

Microsoft Visual Basic .NET Professional Projects

by Pooja Bembey, Kuljit Kaur and et al. ISBN: 1931841292

Premier Press © 2002 (1007 pages)

Visual Basic .NET Professional Projects
Kuljit Kaur

Pooja Bembey

©2002 by Premier Press, Inc. All rights reserved. No part of this book may be
reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system
without written permission from Premier Press, except for the inclusion of brief
quotations in a review.

The Premier Press logo, top edge printing, and related trade dress are trademarks of
Premier Press, Inc. and may not be used without written permission. All other
trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the
appropriate software manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish
proprietary trademarks from descriptive terms by following the capitalization style used
by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources
believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Premier Press, or others, the Publisher does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any
errors or omissions or the results obtained from use of such information. Readers should
be particularly aware of the fact that the Internet is an ever-changing entity. Some facts
may have changed since this book went to press.

ISBN: 1-931841-29-2

Library of Congress Catalog Card Number: 2001097575

Printed in the United States of America

02 03 04 05 06 RI 10 9 8 7 6 5 4 3 2 1
Publisher: Stacy L. Hiquet
Marketing Manager: Heather Buzzingham
Managing Editor: Sandy Doell
Editorial Assistant: Margaret Bauer
Book Production Services: Argosy
Cover Design: Mike Tanamachi
About NIIT

NIIT is a global IT solutions corporation with a presence in 38 countries. With its unique
business model and technology-creation capabilities, NIIT delivers software and learning
solutions to more than 1,000 clients across the world.

The success of NIIT’s training solutions lies in its unique approach to education. NIIT’s
Knowledge Solutions Business conceives, researches, and develops all of its course

material. A rigorous instructional design methodology is followed to create engaging and
compelling course content.

NIIT trains over 200,000 executives and learners each year in information technology
areas using stand-up training, video-aided instruction, computer-based training (CBT),
and Internet-based training (IBT). NIIT has been featured in the Guinness Book of World
Records for the largest number of learners trained in one year!

NIIT has developed over 10,000 hours of instructor-led training (ILT) and over 3,000
hours of Internet-based training and computer-based training. IDC ranked NIIT among
the Top 15 IT training providers globally for the year 2000. Through the innovative use of
training methods and its commitment to research and development, NIIT has been in the
forefront of computer education and training for the past 20 years.

Quality has been the prime focus at NIIT. Most of the processes are ISO-9001 certified.
It was the 12th company in the world to be assessed at Level 5 of SEI-CMM. NIIT’s
Content (Learning Material) Development facility is the first in the world to be assessed
at this highest maturity level. NIIT has strategic partnerships with companies such as
Computer Associates, IBM, Microsoft, Oracle, and Sun Microsystems.
About the Authors
Kuljit Kaur is an MCSD who has worked with NIIT since 1998 as a technical trainer,
technical writer, instructional designer, and an ID reviewer. She has two years of
experience in teaching various career programs at NIIT’s Career Education Group
division. Kuljit has taught various technical subject areas, including Networking
Essentials, SQL Server 6.5, Microsoft Windows NT Server 4.0, Windows 95, Windows
98, Microsoft Office 97 and 2000, Microsoft Visual Basic 6.0, Microsoft Visual C++ 4.0,
Windows 32 API programming, HTML, Microsoft Visual Java, Unix, C, and C++. She has
also set up and managed labs for students, and in addition has administered Novell 3.11
and UNIX (SCO)-based networks.

Kuljit has worked extensively as an instructional designer and as a developer with NIIT’s
Knowledge Solutions Business division to develop and review instructor-led training (ILT)
products for various software and technologies. These include Microsoft Office 2000,
Microsoft Office XP, Macromedia Flash 5, Macromedia Dreamweaver 3.0 and 4.0,
Authorware, Macromedia Fireworks 3 and 4, Web Site Design, Netscape Communicator
6, and VBA. She has worked on projects for various U.S.-based clients on these
technologies.
Pooja Bembey works as an instructional designer in the Knowledge Solutions Business
(KSB) division of NIIT. In this position, Pooja designs, develops, tests, and implements
instructor-led, Web-based, and classroom-based training material. Pooja’s
responsibilities include training development executives, project management,
instructional review, technical review, and ensuring compliance to ISO and SEICMM
standards.

Introduction
Goal of the Book
This book provides a hands-on approach to learning Visual Basic.NET, one of the most
popular and easy-to-learn language provided by the .NET framework. The book is aimed
at readers with programming knowledge of earlier versions of Visual Basic. These
readers are assumed to be experienced application developers who have knowledge of
developing applications using any of the earlier versions of Visual Basic.

The book starts with a few overview chapters that cover the key concepts of Visual
Basic.NET. These chapters act as an information store for readers and provide a
concrete idea about the concepts. After that follows a chapter on how to migrate existing
Visual Basic applications to the .NET platform. A major part of the book revolves around
professional projects that are based on real-life situations. They follow a simple-to-
complex approach to cover specific subject areas and to guide the readers in

implementing their learning in practical scenarios. The projects range from a simple
project to create a Windows application using ADO.NET as the data access model to a
complex project to create a Web application using a Web service. In addition, there are
projects that will introduce how to create a Word-to-XML converter application and how
to create a mobile Web application. These projects help readers accomplish their goals
by understanding the practical and real-life application of Visual Basic.NET.

In addition to the overview chapters and the professional projects, this book also
includes another section, the appendixes. This section acts as a quick reference to some
of the additional concepts that will help readers learn know more about .NET framework.

How to Use this Book
This book has been organized to facilitate a better grasp of content covered in the book.
The various conventions used in the book are as follows:
 Analysis. This book incorporates an analysis of code, explaining line by line

what it did and why.
 Tips. Tips have been used to provide special advice or unusual shortcuts with

the product.
 Notes. Notes give additional information that might be of interest to the reader

but is not essential to performing the task at hand.
 Cautions. Cautions are used to warn users of possible disastrous results if

they perform a task incorrectly.
 New-term definitions. All new terms have been italicized and then defined as

a part of the text

Part I: Introducing Visual Basic .NET
Chapter 1: .NET Overview
Chapter 2: Object-Oriented Features in Visual Basic .NET
Chapter 3: Visual Studio .NET Integrated Development Environment
Chapter 4: Variables and Operators
Chapter 5: Arrays and Collections
Chapter 6: Conditional Logic
Chapter 7: Procedures and Functions

Chapter 1: .NET Overview
The .NET framework is the latest platform from Microsoft, and it provides a
multilanguage environment that enables you to develop, deploy, and run Web-based
applications and services. It provides a new level of interoperability that enables you to
reuse components created in other languages. It also provides new and advanced
features such as garbage collection and enhanced security. This chapter examines the
components of the .NET framework.

Components of the .NET Framework
The .NET framework is composed of classes and services that form a layer between
applications and the operating system. It consists of the following two main components:

 Common language runtime (CLR)
 .NET framework class library

The next sections look at these two components in detail.

Common Language Runtime

The CLR is the runtime environment of the .NET framework. CLR provides a common
set of services—such as exception handling, security, and debugging—to languages that

are CLR compatible. All programming languages in Visual Studio.NET, such as Visual
Basic.NET and Visual C#.NET, support the CLR.
During the execution of a program, the CLR controls the interaction of code with the
operating system. Code that is executed by the CLR is known as managed code. In
contrast, code that is not executed by the CLR is known as unmanaged code. Managed
code “cooperates” with the CLR by providing metadata to the CLR. The CLR, in turn,
provides services, such as garbage collection and memory management, to the code.
Unlike managed code, unmanaged code can bypass the .NET Framework API and make
direct calls to the operating system.
During compilation, the CLR converts code into Microsoft Intermediate Language (MSIL).
MSIL is a set of instructions that are CPU independent. MSIL includes instructions for
loading, storing, initializing, and calling methods. It also contains instructions about
arithmetic and logical operations and exception handling. When any code is compiled in
addition to MSIL, metadata is created and stored with the compiled code. Metadata
contains information about the members, types, and references in the code. The CLR
uses metadata to locate and load classes, generate native code, provide security, and
execute code. Thus, after code is compiled, the compiled file contains MSIL and
metadata. The compiled file containing MSIL and metadata is known as a portable
executable (PE) file. Before code is executed, however, the MSIL in the PE file is
converted to native code. The just-in-time (JIT) compiler of the CLR uses the metadata
and converts MSIL into native code. Unlike MSIL, native code is CPU dependent.
Therefore, the CLR provides various JIT compilers, and each works on a different
architecture. This implies that, depending on the JIT compiler used to compile MSIL, the
same MSIL can be executed on different architectures.

While managing code, the CLR also performs various tasks such as managing memory,
security, and threads and verifying and compiling code. For example, when an
application is running, the CLR allocates memory, manages threads and processes, and
enforces the security policy.
The CLR defines the common type system (CTS), which is a standard type system used
by all languages that support the CLR. The CTS lists the types supported by the CLR,
and they include the following:

 Classes
 Interfaces
 Value types
 Delegates

The use of the CTS ensures that data types, such as Integer, String, and Long,
have the same implementation across CLR-compatible languages. This implies that you
can pass a variable from a class created in a CLR-compatible language to another class
regardless of the programming language used because data types have the same
implementation across languages.

Now that you’ve looked at the features of the CLR, you’ll look at the features of the .NET
framework class library.

.NET Framework Class Library

The .NET framework class library includes multiple reusable, object-oriented, and
extensible classes. It is integrated with the CLR and is common to all programming
languages in Visual Studio.NET.

The .NET framework class library provides a common set of classes across
programming languages. While developing applications, you can use these classes to
create new classes. You can use the classes in the .NET framework class library to
develop applications and implement cross-language inheritance.
The classes in the .NET framework class library are organized hierarchically. In the .NET
framework class library, the System namespace is at the top of the hierarchy and
contains all other classes. On a broad level, the System namespace contains classes
that enable you to perform the following tasks:

 Converting data types

 Manipulating parameters
 Invoking local and remote programs
 Managing the application environment

You will learn more about using namespaces later in this chapter. Table 1-1 describes
some of the namespaces in the .NET framework class library.
Table 1-1: Namespaces in the .NET Framework Class Library

Namespace Contains
Classes
That
Enable
You To

Microsoft.Csharp Compile
and
generate
code in
Visual
C#.NET

Microsoft.Jscript Compile
and
generate
code in
JScript

Microsoft.VisualBasic Compile
and
generate
code in
Visual
Basic.NET

Microsoft.Win32 Manipulate
the system
registry
and
manage
operating
system
events

System Manage
exceptions
and define
data types,
events and
event
handlers,
interfaces,
and
attributes

The System namespace contains various other namespaces, such as System.Xml,
System.Web, System.Text, and System.Security.

Now that you know the basic structure of the .NET framework, you will take a look at its
features.
.NET Framework Features
The .NET framework provides the basic functionality that can be used across languages.
For example, the .NET framework provides Windows forms and Web forms. You can use

Windows forms to create Windows applications in any .NET language. Similarly, using
any language that supports the .NET framework, you can access Web forms and create
Web applications.

The .NET framework provides an integrated debugger. You can use the integrated
debugger to debug the code written for the .NET framework regardless of the
programming language used to write the code. For example, you can use the debugger
to debug an application that was written in Visual Basic.NET and that includes
components created in Visual C#.NET. In addition, in the .NET framework, you can also
debug a program while it is running. To do so, you attach the debugger to the running
program. The debugger also enables you to perform remote debugging.
The .NET framework introduces the concept of assemblies. An assembly is a collection
of one or more classes that can be used by multiple applications. You can use
assemblies to build applications. The applications you create are made up of one or
more assemblies. Assemblies, which are self-describing components, simplify the
deployment of applications. In the .NET framework, you don’t need to register
assemblies in the system registry. You can store assemblies in a directory on your
computer. In addition, assemblies enable you to solve version-control problems.
Assemblies provide an infrastructure that enables you to enforce versioning rules. As
mentioned earlier, you don’t need to register assemblies. However, if multiple
applications need to access an assembly, you must add the assembly to the global
assembly cache (GAC). The GAC stores the assemblies that are shared among
applications running on a computer. You can install and remove assemblies from the
GAC. You can use the Global Assembly Cache tool to install and remove assemblies.
You can also view the contents of an assembly by using the Global Assembly Cache
tool.
The .NET framework also introduces a new security mechanism for applications by
providing code-access security (CAS) and role-based security. CAS enables you to
specify permissions for code. CAS settings determine the actions that the code can or
cannot perform. By specifying CAS, you ensure that the code is not misused. Role-
based security ensures that unauthorized users cannot access applications. Using role-
based security, you can specify permissions for a user, also known as the principal. The
.NET framework validates the individual and group permissions of the principal. Role-
based security enables you to specify generic, Windows, and custom principals for
applications. In addition, you can define new principals for an application by using role-
based security. Although you can use role-based security on both the client side and the
server side, it is most suitable for applications in which processing occurs on the server
side, such as ASP.NET Web applications.

Now that you’ve looked at the .NET framework and its features, you will look at the
features of Visual Studio.NET.
Introduction to Visual Studio .NET
Visual Studio.NET, which is the latest version of Visual Studio, is based on the .NET
framework. Visual Studio.NET provides languages and tools that enable you to build
Web-based, desktop, and mobile applications. You can also create Web services in
Visual Studio.NET.

Visual Studio.NET includes the following programming languages:
 Visual Basic.NET
 Visual C++.NET
 Visual C#.NET

It also provides additional technologies, such as ASP.NET, that enable you to develop
and deploy applications. In addition, Visual Studio.NET includes the MSDN library that
contains documentation on various development tools and applications.

Using the integrated development environment (IDE) of Visual Studio.NET, you can
create applications in the various .NET languages. The IDE of Visual Studio.NET
enables you to share tools and create applications in multiple languages.

Visual Studio.NET includes various enhancements over earlier versions of Visual Studio.
The following sections describe the enhancements in Visual Studio.NET.

Visual Basic .NET
Visual Basic.NET is the latest version of Visual Basic, and it includes many new features.
Unlike Visual Basic 6.0, Visual Basic.NET is an object-oriented language. To elaborate,
Visual Basic.NET supports the abstraction, encapsulation, inheritance, and
polymorphism features. You will learn more about these features in Chapter 2. The
earlier versions of Visual Basic, versions 4 through 6, supported interfaces but not
implementation inheritance. Visual Basic.NET supports implementation inheritance as
well as interfaces. You will learn about implementation inheritance later in this chapter.
Another new feature is overloading. You will learn about overloading in the Chapter 7,
“Procedures and Functions.” In addition, Visual Basic.NET supports multithreading,
which enables you to create multithreaded and scalable applications. Visual Basic.NET
is also compliant with the common language specification (CLS) and supports structured
exception handling.

Visual C# .NET

Visual Studio.NET provides a new language, Visual C#.NET, which is an object-oriented
language based on the C and C++ languages. Using Visual C#.NET, you can create
applications for the .NET framework. As mentioned earlier, Visual C#.NET supports the
CLR, therefore, any code written in Visual C#.NET is managed code. The IDE provides
various templates, designers, and wizards to help you create applications in Visual
C#.NET.

Visual C++ .NET

Visual C++.NET is an enhanced version of Visual C++. Visual C++.NET includes
features such as support for managed extensions and attributes.

Managed extensions include a set of language extensions for C++ to enable you to
create applications for the .NET framework. Using managed extensions, you can easily
convert existing components to components that are compatible with the .NET
framework. Therefore, with the help of managed extensions, you can reuse existing code
and thus save both time and effort. In addition, by using managed extensions, you can
combine both unmanaged and managed C++ code in an application.

The Common Language Specification (CLS)

The CLS is a set of rules and constructs that are supported by the CLR. Visual
Basic.NET is a CLS-compliant language. Any objects, classes, or components that you
create in Visual Basic.NET can be used in any other CLS-compliant language. In
addition, you can use objects, classes, and components created in other CLS-
compliant languages in Visual Basic.NET. The use of the CLS ensures complete
interoperability among applications, regardless of the language used to create the
application. Therefore, while working in Visual Basic.NET, you can derive a class
based on a class written in Visual C#.NET, and the data types and variables of the
derived class will be compatible with those of the base class.

Visual C++.NET also supports attributes, which enable you to extend the functionality of
the language and to simplify the creation of COM components. You can apply attributes
to classes, data members, or member functions.

Web Forms

Visual Studio.NET introduces Web forms, which are based on Microsoft ASP.NET
technology. Web forms are used to create Web pages. In Visual Studio.NET, you can
drag controls to the designer and then add code to create Web pages. A Web forms
page can open in any Web browser. The controls in a Web forms page are based on
server-side logic.

Windows Forms
Windows forms provide a platform for developing Windows applications based on the
.NET framework. Windows forms include a set of object-oriented and extensible classes
that enable you to implement visual inheritance. Visual inheritance enables you to inherit
a form from an existing form. Using these classes, you can develop Windows
applications by creating a form based on an existing form. When you create forms based
on existing forms, you can reuse code and thus enhance productivity. Typically,
Windows forms are used to create user interfaces for a multitier application.

Web Services

Web services are applications that exchange data by using eXtensible Markup Language
(XML). Web services can also receive requests over HTTP. Web services are not a part
of any specific component technology. Therefore, any language or operating system can
use Web Services. You can use Visual Basic.NET, Visual C#.NET, or ATL Server to
create Web services.

Extensible Markup Language (XML)

XML is a markup language based on Standard Generalized Markup Language
(SGML), which is a standard for all markup languages. XML is a subset of SGML. XML
enables you to define the structure of data by using markup tags. In addition, you can
also define new tags using XML.

The World Wide Web Consortium (W3C) has defined XML standards to ensure that
structured data is uniform and independent of applications.

XML Support

Visual Studio.NET includes support for XML. It also provides XML Designer, which
enables you to create and edit XML documents and create XML schemas.

Introduction to Visual Basic .NET
Visual Basic.NET is modeled on the .NET framework. Therefore, along with the features
of earlier versions of Visual Basic, Visual Basic.NET also inherits various features of the
.NET framework. In this section, you will look at some of the new features in Visual
Basic.NET that were unavailable in earlier versions of Visual Basic.
As previously mentioned, Visual Basic.NET supports implementation inheritance in
contrast to the earlier versions of Visual Basic that supported interface inheritance. In
other words, with earlier versions of Visual Basic, you can only implement interfaces.
When you implement an interface in Visual Basic 6.0, you need to implement all the
methods of the interface. Additionally, you need to rewrite the code each time you
implement the interface. On the other hand, Visual Basic.NET supports implementation
inheritance. This implies that, while creating applications in Visual Basic.NET, you can
derive a class from another class, known as the base class. The derived class inherits all
the methods and properties of the base class. In the derived class, you can either use
the existing code of the base class or override the existing code. Therefore, with the help
of implementation inheritance, code can be reused. Although a class in Visual Basic.NET
can implement multiple interfaces, it can inherit from only one class.
Visual Basic.NET provides constructors and destructors. Constructors are used to
initialize objects. In contrast, destructors are used to release the memory and resources

used by destroyed objects. In Visual Basic.NET, the Sub New procedure replaces the
Class_Initialize event. Unlike the Class_Initialize event available in earlier
versions of Visual Basic, the Sub New procedure is executed when an object of the
class is created. In addition, you cannot call the Sub New procedure. The Sub New
procedure is the first procedure to be executed in a class. In Visual Basic.NET, the Sub
Finalize procedure is available instead of the Class_Terminate event. The Sub
Finalize procedure is used to complete the tasks that must be performed when an
object is destroyed. The Sub Finalize procedure is called automatically when an
object is destroyed.
Garbage collection is another new feature in Visual Basic.NET. The .NET framework
monitors allocated resources such as objects and variables. In addition, the .NET
framework automatically releases memory for reuse by destroying objects that are no
longer in use. In Visual Basic 6.0, if you set an object to Nothing, the object is
destroyed. In contrast, when an object is set to Nothing in Visual Basic.NET, it still
occupies memory and uses other resources. However, the object is marked for garbage
collection. Similarly, when an object is not referenced for a long period of time, it is
marked for garbage collection. In Visual Basic.NET, the garbage collector checks for the
objects that are not currently in use by applications. When the garbage collector comes
across an object that is marked for garbage collection, it releases the memory occupied
by the object. The garbage collector automatically handles the memory allocated to
managed resources. However, you need to manage the memory allocated to
unmanaged resources.
In the .NET framework, you can use the GC class, the Sub Finalize procedure, and
the IDisposable interface to perform garbage collection operations for unmanaged
resources. The GC class is present in the System namespace. It provides various
methods that enable you to control the system garbage collector. The Sub Finalize
procedure, which is a member of the Object class, acts as the destructor in the .NET
framework. You can override the Sub Finalize procedure in your applications.
However, the Sub Finalize procedure is not executed when your application is
executed. The GC class calls the Sub Finalize procedure to release memory
occupied by a destroyed object. Thus, implementing the Sub Finalize procedure is
an implicit way of managing resources. However, the .NET framework also provides an
explicit way of managing resources in the form of the IDisposable interface. The
IDisposable interface includes the Dispose method. After implementing the
IDisposable interface, you can override the Dispose method in your applications. In
the Dispose method, you can release resources and close database connections.
Unlike earlier versions of Visual Basic, Visual Basic.NET supports overloading.
Overloading enables you to define multiple procedures with the same name, where each
procedure has a different set of arguments. In addition to procedures, you can also use
overloading for constructors and properties in a class. You need to use the Overloads
keyword for overloading procedures. Consider a scenario in which you need to create a
procedure that displays the address of an employee. You should be able to view the
address of the employee based on either the employee name or the employee code. In
such a situation, you can use an overloaded procedure. You will create two procedures.
Each procedure will have the same name but different arguments. The first procedure
will take the employee name as the argument, and the second takes the employee code
as the argument.

