- **M1.** (a) path curves upwards from O to P path is tangential to curve at P and straight beyond P
	- (b) (i) magnetic field exerts a force on a moving charge/electron **(1)** magnetic force has a downwards component (at all points) [or magnetic force < electric force] **(1)**
		- (ii) magnetic force = Bev **(1)**

electric force
$$
\left(\frac{eV_p}{d}\right) = eE(1)
$$

Bev = eE (gives v = $\frac{E}{B}$) (1)

(c) work done (or eV) = gain of kinetic energy (or $\frac{1}{2}mv^2$) (1)

$$
\frac{e}{m} = \frac{v^2}{2} (1)
$$

=
$$
\frac{(3.2 \times 10^7)^2}{2 \times 2900} = 1.8 \times 10^{11} \text{ C kg}^{-1} (1)
$$

M2. (a) magnetic force perpendicular to (direction of) motion (or velocity) **(1)** force does not change speed (or force does no work) **(1)** force causes direction of motion to change **(1)** force (or acceleration) is centripetal/ acts towards centre of curvature **(1)** velocity is tangential **(1)**

> **max 3 QWC 2**

2

5

(b) (i) magnetic force = Bev **(1)**

centripetal acceleration = $\frac{v^2}{r}$, \therefore Bev = $\frac{mv^2}{r}$ (1) Ber

(gives
$$
v = \frac{25eV}{m}
$$
)

(ii)
$$
\frac{mv^2}{r} = Bev \text{ gives } \frac{e}{m} = \frac{v}{Br} \quad (1)
$$

$$
= \frac{3.2 \times 10^{7}}{7.3 \times 10^{-3} \times 25 \times 10^{-3}}
$$
 (1)
= 1.75 x 10¹¹ C kg⁻¹ (1)

5

[8]

M3. (a) (i) (vertically) upwards **(1)**

(ii)
$$
mg = qE
$$
, $\therefore \frac{q}{m} = \frac{g}{E}$ (1)
 $\frac{9.8}{4.9 \times 10^5}$ (1) (= 2.0 × 10⁻⁵ C kg⁻¹)

(b) initial downwards acceleration due to weight (or gravity) **(1)** viscous force/drag/friction (or resistance) due to air increases with increase in speed **(1)** speed increases until drag become equal to (and opposite to) weight (no resultant force) hence no acceleration **(1)**

max 3

4

3

[6]

- **M4.** (a) (i) metal wire emits electrons when heated **(1)** conduction electrons in metal gain kinetic energy when wire is heated **(1)**
	- (ii) electrons from wire would be absorbed/scattered/stopped by gas atoms or collide with gas atoms and lose kinetic energy or speed **(1)**
	- (iii) electrons carry negative charge so anode needs to be positive (to attract them) **(1)**

(b) (i) $E_k^{\text{}}(\text{or } \frac{1}{2} m v^2)$ (= work done or eV) = 1.6 \times 10⁻¹⁹ \times 2500 (1) $= 4.0 \times 10^{-16}$ **J (1)**

(ii)
$$
v = \left(\frac{2E_k}{m}\right)^{1/2} = \left(\frac{2 \times 4.0 \times 10^{-16}}{9.11 \times 10^{-31}}\right)^{1/2}
$$
 (1)
= 3.0 x 10⁷ m s⁻¹ (1)

(allow C.E. for value of E_k from (i))

[8]

4

M5. (a) (i) positive **(1)**

(ii) electric force directed **upwards** = weight **(1)**

$$
[\text{or } \frac{QV}{d} = mgl]
$$

(b) (i)
$$
v = \frac{1.20 \times 10^{-3}}{13.8} = 8.7 \times 10^{-5} \text{ m s}^{-1}
$$
 (1)

(ii) weight [or
$$
mg
$$
] = $^{4}/_3 \pi r^3 \rho g$ (1)
\n(since speed constant) viscous force = $6 \pi \eta r v$ (1)
\n $^{4}/_3 \pi r^3 \rho g = 6 \pi \eta r v$ to give desired equation (1)

