[image: C:\Users\Rob\Dropbox\PG Online\Logos and Artwork\ai_eps\Test.png]		Homework 4 Assembly language
Unit 5 Computer organisation

Homework 4 Assembly language

The assembly code instruction formats in Table 1 are used in the questions in this homework.

1.	Examine the following assembly code.
		LDR	R1, 101
		LDR	R2, 102
	 label1:
		SUB	R1, R1, R2
		CMP 	R1, #0
		BGT	label1
		BEQ	label2
		ADD	R1, R1, R2
	 label2:
		STR	R1, 103
	(a)	If memory location 101 contains the number 23 and memory location 102 contains the number 7, what will be the contents of memory location 103 after the execution of the code?	(Tip: Draw a trace table!)	[2]

[bookmark: _GoBack]	(b)	Explain what the instruction SUB R1, R2 does the first time around the loop starting at label1.		[1]

	(c)	How many times is the loop performed?	[1]

	(d)	What does the program do?	[1]

2.	(a)	Write assembly code instructions to compare the contents of register 1 and register 2 and branch to label1 if they are equal.	[2]

	(b)	Explain with the aid of examples the difference between immediate and direct addressing.	[2]

3.	Write the assembly code instructions which are equivalent to the following high-level code. Comment each line of code.
		x 0
		WHILE x < 1000
			x = x + 1
			ENDWHILE	[6]

4.	In a particular computer, characters are represented by 8-bit patterns. The codes for uppercase letters are from 0100 0001 for A to 0101 1010 for Z. The codes for lowercase letters are from 0110 0001 for a to 0111 1010 for z. Give an appropriate mask and logical operation which will:
	(a)	change any uppercase letter to its lowercase equivalent	[2]

	(b)	change any lowercase letter to its uppercase equivalent	[2]

5.	An 8-bit word contains the bit pattern 10110010.
	State the contents of the word after a logical right shift of 3 bits.	[1]

				[Total 20 Marks]

Table 1: Instruction set

	LDR Rd, <memory ref>
	Load the value stored in the memory location specified by <memory ref> into register d.

	STR Rd, <memory ref>
	Store the value that is in register d into the memory location specified by <memory ref>.

	ADD Rd, Rn, <operand>
	Add the value specified in <operand> to the value in register n and store the result in register d.

	SUB Rd, Rn, <operand>
	Subtract the value specified by <operand> from the value in register n and store the result in register d.

	MOV Rd, <operand>
	Copy the value specified by <operand> into register d.

	CMP Rn, <operand>
	Compare the value stored in register n with the value specified by <operand>.

	B <label>
	Always branch to the instruction at position <label> in the program.

	B<condition> <label>
	Conditionally branch to the instruction at position <label> in the program if the last comparison met the criteria specified by the <condition>. Possible values for <condition> and their meaning are:
EQ: Equal to, NE: Not equal to, GT: Greater than, LT: Less than.

	AND Rd, Rn, <operand>
	Perform a bitwise logical AND operation between the value in register n and the value specified by <operand> and store the result in register d.

	ORR Rd, Rn, <operand>
	Perform a bitwise logical OR operation between the value in register n and the value specified by <operand> and store the result in register d.

	EOR Rd, Rn, <operand>
	Perform a bitwise logical exclusive or (XOR) operation between the value in register n and the value specified by <operand> and store the result in register d.

	MVN Rd, <operand>
	Perform a bitwise logical NOT operation on the value specified by <operand> and store the result in register d.

	LSL Rd, Rn, <operand>
	Logically shift left the value stored in register n by the number of bits specified by <operand> and store the result in register d.

	LSR Rd, Rn, <operand>
	Logically shift right the value stored in register n by the number of bits specified by <operand> and store the result in register d.

	HALT
	Stops the execution of the program.

<operand> can be interpreted in two different ways, depending upon whether the first symbol is a # or an R:
· # – Use the decimal value specified after the #, e.g. #25 means use the decimal value 25.
· Rm – Use the value stored in register m, e.g. R6 means use the value stored in register 6.
The available general purpose registers that the programmer can use are numbered 0 to 7.

3

image1.png