As mentioned earlier in this chapter, the .NET framework class library is organized into
namespaces. A namespace is a collection of classes. Namespaces are used to logically
group classes within an assembly. These namespaces are available in all the .NET
languages, including Visual Basic.NET.
In Visual Basic.NET, you must use the Imports statement to access the classes in
namespaces. For example, to use the button control defined in the
System.Windows.Forms namespace, you must include the following statement at the
beginning of your program:
Imports System.Windows.Forms

After adding the Imports statement, you can use the following code to create a new
button:
Dim MyButton as Button
If you do not include the Imports statement in the program, however, you would need
to use the full reference path of the class to create a button. If you didn’t include the
Imports statement, you would use the following code to create a button:

Dim MyButton as System.Windows.Forms.Button
In addition to using the namespaces available in Visual Basic.NET, you can also create
your own namespaces. The next chapter will describe how to create a namespace.

As previously mentioned, Visual Basic.NET supports multithreading. An application that
supports multithreading can handle multiple tasks simultaneously. You can use
multithreading to decrease the time taken by an application to respond to user
interaction. To do this, you must ensure that a separate thread in the application handles
user interaction.
Visual Basic.NET supports structured exception handling, which enables you to detect
and remove errors at runtime. In Visual Basic.NET, you need to use
Try…Catch…Finally statements to create exception handlers. Using
Try…Catch…Finally statements, you can create robust and effective exception
handlers to improve the performance of your application. You will learn more about
Try…Catch…Finally statements in Chapter 11, "Working with ADO.NET."
Now that you’ve looked at the new features of Visual Basic.NET, the next section
explains the differences between Visual Basic 6.0 and Visual Basic.NET.
Differences Between Visual Basic 6.0 and Visual Basic .NET
Although there are numerous differences between Visual Basic 6.0 and Visual
Basic.NET, Table 1-2 briefly describes some of them.
Table 1-2: Differences Between Visual Basic 6.0 and Visual Basic.NET

Feature Visual Basic
6.0

Visual Basic.NET

Line control Available Not available

OLE container control Available Not available

Shape controls Available Not available

Dynamic data exchange
(DDE) support

Available Not available

Data access objects (DAO)
data binding

Supported Not supported

Remote data objects (RDO)
data binding

Supported Not supported

Option base statement Available Not available

Fixed-length strings Supported Not supported

Fixed-size arrays Supported Not supported
Use of the ReDim statement Array

declaration
Array resizing

Universal data type Variant Object

Currency data type Supported Not supported

Data type to store date
values

Double DateTime

DefType statements Supported Not supported

Table 1-2: Differences Between Visual Basic 6.0 and Visual Basic.NET

Feature Visual Basic
6.0

Visual Basic.NET

Eqv operator Supported Not supported
Imp operator Supported Not supported

Default properties for objects Supported Not supported

Declaring structures Type….End
Type

Structure….End
Structure

Scope of a variable declared
in a block

Procedure
scope

Block scope of
code within a
procedure

Values for optional
arguments

Not required Required

Declaring procedures as
static

Supported Not supported

GoSub statement Available Not available

Default mechanism for
passing arguments

ByRef ByVal

Syntax of While loop While….Wend While….End
While

Null keyword Supported Not supported
Empty keyword Supported Not supported
IsEmpty function Supported Not supported
Option Private Module
statement Supported Not supported

Class_Initialize event Supported Not supported
Class_Terminate event Supported Not supported

In addition to the differences mentioned above, Visual Basic.NET does not support
various applications supported by Visual Basic 6.0. For example, Visual Basic.NET does
not support ActiveX documents. Additionally, Visual Basic.NET does not support DHTML
applications and Web classes that Visual Basic 6.0 supports. Visual Basic.NET is also
incompatible with Windows common controls and the data-bound grid controls available
in Visual Basic 6.0.

There are various changes related to syntax in Visual Basic.NET. The syntax differences
related to variables, operators, arrays, collections, procedures, functions, and various
constructs are discussed in the remaining chapters of this part of the book.
Summary
In this chapter, you learned that the .NET framework provides a multilanguage
environment that enables you to develop, deploy, and run Web-based applications and
services. You also learned that the CLR is a runtime environment in Visual Basic.NET. In
addition, you learned that the .NET framework class library includes multiple reusable,
object-oriented, and extensible classes. You also looked at the features of the .NET
framework. You learned about the enhancements and new features in Visual Studio.NET
and, in particular, Visual Basic.NET. Finally, you learned about the differences between
Visual Basic 6.0 and Visual Basic.NET.

Chapter 2: Object-Oriented Features in Visual
Basic .NET
In Chapter 1, “.NET Overview,” you looked at the differences between Visual Basic 6.0
and Visual Basic.NET. This chapter describes the object-oriented features of Visual
Basic.NET. Unlike earlier versions of Visual Basic, Visual Basic.NET supports all the
features of an object-oriented programming language.

First you will take a look at the various features of an object-oriented programming
language, and then you will learn how Visual Basic.NET implements these features.

Object-Oriented Features
Objects serve as the building blocks in an object-oriented programming language. An
object has a unique identity and displays unique behavior. An example of an object from
the world around us is a car, a ball, or a clock. In a programming language, an object is
defined as an instance of a class. All applications created in an object-oriented
programming language are made up of objects.

A programming language qualifies as an object-oriented programming language if it
supports the following features:

 Abstraction
 Encapsulation
 Inheritance
 Polymorphism

The following sections look at these features in detail.

Abstraction
When buying a refrigerator, you are interested in its size, durability, and features. As a
consumer, you are not interested in the machinery within the refrigerator. You will focus
only on the essential aspects of the refrigerator and will ignore the nonessential aspects.
This is known as abstraction. In a programming language, abstraction enables you to
focus on the essential aspects of an object and ignore the nonessential aspects.
Like other object-oriented programming languages, Visual Basic.NET also provides
abstraction through classes and objects. A class defines the attributes and behaviors
shared by similar objects. An object is an instance of a class. Each object has a set of
characteristics or attributes that are the properties of the object. In addition, each object
can perform a set of actions. These actions are known as methods. Visual Basic.NET
enables you to specify the properties and methods for objects while creating classes. As
a developer, you use abstraction to reduce the complexity of an object by exposing only
the essential properties and methods of the object. In addition, abstraction enables you
to generalize an object as a data type. You can generalize objects as data types by
declaring classes.

You will learn about creating classes, properties, and methods later in this chapter.

Encapsulation
Encapsulation is also known as information hiding. It refers to hiding the nonessential
details of an object. For example, when you switch on a refrigerator, the refrigerator
starts functioning. You cannot view the internal processes of the refrigerator. In other
words, the functioning of the refrigerator is hidden or encapsulated.

Encapsulation is a method of implementing abstraction. As discussed in the preceding
section, abstraction refers to concentrating on the essential details of an object and
ignoring the nonessential ones. This is achieved by encapsulation.

Encapsulation hides the internal implementation of the classes from the user. In other
words, encapsulation means displaying only the properties and methods of an object. It

enables developers to hide the complexity of an object and use different implementations
of the same object.

Inheritance
As discussed in Chapter 1, earlier versions of Visual Basic supported interface
inheritance but not implementation inheritance. However, Visual Basic.NET supports
both.
Implementation inheritance means deriving a class from an existing class. The derived
class is known as the subclass, and the class from which it is derived is known as the
base class.

Note All classes that you create in Visual Basic.NET are derived from
the Object class, which is a part of the System namespace.

The subclass inherits the properties and methods of the base class. In addition, you can
add methods and properties to the subclass to extend the functionality of the base class.
In the derived class, you can also override the methods of the base class. You will learn
more about overriding methods later in this chapter.
Inheritance enables you to create hierarchies of objects. For example, consider a class
named animals. The mammals class is derived from the animals class, and the cats
class is derived from the mammals class. Therefore, the hierarchy of the classes in this
case is as shown in Figure 2-1.

Figure 2-1: A sample hierarchy of classes

In the preceding example, the cats class inherits the properties and methods of the
mammals class, which in turn inherits all the properties and methods of the animals
class. Therefore, the cats class inherits the properties and methods of both the
mammals class and the animals class.

By default, all the classes you create in Visual Basic.NET can be inherited. Inheritance
enables you to reuse code and create complex objects from simpler ones. To elaborate,
after creating a class in Visual Basic.NET, you can use it as a base class to create
derived classes.

Visual Basic.NET provides multiple keywords that enable you to implement inheritance.
You will learn about these keywords later in this chapter.

Polymorphism
Polymorphism refers to the capability of an object to exist in different forms. To
understand this better, go back to the refrigerator example.

To purchase a refrigerator, you either contact a dealer or call the manufacturing
company. When you contact a dealer, the dealer takes the order and then contacts the
company. When you contact the company, however, the company contacts the dealers
in your region and makes arrangements to deliver the refrigerator. In this case, the
dealer and the company are two different classes. Each class, the dealer and the
company, responds differently to the same order. This is known as polymorphism in
object-oriented programming.

Polymorphism enables you to use the same method to perform different tasks. To
elaborate, you can change the implementation of a base class method in the derived
classes. Therefore, when you derive two classes from a base class, you can create a

method with the same name in both classes. However, the method in each derived class
performs different tasks. You select the method to be invoked based on the task you
need to perform. The implementation of polymorphism in Visual Basic.NET is explained
later in this chapter.

You’ve now learned about abstraction, encapsulation, inheritance, and polymorphism.
Next, you need to understand the implementation of each of these in Visual Basic.NET.
Implementation of Object-Oriented Features in Visual Basic
.NET
As previously discussed, abstraction is implemented by using classes. A class defines
the attributes and behaviors shared by similar objects.

To create a class in earlier versions of Visual Basic, you had to define the class in a file
with a .CLS extension. In contrast, Visual Basic.NET enables you to define classes
within code. Take a look at the following syntax for creating a class:
[AccessModifier][Keyword] Class ClassName [Implements InterfaceName]

'Declare properties and methods
End Class

In the preceding syntax:
 AccessModifier defines the accessibility of the class, which can be

Public, Private, Protected, Friend, or Protected Friend. Table
2-1 explains the access modifiers available in Visual Basic.NET.

 Keyword specifies whether derived classes can inherit the class. This can
either be NotInheritable or MustInherit.

 Class marks the beginning of a class.
 ClassName is the name of the class.
 Implements specifies that the class implements interfaces.
 InterfaceName represents the names of interfaces. A class can implement

one or more interfaces.
 End Class marks the end of the declaration of a class.

Within the Class and End Class statements, you declare the variables, properties,
events, and methods of a class.

Note An event is a message sent by an object to the operating system
to indicate an action to which a program might need to respond.
Typically, events are generated due to user interactions such as
button clicks and mouse movements.

You will learn more about creating properties and methods later in this chapter.
Consider the following example that declares the Communication class:

Public Class Communication

'Declare properties and methods
End Class
In the preceding example, note that the Public access modifier is used before the
Class statement. When declaring classes in Visual Basic.NET, you can use various
access modifiers. Table 2-1 describes the access modifiers available in Visual
Basic.NET.
Table 2-1: Access Modifiers Available in Visual Basic.NET

Access Modifier Used
With

Specifies
That

Public A Elements

Table 2-1: Access Modifiers Available in Visual Basic.NET

Access Modifier Used
With

Specifies
That

module,
class,
or
structur
e

are
accessibl
e from the
same
project,
from
other
projects,
or from
assemblie
s built
from the
project.

Private A
module,
class,
or
structur
e

Elements
are
accessibl
e from the
same
module,
class, or
structure.

Protected Classes
and
class
membe
rs

Elements
are
accessibl
e within
the same
class or
from a
derived
class.

Friend A
module,
class,
or
structur
e

Elements
are
accessibl
e within
the same
project
but not
from
outside
the
project.

Protected Friend Classes
and
class
membe
rs

Elements
are
accessibl
e within
the same
project
and from
derived
classes.

As mentioned in the preceding table, in addition to classes, you can use access
modifiers when declaring modules and structures. A module is a loadable unit in which
you can define classes, properties, and methods. A module is always included in an

assembly. A structure is used to create a user-defined data type. You declare variables
and methods in a structure. In addition, you use access modifiers when defining class
members. Class members include the procedures, fields, and methods defined in a
class.
You can use access modifiers to implement abstraction and encapsulation. For example,
to enable other classes to access the properties and methods defined in a class, you
need to use the Public access modifier when declaring the properties and methods.
Similarly, to ensure that other classes cannot access the members defined in a class,
you use the Private access modifier. Therefore, access modifiers enable you to
implement abstraction and encapsulation.
As previously discussed, Visual Basic.NET also supports inheritance. Inheritance
enables you to create multiple derived classes from a base class. You can use the
Inherits statement to derive a class from another class. The syntax for using the
Inherits statement is as follows:

Public Class ThisClass
 Inherits OtherClass
 'Property and method declarations
 'Other code
End Class
In the preceding example, ThisClass is the derived class, and OtherClass is the
base class. Therefore, ThisClass inherits all the properties and methods of
OtherClass. Additionally, you can extend the functionality of the OtherClass class in
ThisClass by overriding the methods of OtherClass.
In addition to the Inherits statement, Visual Basic.NET provides various other
keywords that enable you to implement inheritance. Table 2-2 describes the keywords
used to implement inheritance in Visual Basic.NET.
Table 2-2: Keywords Used to Implement Inheritance

Keyword Used With Used
To

Inherits Classes Inherit
all
nonpriv
ate
membe
rs of
the
specifie
d class.

MustInherit Classes Specify
that the
class
can be
used
only as
a base
class.

NotInheritable Classes Specify
that the
class
cannot
be used
as a
base
class.

Table 2-2: Keywords Used to Implement Inheritance

Keyword Used With Used
To

Overridable Procedures Specify
that the
proced
ure can
be
overrid
den in
the
derived
classes
.

NotOverridable Procedures Indicate
that the
proced
ure
cannot
be
overrid
den in
the
derived
classes
.

MustOverride Procedures Specify
that the
proced
ure
must be
overrid
den in
all the
derived
classes
.

Overrides Procedures Indicate
that the
proced
ure
overrid
es a
proced
ure of
the
base
class.

MyBase Code Invoke
code
written
in the
base
class
from
the

Table 2-2: Keywords Used to Implement Inheritance

Keyword Used With Used
To
derived
class.

MyClass Code Invoke
code
written
in a
class
from
within
the
class.

Protected Procedures,
fields

Specify
that the
proced
ures
and
fields
can be
access
ed
within
the
class in
which
they
are
created
and
also
from
the
derived
classes
.

In addition to classes, you can use these keywords while declaring procedures and
fields. A procedure is a set of statements that performs a specific task. A field is a
variable declared in a class that is accessible from other classes. You will learn more
about procedures and fields later in this chapter.

Next you will look at an example to understand inheritance in Visual Basic.NET.
Public MustInherit Class Communication
 Public MustOverride Function Send() As Boolean
End Class

Public Class Email
 Inherits Communication
 Overrides Function Send() As Boolean

'Add code specific to this class here
 Send =True

 End Function
End Class

Public Class Fax
 Inherits Communication
 Overrides Function Send() As Boolean

'Add code specific to this class here
 Send =True
 End Function
End Class
In the preceding example, the Email and Fax classes are derived from the
Communication base class. The Communication class provides basic functionality to
the derived classes. Notice that the Email and Fax classes override the Send method
of the Communication class to extend the functionality of the Communication class.
As previously discussed, Visual Basic.NET also supports polymorphism. In Visual
Basic.NET, polymorphism enables you to vary the implementation of an Overridable
method. Alternatively, the implementation of a NotOverridable method is the same
whether you invoke it from the class in which it was declared or from a derived class. To
elaborate, when you override a method of a base class, it can perform different actions
based on the object that invokes the method. The following code explains polymorphism
by using the Communication class example discussed earlier:

Public Module MyMod
 Public MustInherit Class Communication
 Public Sub New()
 MyBase.New()
 MsgBox("Constructor of Communication class", MsgBoxStyle.OKOnly)
 End Sub
 Public MustOverride Function Send() As Boolean

'Code specific to the Communication class
 End Class

Public Class Email
 Inherits Communication
 Public Sub New()
 MyBase.New()
 MsgBox("Constructor of Email class", MsgBoxStyle.OKOnly)
 End Sub
 Overrides Function Send() As Boolean
 MsgBox("Send function of Email class", MsgBoxStyle.OKOnly)

'Code specific to the Email class
 Send = True
 End Function

 End Class

Public Class Fax
 Inherits Communication
 Public Sub New()
 MyBase.New()
 MsgBox("Constructor of Fax class", MsgBoxStyle.OKOnly)
 End Sub
 Overrides Function Send() As Boolean
 MsgBox("Send function of Fax class", MsgBoxStyle.OKOnly)

'Code specific to the Fax class
 Send = True
 End Function
 End Class
In the preceding code, the Communication, Email, and Fax classes are declared in
the MyMod module. Notice that the classes in this example contain the Sub New
procedure. You will learn more about the Sub New procedure later in this chapter. You
can access methods of both the Email and Fax classes with an object of the
Communication class because the Email and Fax classes are derived from the
Communication class. Take a look at the following example:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
Handles Button1.Click
 Dim int1 As Integer
 Dim communicate As Communication
 int1 = InputBox("Enter 1 to send an e-mail message and 2 to send a fax
message.")
 Select Case (int1)
 Case "1"
 communicate = New Email()
 communicate.Send()
 Case "2"
 communicate = New Fax()
 communicate.Send()
 End Select
End Sub
The procedure in the preceding example in an event-handling procedure. You will learn
about creating event-handling procedures in Chapter 7, “Procedures and Functions.” The
preceding code provides the user with a choice of sending either an e-mail message or a
fax message. The communicate object of the Communication class is used to call the
Send method of the Email and Fax classes. However, in the application, the Send
method that is called depends on the choice of the user. Therefore, in this case, late
binding is used.
To understand late binding, you need to first understand binding. During compilation, the
compiler associates each method with a class by identifying the type of object used to
invoke the method. This process of associating a method to an object is called binding.

In the preceding example, you need to call the Send method based on the choice
entered by the user. Therefore, the objects are created dynamically, and the type of the
object is not known at the time of compilation. In such cases, binding is performed not at
compile time, but at runtime. This is known as late binding. Late binding increases the
flexibility of a program by allowing the appropriate method to be invoked, depending on
the context. In Visual Basic.NET, you can use late binding only for Public members of
a class.
Visual Basic.NET also enables you to use interfaces to implement polymorphism. An
interface defines a set of properties and methods that classes can implement. Interfaces
are used when classes have only a few common properties and methods. In other
words, if classes do not have many common properties and methods, you can
implement interfaces instead of deriving the classes from a base class. For example, the
MusicSystem and Guitar classes do not have many common properties and
methods. Therefore, the MusicSystem class can implement the ElectricityRun and
PlayMusic interfaces. Similarly, the Guitar class can implement the PlayMusic and
ManuallyOperated interfaces.

Interfaces do not include implementation code. Therefore, each time you implement an
interface, you need to add implementation code for the properties and methods of the
interface. This enables the implementation of the methods in each class to be different.
In addition, a class can implement multiple interfaces but inherit only one base class.
You cannot use late binding for interface members. Conversely, interfaces use early
binding. In early binding, a function is bound to the calls at compile time. In cases of
early binding, when the program is executed, the calls are already bound to the
appropriate functions.
After defining a class, you can create objects of the class to access the properties and
methods of the class. Consider an example that creates an object of the
Communication class. You can use either of the following statements to create an
object of the Communication class:

Dim MyObject as New Communication

or
Dim MyObject as Communication = New Communication
Now that you’ve looked at how abstraction, encapsulation, inheritance, and
polymorphism are implemented in Visual Basic.NET, the next section describes how to
create constructors, destructors, fields, and properties in a class.
Declaring Class Members
You declare class members within a class. As previously mentioned, class members
include variables, properties, fields, and methods. In this section, you will learn how to
create the following:

 Constructors
 Destructors
 Methods
 Fields
 Properties

Constructors
As discussed in Chapter 1, constructors are used to initialize objects. In Visual
Basic.NET, the Sub New procedure acts as a constructor.
The Sub New procedure is executed when an object of the class is created. You can
use the Sub New procedure to perform essential tasks before using an object of the
class. For example, you can connect to databases and initialize variables in the Sub
New procedure.
All classes in Visual Basic.NET are derived from the Object class. Therefore, when
creating a class, you need to call the constructor of the Object class. To do this, you
must include the MyBase.New statement as the first line in the constructor of your class.
As previously mentioned, the MyBase keyword is used to invoke code written in a base

class from a derived class. After the MyBase.New statement, you can add code to
initialize objects and variables that you create. Consider the following example:
Public Class MyNewClass
 Public Sub New()
 MyBase.New()

'Code for Initializing objects and variables
 End Sub

'Other class members
End Class

You can call a constructor only from within the constructor of either the same class or a
derived class. In derived classes, the first line in the constructor calls the constructor of
the base class to initialize the inherited objects. After calling the constructor of the base
class, you can add code to initialize the objects and variables created in the derived
class.

