The carbon budget on land, ocean and atmosphere 3.1.1.3 ANSWERS

Q1	True or False?	
А	Atmospheric carbon levels are increasing because oceans are releasing more	False
В	The terrestrial carbon cycle is the only one that involve biological processes	False
С	There is a relationship between carbon cycles on land and the atmosphere	True
D	Carbon levels in the atmosphere have been rising ever since life first evolved	False
E	Ocean, terrestrial & atmospheric cycles are sub-sets of the global carbon cycle	True

Q2	Match the correct term to the correct carbon cycle process			
А	Carbon deposits being contained in sedimentary deposits on deep ocean	Sequestration		
	floors.			
В	Magnesium carbonate mountains being converted from a solid into soluble	Chemical		
	magnesium bicarbonate.	weathering		
С	Diffusion of carbon dioxide from one medium to another in a two-way	Ocean-atmos.		
	reversible process, but usually more in one direction than another.	exchange		
D	Carbon deposits deep in the ocean being buried, compressed and converted	Lithification		
	under heat and pressure.			
E	Carbon moving from atmosphere into plants through photosynthesis, building			
	biomass, dying, decomposing and being fed on by soil bacteria.			
Select from: Ocean-atmosphere exchange Lithification Chemical weathering				
	Fast carbon cycle Sequestration			

Q3 Allocate the term	Allocate the terms/phrases to the most appropriate carbon sub-cycle (poss. more than 1)						
Terrestrial carbon c	ycle	Ocea	n carbon cycle	Atmospheric carbon cycle			
Dry decomposition		Marine snow		Gas exchange (net loss)			
Surface biomass		Calcification		Acid rain (2)			
Acid rain (1)		Photosynthesis (2)		Methane radiation absorption			
Solid-soluble conversion		Zooplankton					
Photosynthesis (1)		Bicarbonate ions					
Marine snow Dry decomposition		position	Gas exchange (net	t loss) Calcification			
Surface biomass Acid rain		rain	Solid-soluble conversion				
Photosynthesis Zooplanktor		kton	Bicarbonate ions Methane radiation absor				

The carbon budget on land, ocean and atmosphere 3.1.1.3 ANSWERS

Q4 **Graph the changing proportion of carbon dioxide in the atmosphere. Describe the change and suggest reasons.**

Year	Atmospheric CO2 ppm
1960	320
1970	329
1980	342
1990	356
2000	373
2010	392
2016	407
2050	?

Describe the overall trend: a rise in CO2

Describe the magnitude of change: increased by 87 ppm in 56 years which is over a 25% increase on the 1960 baseline.

Describe the rate of change: an increasingly fast rate of change (9 ppm in 1960s decade, 14 ppm in 1980s decade, 19 ppm in 2000s decade)

Describe the consistency of the change: always been increasing at an ever increasing rate. No fluctuation. No reason to think this will change in the next decade.

Reasons: human release of CO2 from sequestered hydrocarbons at increasing volume for energy, transport, industry etc.

Also, destruction of natural vegetation reducing biomass that could absorb additional CO2. Also, oceans becoming warmer and more acid which may reduce their potential to absorb CO2.

Q5	Explain how different feedback cycles operate in carbon regulation on the earth
А	A negative feedback process regulating carbon transfers
	Additional CO2 in atmosphere fertilises biomass, promoting additional and faster growth. This vegetation absorbs more CO2 through photosynthesis, drawing it down from the atmosphere and dampening down the rate at which atmospheric CO2 increases. The basis of reforestation/afforestation programmes of carbon capture in carbon trading schemes.
В	A positive feedback process amplifying carbon transfers
	Rising atmospheric temperatures cause oceans to become warmer. Warmer oceans less able to absorb CO2 from atmosphere so more stays in the atmosphere, resulting in higher temperatures, which warms oceans more
	Rising atmospheric temperatures cause cryosphere to melt, releasing methane which is a potent greenhouse gas. More atmospheric warming, leading to more melting, which releases more methane
	Rising atmospheric temperatures cause ice cover to melt, which replaces a high albedo with a low one as darker rock, sea and vegetation surfaces replace ice. More solar radiation absorption leads to more melting, which causes temperatures to rise