Surname	пе			Oth	er Names				
Centre Nun	nber					Candid	ate Number		
Candidate	Signat	ure							

Leave blank

General Certificate of Education January 2004 Advanced Level Examination

PHYSICS (SPECIFICATION A) PHA6/W Unit 6 Nuclear Instability: Medical Physics Option

Monday 26 January 2004 Morning Session

In addition to this paper you will require:

- · a calculator;
- a pencil and a ruler.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.

Information

- The maximum mark for this paper is 40.
- Mark allocations are shown in brackets.
- The paper carries 10% of the total marks for Physics Advanced.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- You are expected to use a calculator where appropriate.
- In questions requiring description and explanation you will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary where appropriate. The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

For Examiner's Use							
Number	Mark	Number	Mark				
1							
2							
3							
4							
5							
Total (Column	1)	-					
Total (Column							
TOTAL							
Examine	r's Initials						

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

I	Fundamental constants a	and valu	ies	
I	Quantity	Symbol	Value	Units
۱	speed of light in vacuo	c	3.00×10^{8}	m s ⁻¹
I	permeability of free space	μ_0	$4\pi \times 10^{-7}$	H m ⁻¹
I	permittivity of free space	ϵ_0	8.85×10^{-12}	F m ⁻¹
ı	charge of electron	e	1.60×10^{-19}	C
ı	the Planck constant	h	6.63×10^{-34}	J s
ı	gravitational constant	G	6.67×10^{-11}	N m ² kg ⁻²
I	the Avogadro constant	$N_{\rm A}$	6.02×10^{23}	mol ⁻¹
	molar gas constant	R	8.31	J K ⁻¹ mol
I	the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
I	the Stefan constant	σ	5.67×10^{-8}	W m ⁻² K ⁻
I	the Wien constant	α	2.90×10^{-3}	m K
I	electron rest mass	$m_{\rm e}$	9.11×10^{-31}	kg
	(equivalent to 5.5×10^{-4} u)			
I	electron charge/mass ratio	e/m _e	1.76×10^{11}	C kg ⁻¹
۱	proton rest mass	$m_{\rm p}$	1.67×10^{-27}	kg
l	(equivalent to 1.00728u)		_	
ŀ	proton charge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	C kg ⁻¹
I	neutron rest mass	$m_{\rm n}$	1.67×10^{-27}	kg
I	(equivalent to 1.00867u)			
ı	gravitational field strength	g	9.81	N kg ⁻¹ m s ⁻²
I	acceleration due to gravity	g	9.81	
۱	atomic mass unit	u	1.661×10^{-27}	kg
١	(1u is equivalent to			
١	931.3 MeV)			

Fundamental particles

Class	Name	Symbol	Rest energy
			/MeV
photon	photon	γ	0
lepton	neutrino	$ u_{\mathrm{e}}$	0
		$ u_{\mu}$	0
	electron	e^{\pm}	0.510999
	muon	μ^\pm	105.659
mesons	pion	$\boldsymbol{\pi}^{\pm}$	139.576
		π^0	134.972
	kaon	K^{\pm}	493.821
		K^0	497.762
baryons	proton	p	938.257
	neutron	n	939.551

Properties of quarks

Туре	Charge	Baryon number	Strangeness
u	$+\frac{2}{3}$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}$	$+\frac{1}{3}$	0
S	$-\frac{1}{2}$	$+\frac{1}{2}$	-1

Geometrical equations

arc length = $r\theta$ circumference of circle = $2\pi r$ area of circle = πr^2 area of cylinder = $2\pi rh$ volume of cylinder = $\pi r^2 h$ area of sphere = $4\pi r^2$ volume of sphere = $4\pi r^3$

