[bookmark: _GoBack] Converting Denary to binary
Subtraction Method
 Dim currentBITValue, remainingVal, Denary As Integer
 Dim binstring As String
 'input
 Console.WriteLine("enter number")
 Denary = Console.ReadLine()
 remainingVal = Denary
 ' loop through 8 bits starting at 2^7 --> 2^0
 For n = 7 To 0 Step -1
 currentBITValue = 2 ^ n
 If remainingVal >= currentBITValue Then ' is current bit graeter that 2^n
 binstring = binstring & "1"
 remainingVal = remainingVal - currentBITValue
 Else
 binstring = binstring & "0"
 End If

 Next
 Console.WriteLine(binstring)
 Console.ReadLine()

The Divide by 2 algorithm
The Divide by 2 algorithm assumes that we start with an integer greater than 0. A simple iteration then continually divides the decimal number by 2 and keeps track of the remainder. The first division by 2 gives information as to whether the value is even or odd. An even value will have a remainder of 0. It will have the digit 0 in the ones place. An odd value will have a remainder of 1 and will have the digit 1 in the ones place. We think about building our binary number as a sequence of digits; the first remainder we compute will actually be the last digit in the sequence.
[image: ../_images/dectobin.png]
Solution in Vb.net
 Dim remainingVal, Denary As Integer
 Dim binstring As String
 'input
 Console.WriteLine("enter number")
 Denary = Console.ReadLine()
 remainingVal = Denary
 Do
 binstring = Denary Mod 2 & binstring
 Denary = Math.Floor(Denary / 2)
 Loop Until Denary < 1
 Console.WriteLine(binstring)
 Console.ReadLine()

image1.png
233/2=116 rer

1672

push remainders

oA
70223 rem
3n2=1 rer

11220

rem=1

‘sipurewas dod