(iii) rearrange equation to give
$$
r = \left(\frac{9\eta v}{2\rho g}\right)^{1/2}
$$
 (1)

$$
\left\{ = \left(\frac{9 \times 1.8 \times 8.7 \times 10^{-5}}{2 \times 960 \times 9.8} \right)^{1/2} \right\} = 8.7 \times 10^{-7} \text{ m (1)} \quad \text{(8.65} \times 10^{-7} \text{ m)}
$$
\n(allow C.E. for value of *v* from (i), but not 3rd mark)\n
$$
m = \frac{4}{3} \pi r^3 \rho = \frac{4}{3} \pi (8.65 \times 10^{-7})^3 \times 960 \text{ (1)} \quad (= 2.6 \times 10^{-15} \text{ kg})
$$

(iv)
$$
\frac{QV}{d} = mg(1)
$$

Q =
$$
\frac{2.6 \times 10^{-15} \times 9.8 \times 6.0 \times 10^{-3}}{320}
$$
 (1)
= 4.8 x 10⁻¹⁹ C (1) (4.78 x 10⁻¹⁹ C)

10

[4]

- **M6.** (i) electrons [or ions] present **(1)** electrons/ions accelerated by electric field [or electrons and ions collide] **(1)** excitation/ionisation of gas atoms/ions/molecules/particles occur **(1)** photons emitted on return to lower energy or ground state **(1)**
	- (ii) electrons/ions do not gain enough kinetic energy (to produce ionisation) **(1)** because too many atoms/ions/molecules/particles present **(1)**

max 4 QWC 1

M7. (a) force due to electric field is vertically upwards and proportional (or related to) plate pd **(1)** at $V = V_{c}$, force due to field is equal and opposite to the weight of the droplet **(1)** no resultant force (or forces balance) at V_{c} (droplet remains stationary) (1)

(b) (i) electric force (or qV/d) = weight (or mg) (1)

$$
q\left(=\frac{mgd}{V}\right)=\frac{6.2\times10^{-14}\times9.8\times6.0\times10^{-3}}{5700} \text{ (1)}
$$

$$
=6.4\times10^{-19}\text{C (1)}
$$

(ii) for pd > 5700 (V), droplet moves upwards **(1)** due to increased electric force **(1)** droplet reaches terminal velocity **(1)**

max 5

3

[8]

M9. (a) each electron experiences an electrostatic force (vertically) upwards **(1)** this force does not change as the electron moves across the field **(1)** each electron (therefore) has a (constant) acceleration vertically upwards **(1)** velocity of each electron has a constant horizontal component of velocity **(1)** [or has an increasing vertical component of velocity] so the direction of motion/velocity becomes closer and closer to a vertical line (as electron moves across the field) **(1)** [or angle to the vertical becomes less]

> **Max 4 QWC 1**

[7]

(b) (i) (for beam to be undeflected) force due to electric field, eE (or qE) **(1)**

equals force due to magnetic field, Bev (1) (gives $v = \frac{E}{B}$)

(ii) (k.e. at anode) =
$$
\frac{1}{2}mv^2 = eV_A(1)
$$

gives
$$
\frac{e}{m} = \frac{v^2}{2V_A}
$$
 (1) (i.e. = $\frac{E^2}{2B^2V_A}$)

(iii)
$$
E = \frac{V}{d} = \frac{3800}{50 \times 10^{-3}}
$$
 (1) $(= 7.6 \times 10^{4} (V \text{ m}^{-1}))$

$$
\frac{e}{m} = \left(\frac{E^2}{2B^2V_A}\right) = \frac{(7.6 \times 10^4)^2}{2 \times (1.9 \times 10^{-3})^2 \times 4500}
$$
 (1)
= 1.8 × 10¹¹ C kg⁻¹ (1)

[11]