Mechanics and Applied Physics

3

$$v = u + at$$

$$s = \left(\frac{u+v}{2}\right)t$$

$$s = ut + \frac{at^2}{2}$$

$$v^2 = u^2 + 2as$$

$$F = \frac{\Delta(mv)}{\Delta t}$$

$$P = Fv$$

$$efficiency = \frac{power\ output}{power\ input}$$

$$\omega = \frac{v}{r} = 2\pi f$$

$$a = \frac{v^2}{r} = r\omega^2$$

$$I = \sum mr^2$$

$$E_k = \frac{1}{2}I\omega^2$$

$$\omega_2 = \omega_1 + at$$

$$\theta = \omega_1 t + \frac{1}{2}\alpha t^2$$

$$\omega_2^2 = \omega_1^2 + 2\alpha\theta$$

$$\theta = \frac{1}{2}(\omega_1 + \omega_2)t$$

$$T = I\alpha$$

$$angular\ momentum = I\omega$$

$$W = T\theta$$

$$P = T\omega$$

$$angular\ impulse = change\ of\ angular\ momentum = Tt$$

$$\Delta Q = \Delta U + \Delta W$$

$$\Delta W = p\Delta V$$

$$pV^{\gamma} = constant$$

$$work\ done\ per\ cycle = area$$

$$of\ loop$$

$$input\ power = calorific$$

$$value \times fuel\ flow\ rate$$

indicated power as (area of
$$p - V$$
 loop) × (no. of cycles/s) × (no. of cylinders)

friction power = indicated power – brake power

efficiency =
$$\frac{W}{Q_{\rm in}} = \frac{Q_{\rm in} - Q_{\rm out}}{Q_{\rm in}}$$

$$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$$

maximum possible

Fields, Waves, Quantum Phenomena

$$g = \frac{F}{m}$$

$$g = -\frac{GM}{r^2}$$

$$g = -\frac{\Delta V}{\Delta x}$$

$$V = -\frac{GM}{r}$$

$$a = -(2\pi f)^2 x$$

$$v = \pm 2\pi f \sqrt{A^2 - x^2}$$

$$x = A \cos 2\pi f t$$

$$T = 2\pi \sqrt{\frac{I}{g}}$$

$$\lambda = \frac{\omega s}{D}$$

$$d \sin \theta = n\lambda$$

$$\theta \approx \frac{\lambda}{D}$$

$$_1n_2 = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$$

$$_1n_2 = \frac{n_2}{n_1}$$

$$\sin \theta_c = \frac{1}{n}$$

$$E = hf$$

$$hf = \phi + E_k$$

$$hf = E_1 - E_2$$

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

Electricity

Electricity
$$\epsilon = \frac{E}{Q}$$

$$\epsilon = I(R+r)$$

$$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

$$R_{\rm T} = R_1 + R_2 + R_3 + \cdots$$

$$P = I^2 R$$

$$E = \frac{F}{Q} = \frac{V}{d}$$

$$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$

$$E = \frac{1}{2} QV$$

$$F = BII$$

$$F = BQv$$

$$Q = Q_0 e^{-t/RC}$$

Turn over

 $\Phi = BA$

magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus = $\frac{tensile\ stress}{tensile\ strain} = \frac{F}{A} \frac{l}{e}$

energy stored = $\frac{1}{2}$ Fe

$$\Delta Q = mc \ \Delta \theta$$

$$\Delta Q = ml$$

$$pV = \frac{1}{3} Nm\overline{c^2}$$

$$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$

Nuclear Physics and Turning Points in Physics

$$force = \frac{eV_p}{d}$$

$$force = Bev$$

radius of curvature = $\frac{mv}{Be}$

$$\frac{eV}{d} = mg$$

 $work\ done = eV$

 $F = 6\pi \eta r v$

$$I = k \frac{I_0}{x^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = r_0 A^{\frac{1}{3}}$$

$$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

Body Mass/kg Mean radius/m

 $\begin{array}{lll} Sun & 2.00\times 10^{30} & 7.00\times 10^{8} \\ Earth & 6.00\times 10^{24} & 6.40\times 10^{6} \end{array}$

1 astronomical unit = 1.50×10^{11} m

1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$

1 light year = 9.45×10^{15} m

Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $M = \frac{\text{angle subtended by image at eye}}{\text{angle subtended by object at}}$ unaided eye

$$M = \frac{f_0}{f_0}$$

$$m - M = 5 \log \frac{d}{10}$$

 $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$

v = Hd

 $P = \sigma A T^4$

$$\frac{\Delta f}{f} = \frac{v}{c}$$

$$\frac{\Delta\lambda}{\lambda} = -\frac{\nu}{c}$$

$$R_{\rm s} \approx \frac{2GM}{c^2}$$

Medical Physics

 $power = \frac{1}{f}$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
 and $m = \frac{v}{u}$

intensity level = $10 \log \frac{I}{I_0}$

 $I = I_0 e^{-\mu x}$

 $\mu_{\rm m} = \frac{\mu}{\alpha}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

$$f = \frac{1}{T}$$

Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}}$$
 voltage gain

$$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

$$G = 1 + \frac{R_{\rm f}}{R_1}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \text{ summing}$$

