Q1. The graph shows how the magnetic flux, ϕ , passing through a coil changes with time, *t*.

Which one of the following graphs could show how the magnitude of the emf, V, induced in the coil varies with t?

(Total 1 mark)

- **Q2.** A 500 turn coil of cross-sectional area 4.0×10^{-3} m² is placed with its plane perpendicular to a magnetic field of flux density 7.5×10^{-4} T. What is the value of the flux linkage for this coil?
 - **A** 3.0×10^{-6} Wb turns
 - **B** 1.5 × 10⁻³ Wb turns
 - C 0.19 Wb turns
 - D 94 Wb turns

(Total 1 mark)

Q3. The graph shows how the flux linkage, $N \Phi$, through a coil changes when the coil is moved into a magnetic field.

The emf induced in the coil

- A increases then becomes constant after time t_{0} .
- **B** is constant then becomes zero after time t_0 .
- **C** is zero then increases after time t_0 .
- **D** decreases then becomes zero after time t_0 .

(Total 1 mark)

- **Q4.** An aircraft, of wing span 60 m, flies horizontally at a speed of 150 m s⁻¹. If the vertical component of the Earth's magnetic field in the region of the plane is 1.0×10^{-5} T, what is the magnitude of the magnetic flux cut by the wings in 10 s?
 - A 1.0 × 10⁻⁵ Wb
 - **B** 1.0×10^{-4} Wb
 - **C** 9.0 × 10⁻² Wb
 - **D** 9.0×10^{-1} Wb

(Total 1 mark)

- **Q5.** The magnetic flux through a coil of *N* turns is increased uniformly from zero to a maximum value in a time *t*. An emf, *E*, is induced across the coil. What is the maximum value of the magnetic flux through the coil?
 - $A = \frac{Et}{N}$ $B = \frac{N}{Et}$ C = Et N
 - **D** $\frac{E}{Nt}$

(Total 1 mark)

Q6. (a) State Lenz's law.

(b) **Figure 1** shows two small, solid metal cylinders, **P** and **Q**. **P** is made from aluminium. **Q** is made from a steel alloy.

(i) The dimensions of **P** and **Q** are identical but **Q** has a greater mass than **P**. Explain what material property is responsible for this difference.

.....

(1)

(2)

(ii) When P and Q are released from rest and allowed to fall freely through a vertical distance of 1.0 m, they each take 0.45 s to do so. Justify this time value and explain why the times are the same.

(2)

(c) The steel cylinder **Q** is a strong permanent magnet. **P** and **Q** are released separately from the top of a long, vertical copper tube so that they pass down the centre of the tube, as shown in **Figure 2**.

The time taken for **Q** to pass through the tube is much longer than that taken by **P**.

(i) Explain why you would expect an emf to be induced in the tube as **Q** passes through it.

(2)

(ii) State the consequences of this induced emf, and hence explain why Q takes longer than P to pass through the tube.

.....

(3)

(d) The copper tube is replaced by a tube of the same dimensions made from brass. The resistivity of brass is much greater than that of copper. Describe and explain how, if at all, the times taken by **P** and **Q** to pass through the tube would be affected.

P:	
0.	
Q	
	(2)
	(3) (Total 42 marks)
	(Total 13 marks)

M1.		D		[1]
M2.		В		[1]
МЗ.		В		[1]
M4.		D		[1]
M5.		A		[1]
M6.		(a) opt	direction of induced emf (or current) \checkmark poses change (of magnetic flux) that produces it \checkmark 2	
	(b)	(i)	(volumes are equal and mass of Q is greater than that of P) density of steel > density of aluminium ✓ Allow density of Q greater (than density of P). 1	
		(ii)	use of $s = \frac{1}{2}gt^2$ gives $t^2 = \frac{2 \times 1.0}{9.81}$ (from which $t = 0.45$ s) \checkmark Backwards working is acceptable for 1 st mark (vertical) acceleration [or acceleration due to gravity] is independent of mass of falling object [or correct reference to $F = mg = ma$ with m cancelling] \checkmark 2^{nd} mark must refer to mass. Do not allow "both in free fall" for 2^{nd} mark.	

(c) (i) moving magnet [or magnetic field] passes through tube \checkmark there is a change of flux (linkage)(in the tube) [or flux lines are cut or appropriate reference to $\varepsilon = N \left(\Delta \phi / \Delta t \right) \sqrt{1}$ In this part marks can be awarded for answers which mix and match these schemes. [Alternative: (conduction) electrons in copper (or tube) acted on by (moving) magnetic field of Q 🗸 induced emf (or current) is produced by redistributed electrons \checkmark] 2 emf produces current (in copper) 🗸 (ii) this current [allow emf] produces a magnetic field v this field opposes magnetic field (or motion) of Q [or acts to reduce relative motion or produces upward force] </ no emf is induced by P because it is not magnetised (or not magnet) [or movement of P is not opposed by an induced emf or current] </ Alternative to 3rd mark: current gives heating effect in copper and energy for this comes from ke of Q 🗸 max 3 time for P is unaffected because there is still no (induced) emf (d) [or because P is not magnetised or because there is no repulsive force on P] </ time for Q is shorter (than in (c)) v current induced by Q would be smaller 🗸 because resistance of brass \propto resistivity and is therefore higher [or resistance of brass is higher because resistivity is greater] ✓ giving weaker (opposing) magnetic field [or less opposition to Q's movement] ✓ Condone "will pass through faster" for 2nd mark. If emf is stated to be smaller for Q, mark (d) to max 2. max 3

[13]