- **M10.** (a) (i) emission of (conduction) electrons from a heated metal (surface) or filament/cathode **(1)** work done on electron = eV **(1)**
	- (ii) gain of kinetic energy (or $\frac{1}{2}mv^2$) = eV; rearrange to give required equation (1) 3

(b) (i) work done = force × distance moved in direction of force **(1)** force (due to magnetic field) is at right angles to the direction of motion/velocity [or no movement in the direction of the magnetic force no work done] **(1)** electrons do not collide with atoms **(1)**

any two **(1)(1)**

[alternative for $1st$ and $2nd$ marks (magnetic) force has no component along direction of motion **(1)** no acceleration along direction of motion **(1)** or acceleration perpendicular to velocity]

$$
r = \frac{m\nu}{Be} \left(or Be\nu = \frac{m\nu^2}{r} \right)
$$
 (1)

$$
\nu^2 = \frac{2eV}{m}
$$
 (1)

$$
\therefore r^{2} \left(= \frac{m^{2} v^{2}}{B^{2} e^{2}} \right) = \frac{m^{2}}{B^{2} e^{2}} \times \frac{2eV}{m} = \frac{2mV}{B^{2} e} \tag{1}
$$

(iii) (rearranging the equation gives) $\frac{e}{m} = \frac{2V}{B^2 r^2}$ (1)

$$
\frac{e}{m} = \frac{2 \times 530}{(3.1 \times 10^{-3})^2 \times (25 \times 10^{-3})^2} = 1.7(6) \times 10^{11} \text{Ckg}^{-1}
$$
 (1)

[10]

M11. (a) (i) current heats the wire **(1)**

electrons (in filament) gain sufficient k.e. (to leave the filament) **(1)**

(ii) electrons would collide (or be absorbed or scattered) by gas atoms (or molecules) **(1)**

3

(b) (i) k.e. $(= eV) = 1.6 \times 10^{-19} \times 3900$ (1) $= 6.2 \times 10^{-16}$ (J) (1)

(ii) (rearrange $\frac{1}{2}$ m v^2 = eV to give)

$$
v = (2eV/m)^{11}y^{12} = \left(\frac{2 \times 1.6 \times 10^{-19} \times 3900}{9.1 \times 10^{-31}}\right)^{1/2} (1) = 3.7 \times 10^{7} \text{ m s}^{-1}
$$

M12. (a) (i) The number of electrons (per second) in the beam will increase **(1)** because the filament will become hotter and will emit more electrons (per 2 second) **(1)**

(ii) the speed (or kinetic energy) of the electrons will increase **(1)**

because the electrons (from the filament) are attracted towards the anode with a greater acceleration (or force) **(1)**

(or gain more kinetic energy in crossing a greater pd)

(b) (i) (magnetic) force on each electron in the beam is perpendicular to velocity **(1)**

> no work is done on each electron by (magnetic) force so ke (or speed) is constant **(1)**

magnitude of (magnetic) force is constant because speed is constant **(1)**

(magnetic) force is always perpendicular to velocity so is centripetal **(1)**

max 3

4

2

2

[7]

(ii) rearranging
$$
r = \frac{mv}{Be}
$$
 gives $\frac{e}{m} = \frac{v}{Br}$ (1)

$$
\frac{e}{m} = \frac{7.4 \times 10^6}{6.0 \times 10^{-4} \times 68 \times 10^{-3}} = 1.81 \times 10^{11}
$$
 (1) C kg⁻¹ (1)
for correct answer to 2 sf (1)

