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1
Introduction

TOM stands for Thoroughly Obedient Moron and is a computer simulation
designed to teach first time users how a computer works.  It is entirely
mouse driven, so no keyboard skills are required at all.  TOM allows
simple programs to be input and executed whilst the memory and registers
are visible.  This gives a very immediate feel of what programming is all
about.  Concepts such as 'flow of control' can be immediately appreciated
because the execution path is made apparent.

TOM has 20 instructions, a manageably small number which nevertheless
enables real programs to be written.  The entire status of TOM is visible at
all times giving instant feedback on success or problems.  Programs may
be executed, single stepped, saved, restored and modified.  Saved
programs are entirely readable, so they may be printed for the student's
later revision.

TOM is entirely mouse driven and offers a multi-tasking, friendly and
intuitive interface.

This latest version of TOM gives an interactive visualisation of how the
actual underlying machine operates.  It shows how the various
components of a computer, the registers, the memory, the Arithmetic Logic
Unit, the Address Decoder and the Bus are connected together and
execute programs.  In addition there are interactive screens that show:
how logic gates are used to construct flip-flops and how these are used to
build memory, even how the Address Decoder works.  TOM is designed to
give the student a complete grasp of the fundamental operation of a
machine.

TOM enables inexperienced users to get to grips with the concepts of
machine code while ignoring the complications of using a real assembler
or development environment.

TOM addresses computing studies syllabuses that have topics which
include computer (machine) architecture and operation.  In addition it
makes an ideal introduction to high level languages as it teaches the
fundamental components of an algorithm and how a computer stores and
processes data.

The scope of this manual has been extended to cover a great deal of new
material.  It is hoped that it will provide a useful teaching document as well
as just being a manual on how to use TOM.
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If you have difficulties with any of the terms use, please note that there is a
glossary of terms in one of the appendices and in the on-line help file..

TOM was conceived and first implemented by Alan Chantler of Coventry
University where it was used successfully for many years in the
introduction to the Computer Science degree course.  This implementation
was designed and coded by Rob Lucas of Keylink Computers Ltd.  At the
request of Alan Chantler and in lieu of royalties a donation of a proportion
of the purchase price is made to the Imperial Cancer Research Fund.

If you have any comments or suggestions for improvements then please
let us at Keylink know.

Rob Lucas

Kenilworth, November 1995
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2
Installation

2.1 Copying TOM's files

TOM is now distributed with an installation script which must be used to
install TOM.  As the installation files are stored in compressed form, the
files cannot simply be copied from the floppy to a hard disk and then
executed.  For the same reason TOM will not run from the supplied floppy.
The following installation instructions must be followed.
2.2 Creating a TOM application

Start Windows, and make the Program Manager the active window.  Click
on the Files option and select the Run option from the Files menu.  Type
'a:setup.exe' (substitute for 'a' if you are installing from a different floppy
drive).  Now click on OK.  The set-up program will create an application
group called TOM.

TOM is now installed and has an icon which looks like an abacus.  Leave
the installation disk in the drive.  Double click on the TOM application group
to open it and then double click on the TOM icon to start TOM.  TOM will
report that it has no initialisation file present in its directory, but will copy it
from the installation disk when you reply Yes to this dialogue.  This
dialogue will not appear again and there is no need to use the installation
disk when running TOM again.
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3
TOM's components

TOM’s main screen is shown below.  Below the Copyright heading are the
Menu options.

The File menu options allow loading and saving of TOM programs.  The
Edit option has delete, copy and paste functions.  The Views options allow
you to display TOM’s other screens.  The Options menu allows you to
select various display settings, such as Hexadecimal.  The Help menu
option gives you access to a comprehensive on-line Windows help facility.

The upper part of the screen consists of TOM’s Memory locations which
are labelled 00 to 79.



TOM's components 16

 1993-1999 Keylink Computers Limited

The Register area consists of the Program Counter and the
Accumulator.  The Program counter is labelled PC and the
Accumulator is labelled AC.

The Keypad is the central area of buttons, you use these to enter values
into TOM’s memory and to control the operation of TOM.

The Output area shows a printer icon and underneath this is the
Accelerator which controls the speed at which TOM performs its
calculations.

At the bottom of TOM’s screen is a status bar.  This displays informative
messages that usually concern the component that the mouse is currently
pointing to.  When the mouse pointer is on TOM’s memory, the status bar
gives the numeric contents of the memory location in binary.
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4
TOM's architecture

TOM has a single accumulator, a memory store of 80 locations and the
means to input and output numbers.  This can be described by the
following diagram:

TOM simulates all of these components in simple ways.  The function and
operation of each component is described below.
4.1 Memory store

Each memory location has a numeric label to the left of it which is the
address of that memory location.  The address of a memory location is
used in our programs to identify which memory location we mean in the
same way as we might use a postal address to identify someone's house.

Each memory location consists of two words.  The most significant word is
the left of the two and the least significant is the right hand one.

Each word is exactly one byte (eight bits) which is precisely enough
memory to store any of the numbers 0 to 255.  You need not concern
yourself with why this number is what it is for the moment, as it will be fully
explained in a later chapter.

The contents of a memory location may be interpreted in two ways:

As data:

Processor

Program Counter
Accumulator

Output
unit

Input
unit

Memory Store
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both words make up an integer value which is calculated from the
most significant word * 256 + the least significant word.  In practice,
most of our integer values will be less than 256 so we can ignore
the left hand byte when dealing with data values.  Negative values
are ignored until we get to a much more advanced stage.

Example:

12 | 2| 12|

this shows memory location 12 with 2 in the most significant word
and 12 in the least significant word.  When interpreted as a data
value, this value is:

2 * 256 + 12 = 524

As instructions:

The most significant word is the instruction number and the least
significant word is the operand, that is it is the argument that the
instruction is to operate on (this is usually a memory address).

Example:

12 | 2| 12|

this shows memory location 12 with 2 in the most significant word
and 12 in the least significant word.  When interpreted as an
instruction it means: apply instruction number 2 to the operand
value 12.  In TOM, instruction 2 means store the contents of the
accumulator at the address given in the operand.  So the example
means: store the contents of the accumulator at memory location
12.

Notice that both examples were the same, but that they can mean different
things depending on whether they are interpreted as data or an
instruction/operand pair.
4.2 A Tom program

What we mean by a program is nothing other than a collection of
instructions that can be entered into the memory locations and then
executed.  With TOM you will usually enter a program directly into memory
by clicking on the memory cells and entering values using the keypad.
4.3 The Program Counter (PC)

TOM, and any computer for that matter, works by repeatedly fetching
instructions from memory and executing them.  It keeps track of which
instruction to execute next by storing its address in the Program Counter.
That is, the Program Counter always contains the address of the next
instruction to be executed.  We usually start with the Program Counter set
to 0, so the first instruction executed is that stored at memory location 0.
Instructions are then normally executed in sequential order, i.e. execute
instruction at location 0, followed by that at location 1, followed by that at
location 2, and so on.  The exception to this is when one of the jump
instructions is executed which alter the flow of control of the program.  See
next chapter for details of jump instructions.
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4.4 The Accumulator (AC)

The accumulator is used to store values that the computer is currently
using.  It is entirely general purpose and may contain a data value, an
address or even an instruction number.  It all depends on what the person
who designed the program wants to store in it.  TOM has several
instructions which act on the Accumulator, including inputting a number
which is stored in the Accumulator (see below), and adding to and
subtracting from the Accumulator.
4.5 The Input Unit

The input unit allows values to be input to the executing program.  In a real
computer there would be many input units capable of supporting all kinds
of input device (mouse, keyboard etc.).  In TOM we have a simple form,
which looks a little like a calculator:

You may enter a number by clicking on the buttons marked with digits,
when you have completed your number, type OK.  The last character input
can be deleted by using the key with the arrow.

Whenever the instruction number (or opcode) 11 is executed, the dialogue
box will appear on the screen and a number can be entered.  If the number
is too large, the number will be rejected.
4.6 The Output Unit

The output unit allows the program being executed to output values.  In a
real computer there would be output units corresponding to all the different
kinds of output devices, such as the screen and the printer.  In TOM we
have one simple scrolling output area in the bottom right of TOM's window
represented by a printer icon.

The output unit will output a number from the accumulator to the output
area of TOM's screen.

Later chapters will show how a memory-mapped output device can also be
used in TOM programs.
4.7 The Processor

The processor is the part of the computer that actually effects the
execution of the instructions.  It contains various internal registers, in
particular the Program Counter and the Accumulator.  To program TOM
we don't need to know how this part works, but we do need to know the
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effects each of the possible instructions has.  These effects are described
in the next chapter which describes TOM's instruction set.

For those interested in how the processor works, TOM provides an
interactive simulation of the internal workings of its processor, this is
described in a later chapter.
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Exercises A

Consider the following screen dump of TOM in a particular state mid-
execution.

(1) What are the contents of memory location 16?

(2) What is the value of the contents of memory location 4 when
interpreted as a number?

(3) In the same diagram, given that instruction number 12 means output
the contents of the accumulator, what will be the output if the instruction at
location 1 is executed immediately after the instruction at memory location
0?
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(4) What memory location is being indicated by the program counter?

(5) What is the address of a memory location for?

(6) What is stored in the program counter?

(7) What are the two kinds of interpretation that can be applied to numbers
stored in the memory of a computer?

(8) What do we mean by a program?
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5
TOM's Basic instruction set

5.1 Introduction

TOM has quite a comprehensive instruction set.  If all of these instructions
were to be described at once you would probably become rather confused.
So below are described the basic instructions which will nevertheless
enable you to write some substantial programs.  More of the instruction set
is introduced as and when needed and there is an entire list with their
descriptions in Appendix A.
5.2 Mnemonics

Instructions are represented by simple integer numeric values.  This is how
the computer likes them to be represented.  However, it is difficult to
understand a program which is just a list of numbers.  For this reason we
associate a short hand alphabetic code with each instruction which gives
us a much better idea of what the instruction is.  For example the
instruction that loads the accumulator with a value from a memory location
is 12, we represent this for convenience as LDA (LoaD Accumulator),
these are called mnemonics.

The numeric form of a program is often called machine code, whereas the
mnemonic form is commonly called assembler.  The Options menu gives
you the choice of representing programs in machine code and assembler.
The use of assembler mnemonics will be returned to when we actually
start programming.

In the list of instructions given below, the numeric value of the instruction is
given followed by its mnemonic form in brackets.
5.3 Basic Instructions

There are thirteen basic instructions numbered 0-12.  These numbers are
frequently referred to as instruction codes, machine codes, operation
codes or opcodes for short.  Remember that, when dealing with
instructions, the left-hand word in a memory location holds the opcode,
while the right-hand word holds the operand, or argument, and, depending
on the opcode, the operand may represent a memory location or a data
value.  Some opcodes do not have an operand, for example HALT.
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In the description of TOM's opcodes below, the number of the opcode
corresponds to the number on the 'keypad' in the bottom middle of TOM's
screen which is used for input of instructions and data.

0 (HLT) HALT

Causes execution of the TOM program to cease.  No operand.

1 (LDA) LOAD ACCUMULATOR

Place a copy of the contents of the memory location given as the
operand into the accumulator.  The contents of the memory location
are unchanged.

2 (STO) STORE ACCUMULATOR

Place a copy of the contents of the accumulator into the memory
location given as the operand.  The contents of the accumulator are
unchanged.

3 (AC+) ADD TO ACCUMULATOR

Place into the accumulator the arithmetic sum of the contents of the
memory location given as the operand and the current contents of
the accumulator.  The contents of the memory location are
unchanged.

4 (AC-) SUBTRACT FROM ACCUMULATOR

Place into the accumulator the result of subtracting the contents of
the memory location given as the operand from the current contents
of the accumulator.  The contents of the memory location are
unchanged.

5 (ACX) MULTIPLY ACCUMULATOR

Place into the accumulator the product of the contents of the
memory location given as the operand and the current contents of
the accumulator.  The contents of the memory location are
unchanged.

6 (AC/) DIVIDE ACCUMULATOR

Divide the current contents of the accumulator by the contents of
the memory location given as the operand and place the resulting
quotient into the accumulator.  The remainder is lost and the original
contents of the store location are not affected.



TOM's instruction set 25

 1993-1999 Keylink Computers Limited

7 (JMP) JUMP UNCONDITIONALLY

Control is transferred to the memory location whose address is
given as the operand.  Jump instructions alter the sequence in
which a program is executed.

8 (JM-) JUMP IF ACCUMULATOR NEGATIVE

If the contents of the accumulator is a negative number then control
is transferred to the memory location whose address is given as the
operand, otherwise program execution continues at the next
sequential instruction.

