

7.14 Electromagnetic induction

When we pass an electric current through a coil of wire, a magnetic field is generated which has the same shape as that of a bar magnet. One end becomes a magnetic north (N) pole, and one becomes a magnetic south (S) pole.

To determine which end is a N pole, wrap your fingers of your right hand in the direction the current is looping. Your thumb should point towards the N pole of the magnet.

We can induce an emf across the coil of wire if we move the coil in a magnetic field. Run the following simulation: https://tinyurl.com/nm5mw59

Check the field lines box.

(1) Now move the magnet towards the solenoid, from right to left. What do you notice about the induced emf?

(2) From the direction of current flow through the bulb (and coil), work

out the polarity of the pole closest to the bar magnet.

(3) Move the magnet away from the coil. What do you notice about the induced *emf?*

(4) From the direction of current flow, work out the polarity of the pole closest to the bar magnet.

Lenz's law

Lenz's law states that 'the direction of the current is always such as to oppose the *change that causes the current'.*

In the simulation, above, you should have found that a current was induced that produced a magnetic polarity for the solenoid that opposes the motion of the bar magnet.

Faraday's law

Run the following simulation: http://www.walter-fendt.de/html5/phen/generator_en.htm

We see a conducting loop turning in a magnetic field. There is an induced emf . because the magnetic flux through the loop is changing as it rotates.

The magnetic flux ϕ is given by the following expression: $\phi = BA \sin \theta$ *where B=magnetic flux density, A=area of loop,* θ *=angle of loop to field direction.*

(5) At what angle is the magnetic flux a maximum?

(6) At what angle is the magnetic flux zero?

If there is more than one loop (so, a coil), the expression for 'magnetic flux linkage' becomes:

 $N\phi = NBA \sin \theta$

where N is the number of loops (or 'turns').

 $N\phi$ is called the 'flux linkage'.

Faraday's law states that 'the induced emf in a coil is equal to the rate of change *of flux linkage through the coil'*.

The expression for the induced emf is given by:

$$
\varepsilon = -N \frac{\Delta \phi}{\Delta t}
$$

The minus sign in this expression indicates that the emf is such as to oppose the change that caused it.

(7) What effect would doubling the number of turns have on the maximum induced emf?

(8) What effect would doubling the speed of rotation have on the maximum induced emf?

As we have seen, above, the flux linkage for a coil is given by the expression:

$$
N\phi = NBA \sin \theta
$$

If the coil is rotated at a constant angular speed ω (= $2\pi f$), the resulting *emf* will be sinusoidal:

 $\varepsilon = \varepsilon_0 \sin \omega t$ where $\varepsilon_0 = \text{maximum emf} = \text{NBA}\omega$.

(9) A coil of 100 turns and a cross sectional area of 3cm² is rotated at 50Hz in a *magnetic field of 500mT. What is the maximum emf produced?*

A moving conductor in a magnetic field

As we have seen in 7.12, if a wire cuts through lines of magnetic flux, an emf is produced across the ends of the wire.

The emf is given by the expression:

© 2016 flippedaroundphysics.com

$$
\varepsilon = -\frac{\Delta \phi}{\Delta t} = -\frac{BA}{\Delta t}
$$

If a length l of wire is moved a distance Δs , then the area (A) 'cut' is: $A = l\Delta s$

(10) Substitute for *A* in the expression for emf.

(11) Show that the emf is given by the expression: $\varepsilon = -Blv$ *where* v =speed of movement.

(12) A 2cm length of wire is moved at constant speed at right angles to a *magnetic field with flux density B=200mT. An emf of 0.23V is produced across the wire.* What speed is the wire being moved at?