In Visual Basic.NET, constructors can also take arguments. In other words, you can
create parameterized constructors in Visual Basic.NET. Consider the following example:
Public Sub New(Optional ByVal iempcode As Integer = 0)
The preceding example defines a parameterized constructor for the Employee class.
The constructor accepts the employee code, a unique identification number assigned to
each employee, as an argument. Therefore, each time you create an object of the
Employee class, you can assign a unique identification number to the employee. If you
do not provide an identification number to the employee when creating the employee
object, a default value of 0 is assigned.
You can use either of the following statements to create an object of the Employee
class:
Dim Emp1 As New Employee(1001)

or
Dim Emp2 As Employee = New Employee(1001)

Constructors are optional procedures. You can also create classes without constructors.
However, it is recommended that you initialize objects created in a class by using a
constructor.

Now that you know how to create constructors in Visual Basic.NET, you will take a look
at how to declare destructors in Visual Basic.NET.

Destructors
Visual Basic.NET also provides the Sub Finalize procedure, which acts as a
destructor. The function of a destructor is opposite that of a constructor. A destructor
releases the memory and resources used by a destroyed object. The Sub Finalize
procedure is a protected method of the Object class. You can override the Sub
Finalize procedure in the classes you create. Take a look at the following example:

Protected Overrides Sub Finalize()
 MyBase.Finalize()

'Add code here
End Sub

In the preceding example, notice that the Overrides keyword is used. This is because
the Sub Finalize procedure is a method of the Object class. In addition, the MyBase
keyword is used to access the Sub Finalize method of the Object class.
Although you might override the Sub Finalize procedure in your application, the Sub
Finalize procedure is not called when your application is executed. This is because
the .NET framework controls the execution of the Sub Finalize procedure. The .NET
framework calls the Sub Finalize procedure when an object is destroyed to release
the memory and resources used by the object. Therefore, garbage collection in the .NET
framework is performed automatically. This implies that you do not need to perform
additional tasks in the .NET framework to ensure that unused resources and memory are
released. However, because the .NET framework calls the Sub Finalize procedure,
the time lag between object destruction and memory release is not defined.
In addition to the Sub Finalize procedure, the .NET framework provides the
IDisposable interface to help you manage resources. You can implement the
IDisposable interface to manage resources such as window handles and database
connections in your applications. The IDisposable interface includes the Dispose
method. Unlike the Sub Finalize procedure, you can explicitly call the Dispose
method. In the Dispose method, you can add code to release resources and perform
tasks such as closing database connections.
The Sub Finalize procedure acts as a backup to the Dispose method. You define
the Sub Finalize procedure to ensure that the garbage collector performs clean-up
operations for the objects you create if the Dispose method is not called.
Now that you’ve learned how to use the Dispose method and the Sub Finalize
procedure to release resources in Visual Basic.NET, the next section explains how to
create methods within classes in Visual Basic.NET.

Methods
In addition to constructors and destructors, you can define other methods in a class. The
methods in a class comprise the public Sub or Function procedures declared in the
class.
As previously mentioned, a procedure is a set of statements that performs a specific
task. After grouping the statements in a procedure, you can call the procedure from
anywhere in the application. When a procedure completes execution, it returns control to
the calling code. Visual Basic.NET enables you to define Sub, Function, and
Property procedures. (Property procedures are discussed in the "Fields and
Properties" section of this chapter.)

 Sub procedures. Sub procedures cannot return any values. You use the
Sub and End Sub statements to define a Sub procedure. When a Sub
procedure is called, all the statements within the procedure are executed,
starting from the first until an End Sub, Exit Sub, or Return
statement is encountered. Typically, Sub procedures are used to define
event-handling procedures. Event-handling procedures are discussed in
detail in Chap-ter 7.

 Function procedures. Unlike Sub procedures, Function procedures
return values to calling code. You use the Function and End
Function statements to define a Function procedure. Similar to a
Sub procedure, a Function procedure executes starting from the first
executable statement until an End Function, Exit Function, or
Return statement is encountered.

Both Function and Sub procedures can take arguments. Calling code can pass
arguments—such as constants, variables, or expressions—to Sub and Function
procedures.
You can also overload methods in Visual Basic.NET. In other words, you can create
multiple methods with the same name but with different types or numbers of parameters.
You can override a method of a base class by declaring a method with the same name
and the same number of arguments in the derived class. In the derived class, you need

to use the Overrides keyword to override the base class method. In the base class,
however, the method should be defined as an Overridable method.
In addition to procedures, you can define fields and properties in a class. The next
section describes fields and properties.

Fields and Properties

As previously mentioned, fields are variables declared in a class that are accessible from
other classes. You can declare fields by using a single declaration statement.
You declare fields within classes. Consider the following example, which shows how to
declare a field named MyField in the MyClass1 class:

Public Class MyClass1
 Public MyField As Integer 'Declaring a field

'Other declarations and code
End Class
You can manipulate the MyField field by using an object of MyClass1. Take a look at
the following example:
Dim MyObject As New MyClass1()
MyObject.MyField = 6
In the preceding example, MyObject is an object of the MyClass1 class. Notice that the
MyObject object is used to assign a value to the MyField field defined in the
MyClass1 class.
Properties define the attributes of an object. To create a property, you need to declare
Property procedures.
To define a property, you need to use the Property and End Property statements.
Within the Property and End Property statements, you declare Property
procedures. When the value of a property is set or accessed, Property procedures are
executed. Property procedures enable you to manipulate the properties defined in
modules, classes, or structures. Typically, you declare two Property procedures for
each property, Get and Set. You use the Get and End Get statements to define a Get
Property procedure. The Get Property procedure returns the value of a property.
To elaborate, the Get Property procedure is called when you retrieve the value of a
property. Similarly, you use the Set and End Set statements to define a Set
Property procedure. However, unlike the Get Property procedure, the Set
Property procedure is used to set the value of a property to a specified value. In other
words, the Set Property procedure is called when you assign a value to a property.
Consider the following example:
Private PropValue As Integer = 0
Public Property MyProperty() As Integer
 Get

'Add code
 Return PropValue 'Where
PropValue is the property's value
 End Get
 Set(ByVal value As Integer)

'Add code
 PropValue = value 'Where

PropValue is the new value to be assigned
 End Set
End Property
In the preceding example, the Get Property procedure returns the value of the
MyProperty property. In addition, the Set Property procedure assigns the value in
the PropValue variable to the MyProperty property. You can use the following
statement to assign a value to the MyProperty property:

MyProperty = MyValue
In the preceding example, the value in the variable MyValue is assigned to the
MyProperty property.
To retrieve the value of the MyProperty property, you can use the following statement:

MyNum = MyProperty
In the preceding code, the value of the MyProperty property is assigned to the
MyValue variable.
In the earlier example, the Public access modifier was also used when declaring the
property. When defining a property, you can use the Public, Private, Protected,
Friend, or Protected Friend access modifier. The default value for the access
modifier in the case of properties is Public.
By default, a property has both read and write attributes. However, in Visual Basic.NET,
you can also define a read-only or write-only property by using the ReadOnly or
WriteOnly keyword. To define a read-only or write-only property, you need to include
the ReadOnly or WriteOnly keyword before the access modifier while declaring the
property. As previously mentioned, Property procedures are defined in pairs by using
both the Get and Set keywords. However, in the case of a read-only property, you need
to define only the Get Property procedure. Alternatively, in the case of a write-only
property, you need to define only the Set Property procedure.
In Visual Basic.NET, you can also define default properties in a class by using the
Default keyword. Default properties must accept parameters. In Visual Basic .NET,
you can assign values to and retrieve values of default properties without specifying the
property name.

Note As in Sub and Function procedures, you can also pass arguments
to properties.

Now that you’ve looked at declaring properties and fields, the next section describes how
you can declare namespaces.

Declaring Namespaces
As discussed in Chapter 1, Visual Basic.NET provides namespaces. Namespaces are
used to organize the objects defined in an assembly. In addition, namespaces enable
you to organize objects hierarchically. A hierarchical structure groups similar objects,
simplifying access. For example, you need to define objects, methods, and properties for
a grocery store. To do so, you create the GroceryStore namespace. Within the
GroceryStore namespace, you can create subnamespaces, such as Inedible and
Edible, to organize the goods sold at the grocery store. Now, under the Edible
namespace, you can create the Vegetables and Drinks namespaces. Therefore, to
determine the vegetables available in the store, you can use the classes and methods
defined in the GroceryStore.Edible.Vegetables namespace. As is evident in this
example, you can use namespaces to group classes logically.

In Visual Basic.NET, you can declare multiple namespaces either in a program or across
programs. In addition, the classes defined within a namespace should have unique
names. In other words, you cannot create two classes with the same name in a
namespace. However, classes can have the same name across namespaces.
Each project you create in Visual Basic.NET contains a namespace by default. This
namespace is assigned the same name as the project. For example, if you define an

object in a project named MyProject, the executable file (which is MyProject.exe in this
case) will contain a namespace named MyProject.
As mentioned in Chapter 1, you can also create your own namespaces. You need to use
the Namespace and End Namespace statements to declare a namespace. Take a look
at the following example:
Namespace MyNamespace
 Public Class MyOwnClass1

'Code for the MyOwnClass1
 End Class
 Public Class MyOwnClass2

'Code for the MyOwnClass2
 End Class
End Namespace
In the preceding example, note that the declaration does not include an access modifier.
This is because namespaces are always Public. Typically, you define classes in a
namespace. In addition to classes, you can define structures and interfaces in
namespaces. The classes, structures, and interfaces in a namespace can have either
Public or Friend access.

Visual Basic.NET also enables you to create nested namespaces. The following code
explains how to create nested namespaces using the grocery store example previously
discussed:
Namespace GroceryStore
 Namespace Edible
 Public Class Vegetables

'Code for the class
 End Class
 Public Class Drinks

'Code for the class
 End Class
 End Namespace
 Namespace Inedible
 Public Class Cosmetics

'Code for the class
 End Class
 Public Class Toiletries

'Code for the class
 End Class
 End Namespace
End Namespace

The Edible namespace declared in the example can also be declared in the following
manner:
Namespace GroceryStore.Edible
 Public Class Vegetables

'Code for the class
 End Class
 Public Class Drinks

'Code for the class
 End Class
End Namespace
In the preceding example, the name of the Edible subnamespace follows the name of
the GroceryStore namespace. This implies that the Edible subnamespace is
qualified. You can also use qualified names when declaring namespaces. Qualified
names prevent naming conflicts. In addition, you use qualified names to access the
objects defined in a namespace. However, remembering the complete names of
namespaces can be very difficult. Visual Basic.NET provides an easy way out. As
explained in Chapter 1, you can to use the Imports statement to access the classes in
namespaces. When you add the Imports statement to your application, you do not
need to use the qualified name for the imported namespace.

Summary
In this chapter, you learned about inheritance, abstraction, encapsulation, and
polymorphism and how they are implemented in Visual Basic.NET. In addition, you
learned to declare constructors and destructors when creating classes in Visual
Basic.NET. The chapter also described how to declare methods, fields, and properties.
Finally, you learned how to declare namespaces.

Chapter 3: Visual Studio .NET Integrated
Development Environment
Overview
In the preceding chapter, you learned about the features of Visual Basic.NET. In this
chapter, you will learn about the Visual Studio.NET integrated development environment
(IDE), which enables you to develop applications based on the .NET framework. The
Visual Studio.NET IDE is common to all of the .NET languages, and this means you can
use the same set of tools and windows across languages.
Figure 3-1 displays the Visual Studio.NET IDE.

Figure 3-1: The opening screen of Visual Studio.NET

As shown in the Figure 3-1, the Visual Studio.NET IDE displays various windows and
tools. The following section describes these.
Windows and Tools in the Visual Studio .NET IDE
The following sections describe the features and functions of the following windows and
tools:

 The menu bar
 Toolbars
 The Start page
 Solution Explorer
 Class View
 Dynamic Help
 The Toolbox
 Server Explorer

The Menu Bar

The menu bar in the Visual Studio.NET IDE displays the File, Edit, View, Tools, Window,
and Help menus by default. These menus include commands that enable you to perform
various tasks such as opening, saving, editing, and formatting files. In addition to the
menus available by default on the menu bar, the IDE also displays menus that are
relevant to the task you are currently performing. For example, when you open a project
in Code Editor, the menu bar displays the Project, Build, and Debug menus in addition to
the default menus. Similarly, when you open a project in Windows Forms Designer, the
Data and Format menus also appear on the menu bar.

Note Visual Studio.NET provides you with various designers—such as
Windows Forms Designer, Web Forms Designer, XML Designer,
and Component Designer—that help you design applications
quickly and easily.

The following sections take a more detailed look at some of the commonly used menus
in Visual Studio.NET.

The File Menu
Visual Studio.NET provides solutions and projects to help you organize and manage
your applications. A solution can contain multiple projects, files, and items, such as
references, data connections, and folders. Similarly, a project can contain multiple files
and items that are associated with the project. The items in a solution are independent of
the projects in the solution. However, the items in a project include references to
libraries, data connections, and folders for the project.

The File menu provides commands to open, close, and save projects, files, and
solutions. The File menu also provides commands to add items such as forms, controls,
modules, and classes to projects and solutions.

The Edit Menu
You can use the commands in the Edit menu to cut, copy, or delete the selected text or
component. You can use the Paste command in this menu to insert the copied text or
component at the required location. This menu also provides the Undo and Redo
commands, which enable you to reverse or repeat the last action, respectively.

The View Menu
The View menu provides commands to access the various windows and tools available
in Visual Studio.NET. Using the View menu, you can open the Solution Explorer, Class
View, Server Explorer, Resource View, and Properties windows. Additionally, the View
menu also provides commands to open the Toolbox, Web browser, and other windows
such as the Command window and Task List. You will learn more about these windows
later in this chapter.

The Project Menu
The Project menu provides commands to add components to projects. Using the Project
menu, you can add components such as forms, modules, classes, and controls to your
projects.

The Build Menu
As the name suggests, this menu provides commands to build your projects. This menu
also provides the Configuration Manager command. When you click on the Configuration
Manager command, the Configuration Manager dialog box displays. Using the
Configuration Manager dialog box, you can create and modify build configurations for
solutions and projects.

The Debug Menu
The Debug menu provides commands to locate and correct errors in your applications.
Some of the commands in the Debug menu are as follows:

 Start, Step Into, and Step Over. You can use these commands to start
debugging your applications.

 Processes. Selecting this command displays the Processes dialog
box. You can use the Processes dialog box to view and manipulate
the processes running on your computer.

 Exceptions. When you select the Exceptions command, the
Exceptions dialog box displays. In the Exceptions dialog box, you can
specify the manner in which the debugger should handle exceptions or
the categories of exceptions. An exception is a problem or an error
that causes the processor to stop the current process and handle the
error.

 New Breakpoint. You can select this command to open the New
Breakpoint dialog box. In the New Breakpoint dialog box, you can add
breakpoints in the code. When Visual Studio.NET encounters a
breakpoint in a program, it suspends the execution of the program.

The Format Menu
As the name suggests, the Format menu provides commands to format controls while
working in a designer. Some of the commands on the Format menu are as follows:

 Align
 Center in Form
 Horizontal Spacing
 Vertical Spacing

When you select any of the preceding commands, the submenu associated with the
command displays. The commands in the various submenus help align and organize
controls in the designer.

The Tools Menu
The Tools menu provides commands such as Debug Processes, Customize Toolbox,
Add-in Manager, Customize, and Options. When you select one of the following
commands, a corresponding dialog box displays.

 Debug Processes displays the Processes dialog box.
 Customize Toolbox displays the Customize Toolbox dialog box. In this

dialog box, you can specify the Component Object Model (COM) and
.NET framework components to be displayed in the Toolbox.

 Add-in Manager displays the Add-in Manager dialog box, which lists all
the add-ins available in the Visual Studio.NET IDE. Using this dialog
box, you can add or remove add-ins from the IDE.

 Customize displays the Customize dialog box. You can use the
Customize dialog box to create your own toolbars, to add or remove
buttons from the existing toolbars, and to modify the appearance of the
toolbars.

 Options displays the Options dialog box. In the Options dialog box,
you can modify the settings for the IDE.

The Window Menu
As the name suggests, the Window menu provides commands to work with the windows
in the IDE. Some of the commands on the Window menu are as follows:

 New Window. You can use this command to create a new window. For
example, when working in Code Editor, you can select the New
Window command to open another Code Editor window.

 Split. You can use this command to divide a window into two sections.
You can view either different files or the same file in the two sections
simultaneously.

 Dockable, Hide, and Floating. These commands help you organize
and manage the windows in the IDE.

 New Vertical Tab Group and New Horizontal Tab Group. These
commands enable you to create tab groups to organize the windows in
the IDE. You can group windows into either vertical or horizontal tab
groups.

 Close All Documents. This command enables you to close all open
documents.

The Help Menu
Some of the commands of the Help menu are as follows:

 Dynamic Help. This command enables you to open the Dynamic Help
window. You will learn about the Dynamic Help window later in this
chapter.

 Contents. When you select the Contents command, the Contents
window displays. Using the Contents window, you can browse the
table of contents of the MSDN library.

 Index. The Index window displays when you select the Index
command. You can use the Index window to find information about a
specific topic in the MSDN library.

 Search. When you select the Search command, the Search window
opens. Using the Search window, you can search for information in the
MSDN library.

 Previous Topic and Next Topic. These commands enable you to
navigate through the MSDN library.

Toolbars

The Visual Studio.NET IDE provides various toolbars such as Text Editor, Build, and
Debug. However, only the Standard and Web toolbars are displayed by default.
The toolbars displayed in the IDE depend on the designer, tool, or window you are using.
In other words, the Visual Studio.NET IDE displays toolbars that are relevant to the task
you are performing. Table 3-1 describes some of the toolbars available in the Visual
Studio.NET IDE.
Table 3-1: Toolbars Available in Visual Studio.NET

Toolbar Provides
Comma
nds To

Build Build
applicatio
ns

Crystal Reports—Insert Open the
Insert
Summary
, Insert
Group,
Insert
Subrepor
t, Insert
Chart,
and
Insert
Picture
dialog
boxes

Crystal Reports—Main Perform
basic
formattin
g
operation
s such as
justifying
text,
applying
fonts,
and
accessin
g dialog
boxes
such as
Select
Expert
and
Object
Propertie
s

Data Design Generate
datasets
and
preview
data

Database Diagram Work

Table 3-1: Toolbars Available in Visual Studio.NET

Toolbar Provides
Comma
nds To
with
database
objects

Debug Start and
stop the
debuggin
g of
applicatio
ns

Debug Location View the
program,
thread,
and stack
frame of
an error
encounte
red while
debuggin
g a
program

Design Work
with
controls
in Web
Forms
Designer

Formatting Format
text

Full Screen Work in
the full-
screen
mode

HTML Editor Format,
validate,
and work
with
HTML
documen
ts

Image Editor Create
and
manipulat
e images

Layout Modify
the layout
of
controls
in the
designer

Table 3-1: Toolbars Available in Visual Studio.NET

Toolbar Provides
Comma
nds To

Source Control Maintain
different
versions
of your
applicatio
ns

Standard Work
with
solutions,
projects,
and files
and open
windows
such as
Solution
Explorer
and
Class
View

Style Sheet Format
and view
style
sheets

Table Work
with the
tables in
a
database

Text Editor Work in
Code
Editor

Web Browse
for Web
pages

XML Data Create
schemas

XML Schema Preview
datasets
and edit
keys and
relations

The Start Page

The Start page provides a centralized location for you to begin work in Visual
Studio.NET. The Start page appears when you start Visual Studio.NET. You can also
open the Start page by selecting the Show Start Page command from the Help menu.
The Start page is the default home page for the Web browser in Visual Studio.NET.

The Start page provides various links that enable you to work quickly and efficiently in
Visual Studio.NET. The following links are available on the Start page:

 Get Started enables you to create new projects and open existing
projects.

 What’s New provides information about Visual Studio.NET products and
resources. When you click on this link, a list of links related to Visual
Studio.NET products and resources is displayed. You can also use this
link to check for Visual Studio.NET updates. In addition, you can view
information about a specific topic by selecting an appropriate option from
the Filter list box.

 Online Community displays a list of links to Web sites and newsgroups.
This link enables you to exchange information with other developers
using Visual Studio.NET.

 Headlines provides links to news and technical articles available on the
Microsoft Developer Network (MSDN) Web site. To access information
about a specific topic, you can select an option from the Filter list box.

 Search Online helps you search for information about a topic on the
MSDN Web site. You can use the Advanced button on this page to
specify the scope and criteria for the search.

 Downloads enable you to download tools and service packs for Visual
Studio.NET. In addition, you can also download code samples and
updated products from the Internet.

 Web Hosting enables you to access the Visual Studio.NET Web hosting
portal. This portal was formed as a result of Microsoft’s collaboration with
several companies. You can use this portal to access and host Web
applications and Web services developed using Visual Studio.NET.

 My Profile helps customize the Visual Studio.NET IDE. Using this link,
you can specify your profile by selecting an option from the listed
developer profiles. In addition, you can specify the settings for the Help
filter. You can also specify settings for the scheme of the keyboard and
the layout of different windows. In the At Startup list box, you can specify
the actions to be performed when Visual Studio.NET starts.

Solution Explorer

The Solution Explorer window provides a hierarchical view of your solutions, projects,
and files. You can open the Solution Explorer window by selecting the Solution Explorer
command from the View menu.
When you open a solution, the Solution Explorer window lists the various projects, files,
and references present in the solution, as shown in Figure 3-2.