9 (JM0) JUMP IF ACCUMULATOR IS ZERO

If the contents of the accumulator is zero then control is transferred
to the store location whose address given as the operand,
otherwise program execution continues at the next sequential
instruction.

10 J() JUMP INDIRECT

Jump unconditionally to the address stored at the address given by
the operand.  Only the least significant word is considered to form
the address.

11 (INP) INPUT A NUMBER TO ACCUMULATOR

A dialogue box is displayed into which you can type in a number of
up to six digits.  If this is a legal number it is placed into the
accumulator when you click the OK button.  No operand.

12 (OUT) OUTPUT A NUMBER FROM THE ACCUMULATOR

The contents of the accumulator is output as a number to the output
area of TOM's screen.  No operand.
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Exercises B

Consider the following screen dump of TOM in a particular state mid-
execution.

(1) What do the contents of memory location 0 mean when interpreted as
an instruction?

(2) If the instruction at memory location 0 were to be executed, what would
the contents of the accumulator be?

(3) What do the contents of memory location 1 mean when interpreted as
an instruction?
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(4) If the instruction at memory location 1 were to be executed after the
instruction at location 0, what would the contents of the accumulator be?

(5) What do the contents of memory location 2 mean when interpreted as
an instruction?
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6
Using TOM

6.1 Starting TOM

Start Windows and run TOM by double clicking on its icon (an abacus).
TOM's screen will now appear.  All memory locations are empty, and the
Accumulator and Program Counter are both set to zero.
6.2 Stopping TOM

TOM may be exited by clicking on File in the top left of the screen and
selecting Exit from the File menu.
6.3 Entering numbers into memory

To put a number into a memory cell, click on the memory cell's low or high
word and then click on the keypad number(s)  you want to enter.  The
contents of a memory cell can be removed by clicking on the arrow key at
the bottom right of the keypad.

The keypad indicates which instructions correspond to which numbers.
For example the key for 5 indicates that the corresponding instruction
opcode is ACCX which is Multiply Accumulator.  Clicking on this puts the
number 5 into the current memory cell.  The instruction mnemonics serve
simply as a reminder of what numbers correspond to what instructions.
6.4 Single stepping

Clicking the Step button will cause a single instruction to be fetched from
the address indicated by the current setting of the Program Counter and
for this instruction to be executed.  Successive clicks on the Step button
will cause successive instructions to be fetched and executed.  This is
useful for debugging your TOM programs as it enables you to see easily
the contents of memory locations, the Program Counter and Accumulator
as each instruction is executed.
6.5 Running a TOM program

Clicking the Run button will start TOM executing from the instruction stored
in the address indicated by the current setting of the Program Counter.
The program will execute until the HALT statement is reached or an error
occurs.  Execution speed may be altered using the accelerator bar at the
bottom right of the screen.  Note that execution of an instruction other than
a HALT or JUMP at location 79 will cause the program counter to be
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incremented to 80, causing TOM to 'go off the end' of memory.  This will
cause an 'invalid address' error.
6.6 Inputting a value

When the Input instruction (opcode 11) is executed a dialogue window will
appear requiring a number of up to six digits to be input.   Having entered
a number, clicking the OK button will cause the number to be stored in the
accumulator, provided it is a valid number, and for program execution to
resume at the next sequential instruction.
6.7 Saving a TOM program

The current state of the memory (i.e. the current program) can be saved by
selecting Save or Save As from the File menu.  Click on File at the top left
of the screen, and then on the Save option from the displayed menu.
Enter a name for the file and click on the OK button, or the Cancel button
to abort the operation.  The saved file may be printed and is intelligible but
it is recommended that you do not attempt to edit it.  If you need to change
a TOM program then load it into TOM, change it, and then re-save it.

Whenever you save a TOM program, the input and output sequence from
the last time you clicked on Run will be saved with the program.  This
gives you a record of your program executing that you may wish to print.
This part of the saved file is of no consequence when loading it into TOM.
6.8 Loading a TOM program

Click on File followed by Open from the File menu.  Click on the name of
the saved program you wish to load and click the OK button to load it or on
Cancel to abort the operation.  If the file is legal (i.e. it is a saved TOM
program), the current state of TOM will be lost and the TOM file will be
loaded.  The new state of the memory will be displayed.
6.9 Printing a TOM program

Selecting Print from the file menu will cause the current TOM program to
be output to the printer.
6.10 Resetting the Program Counter

The program counter can be reset to zero by clicking on the button
labelled 'PC'.
6.11 Resetting the Accumulator

The Accumulator can be reset to zero by clicking on the button labelled
'AC'.
6.12 Halting an infinite loop

If you manage to code a program that won't exit, you can stop the program
by clicking on the Stop button at the bottom centre of TOM's window.
6.13 Clearing TOM's memory

When you have completed an example and, possibly, saved your program
to a file, you may wish to start another program.  Clicking the Clear button
will clear all memory locations and the output area and set the
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Accumulator and Program Counter to zero.  Use this option with caution!
The same result can be achieved by clicking on New in the File menu.
6.14 Altering execution speed

The speed of program execution may be controlled using the accelerator
bar at the bottom right of the screen.  Clicking the left-facing arrow will
slow execution, clicking the right-facing arrow will increase speed.
Dragging the accelerator slider left and right has the same effect.
6.15 Cutting and Pasting

If you need to insert one or more instructions between two adjacent
memory locations, rather than rewrite a large part of your program, you
may find it convenient to cut and paste code from one location to another.
For example:

Consider the following state:

Here I’ve programmed a simple loop which runs from 99 down to 0, but
I’ve forgotten to output the value.  What I would like to do is insert the
instruction 12 (Output) between the instruction at location 0 and the
instruction at location 1.

I can do this by cutting and pasting.

First I highlight the cells that I need to move.  I do this by holding down the
shift key and clicking on the cells I want to move.  i.e. I hold down the shift
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key and click on the locations at addresses 01, 02 and 03.  This displays
the highlighted cells in green.

I then select Cut from the Edit menu.  At this point the contents of cells 01,
02 and 03 are cleared.

I now click on the start address of the destination, which is at address 02.

I then select Paste from the Edit menu.

At this point I am looking at:

All that remains is for me to insert instruction 12 into location 01, which I
do in the normal way.
6.16 Hexadecimal

It is possible to represent the numbers in the registers and memory in
either decimal (default) or hexadecimal.  Select either Decimal or
Hexadecimal from the Options menu.  When in hexadecimal mode, the
keypad and memory labels are also altered to hexadecimal representation.

See the chapter on Number systems for an explanation of the decimal and
hexadecimal numeric representations.

This shows the memory, keypad, and memory labels in hexadecimal
mode:
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6.17 Disassembling

A program can be much more readable when it is presented as a
combination of mnemonics and numbers rather than just plain numbers.
The mnemonics used correspond closely to those on the keypad.

An assembler is commonly used as a mean of programming a micro
processor.  These always use mnemonics in place of the actual instruction
names.  They also provide other useful features.  Hence, we call the
translation process from instructions represented as mnemonics, to
instructions represented as numbers as assembly.  The reverse process
of translating numbers to mnemonics as disassembly.

The following screen shot shows the above program displayed in its
disassembled form (the missing instruction has been inserted):
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To translate the current contents of memory into mnemonics choose
Disassemble from the Options menu.  TOM will automatically convert the
translated instructions back to numbers when it comes to executing them.
It will also perform this assembly when the Machine view is selected from
the Views menu

You can force Assembly by choosing Assemble from the Options menu.
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7
Worked examples

In the following examples the contents of the memory are given in the
same format as that used by Save and Print.  That is: the memory location
is the first number followed by the contents of the most and least
significant word of the memory location.  Memory locations which are not
used are not listed.  Each field is separated by a '|'.  The algorithm is
annotated on the right.  To save space the accumulator is abbreviated to
@ and a memory location is denoted by #.  For example #24 means
memory location number 24.  In addition we use brackets to mean the
contents of, as in: (#24) which means the contents of memory location 24.
Worked example 1

Load the number 55 from memory location 24 into the accumulator and
output it.

This is a simple example to help you get used to using TOM.  First of all,
put the value 55 into the rightmost memory cell at location 24 by clicking
on it and then clicking twice on keypad number 5.

Put the load accumulator instruction (opcode 1) into the most significant
word of memory location 0 (click on the left cell at location 0 and click on 1
on the keypad).  Put its operand value, 24, into the least significant word
(click on the right hand cell at location 0 and then click on 2 and 4 on the
keypad).

Put the instruction for output accumulator (12) into the most significant
word at address 1.  This does not need an operand.

Finally put the halt instruction, 0, into the most significant word at address
2.  TOM's memory should now look like:

 0|  1| 24|  load @ from #24
 1| 12|   |  output @
 2|  0|   |  halt
24|   | 55|  value 55 at #24

Execute the program by clicking on the Step button three times.  At each
Step watch very carefully to see the program counter's value change from
0 to 1 to 2, watch how the Accumulator's value becomes 55 after
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execution of the first instruction, and how its value is 'printed' after
execution of the second instruction.

Re-run the program by setting the program counter to 0 by clicking on the
'PC' button and clicking the Step button again until the HALT is executed,
or, once you understand the flow of execution, press the Run button.

Save the program by using the Save menu option as described above, use
the name ‘example1.tom’.
Worked example 2

Input two numbers, add them and output the result.

This demonstrates the use of the input unit, the use of memory for storing
values via the STORE instruction, the use of the ADD instruction, and the
use of the output unit.  Clear TOM’s memory by clicking on Clear then
input the following values into memory using the same method as for
example 1.

 0| 11|   |  input a value to @
 1|  2| 12|  store @ at #12
 2| 11|   |  input another number
 3|  3| 12|  add (#12) to @
 4| 12|   |  output @
 5|  0|   |  halt

When you run this program you will be prompted for a number on two
occasions when the instruction being executed is Input value (11).  When
you are prompted for a number, enter it using the keypad and click on the
OK button.  Use Step to execute the program for the first time, and Run
when you understand how it works.
Worked example 3

Output the numbers 9 to 1 by starting with 9 and decrementing
(subtracting) by 1 until 0 is reached.

This example shows how a simple loop can be implemented.  When
programs start to be sufficiently complicated that they need to have loops
and decisions then we find it very beneficial to plan our program using a
form of 'Pidgin English' we call pseudo code.  This gives us an abstract
way of describing the program without worrying too much about the actual
details of the code.  In this case our pseudo code is:

for X = 9 to 1
    output X
repeat

The loop is implemented by loading a count into the accumulator, and
using a jump if accumulator zero to determine when to exit the loop.  We
obviously need to subtract one from the count each time through the loop.
We've indented the line between for and repeat to make it especially clear
what statements are repeated.

 0|  1| 12|  load @ with (#12)
 1|  9| 10|  jump if @ zero to #10 (HALT)
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 2| 12|   |  output @
 3|  4| 13|  subtract (#13) from @
 4|  7|  1|  jump unconditionally to #1
10|  0|   |  halt
12|   |  9|  data value 9 stored at #12
13|   |  1|  data value 1 for decrement

The pseudo code may not have helped greatly here because our program
was virtually all loop, but when the program is a bit more complicated, it
becomes extremely convenient to think of a loop in the pseudo code way
knowing that we can code it in actual instructions by using the above
translation.  After all, which do you find easier to understand, the pseudo
code or TOM's machine instructions?

With the contents of memory as described above and the Program
Counter set to zero, click on Step to single step through the program or
Run.  You should see the program looping, performing the output, and
finally exiting.
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Exercises C

(1)  Write a program to input a pair of integers and output them with the
largest first.

Think of the solution in pseudo code as:

input X
input Y
if X > Y then
    output X
    output Y
else
    output Y
    output X
endif

where 'input X' can be translated into a TOM input followed by a store
instruction (a different address can be used to differentiate the X from the
Y, i.e. store X at one location and Y at another).  The 'if' statement can be
translated by using a Subtract from Accumulator followed by one of the
JUMP instructions. Remember that after a Store Accumulator, the contents
of the Accumulator are unchanged.  The 'else' statement may be coded
either as a Jump Unconditional (to a HALT instruction), or in this example,
as there is nothing to do after it, directly as a HALT.  We've indented
between the 'if', 'else' and 'endif' to make it especially clear which
statements correspond to what conditions.

Translate this into TOM's instructions and test that your solution works.  If
it doesn't then single step through the execution of the program and
determine where it is going wrong.  Make a correction and try again.

(2) Write a program to input a set of positive integers terminated by zero
and output the arithmetic mean.