SECTION A: NUCLEAR INSTABILITY

Answer all of this question

1 (a) The lead nuclide $^{210}_{82}$ Pb is unstable and decays in three stages through α and β emissions to a different lead nuclide $^{206}_{82}$ Pb. The position of these lead nuclides on a grid of neutron number, N, against proton number, Z, is shown below.

On the grid draw **three** arrows to represent one possible decay route. Label each arrow with the decay taking place.

(3 marks)

(b) The copper nuclide 64/29 Cu may decay by positron emission or by electron capture to form a nickel (Ni) nuclide.

Complete the two equations that represent these two possible modes of decay.

positron emission 64/29 Cu

electron capture 64 Cu

(c)	The nucleus of an atom may be investigated by scattering experiments in which radiation or particles bombard the nucleus.
	Name one type of radiation or particle that may be used in this investigation and describe the main physical principle of the scattering process.
	State the information which can be obtained from the results of this scattering.
	You may be awarded marks for the quality of written communication in your answer.
	(3 marks)

 $\left(\begin{array}{c} \overline{10} \end{array}\right)$

TURN OVER FOR THE NEXT QUESTION

SECTION B: MEDICAL PHYSICS

Answer all questions.

(a)	Calcı	ılate
()		the power of the lens,
	(i)	the power of the iens,
	(ii)	the magnification produced.
		(3 mar
		F F
		F F
(c)	(i)	
(c)	(i) (ii)	What defect of vision is this lens used to correct?
(c)		What defect of vision is this lens used to correct? A person has an unaided near point at 0.60 m and an unaided far point at infinitely and the second seco

(4 marks)

		ds its foghorn. A person on a cliff hears the sound which has an <i>intensity</i> of 0.13 mW m ⁻² . suffered <i>attenuation</i> in travelling between the ship and the person.
(a)	(i)	Define intensity.
	(ii)	State what is meant by attenuation and what causes it.
		(3 marks)
(b)	Calc	alate the intensity level of the sound heard by the person described above.
	thres	hold of hearing $I_0 = 1.0 \times 10^{-12} \text{W m}^{-2}$
		(2 marks)
		(2 mans)

_

TURN OVER FOR THE NEXT QUESTION

3

4 (a) Describe the response of the heart to the action potential originating at the sino-atrial node.

You may be awarded marks for the quality of written communication in your answer.

•••••	 	•••••	•••••

•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •

(4 marks)

(b) The cell membrane action potential changes with time as shown.

The change in action potential results from ion movement in the same way as does the change of action potential across a nerve membrane. AB is a region of depolarisation. CD is a region of repolarisation.

(i) Describe the ion movement which produces depolarisation.

Describe the ion movement which produces repolarisation.

(3 marks)

(a)	When an X-ray image is obtained of certain organs, <i>image contrast enhancement</i> is Explain why image contrast enhancement is needed and describe how this might be	
		•••••
		•••••
		(3 marks)
(b)	A monochromatic X-ray beam of intensity $3.2 \times 10^{-2} \text{W m}^{-2}$ is incident on an alumin Calculate the thickness of aluminium required to reduce the intensity of the X-ra $1.2 \times 10^{-2} \text{W m}^{-2}$.	
	mass attenuation coefficient of aluminium, $\mu_m = 0.012 \mathrm{m}^2 \mathrm{kg}^{-1}$	
	density of aluminium, $\rho = 2700 \mathrm{kg} \mathrm{m}^{-3}$	
		•••••
		•••••
		(3 marks)
	QUALITY OF WRITTEN COMMUNICATION	(2 marks)
		()
	END OF QUESTIONS	

Copyright © 2004 AQA and its licensors. All rights reserved.