Figure 3-2: The Solution Explorer window

The Solution Explorer window simplifies file management by enabling you to view and
manipulate solutions, projects, and files. When you double-click on a file in the Solution
Explorer window, the file opens in the editor or tool associated with the file. Using the
Solution Explorer window, you can also work on multiple files. For example, you can
select multiple files and open them for editing.
In addition to the files associated with solutions and projects, the Solution Explorer
window enables you to work with files that are not a part of any solution or project. These
files are known as miscellaneous files.

Using the Solution Explorer window, you can open and manage files and add and
remove items. When you right-click on a selected item in the Solution Explorer window, a
context menu displays. You can use the commands in the context menu to perform
various operations such as copying, cutting, deleting, or renaming the selected item.
Additionally, you can also perform tasks such as disassociating an item from a project by
selecting the Exclude from Project command. However, the options in the context menu
vary based on the object selected in the Solution Explorer window. For example, the
commands that appear in the context menu when you select a form are different than the
commands that appear when you select the References folder for a project. The
References folder for a project includes references to libraries, namespaces, and data
connections.

The Solution Explorer window displays a toolbar. Similar to the commands in the context
menu, the buttons on the toolbar also vary depending on the item selected in the
Solution Explorer window. For example, when you select a form in the Solution Explorer
window, the View Code and View Designer buttons appear on the toolbar. When you
select an assembly in the Solution Explorer window, however, the View Designer button
does not display. In addition to the View Designer and View Code buttons, the toolbar
displays other buttons such as the Show All Files and Properties buttons. When you
select multiple files in the Solution Explorer window, the toolbar displays only the buttons
that are common to the selected files.

Class View
The Class View window provides a hierarchical view of solutions and projects. To open
the Class View window, select the Class View tab in the Visual Studio.NET IDE. Refer to
Figure 3-1 to see where the Class View tab is located in the Visual Studio.NET IDE.
Alternatively, you can also open the Class View window by selecting the Class View
command from the View menu.

As previously mentioned, a solution includes one or more projects. Each project within a
solution can include components such as namespaces, classes, interfaces, forms,
functions, and variables. In the Class View window, the components are organized
based on the project in which they are contained. The Class View window provides a
structured view of code to help you understand how components are organized within a
project. In addition, the Class View window provides a logical view of components with
regard to projects. A logical view helps you understand the inter-relationships between
components and projects. Figure 3-3 shows the Class View window.

Figure 3-3: The Class View window

In the Class View window, each type of component is represented by an icon. In other
words, different icons are used to represent different types of components such as
namespaces, classes, and interfaces.

Using the Class View window, you can navigate through projects in a solution. The Class
View window also enables you to view the various classes, methods, properties, and
interfaces defined within a project.

Using this window, you can also view the properties or code for a component. For
example, to view the code associated with a method, right-click on the method name in
the Class View window and select the Browse Definition command from the context
menu. This displays the corresponding code for the selected method.

The Class View window also contains a toolbar. This toolbar displays two buttons, Sort
By and New Folder. When you select the Sort By button, a drop-down list displays. The
options in the Sort By drop-down list are as follows:

 Sort Alphabetically organizes the components in ascending order of their
names.

 Sort By Type groups the components within a project based on the type
of the component. For example, when you select the Sort By Type
option, all classes are listed together. Similarly, all interfaces are listed
together and so on. The components within each project are grouped
based on an order, but you cannot change this order.

 Sort By Access lists the components based on their access type, such as
Public, Protected, or Private.

 Group By Type organizes the components within each project based on
the type of component. Unlike the Sort By Type option, however, the
Group By Type option groups similar components in a virtual folder. In
addition, as with the Sort By Type option, you cannot modify the order in
which the components are displayed.

The New Folder button on the toolbar enables you to create virtual folders. You can
create virtual folders to group commonly used components. Therefore, virtual folders
provide quick access to components.

Dynamic Help

At times, you might need to know how to perform a particular task. In Visual Studio.NET,
the Dynamic Help window provides access to information relevant to the current
selection or task. When you open the Visual Studio.NET IDE, the Dynamic Help window
displays. You can also open the Dynamic Help window by selecting the Dynamic Help
command from the Help menu.
The Dynamic Help window displays links related to the current window or the current
task. For example, when you are working in the Class View window, the Dynamic Help
window displays information about the Class View window. Similarly, if you select a
button control while working in the designer, the Dynamic Help window displays
information related to the Button class, as displayed in Figure 3-4.

Figure 3-4: The Dynamic Help window

Therefore, the information displayed in the Dynamic Help window depends on the
selection in the IDE.

The Dynamic Help window displays information from the Microsoft Developer Network
(MSDN) library. In other words, information from the MSDN library is filtered based on
the current selection or the cursor placement and then is displayed in the Dynamic Help
window. If the MSDN library does not contain any information related to the current
selection, the Dynamic Help window displays a message stating that “No links are
available for the current selection.”

The information displayed in the Dynamic Help window is organized into categories. By
default, the Dynamic Help window includes the Help, Samples, and Getting Started
categories. However, you can also customize the Dynamic Help window by using the
Options dialog box. To open the Options dialog box, select the Options command from
the Tools menu. To edit settings for the Dynamic Help window, select the Dynamic Help
option in the Environment folder. After you select the Dynamic Help option, you can
specify the categories to be displayed in the Dynamic Help window. You can also specify
the sequence in which the categories should be displayed. In addition, you can specify
the type of information—such as articles, procedures, and samples—that needs to be
displayed in the Dynamic Help window. Under Show links for, you can select an option to
specify the filter for the Dynamic Help window.

The Dynamic Help window also contains a toolbar. This toolbar displays the Contents,
Index, and Search buttons, which help you browse the MSDN library.

The Toolbox
As the name suggests, the Toolbox contains various tools available in Visual
Studio.NET. To open the Toolbox, you can click on the Toolbox tab displayed in the left
margin of the IDE. (Refer to Figure 3-1 to see where the Toolbox tab is located in the
Visual Studio.NET IDE.) Alternatively, you can open the Toolbox by selecting the
Toolbox command from the View menu.

By default, the Toolbox displays only the General and Clipboard Ring tabs. However, the
Toolbox displays additional tools on various tabs depending on the currently open
designer or editor. To view all the tabs in the Toolbar, you can right-click on the Toolbox
and select the Show All Tabs option from the context menu.

The following are some of the tabs available in the Toolbox:
 General tab

By default, the General tab displays only the Pointer control. However, you can
also add controls, such as custom controls, to the General tab. Custom controls
are controls defined by users or third-party vendors.
Figure 3-5 displays the General tab.

Figure 3-5: The General tab

 Clipboard Ring tab
Similar to the General tab, the Clipboard Ring tab displays the Pointer control by
default. In addition to the Pointer control, the Clipboard Ring tab displays the last
12 items added to the clipboard. The clipboard is a memory cache maintained
by the Microsoft Windows operating system. Each time you perform a cut or
copy operation, the selected item is placed on the clipboard. You use the Paste
command to retrieve the copied item from the clipboard. When working in Code
Editor in Visual Studio.NET, you can press Ctrl + Shift + V to select an item from
the clipboard.
Figure 3-6 displays the Clipboard Ring tab.

Figure 3-6: The Clipboard Ring tab

 Crystal Reports tab

The Crystal Reports tab appears in the Toolbox when you are working in Crystal
Report Designer. This tab displays components—such as text objects, line
objects, and box objects—that you can use in Crystal Reports.
Figure 3-7 displays the Crystal Reports tab.

Figure 3-7: The Crystal Reports tab

 Data tab

The Toolbox displays the Data tab when you create a project that has an
associated designer. The Data tab provides data objects—such as datasets and

dataviews—that you can include in Visual Basic.NET and Visual C#.NET forms
and components. For example, you can insert a DataView control in your form to
sort and filter data retrieved from a table.
Figure 3-8 displays the Data tab.

Figure 3-8: The Data tab

 XML Schema tab

The XML Schema tab appears when you are working on ADO.NET datasets
and XML schemas. Therefore, this tab displays controls that you can add to
XML schemas and ADO.NET datasets.
Figure 3-9 displays the XML Schema tab.

Figure 3-9: The XML Schema tab

 Web Forms tab

The Web Forms tab displays Web controls and validation controls that you can
add to Web forms. The controls displayed on the Web Forms tab can work
within the ASP.NET framework only. Using validation controls, you can validate
user input for any Web control or HTML control on the Web Forms page.
Figure 3-10 displays the Web Forms tab.

Figure 3-10: The Web Forms tab

 Components tab

The Components tab displays components—such as an EventLog and
MessageQueue—that you can add to Visual Basic.NET and Visual C#.NET
projects. You can also add user-defined components to this tab.
Figure 3-11 displays the Components tab.

Figure 3-11: The Components tab

 Windows Forms tab

The Windows Forms tab appears in the Toolbox when you open a Windows
application. The Windows Forms tab displays controls and dialog boxes that you
can use in Windows applications.
Figure 3-12 displays the Windows Forms tab.

Figure 3-12: The Windows Forms tab

 HTML tab

The HTML tab appears in the Toolbox when you open any document in HTML
Designer. This tab provides controls—such as labels, buttons, and text fields—
that you can use to create Web pages and Web forms.
Figure 3-13 displays the HTML tab.

Figure 3-13: The HTML tab

You can also customize the Toolbox by adding tabs and tools. To customize the
Toolbox, use the Customize Toolbox dialog box. You can open the Customize Toolbox
dialog box by selecting the Customize Toolbox command from the Tools menu.

Server Explorer

The Server Explorer window enables you to manage servers in Visual Studio.NET. You
can open the Server Explorer window by selecting the Server Explorer tab, which is
displayed in the left margin of the IDE. Alternatively, you can open the Server Explorer
window by selecting the Server Explorer command from the View menu.
Using this window, you can create database connections. A database connection is a
link to a database. You can also log on to a server and access the databases available
on the server by using the Server Explorer window.
The Server Explorer window displays two nodes, Data Connections and Servers, as
shown in Figure 3-14.

Figure 3-14: The Server Explorer window

The Data Connections node lists the various database connections you have added to
the server. In addition to database connections, this node lists the database objects—
such as tables, views, stored procedures, and functions—for each database. Using the
Server Explorer window, you can also manipulate database objects. For example, you
can add a table to a database. However, to manipulate database objects, you must have
the required permissions on the database.

The Servers node lists the various servers to which your machine is connected. Using
the Server Explorer window, you can connect to any server to which you have network
access. This node also displays system resources—such as event logs and messaging
queues—that are available on the servers to which your computer is connected.

Using the Server Explorer window, you can add database connections and data
components to your projects. You can drag the required component or service from the
Server Explorer window to your project to include a reference to the component or
service. For example, when you select a service and drag it to the designer, a
ServiceController component that interacts with the service is created.

In addition to services and database connections, the Server Explorer window also
enables you to add event logs, message queues, and performance counters to your
project.

The Server Explorer window also displays a toolbar that provides buttons for commonly
used commands. You can use the buttons on the toolbar to perform tasks such as
connecting to databases and servers.

Now that you’ve learned about the various tools available in the Visual Studio.NET IDE,
the following section describes the other windows available in Visual Studio.NET.
Other Windows in Visual Studio .NET
In addition to the windows you learned about in the preceding sections, Visual
Studio.NET also provides other windows that are not displayed when you open the
Visual Studio.NET IDE. However, you can access these windows when creating projects
in the IDE.

In this section, you will learn about the following windows:
 Properties

 Task List
 Command

You will now take a look at each of these windows.

The Properties Window

As the name suggests, the Properties window displays the properties of a component.
You can open the Properties window by selecting the Properties Window command from
the View menu. When you select a component or object in the Solution Explorer window
or designer, the properties associated with the selected component are displayed in the
Properties window. Using the Properties window, you can view and edit the properties of
a file, folder, project, or solution. You can also use this window to modify the properties
of the components of projects and solutions.
The Properties window also enables you to edit the properties of the controls you add to
forms. For example, to view and modify the properties of a button control, open the
designer and select the button control. When you select the button control, the properties
associated with the button control are displayed in the Properties window, as shown in
Figure 3-15. In the Properties window, you can edit the properties associated with the
button control.

Figure 3-15: The Properties window

The properties displayed in the Properties window are different for different controls. In
other words, the properties available for a button control differ from the properties
available for a label control. Note that some properties in the Properties window appear
in gray. These are read-only properties.

The Properties window also displays a toolbar that contains various buttons such as
Categorized, Alphabetic, and Property Pages. Some of the buttons available on the
toolbar are explained in the following list:

 Categorized enables you to group the properties for a control into
categories. For example, when you select a button control and click the
Categorized button on the toolbar, the properties for the button control
are grouped into categories such as Appearance, Behavior, Data, and
Layout. Similarly, when you select a form in the Solution Explorer window
and click the Categorized button on the toolbar, the form properties are
grouped into Advanced and Misc. categories.

 Alphabetic helps arrange the properties for a control alphabetically.

 Property Pages displays the Property Pages dialog box for the selected
component. You can use the Property Pages dialog box to view and edit
properties related to the configuration of the project.

The Task List

The Task List window displays error messages and warnings when you compile your
applications. You can double-click on an error message in the Task List window to view
the part of the code in which the error was encountered.

To open the Task List window, select the Other Windows command from the View menu.
From the Other Windows submenu, select the Task List command to open the Task List.
Figure 3-16 displays the Task List window. Note that the Task List window displays error
messages, warnings, and tasks.

Figure 3-16: The Task List window

In addition to displaying error messages and warnings, the Task List window enables
you to add comments to your code. You can add comments to code for future reference.
When other developers need to work on your project, they can use comments to
understand the structure of the code in your application.

The Command Window

You can use the Command window to execute the commands available in Visual
Studio.NET. To open the Command window, select the Other Windows command from
the View menu. From the Other Windows submenu, select the Command Window
command to open the Command window.

The Command window has two modes, Command and Immediate. In the Command
mode, you can execute Visual Studio.NET commands such as Print, Open, Save,
SaveAs, and SaveAll.
The Command window is displayed in Figure 3-17.

Figure 3-17: The Command window

In the Immediate mode, you can debug applications. The Immediate mode also enables
you to evaluate expressions.

Summary
In this chapter, you learned about the components of the Visual Studio.NET IDE, such as
the menus and toolbars available. You also learned about the features and functions of
the various windows and tools in the IDE.

Chapter 4: Variables and Operators
In the preceding chapter, you were introduced to the Visual Basic.NET IDE. This chapter
will familiarize you with how variables and operators are used in Visual Basic.NET.

Using Variables
Most applications deal with different types of data, such as text or numeric. An
application needs to store this data for later use and for performing certain operations on
the data, such as calculating totals. To store data, a programming language uses
variables. A variable is a temporary memory location. Like all programming languages,
Visual Basic.NET also uses variables to store data. A variable has a name (a word to
refer to it) and a data type (which determines what kind of data it can hold).

Visual Basic.NET provides various data types that help you store different kinds of data.
The following section discusses these data types.

Data Types
A data type refers to the kind of data a variable can hold. Some of the data types that
Visual Basic.NET provides are Integer, Long, String, and Byte. A more thorough list of
data types can be found in Table 4-1.
Table 4-1: The Data Types in Visual Basic.NET

Data Type Description
Integer Stores

numeric
data.
Integer
data is
stored as a
32-bit (4-
byte)
number.

Long Stores
numeric
data that
can exceed
the range
supported
by the
Integer
data type.
Long data is
stored as a
64-bit (8-
byte)
number.

Short Stores a
smaller
range of
numeric
data
(between –
32,678 and
32,767).
Short data
is stored as
a signed 16-
bit (2-byte)
number.

Byte Stores
binary data.
Can also
store ASCII

Table 4-1: The Data Types in Visual Basic.NET

Data Type Description
character
values in the
numeric
form.

Double Stores large
floating-
point
numbers.
Double
data is
stored as an
IEEE 64-bit
(8-byte)
floating-
point
number.

Single Stores
single-
precision
floating-
point values.
Single
data is
stored as an
IEEE 32-bit
(4-byte)
floating-
point
number.

Decimal Stores very
large
floating-
point values.
Decimal
data is
stored as a
128-bit (16-
byte) signed
integer to
the power of
10.

Boolean Stores data
that can
have only
two values:
True or
False.
Boolean
data is
stored as a
16-bit (2-
byte)
number.

Char Stores a
single

Table 4-1: The Data Types in Visual Basic.NET

Data Type Description
character.
Char data is
stored as a
16-bit (2-
byte)
unsigned
number.

DateTime Stores date
and time.
DateTime
data is
stored as
IEEE 64-bit
(8-byte) long
integers.

String Stores
alphanumeri
c data (that
is, data
containing
numbers as
well as text).

Object Stores data
of any type,
such as
Integer,
Boolean,
String, or
Long.

Some changes to the data types in Visual Basic.NET (as compared to earlier versions of
Visual Basic) are worth mentioning here:

 In Visual Basic 6.0, the Variant data type is used to store data of any
type. In Visual Basic.NET, the Object data type does this job.

 In Visual Basic 6.0, a date is stored in the Double data type. In Visual
Basic.NET, the DateTime data type stores data in the date and time
format.

 Visual Basic.NET doesn’t support the Currency data type. Instead, the
Decimal data type does the same job (that is, it stores currency values).

Now that you've had a look at the various data types, you'll see how variables are
declared in Visual Basic.NET.

Variable Declarations

Declaring a variable means telling a program about it in advance. To declare a variable,
use the Dim statement. The syntax for declaring a variable is as follows:
Dim VariableName [As Type]
The optional As Type clause in the Dim statement defines the data type or object type
of the variable you are declaring. Consider the following two statements:
Dim NumVar As Integer
Dim StrVar As String

The first statement declares an Integer variable with the name NumVar, and the
second one declares a String variable with the name StrVar.

You can also declare variables by using identifier type characters. These characters
specify the data type of a variable. For example, consider the following statement:
Dim StrVar$
In this statement, $ is the identifier type character for a String variable. Table 4-2 lists
the various identifier type characters that can be used in Visual Basic.NET.
Table 4-2: The Identifier Type Characters in Visual Basic.NET

Data Type Identifier
Type
Charact
er

Integer %
Long &
Single !
Double #
Decimal @
String $

Before discussing the various variable declarations possible in Visual Basic.NET, it is a
good idea to have a look at some of the ground rules for naming a variable. Although it is
not necessary to follow a naming convention when naming variables, following one does
make coding easy for the developers and for people who want to understand the code.

A variable name …
 Must begin with a letter.
 Can’t contain a period or an identifier type character.
 Must not exceed 255 characters.
 Must be unique within the same scope. (A scope defines the range from

which a variable can be accessed, such as a procedure, a form, or a
module.)

Note A module is a collection of procedures, and a procedure is a set of
statements used to perform some specific task. You will learn
about procedures, forms, and modules in later chapters.

Now that you've had a look at how to declare a variable, it is time to discuss how to
initialize variables. You'll also take a look at some related keywords in Visual Basic.NET.

Variable Initialization
By default, a variable contains a value when it is declared. For example, an Integer
variable contains 0, and a Boolean variable stores False by default.

You can initialize a variable to set a start value. The following code explains this:
Dim NumVar As Integer
NumVar = 20
The first statement declares an Integer variable NumVar, and the second one
initializes it with the value 20. Earlier versions of Visual Basic did not allow the
initialization of variables in the same line as their declarations. At last, Visual Basic.NET
now allows this. This means you can now write the following:
Dim NumVar As Integer = 20

The New Keyword
As you know, you use the Dim statement to declare or create variables. However, the
variables are actually created when you use them in code or initialize them. You can use

the New keyword to actually create a variable the moment you declare it. Consider the
following code statements:
Dim NumVar As Integer
NumVar = New Integer()

or
Dim NumVar As Integer = New Integer()

or
Dim NumVar As New Integer()
Each of the preceding statements creates an Integer variable with the name NumVar.

The Nothing Keyword
Visual Basic.NET provides you with the Nothing keyword if you want to dissociate a
variable from its data type. For example, if you assign Nothing to an Integer
variable, the variable no longer contains the value it was holding and instead contains
default value of its data type. To understand this better, here’s an example:
Dim Ctr As Integer=10
Ctr=Nothing
After the execution of the first statement, Ctr contains the value 10. After the execution
of the second statement, it contains Nothing. This means it now contains the value 0,
which is the default value for an Integer variable.

The Null Keyword
As you know, in Visual Basic 6.0, the Null keyword is used to indicate that the variable
contains no valid data, and the IsNull function is used to test for Null. In Visual
Basic.NET, Null is still a reserved keyword, but it has no syntactical value, and the
IsNull function is not supported. Visual Basic.6.0 supports Null propagation. This
means that if you use Null in an expression, the result is also Null. Visual Basic.NET
doesn’t support this Null propagation.
When upgrading your Visual Basic 6.0 application to Visual Basic.NET, Null is
converted to DBNull and IsNull to IsDBNull. There is a slight difference in the
behavior of DBNull as compared to Null. The difference is that Null can be used in
functions and assignments and DBNull cannot.

Note You will learn about functions in Chapter 7, “Procedures and
Functions.”

Implicit and Explicit Declarations
Visual Basic.NET allows you to declare variables implicitly as well as explicitly. Implicit
declaration means using a variable without declaring it. For example, consider the
following statement:
NumVar = 2 * 5
In this statement, NumVar is a variable that stores the product of 2 and 5. In such a
situation, Visual Basic.NET creates the variable automatically and also stores the result,
10, in it. However, this might lead to undesirable program results. For example, if you
misspell the name of an implicitly declared variable at some other point in the program,
the program will not give errors, but the result will be incorrect. To prevent this, you
should declare variables explicitly.
The Option Explicit statement ensures that variables are declared before being
used. The syntax is as follows:
Option Explicit [On | Off]
On is used for explicit declarations, and Off is for implicit declaration. By default,
Option Explicit is On.