The following pseudo code should be used as a model for your solution:

count = 0
sum = 0
input X
while X <> 0
    sum = sum + X
    count = count + 1
repeat
mean = sum / count
output mean
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(3)  Write a program to input a positive number, N, followed by N further
numbers, and print out N followed by the sum of the N numbers.  You
should describe the program in pseudo code before coding it.

(4) Write a program to input a set of positive integers terminated by zero
and output the largest, the smallest, and the range.  You should describe
the program in pseudo code before coding it.
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8
Advanced examples

8.1 Worked example 4

Output the squares of the numbers 9 through 1.

We use the same technique as in the last worked example but use a
'subroutine' to calculate and output the square.  The pseudo code for the
main part of the solution is:

for X = 9 to 1
    square(X)
repeat

and:

Z = X * X
output Z

for the subroutine.  This is a little trickier than it first appears because we
must be careful not to leave unwanted values in the accumulator.  So
when we return from our subroutine by jumping into the main loop we must
first restore the accumulator to its value when the subroutine was called.

 0|  1| 12|  load @ with (#12)
 1|  9| 10|  jump if @ zero to #10 (HALT)
 2|  7| 24|  jump to #24 to calc square
 3|  4| 13|  subtract (#13) from @
 4|  7|  1|  jump unconditionally to #1
10|  0|   |  halt
12|   |  9|  data value 9 stored at #12
13|   |  1|  data value 1 for decrement
24|  2| 36|  make a copy of @ at #36
25|  5| 36|  multiply @ by its copy
26| 12|   |  output result of multiply
27|  1| 36|  restore @ to old value
28|  7|  3|  jump back into main loop

As an example of what happens if the accumulator is not restored to its
initial value by the subroutine, change the contents of location 27 to:
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12|  7| 28|

which simply transfers control to the next instruction (i.e. it effectively does
nothing).  Now single step through the program and watch what happens.
8.2 Worked example 5

Output the squares of the numbers 9 through 1 using a subroutine that can
jump back to an address stored in a specific location.

This shows a fairly advanced use of jumping using indirect addressing to
achieve a primitive version of a  conventional subroutine's return
statement.  It can safely be ignored by the more timid.

The 'subroutine' approach whereby we jump to an address to achieve
some useful affect and then jump back is often very useful, as we can
jump to it from many different places in our program.  But if we want to
jump back from different places then how is the subroutine to know where
to jump back to?  We arrange for this by storing the return address at a
location that the subroutine will then use to do its jump.  This requires that
the address used for the jump is not given directly as the operand to the
JUMP instruction.  We use the JUMP INDIRECT instruction which uses its
operand to store the address at which the address for the jump is stored.

So before we jump to our subroutine we put the return address
somewhere where the subroutine can find it, say address 47.  We need to
store the return address at location 14 so that we can load it into the
accumulator with the LOAD instruction.  One further complexity is that we
need to remember the old value of the accumulator before storing the
return address, by storing it to an unused location and then restoring it with
load.

So the program becomes:

 0|  1| 12|  load @ with (#12)
 1|  9| 10|  jump if @ zero to #10 (HALT)
 2|  2| 15|  store @ at #15 temporarily
 3|  1| 14|  load @ with return address
 4|  2| 47|  store return address at #47
 5|  1| 15|  restore @ from #15
 6|  7| 24|  jump to #24 to calc square
 7|  4| 13|  subtract (#13) from @
 8|  7|  1|  jump unconditionally to #1
10|  0|   |  Halt
12|   |  9|  data value 9 stored at #12
13|   |  1|  data value 1 for decrement
14|   |  7|  call has return address = 7
24|  2| 36|  make a copy of @ at #36
25|  5| 36|  multiply @ by its copy
26| 12|   |  output result of multiply
27|  1| 36|  restore @ to old value
28| 10| 47|  jump indirect into main loop

Notice that the instruction at location 28 is the indirect jump which
transfers control to the instruction at the address stored at address 47.
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Exercises D

(1) Write a program to output the first five natural numbers and their
squares.

(2) Write a program that counts the number of 1's given in an input
sequence of positive numbers terminated by zero.

(3) Write a program to input two numbers and calculate the remainder
when one is divided by the other.

(4) Write a program to output the positive odd numbers in descending
order which are less than any input number.

(5) Write a program that calculates and outputs all the factors for any
positive inputted number.
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9
Number systems

9.1 Introduction

We all have an intuitive idea of how the normal decimal number system
works, mainly because we have all used it for as long as we can
remember.  The decimal number system is based on counting things in
groups of ten, and almost certainly came about because we have ten
fingers.  Unfortunately, the number ten has no such significance for a
computer, whereas the number two does.

Before we proceed to look at base 2 (or binary) arithmetic we’ll take a
closer look at the decimal system.  From an understanding of the decimal
system we can easily make the adjustment to doing arithmetic in any base.
9.2 Base 10

A base 10 (or decimal) number is a series of digits taken from the ordered
set:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Note that this is a set of ten distinct symbols.  i.e. it allows us to label up to
ten objects with a distinct label from the set.

The position of a digit determines the power of ten that it represents.

For example:

529 = 5*102 + 2 *101 + 9*100

= 500 + 20 + 9

Note that any number to the power zero is one.

This has described how we represent numbers in base 10.  We normally
just take this for granted, but it is very useful to understand the mechanics
of it because the same methods apply to any number system.
9.3 Base 2 (Binary)

A number is a series of digits taken from the ordered set:
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{0, 1}

Notice that we have two distinguishable symbols.

The position of each digit determines the power of 2 it represents.

For example:

10110 = 1*24 + 0*23 + 1*2^2 + 1*21 + 0*20

= 16 + 0 + 4 + 2 + 0   (in decimal)

= 22  (in decimal)
9.4 Base 16 (Hexadecimal)

A number is a series of digits taken from the ordered set:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Notice that we have sixteen distinguishable symbols.  We use the same
digits as with decimal but extend them with the first six characters from the
alphabet .

The position of each digit determines the power of 16 it represents (this
should be beginning to sound rather familiar).

For example:

F9A = F*162 + 9*161 +A*160

= 15*256 + 9 *16 + 10  (in decimal)

= 3994  (in decimal)
9.5 Relationship between binary and hexadecimal

Computers are built from two-state devices, i.e. transistors which can be
on or off.  This makes binary the natural choice.  Unfortunately binary
numbers are rather unpleasant to work with.  When written they tend to be
long, hard to compare and recognise.  This is where the usefulness of
hexadecimal comes in, hexadecimal turns out to be a very useful and
compact way of writing binary numbers.

Here is a conversion table that shows the binary representation of each
hexadecimal digit:

Binary Hexadecimal

0 0

1 1

10 2

11 3
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100 4

101 5

110 6

111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

From this table we can see that four bits are equivalent to one
hexadecimal digit.  Put another way, four bits are capable of representing
exactly the same numbers as a single hexadecimal digit.

We often think of a single hexadecimal digit as four binary digits and we
often add the necessary leading zeroes to make up the four bits.

But what is amazingly convenient is that we can split a binary number of
any length into four bit parts and convert each part independently (using
the above table if you wish).

For example:

Take the binary number:

1111101010000010

What is the equivalent hexadecimal?  This looks pretty nasty, but given our
trick the problem is incredibly simple.  Firstly split the number into four bit
groups working from the right:

1111   1010   1000   0010

Now convert each group to get:

FA82

That’s the answer!

If the binary number does not split into an exact number of groups of four
bits then just left pad it with enough zeroes so it does.
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Why does this method work?  It’s because sixteen, on which hexadecimal
is based, is a power of two.

For example, start with the hexadecimal number and express it as powers
of two:

FA82 = F*163 + A*162 + 8*161 + 2*160

This is by definition of what a hexadecimal number means.  Now using the
fact that 16 = 23 we can rewrite this as:

FA82 = F * 212 + A*28 + 8*24 +2*20

This is because:

16^3  = 212

16^2 = 28

16^0 = 20

Continuing with our calculation:

FA82 = 1111 * 212 + 1010*28 + 1000 * 24 + 0010 * 20

This last stage has just used our conversion table given above.  Our final
stage gives us:

FA82 =  1*215 + 1*214 + 1*213 + 1*212 + 1*211 + 0*210...

Which yields the binary number we started with.
9.6 Bytes and bits

One byte is a collection of eight bits.

The range of numbers is binary is:

00000000 to 11111111

and in hexadecimal is:

00 to FF

Each addressable memory location of TOM consists of two bytes.  The left
byte, which is the more significant byte, and the right byte, which is the
least significant byte.

This means that a single byte can store any number between 0 and FF,
and each memory location can store any number between 0 and FFFF.
9.7 Representing negative numbers

Each of TOM’s memory locations is 16 bits or two bytes long.  This allows
for 256*256 = 65536 different numbers.  So it might seem obvious that we
can represent the numbers 0 through 65536, and so we could if we are
happy to ignore negative numbers.  But if we want to be able to calculate
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with negative numbers then we must have some scheme for representing
them.

TOM can store negative numbers and it uses the most significant bit to
represent whether the number is positive or negative.  If the bit is not set
then the number is positive and if the bit is set  then the number is
negative.  That leaves 15 bits for the actual number.  This halves the range
of numbers we can represent to 0 through 32767.

This is the simplest way of representing a negative number, make one of
the bits a sign bit, and make all the other bits the absolute value.  This is
not actually the most common method but it is by far the most direct which
is why we use it in TOM.  It is easy to spot that a number is negative by
looking at its binary form and noting whether the left most bit is set.

TOM recognises a negative number by virtue of the leftmost bit value and
processes it accordingly.  The output area is also aware of negative
numbers and will represent the output with the normal minus sign followed
by the absolute value.  Consider the program on this screen shot:

This shows a simple loop starting at 9 and constantly subtracting 1.  The
loop carries on executing when it gets to 0, and negative numbers are
displayed on the printer.  Note the value displayed in the accumulator, this
value has just been output as -3, which is precisely what it represents.

In the Status bar at the bottom of the screen, the value of the accumulator
is displayed in binary (you can achieve this by moving the mouse pointer
over the accumulator register).  It is clear that the leftmost, or most
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significant bit of this number is set.  The value of this binary number
without the leftmost bit is ‘11’ which is binary for decimal 3.  If you were to
calculate the decimal equivalent of the entire binary number, that is
including the leftmost bit, you would get the number 32771, which is what
is displayed in the accumulator.

The following table gives TOM’s number representation, showing the
binary and decimal values:

Decimal Binary TOM value
(decimal)

65536 1111111111111111 -32768

. . .

. . .

32769 1000000000000001 -1

32768 1000000000000000 0

32767 0111111111111111 32767

. . .

. . .

1 0000000000000001 1

0 0000000000000000 0

9.8 Status register and arithmetical overflow

TOM has a Status register which can be displayed by clicking on Status
On in the Options menu.  The Status register appears below the
accumulator:
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The above program keeps multiplying the accumulator by 5, until the
inevitable happens: the result overflows what TOM can represent.  If you
have the Status register visible, then the result will simply be that the
lowest bit of the Status register is set.  The binary form can be seen by
placing the mouse over the Status register.  If you have not got the Status
register visible, then TOM will produce a warning and stop the program
from continuing.

9.9 Binary Coded Decimal (BCD)

Four bits can represent the numbers 0 to 15.  So an exceptionally easy
way to represent a decimal number is to allow each group of four bits to
represent a single decimal digit, and we ignore the fact that each four bits
could actually represent rather more.  For example we can represent the
number 5071 as:

5071 = 0101 0000 0111 0001

We can add two numbers represented in this fashion in a very
straightforward manner.  Just sum the individual groups and use carrying
over exactly as for decimal.

This gives us an exceptionally easy method of conversion between a
decimal number and its BCD form.  But a major disadvantage is that it
needs rather more storage for a given range of decimal.  The above 16
bits can only represent a number up to 9999 in decimal, whereas TOM
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with 16 bits represents a much greater range than this both positive and
negative.

Another problem is that the logic required to perform decimal arithmetic on
BCD is rather more complex than for binary.  This point will become rather
more clear when you reach the chapter on Logic gates.
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Exercises E

(1)  What is the hexadecimal number: FA3 in decimal?

(2) What is the binary number: 1001001001 in decimal?

(3) Convert the following numbers from binary to hexadecimal

(a) 0101100011110110

(b) 111110000

(c) 10101010101

(4) Convert the following hexadecimal numbers to binary:

(a) FF

(b) AA

(c) 10F0

(d) 1111

(5)  In TOM’s representation which of this binary numbers is negative:

(a)1000100111000010

(b) 0000010100100111

(c) 1111110000000111

(d) 1000000000000000

(e) 0000000000000000

(6)  What numbers do (d) and (e) represent?
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10
Subroutines

10.1 Introduction

We have already met the idea of a subroutine in Worked Example 5, which
I repeat here:

Output the squares of the numbers 9 through 1 using a subroutine.

