mass is given by v =  r (see 

Topic 1.2). 

 speed of m1 = r1, where r1 is the distance of m1 from the axis 

 speed of m2 = r2, where r2 is the distance of m2 from the axis, etc,  

 …………………………………………………………………… 

 speed of mN =  rN, where rN is the distance of mN from the axis. 

Since the kinetic energy of each point mass is given by 
2
1 mv

2
, then 

 kinetic energy of m1 = 
2
1 m1v1

2
 = 

2
1 m1

2
r1

2
, 

 kinetic energy of m2 = 
2
1 m2v2

2
 = 

2
1 m2

2
r2

2
, etc 

 …………………………………………………………………… 

 kinetic energy of mN = 
2
1 mNvN

2
 = 

2
1 mN

2
rN

2
. 

Hence the total kinetic energy = 
2
1 m1

2
r1

2
 + 

2
1 m2

2
r2

2
 +..…+ 

2
1 mN

2
rN

2
 

                                                 = 
2
1 [(m1r1

2
) + (m2r2

2
) +……….+ (mNrN

2
)]2   

 

                                                 = 
2
1 I2

 since I = [(m1r1
2
) + (m2r2

2
) +….+ (mNrN

2
)] 

The equation EK = 
2
1 I2

 enables us to calculate how much energy a rotating object ‘stores’ due to 

its rotational motion. In addition, it shows that the kinetic energy of a rotating object is 

proportional to:  

 its moment of inertia about the axis of rotation 
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 the square of its angular speed. 

Flywheels are used in many machines and engines so that the moving parts continue to move 

when the load on the machine increases and it has to do more work. For example, when a metal 

press is used to make a shaped object from a sheet of thin metal, the press is able to do the 

necessary work because the flywheel keeps it moving. 

Flywheels are also fitted in some vehicles to store kinetic energy when the vehicle brakes are 

applied and it slows down. Instead of energy being transferred as heat to the surroundings, some 

of the vehicle’s kinetic energy is transferred to an ‘on-board’ flywheel – to be returned to the 

vehicle when the accelerator pedal is pressed. In 2009 Formula One motor racing cars started to 

be fitted with a Kinetic Energy Recovery System (KERS) based on the flywheel principle. 

Link  

See AS Physics A Topics 10.2 and 10.3 for kinetic energy, work 

and power. 

Work done  

The work done W by a constant torque T when the body is turned through angle  is given by  

W = T 

This can be seen by considering that the torque is due to a force F acting at a perpendicular 

distance d from the axis of rotation. The force acts through a distance s =  d when it turns the 

body through angle . Therefore, the work done by the force W = Fs = Fd = T  (as T = Fd). 

Assuming there is no frictional torque, the applied torque T = I. 

Therefore, the work done W by the applied torque is given by W = T = (I).  

The dynamics equation for angular motion 

2
 = 0

2
 + 2  gives   = 

2
1 2

 − 
2
1 0

2
, so 

W = I  = I(
2
1 2

 − 
2
1 0

2
) = 

2
1 I2

 − 
2
1 I0

2
 = the gain of kinetic energy.  

Therefore, in the absence of friction, the work done by the torque is equal to the gain of rotational 

kinetic energy of the body.  

 

The number of turns for an angular displacement  in 

radians = 




2
  

Power 

For a body rotating at constant angular speed , the power, P, delivered by a torque T acting on 

the body is given by  

P = T 

We can see how this equation arises by considering a constant torque T acting on a body for a 

time t.  
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If the body turns through an angle  in this time, the work done W by the torque is given by 

W = T  

Since the power P delivered by the torque is the rate of work done by the torque, then P = 
t

W
 

Hence P = 
t

W
 = 

t

T
 = T  where the angular speed   = 

t


  

If a rotating body is acted on by an applied torque T1 which is equally opposed by a frictional 

torque TF, the resultant torque is zero so its angular speed  is constant. 

The power P delivered by the applied torque T = 
t

W

takentime

donework
 = 

t

T
 = T 

The work done per second by the frictional torque TF = 
t

T F  = TF  

In this situation, the rate of transfer of energy due to the applied force is equal to the rate of 

transfer of energy to the surroundings by the frictional force. So the rotating body does not gain 

any kinetic energy.  

Worked example  

A flywheel is rotating at an angular speed of 120
 
rad

 
s

−1
 on a fixed axle which is mounted on frictionless 

bearings. The moment of inertia of the flywheel and the axle about the axis of rotation is 0.068
 
kg

 
m

2
.  

a Calculate the rotational kinetic energy of the flywheel when it rotates at 120
 
rad

 
s

−1
. 

b When a braking torque of 1.4
 
N

 
m is applied to its rim, the flywheel is brought to rest. 