Variable Scope
The scope of a variable determines its accessibility—that is, which part of the program or
application can use it. For example, a variable can be used only within a particular block
of code or in the entire program. Based on its accessibility, a variable can be called a
local or module-level variable.
A variable that is declared inside a procedure can be accessed only within that
procedure. Such a variable is referred to as a local variable. Sometimes you need to use
a variable throughout an application or across modules within an application. Such
variables are referred to as module-level variables. These variables are declared in the
declaration section of the module. Module-level variables are further classified as private
or public.

Private variables can be used only within the module in which they are declared. These
can be declared only at the module level. The following statements declare a private
variable:
Private Dim NumVar As Integer

or
Private NumVar As Integer

Public variables can be used across modules. These can also be declared at the module
level. The following statements declare a public variable:
Public Dim NumVar As Integer

or
Public NumVar As Integer

Type Conversions
Consider an application in which you use three text boxes to accept three numbers from
the user. The application needs to calculate and display the result. However, when you
try to store the input numbers in some Integer variables, Visual Basic.NET flashes an
error message saying that implicit conversion from String to Integer is not allowed.
The same code in Visual Basic 6.0 would have worked fine. This is because Visual Basic
6.0 automatically does some data-type conversions—such as from String to Number
and vice versa—depending on the data stored in a variable. This process of converting
from one data type to another is referred to as type conversion. Visual Basic.NET does
not do this automatically. Instead, you have to use some predefined functions provided
by Visual Basic.NET, such as CInt and CStr, to achieve the same result. CInt and
CStr convert the supplied data to Integer and String, respectively.

Visual Basic.NET provides two types of conversions, widening and narrowing:
 Widening conversions do not result in data loss and are always

successful. For example, data conversion from Short to Integer.
 Narrowing conversions might result in data loss and might or might not

be successful. For example, data conversion from Integer to Short.
The functions used for type conversions are also referred to as cast operators, and the
conversions that involve these cast operators are called explicit conversions. The type
conversions that do not involve cast operators are referred to as implicit conversions.
Both of the conversion types supported by Visual Basic.NET, widening and narrowing,
can be explicit and implicit.

The Option Strict statement performs type conversions successfully. The syntax for this
statement is as follows:
Option Strict [On | Off]
If you set Option Strict as On, the data type of variables is checked before
conversion. If it is set as Off, implicit type conversion can happen. By default, this is set
as On.

Note When Option Strict is set as On, you need to declare variables
explicitly.

Thus far, you have looked at data types and some associated concepts. Now, you will go
a step further and see whether Visual Basic.NET supports constants.

Constants
Consider a situation in which you need to use a particular value throughout an
application. For example, you need an application that calculates and displays the
percentage of scores obtained by each candidate in an examination. For such a
calculation, the application needs to use the maximum score in a number of places. In
such a scenario, instead of repeating the value each time, you can use constants. A
constant is a variable whose value remains the same during the execution of a program.

Consider the following statements:
Const MaxScore As Integer = 100

or
Const MaxScore = 100
Each of the preceding statements declares a constant with the name MaxScore and
initializes it with the value 100.

The processing of constants is faster than variables, and if there is any change in value,
you just need to change the value at the point of declaring the constant.

Now that you understand variables and related concepts, the next logical step is to
discuss how to perform various operations on these variables.
Using Operators
An operator is a unit of code that performs an operation on one or more variables or
elements. An operator can be used to perform arithmetic, concatenation, comparison, or
logical operations.

Visual Basic.NET supports the following operators:
 Arithmetic operators for mathematical calculations
 Assignment operators for assignment operations
 Comparison operators for comparisons
 Logical/bitwise operators for logical operations
 Concatenation operators for combining strings

Next, you will take a look at arithmetic, assignment, comparison, and logical/bitwise
operators in more detail.

Arithmetic Operators

As explained in the preceding section, arithmetic operators are used to perform
mathematical calculations. The arithmetic operators available in Visual Basic.NET are
discussed in the following sections.

The ^ Operator
The ^ operator is used to raise a specified number to the power of another number. The
syntax for the ^ operator is as follows:
Number ^ Exponent
In the syntax, both Number and Exponent denote numeric expressions. When you use
the ^ operator, the resultant value is Number raised to the power of the Exponent.

The ^ operator supports only the Double data type. If the numbers supplied to the ^
operator are of any other data type, they are converted to Double. Consider the following
examples:
Dim MyNum As Double
MyNum = 2 ^ 2
 'Returns a value of 4
MyNum = (-5) ^ 3
 'Returns a value of -125
MyNum = (-5) ^ 4
 'Returns a value of -625

The * Operator
The * operator is used to multiply two numbers. The syntax for the * operator is as
follows:
Number1 * Number2
In the syntax, Number1 and Number2 are numeric expressions. When you use the *
operator, the result is the product of Number1 and Number2.

The * operator supports the following data types:
 Byte
 Short
 Integer
 Long
 Single
 Double
 Decimal

Take a look at the following examples:
Dim MyNum As Double
MyNum = 2 * 2
 'Returns a value of 4
MyNum = 459.35 * 334.903
 'Returns a value of 153836.315

The / Operator
The / operator divides two numbers and returns the result as a floating-point number.
The syntax for the / operator is as follows:
Number1 / Number2
In the syntax, Number1 and Number2 are numeric expressions. The / operator returns
the quotient of Number1 divided by Number2 as a floating-point number.

The / operator supports the following data types:
 Byte
 Short
 Integer
 Long
 Single
 Double
 Decimal

The following examples use the / operator to divide two numbers:

Dim MyNum As Double
MyNum = 10 / 4
 'Returns a value
of 2.5
MyNum = 10 / 3
 'Returns a value
of 3.333333

The \ Operator
The \ operator divides two numbers and returns the result as an integer. The syntax for
the \ operator is as follows:
Number1 \ Number2
In the syntax, Number1 and Number2 represent two integers. When you use the \
operator to divide two numbers, the result is the integer quotient of Number1 and
Number2. When dividing Number1 by Number2, the remainder (if any) is ignored.

The following data types are supported by the \ operator:
 Byte
 Short
 Integer
 Long

Take a look at the following examples to understand how the \ operator works. The result
is an integer representing the integer quotient of the two operands.
Dim MyNum As Integer
MyNum = 11 \ 4
 'Returns 2
MyNum = 9 \ 3
 'Returns 3
MyNum = 100 \ 3
 'Returns 33
MyNum = 67 \ -3
 'Returns -22

Notice that in each of the preceding examples, the remainder is ignored.

The Mod Operator
The Mod operator divides two numbers and returns the remainder. The syntax for the
Mod operator is as follows:

Number1 Mod Number2
In the syntax, Number1 and Number2 represent any two numbers. When you use the
Mod operator, it returns the remainder left after dividing Number1 by Number2.
The Mod operator supports the following data types:

 Byte
 Short
 Integer
 Long
 Single
 Double
 Decimal

Let's look at a few examples in which the Mod operator is used.

Dim MyRem As Double
MyRem = 6 Mod 2
 'Returns 0
MyRem = 7 Mod 3
 'Returns 1
MyRem = 12 Mod 4.3
 'Returns 3.4
MyRem = 47.9 Mod 9.35
 'Returns 1.15
Note that if you use a floating-point number with the Mod operator, the remainder is also
a floating-point number.

The + Operator
The + operator is used to add two numbers or to concatenate two strings. The syntax for
the + operator is as follows:
Expression1+ Expression2
In the syntax, Expression1 and Expression2 can either be numbers or strings.
When you use the + operator with numbers, the result is the sum of Expression1 and
Expression2. If Expression1 and Expression2 are strings, the result is a
concatenated string. When you use the + operator, however, both Expression1 and
Expression2 should be of the same type.

The + operator supports the following data types:
 Byte
 Short
 Integer
 Long
 Single
 Double
 Decimal
 String

Consider the following examples:
Dim MyNum As Integer
Dim StrVar As String
MyNum = 2 + 5
 'Returns 7
MyNum = 569.08 + 24889
 'Returns 25458.08
StrVar = "Visual Basic" + ".NET"
 'Returns Visual Basic.NET

The – Operator
The – operator is used to calculate the difference between two numbers. The syntax for
the – operator is as follows:
Number1—Number2
In the syntax, Number1 and Number2 are two numbers.

The – operator supports the following data types:
 Byte
 Short
 Integer
 Long
 Single
 Double
 Decimal

Consider the following examples:
Dim MyDiff As Double
MyDiff = 7 - 2
 'Returns 5
MyDiff = 470.35 - 247.72
 'Returns 222.63

Assignment Operators

As previously mentioned, assignment operators are used for assignment operations. In
other words, they are used to assign values or expressions to variables or properties.
The most commonly used assignment operator is =. Additionally, Visual Basic.NET now
supports assignment operators such as +=, –=, *=, /=, \=, &=, and ^=. The following
sections explain these operators.

The += Operator
The += (addition assignment) operator is a combination of two operators, + and =.
Therefore, it performs these two operations (addition and assignment) using a single +=
operator. In other words, the += operator adds the expression to the variable and also
assigns the result value to the variable in one shot. The syntax for += is as follows:
Variable+=Expression

In the preceding syntax, Variable is any numeric or string variable, and Expression is any
numeric or string expression. Consider the following example that uses numeric
variables:
Dim NumVar As Integer=10
 'NumVar contains 10
NumVar += 50
 'NumVar now contains 60

Consider another example that uses the += operator:
Dim NumVar1 As Integer=20
Dim NumVar2 As Integer=30
NumVar1+=NumVar2
 'NumVar1 now contains 50 and NumVar2
still contains 30

Now consider the following code that uses the += operator with string values:
Dim StrVar As String="String"
StrVar+="Result"
 'StrVar now contains the value String
Result

The –= Operator
The –= (subtraction assignment) operator is a combination of the – and = operators.
Therefore, it performs these two operations (subtraction and assignment) using a single
–= operator. In other words, the –= operator subtracts the value and also assigns the
result to the variable in one shot. The syntax for –= is as follows:
Variable-=Expression
In the preceding syntax, Variable is any numeric variable, and an Expression is any
numeric expression. Consider the following example, which uses the –= operator:
Dim NumVar As Integer=100
 'NumVar contains 100
NumVar -= 60
 'NumVar now contains 40

Consider another example:
Dim NumVar1 As Integer=50
Dim NumVar2 As Integer=30
NumVar1-=NumVar2
 'NumVar1 now contains 20 and NumVar2
still contains 30

The *= Operator
The *= (multiplication assignment) operator is a combination of the * and = operators.
Therefore, it performs these two operations (subtraction and assignment) using a single
*= operator. In other words, the *= operator subtracts the expression from the variable
and also assigns the result to the variable in one step. The syntax for *= is as follows:
Variable*=Expression
In the preceding syntax, Variable is any numeric variable, and Expression is any
numeric expression. Consider the following example, which uses the *= operator:
Dim NumVar As Integer=10
 'NumVar contains 10
NumVar *= 4
 'NumVar now contains 40

Consider another example:
Dim NumVar1 As Integer=10
Dim NumVar2 As Integer=2
NumVar1*=NumVar2
 'NumVar1 now contains 20 and NumVar2
still contains 2

The /= Operator
The /= (division assignment) operator is a combination of the / and = operators.
Therefore, it performs these two operations (division and assignment) using a single /=
operator. In other words, the /= operator divides the variable by the expression and also
assigns the result to the variable. The syntax for /= is as follows:
Variable/=Expression

In the preceding syntax, Variable is any numeric variable, and Expression is any
numeric expression. Consider the following example, which uses the /= operator:
Dim NumVar As Double=10.4
 'NumVar contains 10.4
NumVar /= 2
 'NumVar now contains 5.2

Consider another example:
Dim NumVar1 As Integer=50
Dim NumVar2 As Integer=10
NumVar1/=NumVar2
 'NumVar1 now contains 5 and
NumVar2 still contains 10

The \= Operator
The \= (integer division assignment) operator is a combination of the \ and = operators.
Therefore, it performs these two operations (integer division and assignment) using a
single \= operator. In other words, the \= operator divides the variable by the expression
and also assigns the integer result to the variable. The syntax for \= is as follows:
Variable\=Expression
In the preceding syntax, Variable is any numeric variable, and an Expression is any
numeric expression. Consider the following example, which uses the \= operator:
Dim NumVar As Double=10.4
 'NumVar contains 10.4
NumVar \= 2
 'NumVar now contains 5

Consider another example:
Dim NumVar1 As Integer=50
Dim NumVar2 As Integer=10
NumVar1\=NumVar2
 'NumVar1 now contains 5 and
NumVar2 still contains 10

The &= Operator
The &= (concatenate assignment) operator is a combination of the & and = operators.
Therefore, the &= operator concatenates the string variable and the string expression
and also assigns the concatenated string to the string variable. The syntax for &= is as
follows:
Variable&=Expression
In the preceding syntax, Variable is any string variable, and an Expression is any
string expression. Consider the following example, which uses the &= operator:
Dim StrVar As String="My string"
 'NumVar contains My string
NumVar &= " is concatenated."
 'NumVar now contains My string is
concatenated.

Consider another example:
Dim StrVar1 As String="My string"
Dim StrVar2 As String=" is concatenated."
StrVar1&=StrVar2
 'StrVar1 now contains My string is
concatenated and StrVar2 still contains My string

The ^= Operator
The ^= operator is used to raise a variable to the power of an expression and also to
assign the result to the variable. The syntax for the ^= operator is as follows:
Number ^= Exponent
In this syntax, both Number and Exponent denote numeric expressions. When you use
the ^= operator, first Number is raised to the power of Exponent, and then the result is
assigned back to Number.

Consider the following example:
Dim NumVar As Double = 3
NumVar ^= 2
 'NumVar now contains 9

Comparison Operators

As the name suggests, you use comparison operators to compare expressions. In Visual
Basic.NET, you can use the following operators to compare expressions:

 The relational operators
 The Is operator
 The Like operator

The Relational Operators
You use relational operators to compare any two expressions. When you use a relational
operator, the result is a Boolean value. The syntax for using relational operators is as
follows:
Result = Expression1 ComOperator Expression2
In the syntax, Result is a Boolean value representing the result of the comparison,
ComOperator represents the relational operator, and Expression1 and
Expression2 represent expressions that are being compared.
The various relational operators available in Visual Basic.NET are listed in Table 4-3.
Table 4-3 also explains the conditions that determine the value of Result.
Table 4-3: The Relational Operators in Visual Basic.NET

Operator Result Is
True If

Result Is
False If

< (less than) Expression1
<
Expression2

Expression1
>=
Expression2

<= (less than or Expression1
<=
Expression2

Expression1
>
Expression2
equal to)

> (greater than) Expression1
>
Expression2

Expression1
<=
Expression2

>= (greater than or Expression1 Expression1

Table 4-3: The Relational Operators in Visual Basic.NET

Operator Result Is
True If

Result Is
False If

>=
Expression2

<
Expression2
equal to)

= (equal to) Expression1
=
Expression2

Expression1
<>
Expression2

<> (not equal to) Expression1
<>
Expression2

Expression1
=
Expression2

When you use the relational operators to compare strings, the result is calculated on the
basis of the alphabetical sort order of the strings. When comparing strings, you need to
enclose the string expressions in quotes.

Here are a few examples to help you understand the use of relational operators:
Dim MyResult As Boolean
MyResult = 56 < 35
 'Returns False
MyResult = 3 <> 9
 'Returns True
MyResult = "6" > "333"
 'Returns True

The Is Operator
In Visual Basic.NET, the Is operator is used to compare two object references. The
syntax for the Is operator is as follows:
Result = Object1 Is Object2
In the syntax, Result is a Boolean value representing the result of the comparison,
and Object1 and Object2 represent objects being compared. The Is operator
determines whether both Object1 and Object2 refer to the same object. However, the
Is operator does not compare the values of Object1 and Object2. The value of
Result is True if Object1 and Object2 refer to the same object; otherwise,
Result is False.

Here are a few examples in which the Is operator is used:
Dim Object1, Object2 As New Object
Dim MyObjectA, MyObjectB, MyObjectC As Object
Dim MyResult As Boolean
MyObjectA = Object1
MyObjectB = Object2
MyObjectC = Object2
MyResult = MyObjectA Is MyObjectB

'Returns False
MyResult = MyObjectB Is MyObjectC

'Returns True
MyResult = MyObjectA Is MyObjectC

'Returns False

The Like Operator
In Visual Basic.NET, the Like operator is used to compare strings. The syntax for the
Like operator is as follows:

Result = String Like Pattern
In the syntax, Result is a Boolean value that represents the result of the comparison,
String represents a string expression, and Pattern also represents a string
expression. When using the Like operator, you can also use wildcards to specify a
Pattern. Table 4-4 shows the various characters allowed in Pattern and provides a
description.
Table 4-4: The Characters Allowed in Pattern in the Like Operator

Character in Pattern Matches
? Any one

characte
r

* Zero or
more
characte
rs

Any
single
digit (0–
9)

[list] Any one
characte
r in the
specified
list

[!list] Any one
characte
r other
than the
characte
rs in list

When you use the Like operator, Result is True if String matches Pattern. In
addition, if both String and Pattern are empty strings, Result is True. If String
does not match Pattern, Result is False. Also, if either String or Pattern is an
empty string, Result is False.

Consider the following examples:
Dim MyValue As Boolean
MyValue = "A" Like "A"
 'Returns True
MyValue = "A" Like "a"
 'Returns False
MyValue = "C" Like "[A-F]"

 'Returns True
MyValue = "H" Like "[A-F]"
 'Returns False
MyValue = "D" Like "[!A-F]"
 'Returns False
MyValue = "zxyz" Like "z*z"
 'Returns True
MyValue = "GFdAT13h4g" Like "GF?A*"
 'Returns True

Logical/Bitwise Operators

As previously mentioned, logical operators enable you to perform logical operations.
Visual Basic.NET provides the following logical operators:

 And operator
 Not operator
 Or operator
 Xor operator
 AndAlso operator
 OrElse operator

You might be familiar with the first four operators because they are available in previous
versions of Visual Basic. The AndAlso and OrElse operators are additional operators
provided by Visual Basic.NET.

The following sections look at each of the logical operators in detail.