In the original solution I had to arrange for the subroutine to jump back to
where it had been called from by explicitly storing the return address at
some fixed location.  Although this is perfectly feasible TOM, in common
with most processors, has specific instructions for handling subroutine
calls which have the advantage of being rather more flexible.  The
instructions are:

JSB (19)  Jump to subroutine

RTN (20) Return from subroutine

There is also a dedicated register for the use of subroutine calls: the Stack
Pointer.

The stack is an area of memory starting at address 64 which is used for
storing return addresses of subroutine calls.  The stack pointer is a register
that holds the address of the next free entry in the stack.  The reason we
need a stack is that:

• our program may call a subroutine from address 12 say

• this subroutine may call another subroutine from address 45 say.

Now, what we want to happen is:

• when the second subroutine finishes we return from the second
subroutine into the first at address 46;

• when the first subroutine completes, we want to return to the address
13.

If we have only stored one address for returning to, we clearly cannot do
the above which requires two addresses.  Hence we use a stack.
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A stack is generally taken to be something we take values from in reverse
order to how they have been stored.  Sometimes such a stack is referred
to as a last in, first out stack (LIFO), to emphasise this point.

A stack is much the same as the contraption you see at self-service
canteens for delivering plates:

                                          Plates

Canteen plate

delivery system

The last plate in is the first plate out.

The subroutine situation is one that most definitely requires a stack.  When
we make a subroutine call, we store the address to return to, and when
that subroutine returns, it must return to the last value stacked.
10.2 Using the Subroutine instructions

This is precisely what the subroutine instructions do when they are
executed:

JSB (19) JUMP SUBROUTINE

Puts the program counter + 1 (i.e. the address to return to) into the
the memory location given by the stack pointer, Increments the
stack pointer and jumps to the address given as the operand.

RTN (20) RETURN FROM SUBROUTINE

Decrements the stack pointer and puts the contents of the memory
location given by the stack pointer into the Program Counter.

We are now going to see how the above program can be written using the
JSB and RTN instructions.

As with the original solution, the main part of the program executes a loop.
It first loads the initial value from address 12 then the loop starts.

 0|LDA| 12|  load @ with (#12)
 1|JM0| 10|  jump if @ zero to #10
 2|STO| 15|  store @ at 15
 3|JSB| 32|  Jump sub
 4|LDA| 15|  restore @
 5|AC-| 13|  decrement loop counter
 6|JMP|  1|  jump to start of loop
10|HLT|   |  halt
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The next few locations are the data values needed by the program:

12|   |  9|  loop index
13|   |  1|  loop decrement value
15|   |  1|  temp storage for subroutine argument

This is the subroutine:

32|ACX| 15|  multiply @ by argument
33|OUT|   |  output the result
34|RTN|   |  return to main loop

Memory location 64 has the return address in, but note, you do not have to
enter this, it is automatically stored there by the JSB instruction.

64|HLT|  4|

This is quite obviously a bit easier than when we solved it before.  The
simplicity carries over when we have more complex situations involving
one subroutine calling another.  There is no need to keep track of return
addresses within our programs, just use the JSB and RTN instructions for
all your subroutine calls and returns and the addressing will be looked after
for you.
10.3 Recursion

Recursion is when a subroutine calls itself.  This may seem quite a bizarre
notion but it is in fact rather useful.

Consider the problem of calculating the factorial of a number which is
usually represented by an exclamation mark, for example, factorial 4 is
denoted by 4!.  You calculate the factorial of a number by multiplying the
number with 1 less, and 2 less, and so on down to 1.  So 4! = 4 * 3 * 2 * 1
= 24.

A precise why of describing the factorial of any number, n, is:

n! = n * (n - 1)!

0! = 1

These two statements are entirely adequate for calculating the factorial of
any number.  Take the example of 4!.

Using the first line of the definition we can rewrite 4! as follows:

4! = 4 * 3!

4! = 4 * 3 * 2!

4! = 4 * 3 * 2 * 1!

4! = 4 * 3 * 2 * 1 * 0!

Now using the second line we can eliminate the 0! to get:
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4! = 4 * 3 * 2 * 1 * 1

4! = 24

Which is the same as our previous result.

Our recursive subroutine will work by taking the number to calculate the
factorial of, subtracting one, doing the multiplication and then calling itself
to calculate the factorial of the number which is one less.

The first part of the code loads the accumulator with the value that we
want to find the factorial of, we store this value at location 12.

 0|LDA| 12|
 1|JSB| 16|
 2|OUT|   |
 3|HLT|   |
12|   |  3| the number we want the factorial of

After loading the accumulator it jumps to the first subroutine, outputs the
result, which the subroutine will store in the accumulator, and then halts.

The first subroutine is used to organise the storage structure for the actual
routine that does the calculation.  Our storage scheme uses location 48 for
the result of the multiplication so far, location 49 stores the decrement
value which is 1, and location 50 will be the number to multiply by, which
starts at the number we are finding the factorial of and is decremented to
zero.

16|STO| 48| store @ at 48 - result of multiplications
17|STO| 50| store @ at 50 - the multiplication factor
18|JSB| 32| jump to the factorial subroutine
19|LDA| 48| result is in 48, put this in @
20|RTN|   | return to the main routine

Now for the factorial subroutine itself.

32|LDA| 50| load the current factor into @
33|AC-| 49| subtract 1
34|JM0| 39| if zero jump to the end of the subroutine
35|STO| 50| store the new factor at 50
36|ACX| 48| multiply the new factor by result so far
37|STO| 48| store the result back in result so far
38|JSB| 32| make the recursive call
39|RTN|   | return
49|   |  1| the decrement value

When you watch this execute you will see the subroutine stack grow from
location 64.  When the factor reaches zero you will see a series of return
statements executed which shows the recursion unwinding.

This is the state of TOM when the execution has finished:
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Note the values in the subroutine stack, the first is the return from the
subroutine that starts at address 16, the second is the return from the first
call to the factorial subroutine, and the remaining two are returns from the
recursive calls.
10.4 Stack overflow

Just how big a stack do we need?  This can readily be calculated, for each
active subroutine call we quite clearly need to be able to store a return
address.  So the number of locations the stack needs is exactly the same
as the most subroutines that can be called at the same time.

TOM’s stack is from address 64 to address 68, hence TOM can support
five simultaneous calls to subroutines (as it can remember a total of five
addresses to return to).  This is not a great deal and you will find real
computers will allows very much more.

In fact, it is seldom a hardware limit, but something that is set in software.
Using a modern language such as C or Pascal, you may be required to tell
the system how big a stack you want, or accept some default value that is
provided for you.  In any event, whatever language you use, be it BASIC or
ADA, there is a limit.

What happens when a program exceeds the number of subroutine calls
supported by the size of the stack?  This all depends on the program.  In
the simplest situation, the stack starts to grow into an area of memory that
is used for something else, and corrupts whatever the something else is.
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In TOM the memory from 69 can be used for an output device, this is
explored in the next chapter.  If your stack grows to address 69 and
beyond, and you are using the output device, then its output is going to be
corrupted by the stack values.  An example of this happening is given in
the next chapter.

It is possible for software to trap the fact that the stack is about to exceed
the limit set for it.  This is done by something called a stack probe, which
examines the current setting of the stack pointer before each subroutine
call and raises an error if the stack is about to trash (illegally overwrite)
memory not allocated to it.  Clearly having stack probes means that the
executable task will take longer to run.  Hence, it is not unusual, to enable
stack probes during program development and then to disable them once
the program has been fully developed and tested.
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Exercises F

(1) Write a subroutine that calculates the factorial of a number stored in the
accumulator and outputs it.  A factorial is calculated by multiplying the
given number by each number between it and 1.  For example: 5! =
5*4*3*2*1 = 120.

(2)  Call the above subroutine from inside a loop which runs from 1 to 9.

(3) Write a subroutine that finds the result of X mod 7, that is given some
number, X  placed in the accumulator, it places the remainder when as
many sevens as possible have been subtracted.  The result is to be placed
in the accumulator.
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11
Memory mapped output

11.1 Introduction

Memory mapped output is a technique where a given section of memory is
dedicated to an output device, such as a screen.  Each location on
memory will directly represent some part of the screen image.  The kind of
screen you commonly use on your PC will be memory mapped from some
considerable chunk of memory.

Changes made to the memory in this area immediately change what is
displayed on the screen.  Electronic circuitry constantly scans this area of
memory and refreshes the screen.

A Super VGA image on a PC uses 800 by 600 pixels and can represent 16
colours.  A pixel is the smallest element of the screen image, each pixel
can be at one of 16 colours.  That needs 4 bits of memory for each pixel
(2^4 = 16).  So the total memory requirement for the screen image is:

800*600*4 = 1,280,000 bits

Or 160,000 bytes

TOM only has 80 memory locations, so its memory mapping capability is
very limited.  In fact we use only 10 memory locations and rather than map
these to pixels (you couldn’t make much of an image with just 10 pixels!)
TOM maps them to ASCII characters.
11.2 ASCII Characters

ASCII stands for American Standard Code for Information Interchange and
is a simple collating sequence that maps numbers to characters.  These
are some of the mappings:

Number (Decimal) Character

32 Space

. .

48 0
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49 1

. .

57 9

. .

65 A

66 B

. .

90 Z

. .

97 a

98 b

. .

122 z

. .

The numeric, uppercase and lowercase letters are all in their natural
sequence, so you should be able to calculate what the ASCII code for any
letter or any number is.  If you find this difficult then there is a complete
ASCII table in an appendix.

There are two sorts of ASCII character:

• Printable

• Non-printable

Printable characters are like those given in the above table.  Non-printable
characters are sometimes known as control characters, they are generally
used to control an action of an output device such as a screen or a printer.

Some examples of non-printable characters are:

ASCII Meaning

10 Line Feed

13 Carriage Return

These are clearly intended for controlling a printer and the more primitive
types of terminal.  Such a device would interpret a Line Feed followed by a
Carriage Return as the codes necessary to start a new line.
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TOM is only capable of interpreting the printable type of character.  Trying
to print all other types of character results in a space being printed.
11.3 Using Memory Mapped Output

The memory which is mapped to the output window is from address 69 to
address 78.

Select Output Device from the Options menu and the memory mapped
output device will be displayed.  The device will display characters mapped
from the addresses 69 to 78 at all times, i.e. not just when a TOM program
is running.

For example put the following values into memory at the indicated
locations:

69|   | 84|
70|   | 79|
71|   | 77|

The output device should now look like:

Far more commonly we would use a program to display values on our
output device.
11.4 Indirect addressing

If we try writing a program to do almost anything with memory mapped
output, such as copying characters from one part of memory to the
memory mapped area, we find that we have a problem.  Consider writing a
program to transfer the memory locations from 24 to 26 to 69 to 71:

00|LDA| 24|
01|STO| 69|
02|LDA| 25|
03|STO| 38|
04|LDA| 26|
05|STO| 39|

24|   | 84|
25|   | 79|
26|   | 77|

This copies “TOM” to the memory mapped output area.  As you can see
each character is copied with a LDA,STO pair, which soon becomes rather
long winded when copying strings greater in length than this.  What we
need is to be able to indirectly address memory, loading and storing values
from memory locations stored in other memory locations.
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This method of indirectly addressing memory is of enormous benefit when
coding anything that deals with a range of memory cells.  We can arrange
to store the start and end addresses actually in memory and use these to
store our values indirectly.

The instruction for loading the accumulator from a memory location given
in another memory location is 17 with mnemonic L().  Its argument
specifies the memory address of a location where the actual value is
stored.  For example:

00|L()| 12|

12|   | 25|

25|   | 79|

The Load Indirect instruction at memory location 0, loads the value 79 into
the accumulator.  The big advantage of this instruction is that if we now
want this occurrence of Load Indirect to load from a different location we
only have to change the value stored in location 12.

Similarly, the instruction for storing the accumulator to a memory location
given in another memory location is 18 with mnemonic S().  Its argument
specifies the memory address of a location where the actual value is to be
stored.  For example:

00|S()| 12|

12|   | 25|

25|   |   |

The Store Indirect instruction at memory location 0, stores the current
value of the accumulator to memory location 25.  The big advantage of this
instruction is that if we now want this occurrence of Store Indirect to store
to a different location we only have to change the value stored in location
12.

