
Surname				Oth	er Names				
Centre Nur	umber					Candid	ate Number		
Candidate Signature		ure							

General Certificate of Education June 2004 Advanced Level Examination

PHA5/W

PHYSICS (SPECIFICATION A) Unit 5 Nuclear Instability: Astrophysics Option

Thursday 17 June 2004 Morning Session

In addition to this paper you will require:

- a calculator;
- a pencil and a ruler.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.

Information

- The maximum mark for this paper is 40.
- Mark allocations are shown in brackets.
- The paper carries 10% of the total marks for Physics Advanced.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- You are expected to use a calculator where appropriate.
- In questions requiring description and explanation you will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary where appropriate. The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

	For Examiner's Use			
Number	Mark	Number	Mark	
1				
2				
3				
4				
5				
Total (Column	1)	>		
Total (Column 2)				
TOTAL				
Examiner's Initials				

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

	Fundamental constants a	and valu	ies	
	Quantity	Symbol	Value	Units
	speed of light in vacuo	c	3.00×10^{8}	$m s^{-1}$
1	permeability of free space	μ_0	$4\pi \times 10^{-7}$	H m ⁻¹
	permittivity of free space	ϵ_0	8.85×10^{-12}	F m ⁻¹
	charge of electron	e	1.60×10^{-19}	C
	the Planck constant	h	6.63×10^{-34}	Js
	gravitational constant	G	6.67×10^{-11}	$N m^2 kg^{-2}$
	the Avogadro constant	$N_{\rm A}$	6.02×10^{23}	mol ⁻¹
ı	molar gas constant	R	8.31	J K ⁻¹ mol
١	the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
	the Stefan constant	σ	5.67×10^{-8}	W m ⁻² K ⁻⁴
	the Wien constant	α	2.90×10^{-3}	m K
	electron rest mass	$m_{\rm e}$	9.11×10^{-31}	kg
ı	(equivalent to 5.5×10^{-4} u)			
١	electron charge/mass ratio	e/m _e	1.76×10^{11}	C kg ⁻¹
	proton rest mass	$m_{\rm p}$	1.67×10^{-27}	kg
1	(equivalent to 1.00728u)		_	
ı	proton charge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	C kg ⁻¹
ı	neutron rest mass	$m_{\rm n}$	1.67×10^{-27}	kg
	(equivalent to 1.00867u)			
1	gravitational field strength	g	9.81	N kg ⁻¹ m s ⁻²
	acceleration due to gravity	g	9.81	m s ⁻²
	atomic mass unit	u	1.661×10^{-27}	kg
ı	(1u is equivalent to			
ı	931.3 MeV)			

Fundamental particles

Class	Name	Symbol	Rest energy
			/MeV
photon	photon	γ	0
lepton	neutrino	$\nu_{ m e}$	0
		$ u_{\mu}$	0
	electron	e^{\pm}	0.510999
	muon	μ^{\pm}	105.659
mesons	pion	π^{\pm}	139.576
		π^0	134.972
	kaon	K [±]	493.821
		K^0	497.762
baryons	proton	p	938.257
	neutron	n	939.551

Properties of quarks

Туре	Charge	Baryon number	Strangeness
u	$+\frac{2}{3}$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}$	$+\frac{1}{3}$	-1

Geometrical equations

arc length = $r\theta$ circumference of circle = $2\pi r$ area of circle = πr^2 area of cylinder = $2\pi rh$ volume of cylinder = $\pi r^2 h$ area of sphere = $4\pi r^2$ volume of sphere = $\frac{4}{3}\pi r^3$

Mechanics and Applied Physics

3

Physics
$$v = u + at$$

$$s = \left(\frac{u + v}{2}\right)t$$

$$s = ut + \frac{at^2}{2}$$

$$v^2 = u^2 + 2as$$

$$F = \frac{\Delta(mv)}{\Delta t}$$

$$P = Fv$$

$$efficiency = \frac{power\ output}{power\ input}$$

$$\omega = \frac{v}{r} = 2\pi f$$

$$a = \frac{v^2}{r} = r\omega^2$$

$$E_{k} = \frac{1}{2} I \omega^{2}$$

$$\omega_{2} = \omega_{1} + \alpha t$$

$$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$$

$$\omega_2^2 = \omega_1^2 + 2\alpha \theta$$

$$\theta = \frac{1}{2} (\omega_1 + \omega_2) t$$

angular momentum =
$$I\omega$$

 $W = T\theta$

 $P = T\omega$

angular impulse = change of
$angular\ momentum = Tt$
$\Delta Q = \Delta U + \Delta W$
$\Delta W = p\Delta V$
pV^{γ} = constant