The And Operator
The And operator is used to perform logical operations on Boolean expressions. You
can also use the And operator to perform bitwise operations on numeric expressions.
The syntax for the And operator is as follows:

Result = Expression1 And Expression2
In the syntax, Result, Expression1, and Expression2 are either Boolean values
or numeric expressions.
When using Boolean expressions with the And operator, if both Expression1 and
Expression2 evaluate to True, then Result is True. If either of the Boolean
expressions evaluate to False, Result is False. If both Expression1 and
Expression2 evaluate to False, Result is False.
When using the And operator with numeric expressions, the And operator performs a
bitwise comparison of identically positioned bits in two numeric expressions. Based on
the comparison, the And operator sets the value of Result. The calculation of Result
in a bitwise comparison is explained in Table 4-5.
Table 4-5: The Calculation of Result in a Bitwise Comparison by Using the And
Operator

If Bit in Expression1 Is And Bit in
Expressi
on2 Is

Result
Is

0 0 0

0 1 0

1 0 0

1 1 1

Consider the following examples:
Dim X As Integer = 8
Dim Y As Integer = 7
Dim Z As Integer = 5
Dim MyResult As Boolean
MyResult = X > Y And Y > Z
 'Returns True
MyResult = Y > X And Y > Z
 'Returns False

This following examples explain using the And operator for performing bitwise
comparison:
Dim A As Integer = 10
Dim B As Integer = 8
Dim C As Integer = 6
Dim MyResult As Integer
MyResult = (A And B)
 'Returns 8
MyResult = (A And C)
 'Returns 2
MyResult = (B And C)
 'Returns 0

The Not Operator
The Not operator is used to perform logical operations on Boolean expressions and
bitwise operations on numeric expressions. The syntax for the Not operator is as
follows:
Result = Not Expression
In the syntax, both Result and Expression are either Boolean values or numeric
expressions.
When using Boolean values with the Not operator, if Expression is True, then
Result is False. If Expression is False, Result is True.
When using numeric expressions with the Not operator, if the bit in Expression is 0,
then the bit in Result is 1. If the bit in Expression is 1, the bit in Result is 0.
The following examples use the Not operator to perform bitwise operations on numeric
expressions:
Dim X As Integer = 8
Dim Y As Integer = 7
Dim MyResult As Boolean
MyResult = Not(X > Y)
 'Returns False
MyResult = Not(Y > X)
 'Returns True
Dim A As Integer = 10
Dim B As Integer = 8
Dim MyCheck As Integer
MyCheck = (Not A)

 'Returns -11
MyCheck = (Not B)
 'Returns -9

The Or Operator
The Or operator is used to perform logical and bitwise operations on Boolean and
numeric expressions, respectively. The syntax for the Or operator is as follows:

Result = Expression1 Or Expression2
In the syntax, Result, Expression1, and Expression2 are either Boolean values
or numeric expressions.
When using Boolean expressions with the Or operator, if either Expression1 or
Expression2 evaluates to True, then Result is True. If both Expression1 and
Expression2 evaluate to True, Result is True. If both Expression1 and
Expression2 evaluate to False, Result is False.
When using the Or operator with numeric expressions, the Or operator works in the
same manner as the And operator. It performs a bitwise comparison of identically
positioned bits in two numeric expressions. Based on the comparison, the Or operator
sets the value of Result. The calculation of Result in a bitwise comparison is
explained in Table 4-6.
Table 4-6: The Calculation of Result in a Bitwise Comparison by Using the Or
Operator

If Bit in Expression1 Is And Bit in
Expressi
on2 Is

Result
Is

0 0 0

0 1 1

1 0 1

1 1 1

Consider the following examples:
Dim A As Integer = 9
Dim B As Integer = 8
Dim C As Integer = 7
Dim MyCheck As Boolean
MyCheck = A > B Or B > C
 'Returns True
MyCheck = B > A Or B > C
 'Returns True
MyCheck = B > A Or C > B
 'Returns False
The following example uses the Or operator to perform bitwise operations on numeric
expressions:
Dim A As Integer = 5
Dim B As Integer = 6
Dim C As Integer = 7
Dim MyCheck As Integer
MyCheck = (A Or B)

 'Returns 7
MyCheck = (A Or C)
 'Returns 7
MyCheck = (B Or C)
 'Returns 7

The Xor Operator
You can use the Xor operator to perform logical exclusion operations on two Boolean
expressions. In addition, the Xor operator is also used to perform bitwise exclusion
operations on two numeric expressions. The syntax for the Xor operator is as follows:

Result = Expression1 Xor Expression2
In the syntax, Result, Expression1, and Expression2 are either Boolean values
or numeric expressions.
When using Boolean expressions with the Xor operator, if either Expression1 or
Expression2 evaluates to True, then Result is True. If both Expression1 and
Expression2 evaluate to True, Result is False. If both Expression1 and
Expression2 evaluate to False, Result is False.
When using the Xor operator with numeric expressions, the Xor operator works as a
bitwise operator. In other words, it performs a bitwise comparison of expressions. Based
on the comparison, the Xor operator sets the value of Result. The calculation of
Result in a bitwise comparison is explained in Table 4-7.
Table 4-7: The Calculation of Result in a Bitwise Comparison by Using the Xor
Operator

If Bit in Expression1 Is And Bit in
Expressi
on2 Is

Result
Is

0 0 0

0 1 1

1 0 1

1 1 0
The following examples use the Xor operator to perform bitwise operations on numeric
expressions:
Dim A As Integer = 10
Dim B As Integer = 5
Dim C As Integer = 2
Dim MyCheck As Boolean
MyCheck = A > B Xor B > C
 'Returns False
MyCheck = B > A Xor B > C
 'Returns True
MyCheck = B > A Xor C > B
 'Returns False

Dim A As Integer = 10
Dim B As Integer = 5
Dim C As Integer = 2
Dim MyCheck As Integer

MyCheck = (A Xor B)
 'Returns 15
MyCheck = (A Xor C)
 'Returns 8
MyCheck = (B Xor C)
 'Returns 7

The AndAlso Operator
As previously mentioned, the AndAlso operator is new to the Visual Basic.NET
language. This operator was not available in previous versions of Visual Basic. The
AndAlso operator is used to perform logical operations on expressions. The syntax for
the AndAlso operator is as follows:

Result = Expression1 AndAlso Expression2
In the syntax, Result, Expression1, and Expression2 are all Boolean
expressions. The AndAlso operator works like the And operator, but it is smarter.
When using Boolean expressions with the AndAlso operator, the operator first checks
the value of Expression1. If Expression1 evaluates to True, the AndAlso operator
checks the value of Expression2. It sets the value of Result based on the value of
Expression2. If Expression2 evaluates to True, Result is True; otherwise,
Result is False. However, if Expression1 evaluates to False, the AndAlso
operator does not check the value of Expression2 and sets the value of Result to
False.

Take a look at the following example:
Dim A As Integer = 15
Dim B As Integer = 10
Dim C As Integer = 5
Dim MyResult As Boolean
MyResult = A > B AndAlso B > C
 'Returns True
MyResult = B > A AndAlso B > C
 'Returns False
MyResult = A > B AndAlso C > B
 'Returns False
In this example, the second expression of the second statement is not evaluated
because the first expression evaluates to False. On the other hand, the second
expression of the third statement is evaluated because the first expression evaluates to
True.

The OrElse Operator
Like the AndAlso operator, the OrElse operator is also a new addition to the Visual
Basic language. This operator is available only in Visual Basic.NET. The OrElse
operator is used to perform logical operations on Boolean expressions. The syntax for
the OrElse operator is as follows:

Result = Expression1 OrElse Expression2
In the syntax, Result, Expression1, and Expression2 are Boolean expressions.
Just as the AndAlso operator is a smarter version of And, the OrElse operator is a
smarter version of the Or operator.
When using Boolean expressions with the OrElse operator, the operator first checks
the value of Expression1. If Expression1 evaluates to True, the OrElse operator
does not check the value of Expression2 and sets the value of Result to True.

However, if Expression1 evaluates to False, the OrElse operator checks the value
of Expression2. It sets the value of Result based on the value of Expression2. If
Expression2 evaluates to True, Result is True; otherwise, Result is False.

Take a look at the following example to understand how the OrElse operator works:
Dim A As Integer = 15
Dim B As Integer = 10
Dim C As Integer = 5
Dim MyResult As Boolean
MyResult = A > B OrElse B > C
 'Returns True
MyResult = B > A OrElse B > C
 'Returns True
MyResult = B > A OrElse C > B
 'Returns False
In this example, the second expression of the first statement is not evaluated because
the first expression evaluates to True. On the other hand, in the second and third
statements, the second expression is evaluated because the first expression evaluates
to False.

Summary
A variable is a memory location in which to store data. Visual Basic.NET provides
various data types to store different kinds of data. You need to declare a variable before
you can use it, and the Dim statement is used to declare a variable. Visual Basic.NET
now allows initialization of the variable in the same line where it is declared. Declaration
can be explicit or implicit. The scope of the variable refers to its accessibility and can be
public or private. Visual Basic.NET allows type conversions and constants. You can use
many operators in Visual Basic.NET to perform operations on variables. These can be
classified as arithmetic operators (for mathematical calculations), assignment operators
(for assignment operations), comparison operators (for comparisons), logical/bitwise
operators (for logical operations), and concatenation operators (for combining strings).
The AndAlso and OrElse operators are additional logical operators provided by Visual
Basic.NET.

Chapter 5: Arrays and Collections
In the preceding chapter, you learned to use variables and operators in Visual
Basic.NET. In this chapter, you will take a look at the various types of arrays and
collections supported by Visual Basic.NET.

Arrays
You already know that you use variables to store data. There might be situations in
which you need to work with multiple variables that store similar information. For
example, consider a scenario in which you need to store the names of 50 students. To
do so, you can declare 50 variables. However, declaring 50 variables is a tedious and
time-consuming task. Alternatively, you can declare an array.
An array is a collection of variables of the same data type. All the variables in an array
have the same name. These variables are called array elements. Each variable in an
array is referred to by an index number, which is its position in the array. Therefore, the
index number is what distinguishes one array element from another. For example, you
can declare an array that contains 50 variables of the String data type to store the
names of 50 students. When you declare an array, you create and initialize all variables
at once. For example, when you declare an Integer array, all the elements are initialized

to 0. It is easier to manipulate an array and its elements as compared to multiple
variables. For example, you can use the various loop structures that Visual Basic.NET
provides to manipulate arrays. You will learn more about how to manipulate arrays later
in this chapter.
All arrays that you create in Visual Basic.NET are derived from the Array class of the
System namespace. This implies that you can use the methods and properties of
System.Array type to manipulate arrays.

Now that you've had an overview of arrays, you'll take a look at how to declare arrays.

Declaring Arrays

Just like a variable, before you can use an array in a program, you need to declare the
array. When you declare an array, you specify the name of the array, its data type, and
the number of variables it contains. In Visual Basic.NET, you declare arrays in the same
manner as you declare variables, by using the Dim, Public, or Private statements. The
syntax for declaring an array is as follows:
Dim ArrayName (NumElements) [As DataType]

In the preceding syntax:
 ArrayName is the name of the array.
 NumElements is the number of elements the array can contain.
 DataType is the data type of the elements and is optional.

When declaring arrays, include parentheses after the array name to indicate that it is an
array and not a variable. To understand this better, consider the following code
statement:
Dim IntArray(10) As Integer
The preceding statement declares an Integer array by the name IntArray that can
contain 11 elements. You might be wondering why it can contain 11 elements and not 10
as stated in the code. Well, the answer is that the arrays are zero based. This means, for
the preceding statement, the index number is between 0 and 10, which adds up to 11.
The preceding statement is actually a short form of the following statement:
Dim IntArray () As Integer = New Integer(10) {}

Now you will take a look at some differences between Visual Basic.NET and earlier
versions of Visual Basic in terms of arrays. In Visual Basic 6.0, the default starting index
of an array is 0. You can change the starting index to 1 using the Option Base statement.
In addition, you can also change the starting index for individual array declarations. If the
default starting index is 0, the number of elements in the array is equal to the number
specified during declaration plus one. However, in Visual Basic.NET, the starting index
for every array is 0, and you cannot change it. This means that Visual Basic.NET does
not support the Option Base statement. This allows interoperability with arrays of other
programming languages, as most programming languages support zero-based arrays.

In an array, each element of an array is initialized as if it were a separate variable.
However, if you do not initialize an array, Visual Basic.NET initializes each array element
to the default value of the array's data type.

The following code explains how to declare and initialize an array:
Dim BooksArray(3) As String
BooksArray(0) = "VB.NET"
BooksArray(1) = "ADO.NET"
BooksArray(2) = "VC++.NET"
BooksArray(3) = "ASP.NET"
In the preceding code, BooksArray is an array that can contain four String-type
elements. VB.NET is stored at index 0 of the BooksArray array. ADO.NET is stored at

index 1, VC++.NET at index 2, and ASP.NET at index 3. Here, 0 is the starting index, or
the lower bound, of the array. The lower bound is fixed for all the arrays. The end index,
or the upper bound, is 3 and can differ from one array to another.

Visual Basic.NET provides a new syntax that you can use to declare and initialize an
array in a single line. The following example shows how to declare an array by using a
single line of code:
Dim BooksArray() As String = {"VB.NET", "ADO.NET", "VC++.NET", "ASP.NET"}

To retrieve the values stored at a particular index position, you need to specify the index
number along with the array name. For example, consider the following statements:
Dim StrVar As String
StrVar = BooksArray(2)
After the execution of the preceding statements, the StrVar String variable contains
the value VC++.NET, which is stored at index position 2 in BooksArray.

Now that you've learned to create and initialize one-dimensional arrays, you'll learn
about multidimensional arrays.

Multidimensional Arrays

In the preceding sections, you looked at one-dimensional arrays. To understand
multidimensional arrays, you will take the same book array example further. Now you
need to store book names as well as their prices. For this, you can create one array for
storing the book names and another for the prices. This might not be a very good idea,
however, because you need to declare two arrays and also remember their names to
refer to them. A good alternative would be to create an array having two dimensions and
store data at one place.
A multidimensional array is an array with more than one dimension. Although Visual
Basic.NET supports up to 32 dimensions in an array, in most cases, you would generally
use two- or three-dimensional arrays. The following statement declares a two-
dimensional array with 5 rows and 10 columns.
Dim BooksArray (5,10) As String
In the preceding statement, BooksArray is the name of the String array that can
contain 66 elements. Why 66? Well, because 66 is the product of 6 (one plus the size of
the first dimension) and 11 (one plus the size of the second dimension) and therefore is
the maximum number of elements that BooksArray can contain.

The following statement declares a three-dimensional array:
Dim BooksArray (4,9,4) As String

Again, follow the same calculation you used to arrive at 66 in the case of the two-
dimensional array from the earlier code statement. Here, the total number of elements
that the array can contain is 250. Here, 250 is the product of 5 (one plus the size of the
first dimension), 10 (one plus the size of the second dimension), and 5 (one plus the size
of the third dimension).

Now, this question arises: How do you initialize a multidimensional array? Consider the
following statements:
Dim BooksArray(5,1) As String
BooksArray(0,0) = "VB.NET"
 'Stores the value VB.NET at the index position (0,0)
BooksArray(0,1) = "$1250"
 'Stores the value $1250 at the index position (0,1) i.e 0th row and
1st column

BooksArray(1,0) = "ADO.NET"
 'Stores the value ADO.NET at (1,0) i.e. 1st row and 0th column

As you can see in the preceding statements, you need to refer to individual elements in a
multidimensional array by their row and column numbers. In this example, the index
value ranges from 0 through 5 for a row and from 0 through 1 for a column.
You can process a multidimensional array effectively by using For loops. Consider the
following code:
Dim StrArray(2, 2) As String
Dim Counter1, Counter2 As Integer
For Counter1 = 0 To 2
 For Counter2 = 0 To 2
 StrArray(Counter1, Counter2) = CStr(Counter1) + "," +
CStr(Counter2)
 Next
Next
In the preceding code, the first statement declares a String array called StrArray that
has two rows and two columns. The second statement declares two Integer variables,
Counter1 and Counter2, for processing the For loops. The statements from the third
statement onward execute the For loops and initialize every element of the StrArray
array to a String that varies from 0,0 through 2,2, depending on its location (row,
column) in the array. In other words, the values assigned are as follows:
StrArray(0,0)=0,0
StrArray(0,1)=0,1

StrArray(2,2)=2,2
You will learn about the For loops in Chapter 6, "Conditional Logic."

Note CStr is a type conversion function that converts the data passed
as a parameter to the String data type. In the preceding code,
because this function takes an Integer variable as a parameter, it
converts the Integer data to String. You need to use this function
because Visual Basic.NET doesn’t allow implicit conversion of
Integer data to String.

In this section, you learned to specify the size of an array at the time of declaring the
array. Next you will look at how to create arrays with varying sizes in Visual Basic.NET.

Dynamic Arrays
You might need an application in which you are not aware of the total number of
elements to be stored in an array. For example, you might need an array to store the
names of items bought by a customer. You cannot specify a size for this array because
you don’t know how many items a customer will buy. For such an application, you can
use a dynamic array. The size of a dynamic array can change during the execution of the
program. Consider the following statement:
Dim ItemNames() As String
The preceding statement declares an array named ItemNames that is of type String.
Note that the number of elements in the array is not specified.

Now that you know how to create dynamic arrays, you will look at how to resize a
dynamic array to suit your program's requirements.

The ReDim Statement
You use the ReDim statement to resize an array. Before you can resize an array, you
must first declare the array. To resize the array you declared earlier, you can use the
following statement:
ReDim ItemNames (25)
The preceding statement resizes the ItemNames array to store 26 elements.

You can also resize multidimensional arrays, but you cannot change the number of
dimensions and the data type of an array. Consider the following statements:
Dim BooksArray(2,3) As String
ReDim BooksArray (4,5)
In the preceding code, the first statement declares a two-dimensional array,
BooksArray, with two rows and three columns. You can store 12 elements in this array.
The second statement resizes the same array to store 30 elements. The first dimension
is changed from 2 to 4 rows and the second one from 3 to 5.
When you use the ReDim statement, an array loses all its existing data, and the
elements of the new array are initialized with the default value of their data type. To
prevent data loss due to the resizing of an array, you can use the Preserve keyword.
The following section explains this keyword.

The Preserve Keyword
As the name suggests, the Preserve keyword helps you preserve the existing data in
an array. Consider the following statement:
ReDim Preserve BooksArray(25)
The preceding statement resizes the BooksArray array and also preserves its existing
data.
You can also use the Preserve keyword for multidimensional arrays. However, only the
last dimension of a multidimensional array can be modified. To understand this better,
consider the following example:
Dim BooksArray(5,5) As String
You can resize the preceding BooksArray in the following manner:

ReDim Preserve BooksArray(10,10)

After the execution of the preceding statement, Visual Basic.NET flashes an error
message because you are trying to resize both dimensions while preserving the existing
data. However, you can use the following statement:
ReDim Preserve BooksArray(5,10)
The preceding statement resizes the last dimension of the array (from 5 to 10) and also
preserves its existing data. The following code illustrates the use of the ReDim statement
and the Preserve keyword:

Dim BooksArray() As String = {"VB.NET"}
 'Declare and initialize the array
'Displaying the content of the array
MessageBox.Show(BooksArray(0))
 'Displays VB.NET
'Specifying the size of the array
ReDim BooksArray(1)
 'Resizes the array to store two elements
 'Displaying the content of the array
MessageBox.Show(BooksArray(0))
 'Displays a blank dialog box

'Initializing the array
BooksArray(0) = "VB.NET"
BooksArray(1) = "ADO.NET"
'Displaying the contents of array
MessageBox.Show(BooksArray (0))
 'Displays VB.NET
MessageBox.Show(BooksArray (1))
 'Displays ADO.NET
'Modifying the size of array using Preserve
ReDim Preserve BooksArray (2)
'Displaying the contents
MessageBox.Show(BooksArray (0))
 'Displays VB.NET
MessageBox.Show(BooksArray (1))
 'Displays ADO.NET
'Adding more contents
BooksArray (2) = "ASP.NET"
'Displaying the new content
MessageBox.Show(BooksArray (2))
 'Displays ASP.NET
In the preceding example, BooksArray is an array of the String type. Initially,
BooksArray contains the value VB.NET. The array is then resized using the ReDim
statement. All the contents of the array are lost. Then the values of VB.NET and
ADO.NET are stored in the array. Now the size of the array is further increased.
However, this time the Preserve keyword is used along with the ReDim statement. As
a result, the initial contents are retained.
The Erase Statement
When you no longer need an array in your program, it is a good practice to release the
memory assigned to it. For releasing memory assigned to an array, you can use the
Erase statement. Here’s how you can release the memory assigned to the
BooksArray array:

Erase BooksArray
You can also specify multiple names in a single Erase statement as shown in the
following:
Erase BooksArray, ItemNames, ItemPrice
The preceding statement Erases the memory assigned to all of the three arrays:
BooksArray, ItemNames, and ItemPrice.
As you already know, Visual Basic.NET provides the System.Array class for working
with arrays. This class provides various methods you can use to manipulate arrays
easily. The next section discusses these methods.

The Array Class Methods
Some of the commonly used methods of the System.Array class are discussed in the
following sections.

The GetUpperBound Method
The GetUpperBound method takes the dimension of an array as a parameter and
returns the upper bound of the specified dimension. The syntax for this method is as
follows:

ArrayName.GetUpperBound(Dimension)

In the preceding syntax:
 ArrayName refers to the name of the array whose upper bound you

want to find.
 Dimension refers to the dimension number for which you want to find

the upper bound. You use 0 for the first dimension, 1 for the second
dimension, and so on.

Consider the following example:
Dim BooksArray(10,20,30) As String
Dim BoundVar As Integer
BoundVar = BooksArray.GetUpperBound(0)
 'Returns 10
BoundVar = BooksArray.GetUpperBound(2)
 'Returns 30

The GetLowerBound Method
The GetLowerBound method takes the dimension of an array as a parameter and
returns the lower bound of the specified dimension. However, this method will always
return 0 because the lower bound for all the dimensions is 0. The syntax for this method
is as follows:
ArrayName.GetLowerBound (Dimension)

In the preceding syntax:
 ArrayName refers to the name of the array whose lower bound you

want to find.
 Dimension refers to the dimension number for which you want to find

the lower bound.

Consider the following example:
Dim BooksArray(10,20,30) As String
Dim BoundVar As Integer
BoundVar = BooksArray.GetLowerBound(0)
 'Returns 0
BoundVar = BooksArray. GetLowerBound (2)
 'Returns 0

The GetLength Method
The GetLength method takes the dimension of an array and returns the number of
elements in the specified dimension. The syntax is as follows:
ArrayName.GetLength(Dimension)

In the preceding syntax:
 ArrayName refers to the name of the array whose length you want to

find.
 Dimension refers to the dimension number whose length you want to

find.

Consider the following example:
Dim BooksArray(10,20,30) As String
Dim BoundVar As Integer

BoundVar = BooksArray.GetLength(0)
 'Returns 11
BoundVar = BooksArray. GetLength(2)
 'Returns 31

The SetValue Method
The SetValue method sets a value for the specified array element. It takes two
parameters: the value that needs to be set and the index number of the element whose
value you want to set. The syntax for this method for a one-dimensional array is as
follows:
ArrayName.SetValue(Value, Pos)

In the preceding syntax:
 ArrayName refers to the name of the array.
 Value refers to the value you want to set for the specified index

number.
 Pos refers to the index number of the element whose value you want

to set.

The syntax for this method for a two-dimensional array is as follows:
ArrayName.SetValue(Value, Pos1, Pos2)

In the preceding syntax:
 ArrayName refers to the name of the array.
 Value refers to the value you want to set for the specified index

number.
 Pos1 and Pos2 refer to the row number and column number of the

array element whose value you want to set.

For a three-dimensional array, the syntax is as follows:
ArrayName.SetValue(Value, Pos1, Pos2, Pos3)

In the preceding syntax:
 ArrayName refers to the name of the three-dimensional array.
 Value refers to the value you want to set for the specified index

number.
 Pos1, Pos2, and Pos3 refer to the first, second, and third dimension

index for the array element whose value you want to set.
For a multidimensional array, the syntax is as follows:
ArrayName.SetValue(Value, Pos())

In the preceding syntax:
 ArrayName refers to the name of the array.
 Value refers to the value you want to store or set for the specified

index number.
 Pos() refers to the one-dimensional array that stores the index

numbers at which the value needs to be set.