Consider the following TOM program which outputs the letters
‘ABCDEFGHIJ’ to the output device:

 0|LDA| 12|  Load @ with number of letters
 1|JM0| 24|  finish when @ = 0
 2|AC-| 13|  decrement loop counter
 3|STO| 12|  and put it back where it came from
 4|AC+| 14|  add 69 to @, this is the address for
output
 5|STO| 15|  store the address at 15
 6|LDA| 16|  load @ with ASCII offset value (65 = A)
 7|AC+| 12|  add the loop index
 8|S()| 15|  copy (@) to memory mapped area (address at
15)



Memory mapped output 67

 1993-1999 Keylink Computers Limited

 9|JMP|  0|  jump to start of loop

12|   | 10|  number of letters to be output
13|   |  1|  loop decrement value
14|   | 69|
15|HLT|  0|  Stores address in memory mapped area
16|   | 65|

24|HLT|   |

Notice how the letters in the output window:

are output in reverse, starting with ‘J’, which is ASCII 65 + 9 going to
memory location 78,  and finishing with ‘A’, which is ASCII 65 + 0, going to
memory location 69.
11.4 Memory corruption

Dedicating an area of memory to an output device means that this area
must not be used for anything else.  The stack used for subroutines starts
at address 64 and grows upwards in memory.  If we run the factorial
example, given in the previous chapter, and give it a starting value of 6,
then there will be a total of 7 subroutine calls active at the deepest point of
the recursion.  This will cause overwriting of some of the memory mapped
area.

The following full screen shot shows the end result of running the factorial
program to calculate the factorial of 6, whilst the memory mapped output
starts off by displaying TOM, it ends up displaying:

The two quotes are the result of the stack growing into the memory
mapped output area at addresses 69 and 70.

This corruption of memory can be easily seen on the full screen shot:
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The number 39 is the return address from the subroutine which starts at
address 32.  If you look in the ASCII table you’ll see that 39 is also the
number for the single quote character.
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Exercises G

(1) What is the ASCII collating sequence number for the letter ‘w’?

(2) Find out what resolution your PC screen is using and how many
colours it can display.  Calculate what the memory requirement for your
screen is.

(3) Display the Memory Mapped output device and by putting values
directly into memory make the output display your name.

(4)  Write a subroutine that takes the value of the accumulator as the start
address and copies ten locations starting at that address to the memory
mapped output area.  Use indirect addressing.
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12
Interrupts

12.1 Introduction

When an input device, such as a keyboard, makes an input we want the
machine to stop what it is doing and process the input character.  In most
situations we do not want the computer to be constantly waiting for a
keyboard character, which would waste a great deal of computer time, but
only process the input as and when it is available.

This is achieved by the use of an interrupt.  Within the processor’s
execution logic a check is made before each instruction is executed as to
whether any device has posted an interrupt.  If an interrupt has been set, it
is then necessary for this interrupt to be serviced, i.e. processed before
the program that was executing can be returned to.

The routine that services an interrupt is much the same as any other piece
of code that resides in memory and can be jumped to, however, there are
a few extra instructions available for processing interrupts and an extra
register, the interrupt register.  In addition there is an interrupt mask bit
in the Status register, this is the second most significant bit.
12.2 Using the Interrupt option

With TOM running choose Interrupts from the Options menu and the
screen will look like:
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Notice the extra one bit register at the bottom left of the screen.  The
Status register is automatically displayed when Interrupts On is selected.
The Interrupt Mask bit must be set to 1 for an interrupt to be noticed by
TOM.  Its normal state is set to zero, i.e. all interrupts are normally
ignored.  The Interrupt Mask bit is normally set by the executing program,
hence there are instructions for setting and unsetting it.

The Interrupt register is set by the device wanting to cause the interrupt.

When both the Interrupt register and the Interrupt Mask bit are set an
interrupt occurs.

Also displayed is a second form which represents a typical input device, a
QWERTY keyboard with numeric pad:
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Whenever a key is pressed on the Keyboard the Interrupt register is set.
This may or may not cause an interrupt depending on the state of the
Interrupt Mask bit.

The following table lists the new instructions which are available:

Instruction number Mnemonic Description
13 IOF Set Mask to 0
14 ION Set Mask to 1
15 RIN Read Interrupt Input
16 RTI Return from Interrupt

12.3 Programming for Interrupts

When you want your program to be capable of programming interrupts
execute the ION, Interrupt on, instruction.  Now you must have defined an
Interrupt Service Routine (also known as an Interrupt Handler).

When an Interrupt occurs, i.e. when a key on the keyboard form is
pressed, control will be passed to the Interrupt Handler you have defined.

TOM expects the starting address of your Interrupt Handler to be located
at address 79.  That is the memory at location 79 must contain the starting
address for the handler.

What TOM does when it encounters an interrupt is:

• Saves the current value of the Program Counter.

• Saves the current value of the Accumulator.

• Transfers control to the address that is stored in location 79.

• Sets the Interrupt Mask bit to 0.

TOM saves the Program Counter and Accumulator so that it can continue
processing where it left off, it will do this when it encounters the RTI,
Return from Interrupt, instruction (this will always be the last instruction of
your interrupt handler).

It transfers control to the start of the Interrupt handler in order to service
the interrupt.

TOM sets the Interrupt Mask bit to 0 in order to disable any further
interrupts until this one has been processed.

The RTI instruction does the following:

• Returns the value of the Program Counter to what was saved.

• Returns the value of the Accumulator to what was saved.

• Sets the Interrupt Register to 0.
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The Program Counter and Accumulator are restored to enable processing
to continue precisely as it would have done had the interrupt never
happened.

The Interrupt Register is set to 0 because the interrupt has been
processed.  Note that the mask remains off, it is up to the program to reset
this mask if it so desires to process another interrupt.

The RIN, Read Interrupt Input, instruction allows the value being input from
the device to be read into the Accumulator.  You would expect every
interrupt handler to use this instruction.

What actual code goes into an interrupt handler is down to you, but here is
a typical example of a program that will loop indefinitely outputting zero to
the printer, but every time a key is pressed it outputs the ASCII value of
the key to the printer.

The first part of the program is a simple loop that switches on interrupt
handling and outputs the contents of memory location 12 to the printer
repeatedly:

 0|ION|   | Turn interrupt mask on
 1|LDA| 12| Load @ with (12)
 2| 12|  0| Output @
 3|  7|  0| Jump to 0

The data value at location 12 is initialised to zero:

12|   |  0|

This next part is the interrupt handler itself:

24|IOF|   | Turn off interrupt handling
25|RIN|   | Read keyboard char into @
26|STO| 12| Store @ to 12
27|RTI|   | Return from handler

Finally we have placed the address of the start of the Interrupt Handler at
location 79.

79|   | 24|
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Exercises H

(1)  Write an interrupt handler that stores input character codes at
successive memory locations.

(2)  With the memory mapped output device displayed, write a program,
with an interrupt handler that writes input characters to the output device.
Each character should go to the first position of the output device.

(3)  Modify the above program to display input characters, from left to right
on the output device.
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13
Logic gates

13.1 Introduction

A fundamental component of a computer is the logic gate.  Although there
are many different types of gate we will only deal with three, the AND gate,
the OR gate and the NOT gate.  These are in fact sufficient to build any
logic circuit, and it is possible to build any of the other types of gate out of
just these three.

The purpose of a logic gate is to take some logical input and provide a
result which depends on the input value or values.

When dealing with gates we only consider two possible values, True and
False, but we far more often use the numbers 1 and 0 to represent these
values.  In the actual circuitry which implements these gates, the value of
1 will often be represented by a high voltage and 0 will be a low voltage.
13.2 The AND gate

The AND gate has two inputs.  Its purpose is to give a logical 1 as output
when both of its logical inputs is 1.  In all other cases its output value is 0.

An AND gate is often represented by a semi-circular shape, like this:

Here, the inputs have been labelled A and B and the output has been
labelled C.  The AND gate result is 1 when both A and B are 1, in all other
cases it is 0.

The function of a gate is often described by a truth table which lists all the
possible combinations of input and the corresponding output.

A

B
C
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A B C
0 0 0
0 1 0
1 0 0
1 1 1

For example, to find out what the output value will be when A is 1 and B is
0, read the third row which gives the result that C, the output, is 0.
13.3 The Or gate

The OR gate has two inputs.  Its purpose is to give a logical 1 as output
when either of its logical inputs is 1.  In all other cases its output value is 0.

An OR gate is often represented by a semi-circular shape, like this:

Here, the inputs have been labelled A and B and the output has been
labelled C.  The OR gate result is 1 when either A or B are 1, in all other
cases it is 0.

The function of a gate is often described by a truth table which lists all the
possible combinations of input and the corresponding output.

A B C
0 0 0
0 1 1
1 0 1
1 1 1

For example, to find out what the output value will be when A is 1 and B is
0, read the third row which gives the result that C, the output, is 1.
13.4 The NOT gate

The NOT gate has one input.  Its purpose is to negate its logical input.
That is, when the input is 1, the output is 0, and when the input is 0, the
output is 1.

An Not gate is often represented by a triangular shape, like this:

A

A

B
C

B
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Here, the input has been labelled A and the output has been labelled B.
The NOT gate result is 1 when both A is 0, in all other cases it is 1.

The function of a gate is often described by a truth table which lists all the
possible combinations of input and the corresponding output.

A B
0 1
1 0

For example, to find out what the output value will be when A is 1 , read
the second row which gives the result that B, the output, is 0.
13.5 Putting Logic Gates together

As an example of how logic gates can be connected together we will show
how a NAND gate can be constructed from an AND gate and a NOT gate.
A NAND gate gives the opposite result of an AND gate.  That is the result
is 0 whenever either of its inputs is 1, and 1 in all other cases.

A NAND gate can be represented by a triangle, but it differs from the NOT
gate because it has two inputs:

The truth table for a NAND gate is:

A B C
0 0 1
0 1 1
1 0 1
1 1 0

The NAND gate is easily constructed by taking the result of an AND gate
and negating by using a NOT gate:

13.6 The Flip-Flop

The signals that pass though the circuits that comprise logic gates are
usually very fleeting.  What we require when implementing memory circuits
is a way to hold onto a logical 1 or 0, indefinitely.  A flip-flop is a cunning
arrangement of gates that allows a state to be set and then tested for at
any time after it has been set.  This is achieved by arranging a feedback
loop within the flip-flop which keeps it in this steady state.

A

A

B

C

C

B
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A short duration logical 1 at Set will provide a continuous logical 1 at Out.
A short duration logical 1 at Reset will provide a continuous logical 0 at
Out.

Consider the Set operation.  A logical 1 is applied at Set, this means that
the result of the upper OR gate must be 1 regardless of whatever the other
input to this gate is.  This result of 1 is then notted which must result in
logical 0.  As Set and Reset signals are only applied for a short duration,
we can assume that the Reset is at 0, therefore the result of the second
OR gate must be 0, this is then notted to produce the Output value of 1.
But most importantly, this result is then sent back to the input of the top
OR gate where is now acts as another Set signal.  At this point the Set
signal can be removed and the flip-flop circuit will remember the value of 1
indefinitely.  In a similar fashion applying a short duration 1 to the Reset
will cause a steady Out of 0 to be achieved.
13.7 The Controlled Flip-Flop

A flip-flop provides us with the central component of memory.  But we find
it more useful presented in a slightly different way.  What we need it to be
able to apply a value of 0 or 1 to a memory device and have it
remembered indefinitely.  But a pulse of 0 is really no pulse at all, so we
need to add a control line to tell the memory unit when it should be
listening.  This is called a controlled flip-flop and is constructed from a
normal flip-flop with a few extra gates:

When the Control is at 0, then the state of the flip-flop will not change.
When the Control is at 1 then the state of the flip-flop will change
according to the data value at Data.

Set

Control

Reset

Data

Out

OutFlip-flopSet

Reset
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13.8 Half-adder

Clearly computers perform arithmetic, but how they perform it is perhaps
rather less clear.  The simplest arithmetic operation is the half-adder.  This
allows just two bits to be added together.  As adding a ‘1’ to a ‘1’ overflows
a single bit (the result is ‘10’ in binary), it is necessary to not only have a
result bit, but also a carry bit.

The truth table for such a device is easy enough to specify, we simply fill in
the table with the required results.  If our two input bits are A and B, and
the result is S with carry bit C.  Then clearly adding 0 to 0 results in 0 with
0 carry bit, and so on.  Here is the table:

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

The Carry bit is the result of A AND B.  This should be clear as we only set
the carry bit when both input bits are set.

The Sum bit is either A AND NOT B OR NOT A AND B.  This is a little
more difficult.  We only set the sum bit when either: A is set but B is not
set, or when B is set and A is not set.  Putting this another way, we only
set S when one or other of A or B are set, but not when both are.

