M1. (i)
$$
v\left(=\frac{45}{152\times10^{-9}}\right) = 2.96 \times 10^8 \text{ m s}^{-1}
$$
 (1)

(ii)
$$
t = 152 \text{ ns (1)}
$$

$$
t_0 \left[= 152 \left(1 - \frac{v^2}{c^2} \right)^{1/2} \right] = 152 \left(1 - \left(\frac{2.96}{3.00} \right)^2 \right)^{1/2}
$$
 (1)
= 25 ns (1)

2 QWC 2

[4]

2

M2. (a) (i) two beams (or rays) reach the observer **(1)** interference takes place between the two beams **(1)** bright fringe formed if/where (optical) path difference = whole number of wavelengths (or two beams in phase) [or dark fringe formed if/where (optical) path difference $=$ whole number + 0.5 wavelengths] (or two beams out of phase by 180 °C/ π/2 /½ cycle) **(1)** (ii) rotation by 90° realigns beams relative to direction of Earth's motion **(1)** no shift means no change in optical path difference between the two beams **(1)** $\left(\therefore \right)$ time taken by light to travel to each mirror unchanged by rotation **(1)** distance to mirrors is unchanged by rotation **(1)** $\left(\therefore \right)$ no shift means that the speed of light is unaffected [or disproves other theory] **(1) max 5** (b) the speed of light does not depend on the motion of the light source **(1)** or that of the observer **(1) 2**

M3. (a) Newton's laws obeyed in an inertial frame [or inertial frames move at constant velocity relative to each other] **(1)** suitable example (e.g. object moving at constant velocity) **(1)**

2

[7]

(b) (i) (use of
$$
t = t_0 \left(1 - \frac{v^2}{c^2}\right)^{-1/2}
$$
 gives) $t_0 = 18$ (ns) (1)

$$
t = 18 \times 10^{-9} \left(1 - \frac{(0.995c)^2}{c^2} \right)^{-1/2}
$$

= 1.8 × 10⁻⁷ s (1)

(ii) time taken
$$
\left(= \frac{\text{distance}}{\text{speed}} \right) = \left(\frac{108}{0.995 \times 3.0 \times 10^8} \right) = 3.6 \times 10^{-7} \text{ s (1)}
$$

time taken = 2 half-lives, which is time to decrease to 25%

intensity **(1)**

[alternative scheme: (use of
$$
I = I_0 \left(1 - \frac{v^2}{c^2}\right)^{1/2}
$$
 gives) $I_0 = 108$ (m)

$$
l = 108 \left(1 - \frac{(0.995c)^2}{c_2} \right)^{1/2} = 10.8 \text{ m (1)}
$$

time taken $\left| \underline{=} \frac{10.8}{2} \right| = 3.6 \times 10^{-8}$ s = 2 half-lives, which is time to decrease to 25% intensity **(1)**]

[7]

5

M4. (i)
$$
E_k
$$
 (= eV) (= 1.6 × 10⁻¹⁹ × 1.1 × 10⁹)
= 1.8 × 10⁻¹⁰ (J) (1) (1.76 × 10⁻¹⁰ (J))

(ii) (use of
$$
E = mc^2
$$
 gives) $\Delta m = \left(\frac{1.8 \times 10^{-10}}{(3 \times 10^8)^2}\right) = 2.0 \times 10^{-27}$ (kg) (1)

$$
= \frac{2.0 \times 10^{-27}}{1.67 \times 10^{-27}} m_0 = 1.2 m_0
$$
 (1)
(allow C.E. for value of E_k from (i), but not 3rd mark)

$$
\therefore m = m_0 + \Delta m \text{ (1)} \qquad (= 2.2 \, m_0)
$$

(iii) (use of
$$
m = m_0 \left(1 - \frac{v^2}{c^2}\right)^{-1/2}
$$
 gives) $2.2m_0 = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}$ (1)
 $v = \left(1 - \frac{1}{2.2^2}\right)^{1/2} c$ (1)
 $= 2.7 \times 10^8 \text{ m s}^{-1}$ (1)

M5. (a) (i) $t_{0} = 800$ (s) **(1)**

(use of
$$
t = t_0 \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}
$$
 gives) $t = 800(1 - 0.994^2)^{-1/2}$ (1)
= 7300 s (1)

(ii) distance (= 0.994ct = 0.994 × 3 × 10⁸ × 7300) = 2.2 × 10¹²m **(1)** (2.18 × 10¹²m) (allow C.E. for value of t from (i))

(b) space twin's travel time = proper time (or t_0) (1)

time on Earth, $t = t_0 \left(1 - \frac{v^2}{c} \right)^{-2}$ (1) $t > t_{\scriptscriptstyle 0}$

[or time for traveller slows down compared with Earth twin] **(1)** space twin ages less than Earth twin **(1)** travelling in non-inertial frame of reference **(1)**

max 3

3

[7]

4

M6.