Consider the following example to understand this better:
Dim BooksArray(5,5) As String
'Store VB.NET at index number 0,0
BooksArray.SetValue("VB.NET",0,0)
'Store ADO.NET at index number 0,1
BooksArray.SetValue("ADO.NET",0,1)

Arrays of Arrays
Until now, you’ve looked at the various types of arrays that are possible in Visual
Basic.NET. Now you will learn about something called an array of arrays. As the name
suggests, it is actually an array containing arrays. To create an array of arrays, you need
to declare an array of the type Object. This way, you can store different types of data in
an array. The following code explains this:
'Declare an Integer array
Dim ItemPrice(2) As Integer
'Declare a String array
Dim ItemNames(2) As String
'Initialize arrays
ItemPrice(0) = 30
ItemPrice(1) = 50
ItemNames(0) = "VB.NET"
ItemNames(1) = "ADO.NET"
'Declare Object array
Dim BooksDetails(2) As Object
'Initialize Object array
BooksDetails(0) = ItemNames
BooksDetails(1) = ItemPrice
'Displaying the values stored in Object array
MessageBox.Show(BooksDetails(0)(0))
 'Displays VB.NET as
the first index 0 refers to the array ItemNames and
 'the second index 0
refers to the first element in the array ItemNames
MessageBox.Show(BooksDetails(1)(0))
 'Displays 30 as the
first index 1 refers to the array ItemPrice and the
 'second index 0
refers to the first element in the array ItemPrice
The preceding code will give an error if the Option Strict is set to On. The reason
for the error is that the Visual Basic compiler does not allow late binding when the
Option Strict is set to On. As you already know, that late binding is the runtime
binding of objects with their classes. The concept of late binding was covered in detail in
Chapter 2, "Object-Oriented Features in Visual Basic.NET."

Some differences between Visual Basic 6.0 and Visual Basic.NET in terms of arrays are
worth mentioning here. In Visual Basic 6.0, you can initialize an array with controls. In
Visual Basic.NET, you cannot store controls as array elements. However, in Visual
Basic.NET, you can place controls into arrays and various types of collections by using
code.

In the preceding sections, you looked at various types of arrays. Now, you will look at a
related concept called collections.

Collections
Generally speaking, just like an array is a group of variables, a collection is a group of
related objects. Mostly, you use a collection to work with related objects, but collections
can be used to work with any data type.

Visual Basic.NET uses many types of collections to organize and manipulate objects in
an efficient way. For example, a Controls collection stores all the controls on a form.
Similarly, a Forms collection contains all the forms in a Visual Basic.NET project. A
collection provides an efficient way to keep track of the objects your application needs to
create and destroy during runtime. Here’s an example: In your application, you need to
take input from the user in four text boxes and then validate whether the user has
entered data in all of them. One way to do this is to write code to check for each of the
text boxes separately. Another way (and an easier one) is to check using the Controls
collection. As discussed earlier, every form has a Controls collection that represents all
the controls (such as text boxes, command buttons, and labels) present on the form.
Using this Controls collection, you can easily do the input validation check. Consider the
following code:
Dim ConObject As Control
 'Declares an instance of the Control class
For Each ConObject In Controls
 'Starts the For Each loop to process each control in the Controls
 'collection
 If TypeOf(ConObject) Is TextBox Then
 'Checks for the type of control using the TypeOf Is operator
 If ConObject.Text = "" Then
 Checks if the TextBox control is empty using the Text property
 MessageBox.Show(ConObject.Name + " Cannot be left blank.")
 'Displays a message box containing the control name and the text
 '"cannot be left blank"
 End If
 End If
Next
In the preceding code, first an instance of the Control class ConObject is created. In the
For Each loop that follows, each control in the Controls collection is processed one
after the other. In the following If statement, a check is made for the type of control. If it
is a TextBox, the following If statement checks for the text in that text box using the
Text property. If the text box is empty, a message box appears that displays the text
box name and the message.
You will learn about the For Each loop in Chapter 6.

Now that you've had an overview of collections, you will learn how to create your own
collections.

Note Control is a class provided by Visual Basic.NET. It is the base
class for all the controls, and it is included in the
System.Windows.Forms namespace.
The TypeOf Is operator is used to check for the type of an
object. It returns True if the object is of the specified type or is
derived from a specific type.

Creating Collections

In addition to the various standard collections available in Visual Basic, you can also
create your own. For this, Visual Basic.NET provides the Collection class. The syntax to
create your own collection is as follows:
Dim CollectionName As New Collection()
In the preceding syntax, CollectionName is the name of the collection you want to
create. The New keyword in the declaration statement indicates that an instance of the
Collection class is created.

After you create your own collection, you can manipulate it in the same way you would
manipulate the standard collections provided by Visual Basic.NET. However, there are
differences between the two. Consider the following example:
Dim CollObject As New Collection()
CollObject = Controls
The second statement in the preceding code initializes the collection object
CollObject with the Controls collection. However, this statement generates an error
message. You might be wondering why this is so. This is because the Controls
collection and the Collection class object are not interchangeable because both are
of different types with different usage. Moreover, they don’t have the same methods and
don’t use the same kinds of index values.

You will now learn about the starting index of a collection.

Zero-Based and One-Based Collections
A collection can be zero-based or one-based, depending on its starting index. This
means, for the zero-based collection, that the starting index is 0, and for the one-based
collection, it is 1. The Controls collection is zero-based, and an instance of the
Collection class is one-based. For a zero-based collection, the index number ranges
from 0 to one less than the total number of items in the collection. For a one-based
collection, the index number ranges from 1 to the total number of items in the collection.

The following section describes how a collection is different from an array.

Arrays vs. Collections
As you know, most applications need to manage groups of related objects. For example,
a sales application needs to store and group data about the items available and about
customers and suppliers. You can either create arrays of objects or create collections.
Arrays are relatively inflexible structures. This means that, if you want to change the size
of the array at runtime, you need to use the ReDim statement to redeclare it. All the
elements of the array should be of the same type. You can sequentially process
elements in an array and also have empty elements in between. For all these reasons,
arrays are useful for creating and working with a fixed number of groups of objects.
Collections, on the other hand, provide a more flexible way of working with groups of
objects. Because a collection is an object of a class, you need to declare a new
collection object before you can add items to that collection. Another advantage of using
collections is that the items in a collection can grow or shrink dynamically as and when
the program demands it.
Most of the collections provided by Visual Basic.NET (and the one you created) allow
you to add and remove items. But some collections like CheckedList-
Box.CheckedItems do not provide methods to add and remove items. The next section
looks at how to add items in a collection.

Adding Items in a Collection
First of all, you need to create an object of the Collection class before you can create
a collection of objects. Consider the following example:

Dim CollObject As New Collection()
In the preceding example, CollObject is the name of the new collection you are
creating. The next step is to use the Add method to add members to your collection. The
syntax for the Add method is as follows:

CollectionName.Add (Object, [Key], [Before], [After])

In the preceding syntax:
 CollectionName is the name of the new collection you are creating.
 Object is the object to be added to the collection. It can be of any

data type.
 Key is a numeric or String key that uniquely identifies the object or

item being added, and it is optional. If you do not specify this key, an
index number is automatically assigned to the item being added. For
the first item, it is 1; for the second item, it is 2; and so on.

 Before is the expression that is the unique identifier for the item
before which you want to add the new item. It is an optional argument
and can be a numeric or String expression. If it is specified as a
numeric expression, it should be between 1 and the maximum number
of items in the collection. If specified as a String expression, it
should be the unique String identifier of the item before which you
want to add the new item.

 After is the expression that is the unique identifier for the item after
which you want to add the new item. It is an optional argument and
can be numeric or String expression. If it is specified as a numeric
expression, it should be between 1 and the maximum number of items
in the collection. If specified as a String expression, it should be the
unique String identifier of the item before which you want to add the
new item.

You cannot specify the Before and After arguments together. In other words, if
Before is specified, After cannot be specified and vice versa.

Consider the following example:
CollObject.Add("VB.NET")
 'Adds the VB.NET String to the CollObject collection
Consider the following code:
CollObject.Add("VB.NET","VB")
 'Adds the VB.NET String to the CollObject collection and VB is the
 'String that uniquely identifies this item in the collection
CollObject.Add("ADO.NET", "ADO")
 'Adds the ADO.NET String to the CollObject collection and ADO is the
 'String that uniquely identifies this item in the collection. Now, there
 'are two items in the collection, VB.NET and ADO.NET.
CollObject.Add("ASP.NET", "ASP",2)
After the execution of the preceding third statement, the ASP.NET string is added to the
CollObject collection, and ASP is the string that uniquely identifies this item in the
collection. Notice the third argument. This specifies that this item is to be added before
the second item in the collection. After this statement, the sequence of items in the
CollObject collection is VB.NET, ASP.NET, and ADO.NET. The same statement can also
be written as follows:
CollObject.Add("ASP.NET", "ASP", "ADO")
Here, the String identifier for the second item is used instead of the index number 2.

Consider the following statement:

CollObject.Add("VC++.NET","VC",,"ASP")
After the execution of the preceding statement, the VC++.NET string is added to the
CollObject collection, and VC is the string that uniquely identifies this item in the
collection. Note that the third argument in this method is not specified. Instead, the fourth
argument is specified, and it indicates that this item needs to be added after the item with
ASP as the string identifier. After this statement, the sequence of the items in the
CollObject collection is VB.NET, ASP.NET, VC++.NET, and ADO.NET. The same
statement can also be written using the index number instead of the string identifier, as
follows:
CollObject.Add("VC++.NET","VC",,2)

Removing Items from a Collection
The method to remove items from a collection is Remove. The syntax is as follows:

CollectionName.Remove(Key)
In the preceding syntax, CollectionName is the name of the collection, and Key is the
unique numeric or String identifier for the item you want to remove. If you are using the
numeric key, the value can be between 1 and the maximum number of items in the
collection.

Consider the following example:
CollObject.Remove(1)
 'Removes first item from the collection
CollObject.Remove("ASP")
 'Removes the item that has ASP as the unique String identifier

The items in a collection object automatically update their numeric index number as and
when you add and remove items from the collection object.

Retrieving Items from a Collection
The Item property is used to retrieve a particular item from a collection object. The
syntax is as follows:
CollectionName.Item(Key)
In the preceding syntax, CollectionName is the name of the collection, and Key is the
unique identifier (String or numeric expression) for the item you want to retrieve.

Item is the default property for a collection object. Therefore, you need not specify the
property name while using this property. Consider the following syntax:
CollectionName(Key)

Consider the following example:
Dim StrVar As String
StrVar = CollObject.Item(2)
 'Returns the item at the index position 2
StrVar = CollObject.Item("ASP")
 'Returns the item that has the ASP String identifier
To retrieve all the items from a collection, you can use the For Each Next loop.
Consider the following code example that displays all the items of a collection object in a
message box one by one:
Dim StrVar As String
For Each StrVar in CollObject
 MessageBox.Show(StrVar)
Next

You will learn about the For Each Next loop in Chapter 7, "Procedures and
Functions."

Counting Items in a Collection
To count the total number of items in a collection, you can use the Count property. The
syntax is as follows:
CollectionName.Count()
In the preceding syntax, CollectionName is the name of the collection whose total
number of items you want to know. Consider the following example, assuming that there
are three items in the CollObject collection:

Dim BoundVar As Integer
BoundVar = CollObject.Count()
 ‘Returns 3:

Summary
In this chapter, you learned about arrays. You also learned about one- and
multidimensional arrays. Then you learned about some commonly used methods
provided by the System.Array class for manipulating arrays. You also learned about
collections and how to create them. Finally, you learned how to add and remove items
from a collection.

Chapter 6: Conditional Logic
In the preceding chapter, you learned to work with arrays and collections. Now, you will
learn about the heart of any programming language, conditional logic. Most applications
carry out a set of tasks such as accepting data from a user, validating the data, and
performing operations based on the data. To be able to perform these tasks, your
program consists of a set of statements that contain the logic required to perform these
tasks. There might be situations, however, when the user does not enter the correct
data, leading to erroneous or unpredictable results. In addition, there might be situations
when you need to execute a set of statements only if a condition is True. For example,
you might want to allow a user to use an application only if the password entered by the
user is correct. So, your program should be able to handle such situations and adjust
accordingly. To counter such situations, Visual Basic.NET provides decision structures—
such as If…Then…Else and Select…Case statements—that enable your program to
execute conditionally. In addition, various loop structures are available in Visual
Basic.NET—such as Do…Loop, While…End While, and For…Next statements—to
perform a set of statements repeatedly depending on a condition. This chapter explains
the syntax and implementation of the decision structures as well as the loop structures.

Decision Structures
As the name suggests, decision structures enable your program to make decisions. In
other words, the decision structures enable your program to execute a set of statements
based on the result of a condition. In your program, this condition might depend on user
input or the value of a particular variable. For example, you need a program that takes
input from the user. The program processes certain statements based on the user input.
If the information is incorrect or incomplete, the program can display an error message,
inform the user, or close the program, depending on the action you specify. This is where
the decision structures come into the picture. Two commonly used decision structures
provided by Visual Basic.NET are If…Then…Else and Select…Case statements. The
next sections take a look at these statements.

The If…Then…Else Statement
You use the If…Then…Else statement to execute one or more statements based on a
condition. This condition is a Boolean expression that can either return True or False.
The following is the syntax for the If…Then…Else statement:

If Condition Then
 Statement(s)
[Else
 Statement(s)]
End If
In the preceding syntax, Condition is the expression that is evaluated. If this
expression returns True, the statements following Then are executed. If this expression
returns False, the statements following Else are executed. Note that Else is an
optional statement and can be skipped. The End If statement marks the end of an
If…Then…Else statement.

Take an example of a sales application to understand this better. The sales application
needs to calculate the credit points to be offered to the customers based on the number
of items bought by them. The customers can then use these credit points to utilize the
special schemes offered by the company. Upon buying more than 20 items, a customer
is awarded 25 points. Otherwise, 10 credit points are awarded to the remaining
customers. To implement this logic, consider the following code:
If QtyOrdered > 20 Then CreditPoints = 25 Else CreditPoints = 10
The preceding statement is an example of a single-line form of an If…Then…Else
statement. Here, the CreditPoints variable is assigned a value of 25 if the value of
the QtyOrdered variable is greater than 20. Otherwise, the CreditPoints variable is
assigned a value of 10. Note that you can omit the End If statement if the code is
written in a single line. You can also write multiple statements in the single-line form of
the If…Then…Else statement. In that case, you need to separate the statements by a
colon (:) while still having the complete statement on the same line. The syntax for such
a statement is as follows:
If Condition Then Statement:[Statement]:[Statement]
The following is an example of multiple statements in the single-line form of the
If…Then…Else statement:

If QtyOrdered> 20 Then CreditPoints = 25 : MessageBox.Show ("Credit points offered: "
& CreditPoints)
In the preceding example, the value of the variable QtyOrdered is checked. If the value
is greater than 20, the CreditPoints variable is assigned a value of 25, and a
message box appears displaying the text "Credit points offered:" along with the value of
the variable CreditPoints. However, it is good practice to write such statements in
multiple lines because writing all of the statements in a single line can affect the code’s
readability. So, you can also write the preceding code in the following manner:
If QtyOrdered>20 Then
 CreditPoints=25
Else
 CreditPoints=10
End If
MessageBox.Show ("Credit points offered: " & CreditPoints)

At times, you might need to check the expression result more than once. Taking the
same example further, now you need to offer 15 credit points to those customers who
buy more than 10 items. This is in addition to the credit-point conditions mentioned
earlier. In such a situation, the code written earlier will not work because now you have
three conditions instead of two. These conditions are as follows:

Number of Items Bought Credit
Point
s
Offer
ed

Less than or equal to 10 10

More than 10 and less than 20 15

More than or equal to 20 25
For these conditions, you can use the ElseIf statement. The following is the syntax for
the ElseIf statement:

If Condition1 Then
 Statement1(s)
[ElseIf Condition2 Then
 Statement2(s)]
End If
In the preceding syntax, first Condition1 is evaluated. If the Condition1 is True,
Statement1(s) is executed. If Condition1 is False, the control moves to the
ElseIf statement and Condition2 is evaluated. If Condition2 is True,
Statement2(s) is executed. If Condition2 is also False, however, statements
following Else are executed. The following is the code that implements this logic for the
sales application with three conditions:
If QtyOrdered>20 Then
 CreditPoints=25
ElseIf QtyOrdered>10 And QtyOrdered<=20 Then
 CreditPoints=15
Else
 CreditPoints=10
End If
In the preceding code, the value of the variable QtyOrdered is checked more than
once, and accordingly, the variable CreditPoints is assigned a value.
You can also use one If…Then…Else statement within another If…Then…Else
statement. Such types of statements are called nested statements. You can nest
If…Then…Else statements to as many levels as you require. However, you need to
have a separate End If for each If…Then…Else statement.

Consider the following example:
If QtyOrdered > 20 Then
 CreditPoints = 25
ElseIf QtyOrdered > 10 Then
 'Nested If…Then…Else statement
 If QtyOrdered <= 20 Then
 CreditPoints = 15
 End If
Else
 CreditPoints = 10
End If

In the preceding example, one If…Then…Else statement is nested inside another. This
code also does the same job as the code mentioned earlier.
Another decision-making structure is the Select…Case statement that helps you add
decision-making capability to your program. The next section looks at that statement.

The Select…Case Statement
Just like an If…Then…Else statement, the Select…Case statement also enables you
to execute a set of statements based on the result of an expression. However, there are
differences between the two statements. The If and ElseIf statements evaluate
different expressions in each statement, whereas the Select…Case statement
evaluates only one expression. The Select…Case statement then uses the resultant
expression to execute different sets of statements. Another difference is that the
expression used in the Select…Case statement does not return a Boolean value.
The Select…Case statement is preferred when you need to use multiple conditions
because it makes code easy to read and understand. The following is the syntax for the
Select…Case statement:

Select Case Expression
 Case ValueList
 Statement(s)
 [Case Else
 Statement(s)]
End Select
In the preceding syntax, Expression is evaluated, and the result is compared against
the constants and expressions mentioned in the ValueList of each of the Case
statements. If the result of the expression matches any constants or expressions
mentioned in the ValueList of the Case statement, statements following that Case
statement are executed. If the result of the expression does not match any of the Case
constants or expressions mentioned in the ValueList, statements following Case
Else are executed. End Select marks the end of a Select…Case statement.

Consider the following example that accepts a number from the user and displays the
weekday depending on the number entered. If the number entered is not in the range of
1 to 7, a message box appears informing that an incorrect number has been entered.
Select Case WeekNumber
 Case 1
 MessageBox.Show("Monday")
 Case 2
 MessageBox.Show("Tuesday")
 Case 3
 MessageBox.Show("Wednesday")
 Case 4
 MessageBox.Show("Thursday")
 Case 5
 MessageBox.Show("Friday")
 Case 6
 MessageBox.Show("Saturday")
 Case 7
 MessageBox.Show("Sunday")
 Case Else

 MessageBox.Show("Number not in the range…")
End Select
You will learn about the MessageBox.Show method in Chapter 7, "Procedures and
Functions."
The credit-points example discussed in the If…Then…Else section can be rewritten
using the Select…Case statement. It would be impractical, however, to write Case
statements for each and every value of the quantity ordered. However, you can specify a
conditional expression. To do so, you can use the Is keyword as follows:

Select Case QtyOrdered
 Case Is < 10
 CreditPoints = 10
 Case Is > 20
 CreditPoints = 25
 Case Is <= 20
 CreditPoints = 15
 Case Else
 MessageBox.Show("No credit points available.")
End Select
In the preceding code, the first statement evaluates the value in the variable
QtyOrdered and compares the value against the expression mentioned in the Case
statements. If any of the expressions evaluate to True, the CreditPoints variable is
assigned a value. If none of them returns True, the statement following Case Else is
executed, and a message box appears informing that there are no credit points
available.
The same can also be written using the To keyword as follows:

Select Case QtyOrdered
 Case 1 To 10
 CreditPoints = 10
 Case 11 to 20
 CreditPoints = 15
 Case Is > 20
 CreditPoints = 25
 Case Else
 MessageBox.Show("No credit points available")
End Select
There might be situations in which you need to execute the same set of statements for
more than one value of the Case expression. In such a situation, you can specify
multiple values or ranges in a single Case statement. Consider the following example in
which you check whether the number entered (between 1 and 10) by the user is even or
odd.
Select Case Number
 Case 2, 4, 6, 8,10
 MessageBox.Show("Even number")
 Case 1,3,5,7,9
 MessageBox.Show("Odd number")
 Case Else
 MessageBox.Show("Number out of range..")

End Select
In the preceding example, the value of the variable Number is evaluated. If the value is
2, 4, 6, 8 or 10, the statement following the first Case statement is executed. If the value
is 1, 3, 5, 7, or 9, the statement following the second Case statement is executed. If the
variable Number contains any value other than the values mentioned, the statement
following Case Else is executed.

Now you will look at the various loop structures available in Visual Basic.NET.

Loop Structures
Sometimes the user might input incorrect values, and then you might need to repeat the
same set of statements until the user enters the correct value or quits. Consider an
application that accepts a logon name and a password from the user. If the user enters
an incorrect value(s), the application should prompt the user to enter the values again.
This process needs to be repeated until the values entered by the user are correct. In
such a situation, you can use the looping structures provided by Visual Basic.NET. The
following sections take a look at various looping structures such as While…End While,
Do…Loop, For…Next, and For Each…Next statements.