We can build the logic diagram for the half-adder in a number of stages.
First the diagram for A AND NOT B:

We now need to OR this with NOT A and B:

A

B
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Now it just remains to add the logic for the carry bit, which is just a result of
A AND B:

It is convenient to represent a half-adder as a simple box.  This helps us
when constructing more complex logic, and, of course, it matters not a jot,
just as long as we do know how to actually implement one as the above
diagram shows us.  So for clarity we will from now on represent a half-
adder with:

A

A

B

B

C

S

C
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The half-adder is not quite what we need to add together lots of binary
digits because we need to be able to cope with carrying in as well as
carrying out.  What we need is a full-adder.  This is very much like a half-
adder but has a carry in bit as well as a carry out bit.

We can make one full-adder out of two half-adders by inputting A and B to
the first adder, then inputting the result of this along with the Carry into the
second half-adder.  The sum is then the result of the second half-adder
and the carry out is the result of OR-ing the carry out from both half-
adders:

With the full-adder we now have the capability of adding together arbitrary
numbers of digits.  Clearly TOM would need to use sixteen full-adders to
perform arithmetic on the contents of the accumulator and a full memory
location.  This can be achieved by using a full-adder to add the zero
position bits from both numbers, the carry out is then input to the carry in
for the next full-adder which adds the bits in position 1, and so until the bits
in position 15.  The carry out in this case will indicate arithmetic overflow
and can be used to set the Status register’s lowest bit.

Half-adder

Full-adder

A

A

B

B

S

S

C

CoutCin

Half-adder

Half-adder

Cin

A

B

S

Cout



Logic gates 84

 1993-1999 Keylink Computers Limited

13.9 Logic Gates in TOM

To display the logic gates screen select Logic Gates from the Views menu.
The first in the Gate sequence shows the AND gate like this:

You can click on either of the inputs, A and B to toggle their values
between 0 and 1.  The output at C will change accordingly and the relevant
row in the truth table will be highlighted.

There are similar screens for the OR and NOT gates which are displayed
by clicking on Next.

The flip-flop screen allows the Set and Reset sequence to be seen in
detail.  The screen shows:
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To see the Set sequence first click on Set Sequence and then keep
pressing Continue until you have seen enough of the sequence to satisfy
yourself how it works.  Then press Stop.  You can view the Reset
sequence in a similar fashion by first clicking on Reset Sequence.

Pressing Next displays the Controlled Flip-flop screen:
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Here, you can click on the Control and Data inputs to toggle their values.
The output will change accordingly and the relevant line in the truth table
will be highlighted.

Clicking on Next will display the half-adder screen:

Again, the inputs can be toggled by clicking on them.

Clicking on Next will display the full-adder screen:
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It is possible to ‘drill down’ to previous screens by double clicking on any of
the logical components on the screen.  For example, the OR gate screen
can be displayed by double clicking one of the OR gates on the above
screen.
13.10 How Logic Gates are constructed

As you are no doubt aware, computers are constructed from millions of
transistors.  The transistors are vital components of Logic Gates.  The fact
that transistors can be super-miniaturised is overwhelmingly the reason for
their use, but additional factors are also that they are cheap and extremely
reliable.

A transistor is really nothing other than a switch.  When we apply a current
to its input, it allows current to flow between its other two connections.

This is how we represent a transistor:

A transistor has three connections which I have labelled as A , B and C.  A
is called the base, B is the collector, and C is the emitter.  When a voltage
is applied to the base, i.e. to A, the Emitter and Collector become
connected.

So, there are two distinct states that the transistor can be in:

• When no voltage is applied to A, B and C are isolated.

A
B

C
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• When a voltage is applied to A , B and C are connected.

This is the simplest circuit that shows how a transistor can be used as a
switch:

                      +V

                                     R

                      0V

The bottom wire is at zero voltage and the top wire is at some arbitrary
positive voltage.  When there is no voltage applied to A then the transistor
is in an off state, this means that B is effectively connected to the +V wire
(via the resistor, R, whose purpose will be explained soon).  This means
that B is at a relatively high voltage when compared with the bottom wire,
i.e. it is equivalent to a logical 1.

When a voltage is applied to A, the transistor is switched on and B is then
effectively connected to the 0V line, hence it is set to a logical zero.  The
purpose of the resistor is to prevent a run away current from flowing
between the +V line and the 0V line when the transistor is in the “on” state.

The above circuit is in fact a NOT gate.  Put a logical 1 at A and you get a
logical 0 at B.  Put a logical 0 at A and you get a logical 1 at B.

Constructing an AND gate requires us to connect two transistors in series
and then pass the result through a NOT gate.  Consider the following
circuit:

                      +V

                                     R

                      0V

Both of the left hand transistors need to be switched on to get a logical 0
as input to the third transistor.  i.e. to get a logical 1 at C both A and B
need to be at logical 1.

A

A

B

B

C
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An OR gate can be constructed in a similar fashion, but both input
transistors now need to be connected in parallel.  Consider the following
circuit:

                      +V

                                     R

              0V

Here, it is enough for either of the input transistors to be switched on for
there to be a logical zero at the input of the third transistor.  i.e.  When
either A or B is at a logical 1 then C will be at logical 1.

A B

C
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Exercises I

(1)  Write out the truth table for the following logical circuit:

(2) A NOR gate has the following truth table:

A B C

0 0 1

0 1 0

1 0 0

1 1 0

What is the logical circuit needed to implement this?

(3) What logic does this circuit implement?

                      +V

                                     R

                    0V

A

B
C

A

B

D

C
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14
Memory

14.1 Introduction

TOM’s memory screens illustrate how values can be stored to and
retrieved from memory.  It is essential that the screens on logic gates have
been fully understood as the basis for the construction of memory is the
controlled flip-flop.
14.2 Setting and Storing Memory

TOM’s first memory screen shows how a single memory location can be
constructed from an array of controlled flip-flops.  Each controlled flip-flop
is capable of storing a single bit of data.  So for storing four bits we need
four controlled flip-flops.

The screen shows a single 4 bit memory location.  There are 4 inputs, one
for each bit, and 4 outputs.  There is also one control line which is
connected to all the controlled flip-flops.
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Each of the controlled flip-flops is only capable of changing state when the
control line is at logical 1.  Therefore to change the memory contents, you
need to set the input memory registers on the left to your required value,
and then switch the control to logical 1 and back to logical 0.  At the point
that the control line is at logical 1, the 4 bit value will be remembered by
the memory and this value is available at the output labelled Test
Memory.
14.3 Address Decoding

In order to get values out of memory we need to use an Address Decoder.
What we need is to be able to identify a particular memory location given a
particular address.  The first part of this process is to be able to take an
address and obtain an output that can be used to identify the value at that
address.

The simplest situation is when we are dealing with a maximum of four
addresses.  We can arrange for a device to input a 2 bit address, and to
have one output for each of the possible addresses.  One and only one
output will be at logical 1 for each of the possible inputs.  These output
lines can then be connected to each memory addressed and used for
obtaining the value at that address.  This is elaborated on in the final
memory screen.
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For the time being consider this device.  Click on Low and High registers
on the left to satisfy yourself of what it is doing.

The underlying logic of how such an Address Decoder is constructed can
be seen by checking the See Logic box on the left of the screen.  This will
then display:
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Clearly a total of 4 memory locations is not going to be very useful.
Fortunately we can connect two Address Decoders together to address
eight memory locations.  In fact if we can address 2^N+1 address locations
with N address decoders.  This point will be taken up again after the last of
TOM’s memory screens has been discussed.
14.4 Fetching values from memory

The real purpose of memory is that, having put values into memory, we
want to be able to say ‘what is the value at address X?’ (write only memory
would have very little value!).  i.e. we want to be able to fetch a data value
from any address, or put another way, given an address we want the value
at that address.

This can only be achieved by using an arrangement of AND gates.  For the
simple case where we have only 4 memory locations we can use a single
2 bit address decoder.  TOM illustrates this case:



Memory 97

 1993-1999 Keylink Computers Limited

This illustrates that when the Address Decoder decodes address 0, its first
output is at logical 1.  This value is anded with the contents of the memory
values at address 0 and so whatever is at these locations appears as the
output value.  ALL THE OTHER LOCATIONS ARE IGNORED because
only the first of the address decoders outputs is at logical 1, all the others
are at 0, and these are ANDED with the other locations (The result of
ANDING 0 with anything is always 0).

Try putting your own values into the memory locations on the right of the
screen by clicking on the memory cells, remember that these can only be
changed when the control line is at logical 1.

Now try changing the Input address to see how the values at the relevant
memory location is logically arrived at in the Output.
14.5 Addressing larger memory ranges

As has been noted, a memory with only four distinct addresses is of very
limited value.  In order to address a larger range we need to connect more
address decoders into the circuit.

In order to try and represent this on a diagram we need to simplify our
representation somewhat.  Instead of showing the entire set of gates for
each bit of a memory location, I will simply show a single gate for the
whole location at a particular address.  This doesn’t really lose us anything
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as we can quite easily replace the single gate with one for each bit if we
needed to.  The important point is that we are logically ANDing the
contents of all bits at that address with some output of the Address
Decoder.

Consider how we would address 16 locations:

                                                                                           Address

Lo

Hi

We need to think of the address range as being split into 4 equal parts of 4
addresses each.

The two decoders are clearly capable of being given 16 different inputs,
i.e. 0000 through to 1111 (0 to 15 in decimal).

The principal is to:

• AND together the first 4 addresses with the 0 output of the ‘Hi’ decoder’

• AND together the second 4 addresses with the 1 output of the ‘Hi’
decoder’

• AND together the third 4 addresses with the 2 output of the ‘Hi’ decoder’

• AND together the fourth 4 addresses with the 3 output of the ‘Hi’
decoder’

In this way each output of the Hi memory decoder is controlling the block
of memory that it addresses.  Whilst each output of the Lo memory

2 Bit Decoder

2 Bit Decoder

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

ANDED with 2nd
memory block
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decoder is controlling which of the addresses within that address range is
being addressed.
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Exercises J

(1) Draw the logic diagram for the two bit address decoder and mark on
the diagram all the logical values for the case where the low input bit is 0
and the high input bit is 1.

(2) Complete the diagram given in the section ‘Addressing larger memory
ranges’ for the first two memory blocks.
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15
TOM’s machine simulator

15.1 Introduction

TOM’s machine simulator provides an accurate simulation of how a
program is executed by a computer.  The simulator will execute any
program that TOM can normally execute.  It gives a stage by stage
demonstration of each part of the execution cycle, graphically displaying
the various flows of data from one component to another.

It is also possible to guide the operation of the machine by use of the
mouse allowing the user to become fully aware of the execution cycle.
15.2 The Machine Simulator’s components

With a program already in TOM’s memory (it’s a good idea to choose a
working program) and the program counter set to 0, choose Machine from
the Views menu.  You will see the following (although the contents of the
memory will almost certainly be different):
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Status panel

At the bottom of the screen is a status panel, moving the mouse over the
various components of TOM will cause descriptions of the components to
appear on this panel.  Try this now.

Memory

TOM’s memory is displayed at the top-left of the screen.  You should be
able to see that it has the same values at the same locations as TOM’s
main screen.  However, unlike TOM’s main screen you cannot interactively
alter these values.  If you need to change a memory value, you will need to
go back to TOM’s main screen and edit your program in the usual manner.

Address decoder

To the right of the memory is the Address Decoder.  This will identify the
memory location which corresponds to an input address.  The address will
be displayed in the Address Decoder and when it is activated it will then
highlight the location corresponding to this address in the Memory unit.

Explanation

The blue panel to the right of the Address Decoder contains text that
explains the current operation that the machine is performing.

Arithmetic Logic Unit (ALU)
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Near the bottom left of the screen is the Arithmetic Logic Unit, this is the
part of the machine that performs arithmetic operations on the registers’
contents.

Instruction decoder

To the right of the Arithmetic Logic Unit is the Instruction Decoder.  This
performs operations on the registers which correspond to the instruction in
the instruction register.

Registers

To the right of the Instruction Decoder is a set of registers.  Two of these
are the same as on TOM’s main screen, the Program Counter and the
Accumulator.  In addition is the Instruction/Operand pair which stores the
current instruction being executed and its operand.  There is also an
internal General Purpose register, which, as its name implies, is used for a
variety of purposes.

The Bus

The black line which connects all the components is the Bus.  The
purpose of the Bus is to allow various machine components to transfer
values between them.  The small black boxes represent gateways onto the
bus.  These are either open or closed.  They are shown above in their
original state of being closed.  No information can flow through a gateway
when it is closed.  They appear with a black cross when they are open.