(iii) specific charge for the electron \approx 2000 \times specific charge of H⁺ (1) $(accept = and accept any value between 1800 and 2000)$ which was the largest known specific charge before the specific charge of the electron was determined/measured **(1)** (or which could be due to a much greater charge or a much smaller mass of the electron) **2 [13] M13.** (a) (i) **either** (at terminal speed (v)) the viscous force on the droplet = its weight (or mg or the force of gravity on it) **or** viscous force = 6π r rv (where r is the radius of the droplet and η is its viscosity) and weight (= mg) = 4πr³ρg/3 4πr ³*ρ*g/3 = 6π rv (which gives $r = (9 \eta \nu/2\rho g)^{1/2}$) **2** (ii) r (can be calculated as above then) used in the formula m = 4 π ³ ρ /3 to find the droplet mess, m [owtte] \cdot **alternatively**; (from $6\pi \eta$ rv = mg) (as all values are known use) $m = 6\pi \eta r v/g$ **1** (b) (i) electric force (or QV/d) = the droplet weight (or mg) \checkmark $Q = \frac{mgd}{v} = \frac{6.8 \times 10^{-16} \times 9.8(1) \times 5.0 \times 10^{-3}}{690} = 4.8 \times 10^{-19} \text{ C} \checkmark$

2 sf answer \checkmark

(ii) **any two from**

the charge on each droplet is a whole number \times 1.6 \times 10⁻¹⁹ C (or \times charge of the electron) \times

the least amount of charge (or the quantum of charge) is the charge of the electron \checkmark

the quantum of charge is 1.6 \times 10⁻¹⁹ C [owtte] \times

max 2

1

2

4

[8]

M14. (a) (i) diffraction \checkmark

(ii) the electrons in the beam must have the same wavelength \checkmark

> otherwise electrons of different wavelengths (or speeds/velocities/energies/momenta) would diffract by different amounts (for the same order) [owtte] \checkmark

(b) (i)
$$
(eV = \frac{1}{2} m \mathbf{v}^2
$$
 gives) either $\mathbf{v} = \sqrt{\frac{2eV}{m}}$
or $1.6 \times 10^{-19} \times 25000 = \frac{1}{2} \times 9.1 \times 10^{-31} \times \mathbf{v}^2$

$$
v = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 25000}{9.1 \times 10^{-31}}} = 9.4 \times 10^7 \text{ m s}^{-1} \checkmark
$$

p or *mv* (= $9.1 \times 10^{-31} \times 9.4 \times 10^{7}$) = 8.5×10^{-23}

kg m s $^{-1}$ (or N s) \cdot

alternatives for first two marks

$$
p \text{ or } mv = \sqrt{2meV} \ \ \checkmark =
$$

$$
\sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 25000} \, \text{V}
$$

(ii) **any two of the first three mark points**

increase of pd increases the speed (or velocity/energy/ momentum) of the electrons \checkmark

(so) the electron wavelength would be smaller \checkmark

(and) the electrons would diffract less (when they pass through the lenses) \checkmark

and

the image would show greater resolution (or be more detailed) v

3

1

2

3

[10]

M15. (a) force due to electric field acts (vertically) downwards on electrons \checkmark

vertical (component) of velocity of each electron increases \checkmark

- (b) (i) magnetic flux density should be reversed and adjusted in strength (gradually until the beam is undeflected) \checkmark
	- (ii) magnetic (field) force = Bev

and electric (field) force = eV/dV

(Accept Q or q as symbol for e (charge of electron)

Bev = eV/d (for no deflection) gives $v = V/Bd\sqrt{ }$

(c) (gain of) kinetic energy of electron = work done by anode pd or $\frac{1}{2}$ m v^2 = e $V_{(A)}$

$$
\frac{e}{m} \left(= \frac{v^2}{2V_{(A)}} \right) = \frac{(3.9 \times 10^7)^2}{2 \times 4200} \sqrt{ }
$$

 $= 1.8 \times 10^{11}$ C kg⁻¹.