Calculate the number of turns the flywheel makes as it decelerates to a standstill. 

Solution 

a EK = 
2
1 I2

 = 0.5 × 0.068 × 120
2
 = 490

 
J

 

b The work done by the braking torque = loss of kinetic energy EK  

Therefore T  = EK hence 1.4  = 490 

Hence   = 
4.1

490
 = 350

 
rad = 

π2

350
 = 56 turns  

 

Experiment to measure the moment of inertia I 

of a flywheel  

The experiment described below is not part of the specification for the option but it reinforces and 

brings together many of the ideas you have covered so far. In addition, it provides an opportunity 

to do some practical work.  

An object of known mass M hanging from a string is used to accelerate the flywheel from rest as 

shown in Figure 1.  
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Figure 1 Measuring the moment of inertia of a flywheel 

The following measurements need to be made: 

 The distance, h, fallen by the object from release to when the string unwraps itself from the 

axle of the flywheel 

 The diameter, d, of the axle 

 The time taken, t, for the string to unwrap  

The measurements and the known mass M are used in the following calculations: 

 The number of turns made by the flywheel as the string unwraps, 
d

h
N

π2
  

 The maximum angular speed of the flywheel,  = 2 × the average angular speed = 2 × 
t

Nπ2
 

 The speed of the object at the instant the string unwraps, v = 
2

d
  

 The kinetic energy gained by the flywheel, EKF = 
2
1 I2

, to be calculated in terms of I 

 The kinetic energy gained by the object of mass M, EKO = 
2
1 Mv

2
 where v = 

2

d
 

 The potential energy lost by the object of mass M, EP = Mgh 

The moment of inertia of the flywheel can be calculated from the equation below, assuming 

friction on the flywheel is negligible.  

the total gain of kinetic energy, EKF + EKO = the loss of potential energy, EP 

                                                 
2
1 I

2
 + 

2
1 Mv

2
 = Mgh 
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Summary questions  

1 A flywheel is rotating at an angular speed of 20
 
rad

 
s

−1 
on a fixed axle which is mounted on frictionless 

bearings. The moment of inertia of the flywheel and the axle about the axis of rotation is 0.048
 
kg

 
m

2
.  

 Calculate: 

 a the rotational kinetic energy of the flywheel when it rotates at 20
 
rad

 
s

−1
 

 b i the torque needed to accelerate the flywheel from rest to an angular speed of 20
 
rad

 
s

−1 
in 5.0

 
s 

  ii the angle which the flywheel turns through in this time while it is being accelerated. 

2 A 0.65
 
kg object hanging from a string is used to accelerate a flywheel on frictionless bearings from 

rest, as shown in Figure 1. The object falls through a vertical distance of 1.9
 
m in 4.6

 
s which is the time 

the string takes to unwrap from the axle which has a diameter of 8.5
 
mm.  

 Calculate: 

 a the potential energy lost by the object in descending 1.9
 
m 

 b the kinetic energy of the object 14
 
s after it was released from rest 

 c i the kinetic energy gained by the flywheel 

  ii the moment of inertia of the flywheel.  

3 A ball released at the top of a slope rolls down the slope and continues on a flat horizontal surface until 

it stops. Discuss the energy changes of the ball from the moment it is released to when it stops. 

4 A flywheel fitted to a vehicle gains kinetic energy when the vehicle slows down and stops. The kinetic 

energy of the flywheel is used to make the vehicle start moving again.  

 a The flywheel is a uniform steel disc of diameter 0.31
 
m and thickness 0.08

 
m. Calculate: 

  i the mass of the disc 

  ii the moment of inertia of the flywheel.  

  density of steel = 7800
 
kg

 
m

−3
; moment of inertia of a uniform flywheel = 2

2
1 MR  

 b i Calculate the kinetic energy of the flywheel when it is rotating at 3000 revolutions per minute.  

  ii The kinetic energy of the flywheel can be converted to kinetic energy of motion of the vehicle in 

30
 
s. Estimate the average power transferred from the flywheel.  
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1.4 Angular momentum 

Learning objectives: 

 What is angular momentum and why is it 
important? 

 What do we mean by conservation of angular 
momentum? 

 How do the equations for angular momentum 
and linear momentum compare with each other?  