(a)
$$
10m_o = m_o \left(1 - \frac{v_2}{c^2}\right)^{-\frac{1}{2}}
$$
 (1)

gives
$$
\frac{v^2}{c^2} = 1 - 0.01 = 0.99
$$
 (1)
 $v = 0.995c = 2.98(5) \times 10^8$ m s⁻¹ (1)

(b)
$$
m = m_0 \left(1 - \frac{v_2}{c^2}\right)^{-\frac{1}{2}}
$$
 (1)
\n $m \rightarrow \text{infinity as } v \rightarrow c$ (1)
\n[or *m* increases as *v* increases]

$$
E_{k} = mc^{2} - m_{0}c^{2} \rightarrow \text{infinity as } v \rightarrow c \text{ (1)}
$$

 $v = c$ would require infinite E_{κ} (or mass) which is (physically)

impossible **(1)**

Max 3

[6]

M7. (i) time taken $\left(\frac{distance}{speed} = \frac{34}{0.95 \times 3.0 \times 10^8}\right) = 1.1(9) \times 10^7$ s (1)

(ii) use of
$$
t = \frac{t_0}{(1 - v^2/c^2)^{1/2}}
$$
 where $t_0 = 18$ ns

and t is the half-life in the detectors' frame of reference **(1)**

$$
\therefore t = \frac{18 \times 10^{-9}}{(1 - 0.95^2)^{1/2}} = 57(.6) \times 10^{-9} \text{ s (1)}
$$

time taken for Π meson to pass from one detector to the other = 2 half-lives (approx) (in the detectors' frame of reference) **(1)** 2 half-lives correspond to a reduction to 25%, so 75% of the Π mesons passing the first detector do not reach the second detector **(1)**

1. use of
$$
t = \frac{t_0}{\sqrt{(1 - v^2/c^2)}}
$$
, where $t_0 = 18$ ns

$$
= \frac{18}{(1 - 0.95^2)^{1/2}} = 57.6 \text{(ns)}
$$

journey time in detector frame $(= 2t) = 2 \times 57.6$ ns $(\approx 2 \text{ half-lives})$

2. use of t = $\frac{v}{\sqrt{v}}$ where t = 119 ns = journey time in detector frame

=37ns journey time in rest frame = 2×18 ns (2 half-lives)

[5]

M8. (a) (i) speed of light in free space independent of motion of source **(1)** and of motion of observer **(1)**

(ii) laws of physics have the same form in all inertial frames **(1)**

inertial frame is one in which Newton's 1st law of motion is obeyed **(1)**

laws of physics unchanged in coordinate transformation **(1)**

from one inertial frame to another **(1)**

(b) (i) $m (= m_0 (1 - v^2/c^2)^{-1/2}) = 1.9 \times 10^{-28} \times (1 - 0.995^2)^{-1/2}$ (kg) (1)

$$
= 1.9 \times 10^{-27}
$$
 kg (1)

(ii)
$$
E(= mc^2) = 1.9 \times 10^{-27} \times (3.0 \times 10^8)^2
$$
 (1)

 $= 1.7 \times 10^{-10}$ J (1)

(iii)
$$
E_K = E - m_0 c^2 = 1.7 \times 10^{-10} (1.9 \times 10^{-28} \times (3.0 \times 10^8)^2)
$$
 (1)

$$
= 1.5 \times 10^{-10} \text{J (1)}
$$

[10]

6

max 4

M9. (a) c is the same, regardless of the speed of the light source or the observer **(1)**

(b) distance between detectors in rest frame of particles $(= 25 \times (1 - 0.98^2)^{1/2}) = 5.0 \text{ m (1)}$

time taken in rest frame of particles $=\frac{u_{\text{source}}}{1.7}=\frac{3.0}{3.00}$ = 1.7 x 10⁻⁸ s (1) time taken to decrease by $\frac{1}{4}$ = 2 half lives (1)

half life (= 1.7×10^{-8} /2) = 8.5×10^{-9} s (1)