[9]

M16. (a) (i) (at terminal velocity v), weight of droplet (or *mg*) = viscous drag (or 6 $\pi\eta r$ v) Backward working 3 marks max;

viscous force (= $6\pi\eta r v$) = $6\pi \times 1.8 \times 10^{-5} \times 1.0 \times 10^{-6} \times 1.1 \times$ 10^{−4} = 3.7 × 10^{−14} N

mass (*m*) of droplet = $(4\pi r^2/3) \times \rho$, (where *r* is the droplet radius) $weight = mg =$ \overline{A}

$$
\frac{4}{3}\pi (1.0 \times 1.0^{-6})^3 \times 880 \times 9.8 = 3.6 \times 10^{-14} \text{N} \quad \checkmark
$$

(allow 3.7)

(therefore) $(4\pi r^3/3) \times \rho g = 6\pi \eta r v$ (or rearranged)

(hence) r (= (9 ɳ v / 2 *ρ* g) 1/2

 $=\frac{9\times1.8\times10^{-5} \times1.1\times10^{-4}}{2\times880\times9.8}$ gives $r=1.0(3)\times10^{-8}$ m \checkmark

(therefore) viscous force = weight as required for constant velocity ✓

note; some evidence of calculation needed to give final mark

Allow final answer for r in the range 1 to 1.05 x 10⁻⁶ to any number of sig figs

(ii)
$$
m = ((4\pi r^3/3) \times \rho) = \frac{4}{3} \pi (1.0 \times 10^{-6})^3 \times 880) = 3.7 \times 10^{-15} \text{ kg}
$$

(or correct calculation of $6 \pi \eta r v / g$) Allow ecf for r from a(i) in a correct calculation that gives m in the range 3.6 to 4.0 × 10*−*¹⁵ kg

(iii) electric force (or QV / d) = droplet weight (or mg) \checkmark Allow ecf m (or r) from $a(ii)$ (or $a(i)$).

$$
Q = \left(\begin{array}{c} \frac{mgd}{V} \end{array}\right) = \frac{3.7 \times 10^{-15} \times 9.8 \times 6.0 \times 10^{-3}}{680} \sqrt{ }
$$

Accept values in $1st$ mark line

- [or Q (= viscous force $\times d / V$ Use of e instead of Q or $q = 2$ marks max
- $= 6\pi \times 1.8 \times 10^{-5}$ x 1.0 × 10⁻⁶x 1.1 × 10⁻⁴ × 6.0 × 10⁻⁴ / 680 √] For the 2nd mark, allow use of viscous force calculation. Use of viscous force method does not get 1st mark.
- $Q = 3.2 \times 10^{-19}C$ \checkmark

If both methods are given and only one method gives $Q = ne$ (where $n =$ integer >1), ignore other method for 2^{nd} mark and 3^{rd} mark.

For the final mark, Q must be within n e ± 0.2 × 10 *[−]*¹⁹ from a correct calculation.

(b) The weight of the second droplet is greater than the maximum electric force on it \checkmark

Alternative for 1st mark;

weight = $drag$ force + elec force (owtte)

Scheme using V for next 5 marks;

If n =1 for the second droplet, pd to hold it = 1580 V (= mgd / e) \checkmark

which is not possible as V max = 1000 V \checkmark

If n = 2, it would be held at rest by a pd of 790 V (= 1580 / 2 or 680 x 4.3 / 3.7 V) \checkmark

if $n > 2$, it would be held at rest by a pd of less than 790 V (or 790 / n V) \checkmark

So n =1(e) must be the droplet charge \checkmark

Alternative schemes for last 5 marks Q scheme Using $QV/d = mg$ for a stationary droplet gives $Q =$ mgd / V = 2.53 *−* 10*[−]*¹⁹ C which is not possible as $Q =$ integer $x e \checkmark$ (so) Q (=ne) < 2.53 × 10⁻¹⁹ C v owtte) Calculation to show $Q= 1e$ fits above condition \checkmark $Q=$ 2e does not fit above condition \checkmark **F scheme**;- Calc of mg to give 4.2 (+0.2) × 10^{−14} N √ Calc for Q = 1e of QV / d to give $2.6(\pm 0.2) \times 10^{-14}$ N \checkmark Calc for Q =2e of QV / d to give 5.3 (+0.2)× 10⁻¹⁴N √ mg> elec force for $Q = 1e$ or <2e for $Q = 2e$ \checkmark So $n = 1$ (e) must be the droplet charge \checkmark

Max 4 [12]