Spin at work 

 

Figure 1 A spinning ice skater 

An ice skater spinning rapidly is a dramatic sight. The skater turns slowly at first, then quite 

suddenly goes into a rapid spin. This sudden change is brought about by the skater pulling both 

arms (and possibly a leg!) towards the axis of rotation. In this way the moment of inertia of the 

skater about the axis is reduced. As a result, the skater spins faster. To slow down, the skater only 

needs to stretch his or her arms and maybe a leg. In this way, the moment of inertia is increased. 

So the skater slows down. 

To understand such effects, consider a rotating body with no resultant torque on it. Provided its 

moment of inertia stays the same, then its angular speed  does not change. This can be seen by 

rewriting the equation T =I where  is the angular acceleration. If the resultant torque T is zero, 

then the angular acceleration  is zero so the angular speed is constant. 

In more general terms, the equation T =  may be written as 

 
t

Iω
T

d

d
  

where 
td

d
is the formal mathematical way of writing ‘change per unit time’,  
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The quantity I is the angular momentum of the rotating body. So the above equation tells us 

that resultant torque T is the rate of change of angular momentum of the rotating object. 

Angular momentum of a rotating object = I 

where I is the moment of inertia of the body about the axis of rotation and  is its angular speed. 

The unit of angular momentum is kg
 
m

2 
rad

 
s

−1
 or N

 
m

 
s as explained below in Note 2. 

When the resultant torque is zero, then 
 

0
d

d


t

Iω
 which means its angular momentum I is 

constant. 

In the ice skater example above, the moment of inertia of the ice skater suddenly decreases when 

he or she pulls their arms in. Since the angular momentum is constant, the sudden decrease in the 

moment of inertia causes the angular speed to increase. In specific terms, if the moment of inertia 

changes from I1 to I2 causing the angular speed to change from 1 to 2 such that  

I11 = I22 

Notes 

For a rotating object whose moment of inertia I does not change: 

1 
 




I
t

I
t

Iω
T 

d

d

d

d
 because the angular acceleration 

td

d
   

2 If the object undergoes uniform angular acceleration from rest to reach angular speed  in 

time t, the resultant torque acting on it is 
t

I
T


 . Hence its angular momentum I = Tt. This 

equation shows that the unit of angular momentum can also be given as the unit of 

torque × the unit of time i.e. N
 
m

 
s. 

Pulsars 
Pulsars are rapidly spinning stars. They were first discovered by astronomers in 1967. Regular 

pulses of radio energy were detected from these stars, which some astronomers called ‘LGM’ 

stars. It seemed as if ‘little green men’ were trying to contact us! That hypothesis was soon 

abandoned when it was shown that pulsars are in fact rapidly rotating neutron stars which emit 

radio energy in a beam at an angle to the axis. Each time the beam sweeps round to point towards 

Earth, radio energy is directed towards us, rather like a light beam from a lighthouse.  

 

Figure 2 A pulsar  
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Neutron stars are the remnants of large stars. When a massive star runs out of fuel, a huge 

explosion takes place. The remnants of the explosion are pulled in together by their gravitational 

attraction, perhaps equivalent to a mass equal to the Sun shrinking to only 15
 
km or so in 

diameter. The moment of inertia is therefore made much smaller so the angular speed increases. 

The pulse frequency from a pulsar is of the order of 1 to 10
 
Hz, so the rate of rotation is of that 

order, much much greater than the Sun’s rate which is about once every 25 days! 

Conservation of angular momentum  

In both of the above examples, the ice skater and the pulsar, the angular momentum after the 

change is equal to the angular momentum before the change because the resultant torque in each 

case is zero. In other words, the angular momentum is conserved. 

Where a system is made up of more than one spinning body, then when two of the bodies interact 

(e.g. collide), one might lose angular momentum to the other. If the resultant torque on the system 

is zero, the total amount of angular momentum must stay the same.  

Examples of the conservation of angular momentum 

Capture of spinning satellite 
If a spinning satellite is taken on board a space repair laboratory, the whole laboratory is set 

spinning. The angular momentum of the satellite is transferred to the laboratory when the satellite 

is taken on board and stopped. Unless rocket motors are used to prevent it from turning, then the 

whole laboratory would spin.  

 

Figure 3 The space shuttle Endeavour taking a communications satellite on board 

In this example: 

 the total angular momentum before the satellite is taken on board = I11, where I1 is the 

moment of inertia of the satellite and 1 is its initial angular speed 

 the total angular momentum after the satellite has been taken on board and stopped 

= (I1 + I2)2, where 2 is the final angular speed and (I1 + I2) is the total moment of inertia 

about the axis of rotation of the satellite as I2 is the moment of inertia of the Space Shuttle. 