An example of a use of the bus is when a data value is transferred from
the memory into one of the registers.

Control buttons

There are a set of buttons to the right of the registers which you can use to
control the machine’s execution.

Clock

Above the control buttons is a small clock icon which indicates the part of
the cycle that the machine is executing.  The clock controls the opening
and closing of the various gateways onto the bus.  It is the timing of these
openings of the Gateways which is so important to how the machine
works.
15.3 Running the Machine Simulator

Program execution is started by clicking on Run.
15.4 TOM’s execution cycle

The simple explanation that is often given to describe a machine’s
operation is that the machine enters a cycle of fetching instructions and
executing them.  Although this is accurate it is overly simplistic and needs
to be broken down into rather more components for a complete
understanding. TOM’s machine has precisely seven which are described
in the following:
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The first few cycles are involved with fetching the instruction and its
operand from memory.  To do this it needs to:

• Send the contents of the Program Counter to the Address Decoder.

• Copy the requested memory value into the Instruction and Operand
registers.

The first part is needed in order to identify the correct instruction/operand
pair in memory.  Clearly it is the Program Counter which determines where
in memory this pair are, this is what the Program Counter is for!

The next few cycles are used to determine what the Operand is referring
to.  We know that the operand always refers to a location in memory.
Therefore the only logical thing to do is to fetch this value and store it in an
internal register, TOM’s machine uses the General Purpose Register for
this.  So in order to fetch what the operand is referring to the machine
needs to:

• Send the contents of the Operand Register to the Address Decoder.

• Copy the requested memory value into the General Purpose Register

Now that the needed values have been fetched into the Machines registers
it’s time to execute the instruction.  So the next cycle of the machine is
simply:

• Execute the instruction.

Some instructions are capable of altering values in memory, for example
the Store operation.  So it is essential that the execution cycle includes a
write to memory, even though this will not be used by many instructions,
without it we could never get our programs to change the contents of
memory (all the cycles to this point have simply been reading memory).
Therefore the next phase is to write the contents of the General Register to
memory:

• Send the contents of the General Purpose Register to Memory.

Finally we need to advance the Program Counter so that the next
instruction can be fetched and executed.  BUT, this cycle is missed out if
the instruction executed was any one of the JUMP instructions

• Increment the Program Counter.

Now the whole process can start again, but of course this next time it will
be fetching and executing the next instruction.

Watching TOM’s machine perform these instructions should make the
whole process much clearer.
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Machine cycle clock Period 1

The value of the Program Counter is sent to the Address Decoder by
opening the Address Decoder and the Program Counter to the Bus at the
same time This allows the value from the Program Counter to pass along
the Bus into the Address Decoder.

Note the red line which indicates the path that the data takes from the
Program Counter to the Address Decoder.  Also note that the two
necessary gateways onto the bus are open to allow this to happen.

The clock is indicating that the first part of the Machine Cycle is being
executed.

The status panel gives a short description of the current operation, note
that (PC) means the contents of the Program Counter.

The current value of the Program Counter is displayed in the Address
Decoder.

Pressing Continue displays the final part of Period 1:
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The path between the Program Counter and the Address Decoder is now
closed.  The Address Decoder is activated and identifies the Memory cell
given by the address.

Note how the relevant location in memory is now highlighted and appears
at the top of the memory unit.

Machine cycle clock Period 2

The instruction and operand are now read from memory into the
instruction/operand registers.
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The memory location at the identified address is connected to the bus.  At
the same time as the Instruction/Operand Registers, allowing the
Instruction/Operand pair to be transferred from memory into the registers.
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The gateway between the Instruction Register and the Bus is now closed.

Machine cycle clock Period 3

Now we need to fetch the operand value, i.e. the value that the operand is
referring to, from memory.  This involves sending the contents of the
Operand register to the address decoder.  This is to enable the value at
that address to be read:
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The Operand register and the Address Decoder are both opened to the
BUS allowing the value from the Operand Decoder to be read into the
Address Decoder.

This causes the memory location at address 12 to be identified for the
subsequent transfer.

Machine cycle clock Period 4

The contents of the memory location just identified (i.e. the operand value)
is now read into the General Purpose register.
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The General Purpose register is opened to the BUS allowing the memory
value from location 12 to be transferred into the General Purpose register.

Machine cycle clock Period 5

Now the instruction in the instruction register can be executed:



TOM’s machine 113

 1993-1999 Keylink Computers Limited

The instruction being executed here is the Load Accumulator instruction,
which simply copies the contents of the General Purpose register to the
Accumulator.  This is one of the simplest operations that the Instruction
Decoder has to do, in this case it is only necessary to transfer the value
from one register to another by opening an internal gateway as illustrated
within the Instruction Decoder in the above screen shot.

Machine cycle clock Period 6

The contents of the General Purpose register are sent to memory.  This is
a redundant operation for this instruction, but it is an essential part of the
entire machine cycle, as the processor must be capable of writing to
memory as some of the instructions require (i.e. STORE
ACCUMULATOR).
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Machine cycle clock Period 7

Finally, the Program Counter is incremented.  The entire cycle can now be
repeated.
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15.5 Indirect instructions

The indirect load and store instructions, L() and S(), cause the processor
to access memory a further time within the machine cycle.

Note that when a simple direct instruction such as LDA is executed, the
operand, which is a memory address, has already been used to fetch the
value it refers to into the General Purpose register.  But when an indirect
instruction is executed such as L(), the value in the General Purpose
Register is the address of the required value.  Consider the following short
program:

 0|L()| 16|
 1|OUT|   |
 2|HLT|   |
16|   | 32|
32|   | 99|

This simply copies the value from location 32 into the accumulator and
outputs it, but it uses the indirect load instruction, L(), to fetch the value
from the address stored in location 16.  TOM’s machine operates as
normal until it gets to decoding the load indirect instruction.  At this point it
realises that it needs to dereference the contents of the General Purpose
Register.  That is, it needs to find the value from memory that the General
Purpose Register is addressing.  It does this by sending the contents of
the General Purpose register to the address decoder:
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The memory value at this address is then identified:



TOM’s machine 117

 1993-1999 Keylink Computers Limited

The value from the identified location is then read into the General
Purpose Register:
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And finally, the value from the General Purpose Register is loaded into the
accumulator:
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Notice that during the execution of this extra memory fetch that the Clock
is not indicating the true part of the cycle.  This is because the indirect
instructions are taking control of the machine cycle for a short period in
order to insert the extra needed memory access.

This is the normal way for indirect instructions to execute, the normal
execution cycle is extended to allow for the extra memory access required.
You will see very similar behaviour for the Store Indirect instruction, S().
15.6 Subroutine calls

Using the subroutine instructions, JSB and RTN, also cause a change to
the normal execution cycle.  The extra store implied by a JSB instruction,
in order to remember the return address, and the incrementing of the
Stack Pointer requires additional machine cycles.

Normally the Stack Pointer register does not appear on TOM’s Processor
screen, but if you invoke the machine which uses the subroutine
instructions then the Stack Pointer register appears automatically.

Consider the following short program that loads the accumulator with a
number and then jumps to a subroutine to output that number, and then
returns.  On returning a new number is loaded into the accumulator and
the program halts.

 0|LDA| 16|
 1|JSB| 32|
 2|LDA| 17|
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 3|HLT|   |

Then we have a couple of data values at addresses 16 and 17:

16|   | 99|
17|   | 66|

And finally we have the subroutine which consists of just two instructions:

32|OUT|   |
33|RTN|   |

Execution continues as normal until we get the Jump to Subroutine
instruction.  This starts executing quite normally, i.e. its operand is fetched,
but it then immediately starts doing its own thing.  Firstly it needs to
increment the program counter because this will be the return address:

Now it needs to identify the location in memory pointed at by the Stack
Pointer, because this is where the return address is going to be stored:
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After this address has been identified by the address decoder the value of
the Program Counter is written to memory:
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The Stack Pointer is then incremented:
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Finally the jump is made to the subroutine by copying the value of the
Operand to the Program Counter:
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Similar operations which involve the Stack Pointer register are used when
the RTN instruction is executed.
15.7 Manually controlling the machine cycle

TOM’s processor can be controlled manually by opening gateways and
double clicking on individual components.  The following describes the
actions that can be taken to control TOM’s processor:

• Open and close gateways.  Each of the visible gateways connecting
components of the processor can be clicked on to toggle them between
open and closed.

• Read a value into Address Decoder.  Clicking the Address Decoder
causes it to read a value from the BUS.  The value available on the
BUS is determined by what Gateways are open.  This will automatically
Identify a memory location.

• Read a value into a register.  Clicking on a register will read a value
from the BUS into the register.  Except, clicking on the Program Counter
will increment its value by 1.

Consider the following short program that implements a simple loop
running from 9 through to 0:

 0|LDA| 16|
 1|OUT|   |
 2|AC-| 17|
 3|JM0| 10|
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 4|JMP|  1|
10|HLT|   |
16|   |  9|
17|   |  1|

To execute this manually:

Display the TOM Processor screen, you will be looking at:

Now:

• Click on the check box that connects the Program Counter to the Bus.

• Click on the check box that connects the Address Decoder to the Bus.

• Click on the Address Decoder.

This will identify the memory location corresponding to the Program
Counter.  The above display already shows this.

Now close the gateways you have just opened. open the
Instruction/Operand Registers to the BUS and copy the
instruction/operand from memory:

• Click on the check box that connects the Program Counter to the Bus.

• Click on the check box that connects the Address Decoder to the Bus.



TOM’s machine 126

 1993-1999 Keylink Computers Limited

• Click on the check box that connects the Instruction/Operand registers
to the Bus.

• Click on one of the Instruction/Operand pair of registers.

You should now be looking at:

You should be able to see the instruction/operand pair loaded into the
instruction/operand registers.  Now you need to fetch the operand:

• Open the operand to the Address Decoder by clicking on the check box
connecting the Address Decoder.

• Click on the Address Decoder, this will identify the memory location at
address 16.

• Close the gateways connecting the Address Decoder to the Operand.

• Open the General Purpose Register to the Bus by clicking on the check
box to the right of the General Purpose register.

• Click on the General Purpose register.

Now you should be looking at:
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Now it’s time to execute the instruction:

Click on the Instruction Decoder, you will see the LDA instruction executed
and the value from the General Purpose register will be copied into the
accumulator.

This completes the execution of the first instruction.  As you can see it is
rather long winded, but if you drive the machine manually for a few cycles
it will be almost impossible not to understand these fundamental
operations of the processor.

In order to execute the next instruction we need to increment the program
counter:

• Click on the Program Counter.

Now we can repeat the previous cycle by fetching the instruction, then the
operand, then executing the instruction and so on.
15.8 Conclusion

This chapter should have taught you how a machine operates at a very
low level.  You should have a clear impression of just how mechanical a
process it is, involving no intelligence but only a blind following of simple
actions over and over again.  If there is to be any intelligence in the entire
process it has to reside in the programs we write and absolutely not in the
machines that execute them!
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Exercises K

(1) Write a small program using the indirect store operation, S().  Run
TOM’s Processor screen and note down the extra operation required by
the machine to achieve this instruction’s purpose.

(2) Write a small program that implements a simple loop as in the text.
With TOM’s Processor screen displayed, manually cause this program to
execute by clicking on the necessary gateways to open and close them
and clicking on the various components.

(3) Run the subroutine example given in the chapter and write down the
actions caused by the return from subroutine, RTN, instruction.

(4) What normal cycle is missing from the JSB and RTN instructions?
Why do you think that this cycle is missed out in these cases?
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 Appendix A
Complete instruction set

0  HALT

Causes execution of the TOM program to cease.  No operand.

1  LOAD ACCUMULATOR

Place a copy of the contents of the memory location given as the
operand into the accumulator.  The contents of the memory location
are unchanged.

2  STORE ACCUMULATOR

Place a copy of the contents of the accumulator into the memory
location given as the operand.  The contents of the accumulator are
unchanged.

3 ADD TO ACCUMULATOR

Place into the accumulator the arithmetic sum of the contents of the
memory location given as the operand and the current contents of
the accumulator.  The contents of the memory location are
unchanged.

4 SUBTRACT FROM ACCUMULATOR

Place into the accumulator the result of subtracting the contents of
the memory location given as the operand from the current contents
of the accumulator.  The contents of the memory location are
unchanged.
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5 MULTIPLY ACCUMULATOR

Place into the accumulator the product of the contents of the
memory location given as the operand and the current contents of
the accumulator.  The contents of the memory location are
unchanged.