[**alternatively**

time taken in rest frame of detectors $\vert = \frac{28.66}{1} = \frac{20.6}{0.00} \vert = 8.5 \times 10^{-8}$ s time taken in rest frame of particles $(= 8.5 \times 10^{-8} \times (1 - 0.98^2)^{1/2}) = 1.7 \times 10^{-8} \text{ s})$

1

4

1

2

M10. (a) (i) $d_{0} = (speed \times time = 1.8 \times 10^{8} \times 95 \times 10^{-9}) = 17(.1) \text{ m}$

(ii) $d (= d_0 (1 - v^2/c^2)^{1/2})$ $= 17.1 \times (1 - (1.8 \times 10^8/3.0 \times 10^8)^2))$ [%] $= 14$ m \checkmark (or 13.7 m or 13.68 m) **or** $t = t_0 (1 - v^2/c^2)^{-1/2}$ 95 = t_{0} × (1 – (1.8 × 10⁸/3.0 × 10⁸)²)^{-1/2} gives t_{0} = 76 ns \cdot $d = vt_{0} = 1.8 \times 10^{8} \times 76 \times 10^{-9} = 14 \text{ m}$ \checkmark (or 13.7 m or 13.68 m)

(b)
$$
m (= m_0 (1 - v^2/c^2)^{-1/2})
$$

= 1.67(3) \times 10⁻²⁷ \times (1 – (1.8 \times 10⁸/3.0 \times 10⁸)²)^{-½}) \cdot

 $= 2.09 \times 10^{-27}$ kg \checkmark

kinetic energy = ($m - m$ ₀) c^2

or correct calculation of $E = mc^2$ (= 1.88 \times 10⁻¹⁰ J)

or correct calculation of $E_{_{0}} = m_{_{0}}c^{2}$ (= 1.50 \times 10⁻¹⁰ J) \cdot

$$
\frac{\text{kinetic energy}}{\text{rest energy}} = \frac{(m - m_b)c^2}{m_b c^2} = \frac{(2.09 - 1.67) \times 10^{-27}}{1.67 \times 10^{-27}} \text{ v}
$$

= 0.25 (allow 0.245 to 0.255 or
$$
\frac{1}{4}
$$
 or 1:4) \checkmark

[8]

5

2

3

1

changing the distance to either mirror changes the path (or phase) difference (between the two beams) so fringes shift \checkmark

(b) (i) speed of light was thought to depend on the speed of the light source (or the speed of the observer) \checkmark (or on the motion of the Earth (through the aether))

distance travelled by each beam unchanged (by rotation) \checkmark

time difference between the two beams would change on rotation \checkmark

phase difference would therefore change (so fringes would shift) \checkmark

(ii) speed of light is independent of the speed (or motion) of the light source (or the observer) \checkmark

(or 'aether' hypothesis incorrect (owtte)) or absolute motion does not exist)

[6]

M12. (a)

(Rearranging gives)

$$
v
$$
 (= $\sqrt{1-0.5^2}$ c) = 0.866 c or 2.6 × 10⁸ m s⁻¹ \checkmark
Accept either answer.

(b) curve starts at v=0, $m = m_o$ and rises smoothly

2nd mark; ecf from a if plotted correctly

curve passes through 2 $m_{\tiny \odot}$ at v = 0.87 c (± 0.03c or in 2nd half of x-scale div containing $0.87c$) \checkmark

> 3rd mark; There must be visible white space between the curve and the v = c line; also, the curve must reach 7 $m_{\tiny \!\! g}$ at least.

curve is asymptotic at $v = c$ (and does not cross or touch $v = c$ or curve back) \checkmark

(c) Energy = mc^2 so (as v -> c) energy of particle increases as mass increases Alternative scheme for 1 mark only; mass infinite at $v = c$ which is (physically) impossible √

mass -> infinity as $v \rightarrow c$ so energy -> infinity which is (physically) impossible \checkmark

[OR for one mark only

force $= ma$ so force increases as mass increases

Mass -> infinity as v->c so force -> infinity which is (physically) impossible \checkmark]

[7]

2

2

3