work done per cycle = area of loop

input power = calorific value × fuel flow rate

indicated power as (area of p - V loop) \times (no. of cycles/s) \times (no. of cylinders)

friction power = indicated power - brake power

$$efficiency = \frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$$

maximum possible

$$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$$

Fields, Waves, Quantum Phenomena

$$g = \frac{F}{m}$$

$$g = -\frac{GM}{r^2}$$

$$g = -\frac{\Delta V}{\Delta x}$$

$$V = -\frac{GM}{r}$$

$$a = -(2\pi f)^2 x$$

$$v = \pm 2\pi f \sqrt{A^2 - x^2}$$

$$x = A \cos 2\pi f t$$

$$T = 2\pi \sqrt{\frac{I}{g}}$$

$$\lambda = \frac{\omega s}{D}$$

$$d \sin \theta = n\lambda$$

$$\theta \approx \frac{\lambda}{D}$$

$$1^{n_2} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$$

$$1^{n_2} = \frac{n_2}{n_1}$$

$$\sin \theta_c = \frac{1}{n}$$

$$E = hf$$

$$hf = \phi + E_k$$

$$hf = E_1 - E_2$$

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

Electricity

$$\begin{aligned}
&\in = \frac{E}{Q} \\
&\in = I(R+r) \\
&\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \cdots \\
&R_{T} = R_{1} + R_{2} + R_{3} + \cdots \\
&P = I^{2}R \\
&E = \frac{F}{Q} = \frac{V}{d} \\
&E = \frac{1}{4\pi\epsilon_{0}} \frac{Q}{r^{2}} \\
&E = \frac{1}{2} QV \\
&F = BII \\
&F = BQv \\
&Q = Q_{0}e^{-t/RC}
\end{aligned}$$

 $\Phi = BA$

Turn over

magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus =
$$\frac{tensile\ stress}{tensile\ strain} = \frac{F}{A} \frac{l}{e}$$

energy stored = $\frac{1}{2}$ Fe

$$\Delta Q = mc \ \Delta \theta$$

$$\Delta Q = ml$$

$$pV = \frac{1}{3} Nm\overline{c^2}$$

$$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$

Nuclear Physics and Turning Points in Physics

$$force = \frac{eV_p}{d}$$

force = Bev

 $radius \ of \ curvature = \frac{mv}{Be}$

$$\frac{eV}{d} = mg$$

 $work\ done = eV$

 $F = 6\pi \eta r v$

$$I = k \frac{I_0}{r^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = r_0 A^{\frac{1}{3}}$$

$$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

Body Mass/kg Mean radius/m

 $\begin{array}{lll} Sun & 2.00\times 10^{30} & 7.00\times 10^{8} \\ Earth & 6.00\times 10^{24} & 6.40\times 10^{6} \end{array}$

1 astronomical unit = 1.50×10^{11} m

1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$

1 light year = 9.45×10^{15} m

Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $M = \frac{\text{angle subtended by image at eye}}{\text{angle subtended by object at}}$ unaided eye

$$M = \frac{f_0}{f}$$

$$m - M = 5 \log \frac{d}{10}$$

 $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$

v = Hd

 $P = \sigma A T^4$

$$\frac{\Delta f}{f} = \frac{\imath}{c}$$

$$\frac{\Delta\lambda}{\lambda} = -\frac{\nu}{c}$$

$$R_{\rm s} \approx \frac{2GM}{c^2}$$

Medical Physics

 $power = \frac{1}{f}$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$

intensity level = $10 \log \frac{I}{I_0}$

 $I = I_0 e^{-\mu x}$

 $\mu_{\rm m} = \frac{\mu}{\rho}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

$$f = \frac{1}{T}$$

Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}}$$
 voltage gain

$$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

$$G = 1 + \frac{R_{\rm f}}{R_1}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \text{ summing}$$

TURN OVER FOR THE FIRST QUESTION

SECTION A: NUCLEAR INSTABILITY

Answer all parts of the question.