6 DIVIDE ACCUMULATOR

Divide the current contents of the accumulator by the contents of
the memory location given as the operand and place the resulting
quotient into the accumulator.  The remainder is lost and the original
contents of the store location are not affected.

7 JUMP UNCONDITIONALLY

Control is transferred to the memory location whose address is
given as the operand.  Jump instructions alter the sequence in
which a program is executed.

8 JUMP IF ACCUMULATOR NEGATIVE

If the contents of the accumulator is a negative number then control
is transferred to the memory location whose address is given as the
operand, otherwise program execution continues at the next
sequential instruction.

9 JUMP IF ACCUMULATOR IS ZERO

If the contents of the accumulator is zero then control is transferred
to the store location whose address given as the operand,
otherwise program execution continues at the next sequential
instruction.

10 JUMP INDIRECT

Jump unconditionally to the address stored at the address given by
the operand.  Only the least significant word is considered to form
the address.

11 INPUT A NUMBER TO ACCUMULATOR

A dialogue box is displayed into which you can type in a number of
up to six digits.  If this is a legal number it is placed into the
accumulator when you click the OK button.  Clicking the Cancel
button will cause program execution to terminate.  No operand.

12 OUTPUT A NUMBER FROM THE ACCUMULATOR

The contents of the accumulator is output as a number to the output
area of TOM's screen.  No operand.
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13 SET INTERRUPT MASK TO OFF

Setting the interrupt mask to off (0) prevents an input device
interrupting TOM’s processor.  i.e. an input device can raise an
interrupt, but the processor will ignore it for as long as the interrupt
mask is set to zero.

14 SET INTERRUPT MASK TO ON

Setting the interrupt mask to on (1) allows an input device to
interrupt TOM’s processor.  i.e. an input device can raise an
interrupt, and the processor will then process the interrupt whose
start address is stored in location 47.

15 READ INTERRUPT INPUT

Reads the value from the interrupting device into the accumulator.
For the keyboard input the input value will be the ASCII code for the
character pressed.

16 SET RETURN FROM INTERRUPT

Allows execution to proceed from the point where the interrupt was
raised.  The Program Counter and Accumulator are restored from
their saved values and the Interrupt Register is set to 0

17 LOAD INDIRECT

Loads a value into the accumulator from an address stored in the
address given as the argument.

18 STORE INDIRECT

Stores the accumulator’s value to the memory location given by the
address stored in the address given as the argument.

19 JUMP SUBROUTINE

Puts the program counter + 1 (i.e. the address to return to)  into the
memory location into the memory location given by the stack
pointer, Increments the stack pointer and jumps to the address
given as the operand.

20 RETURN FROM SUBROUTINE

Decrements the stack pointer and puts the contents of the memory
location given by the stack pointer into the Program Counter.
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 Appendix B
 ASCII Collating Sequence

Many of the ASCII codes are historical, in that they were intended for
controlling devices such as magnetic tape and teletypes.  They can, for the
most part be safely ignored.

Decimal Hex Binary Char

0 00 0000 0000 NUL

1 01 0000 0001 SOH

2 02 0000 0010 STX

3 03 0000 0011 ETX

4 04 0000 0100 EOT

5 05 0000 0101 ENQ

6 06 0000 0110 ACK

7 07 0000 0111 BEL

8 08 0000 1000 BS

9 09 0000 1001 HT

10 0A 0000 1010 LF

11 0B 0000 1011 VT

12 0C 0000 1100 FF

13 0D 0000 1101 CR

14 0E 0000 1110 SO

15 0F 0000 1111 SI
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16 10 0001 0000 DLE

17 11 0001 0001 DC1

18 12 0001 0010 DC2

19 13 0001 0011 DC3

20 14 0001 0100 DC4

21 15 0001 0101 NAK

22 16 0001 0110 SYN

23 17 0001 0111 ETB

24 18 0001 1000 CAN

25 19 0001 1001 EM

26 1A 0001 1010 SUB

27 1B 0001 1011 ESC

28 1C 0001 1100 FS

29 1D 0001 1101 GS

30 1E 0001 1110 RS

31 1F 0001 1111 US

32 20 0010 0000 space

33 21 0010 0001 !

34 22 0010 0010 “

35 23 0010 0011 #

36 24 0010 0100 $

37 25 0010 0101 %

38 26 0010 0110 &

39 27 0010 0111 ‘

40 28 0010 1000 (

41 29 0010 1001 )

42 2A 0010 1010 *

43 2B 0010 1011 +

44 2C 0010 1100 ,
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45 2D 0010 1101 -

46 2E 0010 1110 .

47 2F 0010 1111 /

48 30 0011 0000 0

49 31 0011 0001 1

50 32 0011 0010 2

51 33 0011 0011 3

52 34 0011 0100 4

53 35 0011 0101 5

54 36 0011 0110 6

55 37 0011 0111 7

56 38 0011 1000 8

57 39 0011 1001 9

58 3A 0011 1010 :

59 3B 0011 1011 ;

60 3C 0011 1100 <

61 3D 0011 1101 =

62 3E 0011 1110 >

63 3F 0011 1111 ?

64 40 0100 0000 @

65 41 0100 0001 A

66 42 0100 0010 B

67 43 0100 0011 C

68 44 0100 0100 D

69 45 0100 0101 E

70 46 0100 0110 F

71 47 0100 0111 G

72 48 0100 1000 H

73 49 0100 1001 I
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74 4A 0100 1010 J

75 4B 0100 1011 K

76 4C 0100 1100 L

77 4D 0100 1101 M

78 4E 0100 1110 N

79 4F 0100 1111 O

80 50 0101 0000 P

81 51 0101 0001 Q

82 52 0101 0010 R

83 53 0101 0011 S

84 54 0101 0100 T

85 55 0101 0101 U

86 56 0101 0110 V

87 57 0101 0111 W

88 58 0101 1000 X

89 59 0101 1001 Y

90 5A 0101 1010 Z

91 5B 0101 1011 [

92 5C 0101 1100 \

93 5D 0101 1101 ]

94 5E 0101 1110 ^

95 5F 0101 1111 _

96 60 0110 0000 `

97 61 0110 0001 a

98 62 0110 0010 b

99 63 0110 0011 c

100 64 0110 0100 d

101 65 0110 0101 e

102 66 0110 0110 f



ASCII Collating Sequence 139

 1993-1999 Keylink Computers Limited

103 67 0110 0111 g

104 68 0110 1000 h

105 69 0110 1001 i

106 6A 0110 1010 j

107 6B 0110 1011 k

108 6C 0110 1100 l

109 6D 0110 1101 m

110 6E 0110 1110 n

111 6F 0110 1111 o

112 70 0111 0000 p

113 71 0111 0001 q

114 72 0111 0010 r

115 73 0111 0011 s

116 74 0111 0100 t

117 75 0111 0101 u

118 76 0111 0110 v

119 77 0111 0111 w

120 78 0111 1000 x

121 79 0111 1001 y

122 7A 0111 1010 z

123 7B 0111 1011 {

124 7C 0111 1100 |

125 7D 0111 1101 }

126 7E 0111 1110 ~

127 7F 0111 1111 DEL
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 Appendix C
Glossary

Accumulator

An internal register used for various purposes such as intermediate results
of arithmetic statements.

Address

A unique identifier for a memory location.

Address decoder

A logical device which given an address outputs a logical 1 on a particular
output line that indicates the given address.

Arithmetic logic unit

The logical device that can perform arithmetic on the contents of the
machine’s internal registers.

Arithmetic overflow

Occurs when an attempt is made to store or calculate a value that cannot
be stored in the register.  Indicates overflow from the highest bit.

ASCII

ASCII stands for American Standard Code for Information Interchange and
is a simple collating sequence that maps numbers to characters

Assembler

A program that can convert the mnemonic form of a program to binary
machine instructions.

Binary

Number system with base 2.
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Bit

Smallest amount of storage possible, enough to store one of two states, a
1 or a 0.

Bus

The bus connects the various components, such as the registers and the
memory , of the computer together so that information can be passed
between them.

Binary encoded decimal

Method of mapping each decimal digit to a four bit binary number.
Wasteful on memory but very simple.

Byte

Eight contiguous bits.

Clock

Controls the sequence of opening and closing the gateways onto the bus.
This allows information to pass between the computer’s components at
specific points in the execution cycle.  The clock is a vital component of
TOM’s machine.

Controlled flip-flop

A flip-flip with a control line which determines when the flip-flop should
listen and be capable of changing state.

Decimal

The number system based on powers of ten,

Flip-flop

An electronic device that can be set in one of two states.

Full adder

A logical device that implements addition on two input bits and a carry in
bit, resulting in a single output bit and a carry out bit.  Can be implemented
by using two half adders.

Gateway

A logical device that can connect and disconnect the components of
TOM’s machine to the bus.

Half adder

A logical device that implements addition on two single bits with a single
result bit and a carry out bit.

Hexadecimal
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Number system based on 16.  This is a very useful number system
because it is so closely allied to the binary system, the number 16 being a
power of 2.

Instruction decoder

Interprets an instruction held in the instruction register into a specific action
on the registers .  The instruction decoder is a component of TOM’s
machine.

Instruction register

Holds the current instruction consisting of the operator and operand.

Integer

A whole number, either positive or negative.

Interrupt

An external device, such as a keyboard, raises an interrupt when it
requires attention from the processor in order to have its input processed.

Interrupt mask

A bit that is set to indicate that interrupts should be taken notice of.

Machine code

The internal numeric (actually binary) form of a program.  The form that
can be directly executed by the processor.

Mnemonic

A short character sequence which stands for an instruction, such as JMP
standing for the jump instruction.

Opcode

A numeric code given to a particular operator.

Operand

The argument to an operator, i.e. it is what the operator is to operate on.

Pointer

An address of a memory location.

Program counter

An internal register that stores the address of the next instruction to be
executed.

Register

A processors internal memory consists of a set of registers.  Used for
storing intermediate values, program counter, and various other uses.
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Stack

An area of memory used for storing values, usually so they are retrieved in
the reverse order than they are stored.

Stack pointer

An index (pointer) to the next free location on the stack.

Status register

An internal register that stores the status values for various computer
functions, such as arithmetic overflow and interrupts.

Subroutine

A distinct part of a program that can be called in order to execute a
specific function and will then return control to whatever called it.

Transistor

A subminiature electronic device which can be used as a very fast switch.
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Index

A

Accelerator, 16
accumulator, 19
ADD TO ACCUMULATOR, 24
address, 17
Address Decoder, 94
Altering execution speed, 31
AND gate, 77
arithmetical overflow, 50
ASCII, 63

B

Binary, 45
Binary Coded Decimal, 51
byte, 17, 48

C

Clearing TOM's memory, 30
clock, 105
Controlled Flip-Flop, 80
Cutting and Pasting, 31

D

decimal number system, 45
Disassemble, 34
Disassembling, 33

E

Entering numbers into memory, 29
execution cycle, 103

F

Flip-Flop, 79
full-adder, 83

G

Gateways, 105

H

Half-adder, 81
HALT, 24
Halting an infinite loop, 30
Help menu, 15
Hexadecimal, 32, 46

I

Indirect addressing, 65
INPUT A NUMBER TO ACCUMULATOR,

25
input device, 72
input unit, 19
Inputting a value, 30
installation, 13
interrupt, 71
Interrupt Mask bit, 72

J

JUMP IF ACCUMULATOR IS ZERO, 25
JUMP IF ACCUMULATOR NEGATIVE, 25
JUMP INDIRECT, 25
JUMP UNCONDITIONALLY, 25
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L

LOAD ACCUMULATOR, 24
Load Indirect instruction, 66
Loading a TOM program, 30
logic gate, 77

M

machine simulator, 103
memory, 93
Memory mapped output, 63
Memory store, 17
mnemonics, 23
MULTIPLY ACCUMULATOR, 24

N

NAND gate, 79
Non-printable characters, 64
NOR gate, 91
NOT gate, 78

O

OR gate, 78
OUTPUT A NUMBER FROM THE

ACCUMULATOR, 25
output unit, 19

P

pixel, 63
Printable characters, 64

Printing a TOM program, 30
processor, 19
program, 18
Program Counter, 18

R

Representing negative numbers, 48
Resetting the Accumulator, 30
Resetting the Program Counter, 30
Running a TOM program, 29

S

Saving a TOM program, 30
Single stepping, 29
stack, 55
Stack overflow, 59
Starting TOM, 29
status bar, 16
Status register, 50
Stopping TOM, 29
STORE ACCUMULATOR, 24
Store Indirect instruction, 66
subroutine, 55
SUBTRACT FROM ACCUMULATOR, 24
switch, 88

T

transistors, 87
truth table, 77
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