According to the conservation of momentum, (I1 + I2)2 = I11 

Rearranging this equation gives I22 = I11 − I12 
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This rearranged equation shows that the angular momentum gained by the Space Shuttle is equal 

to the angular momentum lost by the satellite.  

Object dropped onto a turntable 
If a small object is dropped onto a freely rotating turntable, as shown in Figure 4, so that it sticks 

to the turntable, the object gains angular momentum and the turntable loses angular momentum. 

 

Figure 4 Measuring the moment of inertia of a freely rotating turntable 

In this example: 

 the total angular momentum of the turntable before the object is dropped onto it = I11, where 

I1 is the moment of inertia of the turntable and 1 is its initial angular speed 

 the total angular momentum after the object has been dropped onto the turntable = (I1 + I2)2, 

where 2 is the final angular speed and (I1 + I2) is the total moment of inertia about the axis 

of rotation of the turntable. 

If the mass of the object is m and its perpendicular distance from the axis of rotation of the 

turntable is r, then the moment of inertia I2 of the object about the axis of rotation = mr
2
. 

According to the conservation of momentum, (I1 + mr
2
)2 = I11 

Rearranging this equation gives 
21

2
2

1







mr
I  

Hence I1 can be found by measuring m, r, 1 and 2. 

Note 

The angular momentum of a point mass is defined as its momentum × its distance from the axis 

of rotation. For a point mass m rotating at angular speed  at distance r from the axis, its 

momentum is mr (as its speed v = r) so its angular momentum is mr
2
. 

For a network of point masses m1, m2, …, mN which make up a rigid body,  

the total angular momentum = (m1r1
2) + (m2r2

2) + ……+ (mNrN
2) 

                                              = [(m1r1
2
) + (m2r2

2
) + …….+ (mNrN

2
)] = I 

Link  

See A2 Physics A Topic 1.1 for momentum. 
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Comparison of linear and rotational motion 

When analysing a rotational dynamics situation, it is sometimes useful to compare the situation 

with an equivalent linear situation. For example, the linear equivalent of a torque T used to 

change the angular speed of flywheel is a force F used to change the speed of an object moving 

along a straight line. If the change takes place in time t  

 the change of momentum of the object = Ft 

 the change of angular momentum of the flywheel = Tt 

Table 1 summarises the comparison between linear and rotational motion.  

Table 1 Comparison between linear and rotational motion 

Linear motion  Rotational motion 

displacement s angular displacement  

speed and velocity v  angular speed   

acceleration a  angular acceleration   

mass m moment of inertia I 

momentum mv angular momentum I 

force F 
F = ma  
 

F = 
 
t

mv

d

d
 

torque T = Fd  

T = I 

 

T = 
 
t

I

d

d 
 

kinetic energy 
2
1 mv

2 
kinetic energy 

2
1 I

2 

work done = Fs  work done = T  

power = Fv  power = T 
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Summary questions  

1 A vehicle wheel has a moment of inertia of 5.0 × 10
−2 

kg
 
m

2
 and a radius of 0.30

 
m. 

 a Calculate the angular momentum of the wheel when the vehicle is travelling at a speed of 27
 
m

 
s

−1
. 

 b When the brakes are applied, the vehicle speed decreases from 30
 
m

 
s

−1
 to zero in 9.0

 
s. Calculate the 

resultant torque on the wheel during this time.  

2 A metal disc X on the end of an axle rotates freely at 240 revolutions per minute. The moment of inertia 

of the disc and the axle is 0.044
 
kg

 
m

2
.  

 a Calculate the angular momentum of the disc and the axle. 

 

Figure 5 

 
 
 
 
 b After a second disc Y that is initially stationary is engaged by X, both discs rotate at 160 revolutions 

per second. Calculate the moment of inertia of Y.  

 c Show that the total loss of kinetic energy is 4.6
 
J.  

3 A pulsar is a collapsed star that rotates very rapidly. Explain why a slowly rotating star that collapses 

rotates much faster as a result of the collapse.  

4 A frictionless turntable is set rotating at a steady angular speed of 20
 
rad

 
s

−1
. A small, 0.2

 
kg, mass is 

dropped onto the turntable from rest just above it, at a distance of 0.24
 
m from the centre of the 

turntable. As a result, the angular speed of the turntable decreases to 18
 
rad

 
s

−1
. Calculate the moment of 

inertia of the turntable about its axis of rotation.  