1	(a)		dioactive source gives an initial count rate of 110 counts per second. After 10 minutes the trate is 84 counts per second.
			background radiation = 3 counts per second
		(i)	Give three origins of the radiation that contributes to this background radiation.
			1
			2
			3
		(ii)	Calculate the decay constant of the radioactive source in s ⁻¹ .
		(iii)	Calculate the number of radioactive nuclei in the initial sample assuming that the detector counts all the radiation emitted from the source.
			/7
			(7 marks)

(b)	Discuss the dangers of exposing the human body to a source of α radiation. In particular compare the dangers when the α source is held outside, but in contact with the body, with those when the source is placed inside the body.
	You may be awarded marks for the quality of written communication in your answer.
	(3 marks)

TURN OVER FOR THE NEXT QUESTION

SECTION B: ASTROPHYSICS

Answer all questions.

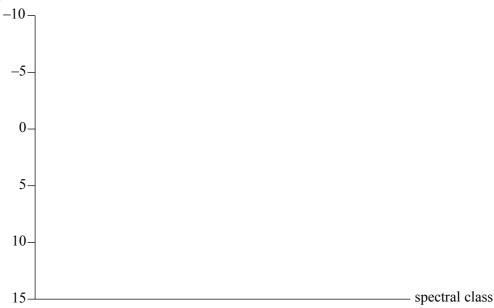
2	In an experiment to find the focal length of a convex lens, light from a distant, bright, white light source
	is focused onto a screen.

(i)	A focused image is formed on the screen when the distance between the lens and screen is 0.10 m. Calculate the power of the lens.
(ii)	This image has a purple edge. What is the name of the effect producing this?

(iii) Complete Figure 1 to draw a labelled ray diagram to show how this effect occurs.

Figure 1

(4 marks)


(a)		a ray diagram to show the path of two rays, parallel to the axis, through a Cassegrain cope, as far as the eyepiece.
		(2 marks)
(b)		UKIRT is a Cassegrain telescope capable of detecting both infrared and visible radiation. s an objective diameter of 3.8 m.
	(i)	Calculate the resolving power of this telescope for infrared light of wavelength $2.0\mu\text{m}.$
	(ii)	Explain why the resolving power of this telescope is better in the visible region than in the
	(11)	infrared region.
	_	(4 marks)
(c)		duce atmospheric absorption problems, the telescope was built at the top of Mount Mauna n Hawaii.
	(i)	What, in the atmosphere, is responsible for absorbing infrared radiation?
	(ii)	The spectrum of light from a star can be used to determine its temperature. Explain why this absorption can lead to errors in the value.

(3 marks) \
Turn over ▶

3

4 (a) (i) On the axes below draw the Hertzsprung-Russell (H-R) diagram labelling the main sequence stars, dwarf stars and giant stars. Complete the horizontal axis by labelling the spectral classes.

absolute magnitude

(ii) On the H-R diagram, mark with an **X** the current position of the Sun and draw a line to represent the evolution of the Sun, from its formation to its eventual state as a white dwarf.

(4 marks)

(b)	Matar is a star in the same spectral class as the Sun.		
	(i)	State two properties common to Matar and the Sun.	
	(ii)	The distance to Matar is 330 light years. What is this distance in parsec?	
	(iii)	The apparent magnitude of Matar is 2.9. Calculate its absolute magnitude.	
	(iv)	Which is the larger star, Matar or the Sun? Explain your answer.	
		(6 marks)	

 $\left\langle \overline{10} \right\rangle$

TURN OVER FOR THE NEXT QUESTION

5 (a))	Describe the main features of black holes and quasars.
		You may be awarded marks for the quality of written communication in your answer.
		(3 marks)
(b))	There is some evidence to suggest that there is a black hole of 3×10^9 solar masses at the centre of the galaxy M87. Calculate the radius of the event horizon for this black hole.
		of the galaxy 19167. Calculate the facility of the event horizon for this black hole.
		(2 marks)

QUALITY OF WRITTEN COMMUNICATION

END OF QUESTIONS

Copyright $\ensuremath{\mathbb{C}}$ 2004 AQA and its licensors. All rights reserved.