The While…End While Statement
The While…End While statement is used to specify that a set of statements should
repeat as long as the condition specified is True. The syntax is as follows:

While Condition
 Statement(s)
 [Exit While]
End While
In the preceding syntax, Condition is an expression that is evaluated at the beginning
of the loop, and it can be True or False. If the Condition is True, the set of
statements following Condition is executed. End While marks the end of a While
loop. The Exit While statement is optional and is used to exit from a While….End
While loop.

Consider the following example:
Dim Counter As Integer=1
While Counter <= 5
 MessageBox.Show("Value is: " & Counter)
 Counter =Counter + 1
End While
In the preceding example, Counter is an Integer variable that is initialized with 1. The
While…End While loop executes until the value of Counter is less than or equal to 5.
This means that the statements within the While…End While statements are repeated
five times.

The Do…Loop Statement
In your application, you might need to execute a set of statements repeatedly based on a
condition. Using the Do…Loop statement, you can repeat a set of statements while a
given condition is either True or False.
The Do…Loop statements evaluate a condition to determine whether to continue the
execution or not. Two types of Do…Loop statements are available in Visual Basic.NET—
one that checks for a condition before executing the loop and the other that checks for a
condition after the statements have executed at least once.
The syntax for the first type of Do…Loop statement, which checks for a condition before
executing the loop, is as follows:
Do While|Until Condition

 Statement(s)
 [Exit Do]
Loop

In the preceding syntax:
 The While keyword repeats the statements while the Condition is

True. The Until keyword repeats the statements while the Condition
is False. You can use one of these keywords at a time.

 The Exit Do statement is used to exit a Do…Loop statement.
The code mentioned earlier in the While…End While section can be written using the
Do…Loop statement in the following manner:

Dim Counter As Integer = 1
Do While Counter <= 5
 MessageBox.Show("Value is :" & Counter)
 Counter=Counter + 1
Loop
In the preceding example, the Do…Loop statement displays the value stored in the
variable Counter. This loop is repeated five times because the condition specified is
while the Counter is less than or equal to 5.
The syntax for the second type of Do…Loop statement, which checks for a condition after
the statements have executed once, is as follows:
Do
 Statement(s)
 [Exit Do]
Loop While|Until Condition
The example mentioned in the first type of Do…Loop statement can be written as follows:

Dim Counter As Integer = 1
Do
 MessageBox.Show("Value is: " & Counter)
 Counter=Counter + 1
Loop While Counter<=5
In the preceding example, the statements following the Do statement execute once, and
then the value of Counter is checked. This loop is also repeated five times.

However, a word of caution here: Sometimes your application might run into an infinite or
endless loop. This might happen because you did not specify the condition correctly or
because the value of the counter variable is not incremented or decremented as
required. Consider the following example:
Dim Counter As Integer = 1
Do While Counter<=5
 MessageBox.Show("Value is: " & Counter)
 Counter = Counter -1
Loop
The preceding code runs into an infinite loop because the value of Counter gets
decremented every time the loop runs and is never incremented. In other words, the
value of the Counter variable is always less than 5, and this makes the loop run an
infinite number of times. In such a situation, you need to close the Visual Basic.NET
application. This will result in the loss of all unsaved information.

Therefore, it is a good programming practice to carefully examine the code involving
loops before executing the code.
The following code illustrates the use of the Do…Loop statement for checking the
password entered by a user:
Dim Pass As String
 Dim Counter As Integer = 1
 Do
 Pass = InputBox("Enter password:")
 'Prompts the user for the
password in an input box
 If Pass = "mypass" Then
 'Compares the password entered
by the user with the correct password
 MsgBox("Welcome")
 Exit Do
 'Exits from the loop
 Else
 MsgBox("Incorrect password")
 Counter = Counter + 1
 'Increments the value of the
counter variable
 End If
 Loop While Counter <= 5
'Checking for the value of Counter. A value more than five means the user is through
with the maximum
'possible chances to enter the password but has failed to provide the correct
password.
 If Counter > 5 Then
 MsgBox("Unauthorized user….")
 End If

The For…Next Statement
You can use the For…Next statements to repeat a set of statements a specific number
of times. The syntax for the For…Next statement is as follows:

For Counter = <Startvalue> To <Endvalue> [Stepvalue]
 Statement(s)
 [Exit For]
Next [Counter]

In the preceding syntax:
 Counter is any numeric variable.
 Startvalue is the initial value of Counter, and Endvalue is the final

or end value of Counter.
 Stepvalue is the numeric value by which Counter needs to be

incremented. The Stepvalue can be either a positive or negative value
and is optional. If no value is specified, the default value is 1.

 Statement(s) are the set of statements executed for the specified
number of times.

 The Next statement marks the end of a For…Next loop. When this
statement is encountered, the Stepvalue is added to Counter, and the
loop executes.

Tip It is a good programming practice to mention the name of the
counter or numeric variable in the Next statement.

Consider the example mentioned earlier in the Do…Loop statement to display the value
of the counter variable. Here’s how to write using the For…Next loop:

Dim Counter As Integer
For Counter = 1 to 5
 MessageBox.Show("Value is:" & Counter)
Next Counter
In the preceding example, the For…Next loop executes five times, and the step value is
1. Consider the following example with a different step value:
Dim Counter As Integer
For Counter = 1 to 10 Step 2
 MessageBox.Show("Value is: " & Counter)
Next Counter
In the preceding example, the For…Next loop executes five times, and the step value is
2. The values displayed are 1, 3, 5, 7, and 9.

Consider the following example with a negative step value:
Dim Counter As Integer
For Counter = 10 to 1 Step -2
 MessageBox.Show("Value is:" & Counter)
Next Counter
In the preceding example, the For…Next loop executes five times, and the step value is
–2. The values displayed are 10, 8, 6, 4, and 2.
You can also nest one For…Next statement inside another For…Next statement. The
only point to keep in mind is to use a unique counter variable for each For….Next loop.
In addition, remember to specify the Next statement for each loop.
The following is an example of how to use two nested For…Next statements:

Dim Counter1, Counter2 As Integer
For Counter1=1 To 5
 For Counter2=1 To 5
 'Some code statements using Counter1 and Counter2
 Next Counter2
Next Counter1

The For Each…Next Statement
The For Each…Next statement is used to execute a set of statements for each element
in an array or a collection. Arrays and collections were covered in detail in Chapter 5,
"Arrays and Collections."
The syntax for the For Each….Next statement is as follows:

For Each Item in List
 Statement(s)
 [Exit For]
Next [Item]

In the preceding syntax:
 Item is the variable to refer to the elements in an array or a collection.
 List is the array or the collection object.:

Consider the following example:
Dim BooksArray() As String = {"VB.NET", "ADO.NET","VC++.NET","ASP.NET"}
Dim BookName As String
For Each BookName in BooksArray
 MessageBox.Show(BookName)
 'Displays each element from BooksArray
Next

The preceding code can also be written as follows:
Dim BookName As String
For Each BookName in {"VB.NET", "ADO.NET","VC++.NET","ASP.NET"}
 MessageBox.Show(BookName)
 'Displays each element from the list mentioned in the For Each
statement
Next
Consider the following code to check whether the data has been entered in each of the
text boxes, as discussed in Chapter 5. The following code example uses the Controls
collection to check text box controls on a form.
Dim ConObject As Control
… 'Declares an instance of the Control class
For Each ConObject In Controls
 'Starts the For Each loop to process each control in the Controls
 'collection
 If TypeOf(ConObject) Is TextBox Then
 'Checks for the type of control using the TypeOf Is operator
 If ConObject.Text = "" Then
 'Checks for the blankness of the TextBox control
 MessageBox.Show(ConObject.Name + " Cannot be left blank.")
 'Displays a message box containing the control name and the text
 '"Cannot be left blank"
 End If
 End If
Next
In the preceding code, first an instance of the Control class ConObject is created. In
the For Each loop that follows, each control in the Controls collection is processed
one after the other. In the following If statement, the type of the control is checked. If
the control is a TextBox, the following If statement checks for the text in that text box
by using the Text property. If the text box is empty, a message box appears displaying
both the text box name and the message.

Note Control is a class provided by Visual Basic.NET. It is the base
class for all the controls and is included in the
System.Windows.Forms namespace.

Note The TypeOf Is operator is used to check the type of an object. It
returns True if the object is of the specified type or is derived from
a specific type.

Summary
In this chapter, you learned to implement conditional logic in your program by using
various conditions and loop structures provided by Visual Basic.NET. You learned the
syntax and implementation of various condition structures such as If Then Else and
Select Case statements. In addition, you also learned various loop structures—such
as Do Loop, While End While, For Next, and For Each Next statements—to
execute a set of statements repeatedly depending on a condition.

Chapter 7: Procedures and Functions
In Chapter 6, “Conditional Logic,” you learned how to implement conditional logic in your
program. Now you will go a step further and see how to reuse code in your program
using procedures. In this chapter, you will learn to create and use various types of
procedures. You will also learn about the various built-in functions provided by Visual
Basic.NET that help you add interactivity to your programs and develop your programs
easily and quickly.

Procedures
Consider a scenario in which you need to perform a task repeatedly, such as generating
invoices for customers based on the unit price and number of items bought. In such a
case, instead of writing the statements repeatedly, you can group them in a procedure. A
procedure is a set of statements grouped together to perform a specific task. Procedures
enable you to organize your applications by letting you chunk and group the program
code logically.
After you group the statements in a procedure, you can call the procedure from
anywhere in the application. Calling a procedure means executing a statement that
further instructs the compiler to execute the procedure. After the code in the procedure is
executed, the control returns to the statement following the statement that called the
procedure. The statement that calls a procedure is known as a calling statement. The
calling statement includes the name of the procedure. This statement can also include
the data values needed by the procedure for performing the specified task. These data
values are referred to as arguments or parameters. Taking the example of invoice
generation further, you can create a procedure that takes the unit price and the number
of items bought by a customer as data values and calculates the total invoice amount. To
call this procedure, the calling statement must supply the unit price and the number of
items. In this case, the unit price and the number of items are the parameters or
arguments for the procedure.

Now you will learn about some of the advantages that procedures offer. The first and
foremost advantage is the reusability of code. In other words, you create a procedure
once and use it whenever required. If you have to change any statement, you just need
to change it at a single place. As previously mentioned, procedures enable you to chunk
and group your application code logically. This is especially useful in cases of large and
complex applications. Using procedures in such applications can help you easily debug
and maintain the code. In addition, you can trace errors in a procedure far easier than
having to go through the entire application code.
Now that you’ve had an overview of procedures, let’s look at the scope or accessibility of
procedures in an application. Just like variables and classes, procedures also have a
scope. A procedure is declared in a class or a module. So, a procedure can be called
from the same class or module within which it is created, and this depends on the access
modifiers you use while declaring procedures. Table 7-1 lists these access modifiers.

Table 7-1: Access Modifiers For Procedures

Access Modifier Can Be
Called
From

Public Any
class or
module
in the
applicati
on

Private The
same
class or
module
in which
it is
declare
d

Protected The
same
class or
module
in which
it is
declare
d and
also
from the
derived
classes

Friend Any
class or
module
that
contains
its
declarat
ion, and
also any
class in
the
same
namesp
ace

The procedures in Visual Basic.NET can be classified on the basis of their functionality,
as follows:

 Sub procedures perform specific tasks.
 Function procedures perform specific tasks and return a value to the calling

statement.
 Property procedures assign or access a value from an object.
 Event-Handling procedures perform specific tasks when a particular event

occurs.

The following sections explain these procedures in detail.

Sub Procedures
As previously mentioned, Sub procedures are procedures that perform specific tasks but
do not return values to the calling code. You can declare a Sub procedure in modules,
classes, or structures. The syntax for declaring a Sub procedure is as follows:

[AccessModifier] Sub ProcName [(ArgumentList)]
 'Code statements
End Sub

In the preceding syntax:
 AccessModifier defines the accessibility of a Sub procedure. You can

specify any of the values listed in Table 7-1. It is optional, and if omitted,
the default value for the access modifier is Public.

 The Sub statement marks the beginning of a Sub procedure.
 ProcName is the name of a Sub procedure.
 ArgumentList represents the list of arguments associated with a Sub

procedure. Calling code can pass arguments—such as constants,
variables, or expressions—to Sub procedures. ArgumentList is
optional, and if omitted, you still need to include an empty set of
parentheses.

 The End Sub statement marks the end of a Sub procedure.
As discussed in the “Methods” section of Chapter 2, “Object-Oriented Features in Visual
Basic.NET,” when a Sub procedure is called, all the statements within the procedure are
executed. The execution of a Sub procedure starts from the first statement within the
procedure and continues until an End Sub, an Exit Sub, or a Return statement is
encountered.
Here’s an example to help you understand Sub procedures. The following procedure is
used to calculate invoices for customers based on the unit price of the item and the
number of items bought by a customer:
Public Sub CalculateInvoice(NumItems As Integer, UnitPrice As Integer)
 Dim InvoiceAmount As Integer
 InvoiceAmount = NumItems * UnitPrice
 Msgbox(InvoiceAmount)
End Sub
In the preceding example, CalculateInvoice is the name of a procedure that takes
two parameters, NumItems and UnitPrice. This procedure displays the calculated
invoice amount in a message box. CStr is a conversion function and is discussed later
in this chapter.
You can also use the condition and loop structures (discussed in Chapter 6) in
procedures. For example, you might encounter a situation in which a customer is offered
credit points based on the amount of the invoice. To accomplish this, you can modify the
CalculateInvoice procedure to offer credit points. Take a look at the following code:

Public Sub CalculateInvoice(NumItems As Integer, UnitPrice As Integer)
 Dim InvoiceAmount As Integer
 Dim CreditPoints As Integer
 InvoiceAmount = NumItems * UnitPrice
 If InvoiceAmount >= 1000 And InvoiceAmount <= 2000 Then
 CreditPoints=25
 ElseIf InvoiceAmount >= 2001 Then
 CreditPoints=10
 End If
 MsgBox("Credit Points offered: " & CStr(CreditPoints))

 MsgBox("Invoice amount is: " & CStr(InvoiceAmount))
End Sub
In the preceding example, an If…Then…Else statement is used to check the value of
the InvoiceAmount variable. The credit points to be offered are based on the value of
this variable. Then the values of the CreditPoints and InvoiceAmount variables are
displayed in a message box.
After you create a procedure, you can call it using the Call statement. However, you
can also invoke a Sub procedure without using the Call statement. To call the
CalculateInvoice procedure, you can use either of the following statements:

Call CalculateInvoice(2, 900)

or
CalculateInvoice(2, 900)
Each of the preceding statements passes two arguments, 2 and 900, to the
CalculateInvoice Sub procedure. You will learn more about arguments later in this
chapter.

Tip It is possible to write code for more than one logical task within a
procedure. However, you cannot use such a procedure across
projects or applications. This is because each project or application
might have different requirements, and a procedure performing
more than one logical task might not meet those requirements.
Therefore, you must code your procedure in such a way that it
performs only one logical task.

Before discussing Function procedures, take a look at the Sub Main procedure that
Visual Basic.NET provides. This procedure is the starting point of a console application
(a command-line application) and is the first Sub procedure executed when you run an
application. The syntax for the Sub Main procedure is as follows:

Sub Main()
 'Code statements
End Sub
In the Sub Main procedure, you can add code that you want to execute first when an
application starts. For example, you can include code to connect to a database or
initialize variables.
The following section discusses another type of procedure, the Function procedure.

Function Procedures
Unlike Sub procedures, Function procedures (or just functions) can return values to
the calling statement. Similar to a Sub procedure, a Function procedure also starts
executing from the first statement within the procedure until an End Function, an
Exit Function, or a Return statement is encountered. The syntax for declaring a
Function procedure is as follows:

[AccessModifier] Function FunName [(ArgumentList)] As DataType
 'Statements
End Function

In the preceding syntax:
 AccessModifier defines the accessibility of a Function procedure.

You can specify any of the values mentioned in Table 7-1. It is optional,
and if omitted, the default value for the access modifier is Public, as is
the case for a Sub procedure.

 The Function statement marks the beginning of a Function
procedure.

 FunName is the name of a Function procedure.

 ArgumentList is the list of arguments associated with a Function
procedure. As with Sub procedures, the calling code can also pass
arguments to Function procedures.

 DataType defines the data type of the return value of a Function
procedure.

 The End Function statement marks the end of a Function
procedure.

You can declare Function procedures in a module, class, or structure. To return a
value from a Function procedure, you can use the Return statement or assign the
return value to the name of the Function procedure. To understand this better,
consider the following code that uses the name of the Function procedure to return a
value:
Public Function CalculateInvoice(NumItems As Integer, UnitPrice As Integer) As Integer
 'Calculate invoice amount and assign it to the Function procedure
name
 CalculateInvoice=NumItems*UnitPrice
End Function
The program control returns to the statement following the calling statement only when
an End Function, an Exit Function, or a Return statement is executed. Consider
the following example, which uses the Return statement to return the calculated invoice
amount:
Public Function CalculateInvoice (NumItems As Integer, UnitPrice As Integer) As Integer
 Dim InvoiceAmount As Integer
 InvoiceAmount=NumItems*UnitPrice
 Return InvoiceAmount
 'Returns the calculated invoice amount
End Function
Consider the credit points example discussed in the preceding section. The following
code creates a Function procedure to calculate invoice amounts for customers based
on the unit price and the number of items bought. In addition, if the invoice amount is
more than a specified value, a customer is offered credit points.
Public Function CalculateInvoice (NumItems As Integer, UnitPrice As Integer) As Integer
 Dim InvoiceAmount As Integer
 Dim CreditPoints As Integer
 InvoiceAmount = NumItems * UnitPrice
 If InvoiceAmount >= 1000 And InvoiceAmount <= 2000 Then
 CreditPoints=10
 ElseIf InvoiceAmount >= 2001 Then
 CreditPoints=25
 End If
 MsgBox ("Credit Points offered:" & CStr(CreditPoints))
 Return InvoiceAmount
End Function
In the preceding code, the CalculateInvoice Function procedure returns a value of
the Integer type to the calling code. You can use the following statements to call the
CalculateInvoice Function procedure and display the value returned by it:

Dim InvoiceValue As Integer
InvoiceValue = CalculateInvoice(3, 1000)

MsgBox("Invoice amount is: " & CStr(InvoiceValue))
The preceding code displays the value of the invoice amount. Note that the Call
statement is not used. You can use the Call statement to call Function procedures,
but the return value of a Function procedure is ignored if you use the Call statement
to invoke the procedure. Typically, the value returned by a Function procedure is used
for further processing in the program.
You can also call a Function procedure within an expression. For example, consider
the following code:
If (InvoiceValue=CalculateInvoice(3,1000))>2000 Then
 CreditPoints=25
End If
In the preceding code, the CalculateInvoice function returns the calculated invoice
amount. This invoice amount is then assigned to the InvoiceValue variable. The
If…Then…Else statement checks the value of the InvoiceValue variable, and then a
value is assigned to the CreditPoints variable.
Although Function procedures return a value, it is up to you to use the value further in
the program. If you do not use the return value, all the statements in the function are
performed or executed, but the return value is ignored.
The next section discusses another type of procedure, the Event-Handling
procedure.

Event-Handling Procedures
As the name suggests, an Event-Handling procedure, or an event handler, is
executed when an event is generated, such as a button click, a mouse move, or a key
press. The object that generates the event is known as an event sender or an event
source. For example, when you click on a button, the Click event is generated, and the
button you clicked on is the event sender.
The syntax for an Event-Handling procedure is the same as for a Sub procedure.
You must ensure that the name of an Event-Handling procedure reflects the name of
the event as well as the name of the event sender. Event-Handling procedures are
always Private. The following is the syntax for an Event-Handling procedure:

Private Sub EventSender_EventName ([ArgumentList])
 'Code statements
End Sub
In the preceding syntax, EventSender_EventName is a standard naming convention
used for Event-Handling procedures. In other words, the name of an Event-
Handling procedure includes the name of the event sender, an underscore, and then
the name of the event. For example, if the event sender is a button named GenerateID
and the event name is Click, the Event-Handling procedure would be named as
GenerateID_Click.
In Visual Basic.NET, each form and control has a predefined set of events that you can
code. In other words, you get the start and end statements for an Event-Handling
procedure, and you just need to write the remaining procedure statements. For example,
to code the Click event of a button, you need to add your code statements between the
following two statements that are generated automatically by Visual Basic.NET:
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
Handles Button1.Click
 'Code statements to handle the Click event
End Sub

Caution If you change the name of a control after writing the code for
any of its Event- Handling procedures, you need to change the
name of the event handler so that it matches the new name.

In addition to the various predefined events for controls, Visual Basic.NET enables you
to declare events in classes and write event handlers for them. The following section
describes the various statements you need to use to attach an event to an object.
First of all, you need to see how to declare an event in a class. You can declare an event
in the Declarations section of a class. The following is an example of declaring an
event:
Public Event MyEvent (Argument1 As Integer, Argument2 As Integer)

In the preceding example:
 MyEvent is the name of an event.
 Argument1 and Argument2 are the arguments for the event.

By default, events are Public. Declaring an event in a class means an object of that
class can raise the event.
After creating an event, you can associate the event with either the class-level or
module-level objects. In other words, you need to declare class- or module-level objects
that can raise events. To accomplish this, you need to use the WithEvents statement
while declaring the object that is going to raise the event. The following is the syntax for
the WithEvents statement:

Public WithEvents ObjectName As ClassName
In the preceding statement, ObjectName refers to the object of the ClassName class.
This statement specifies that ObjectName is name of the object that will raise an event.
For example, to handle the events for EventObject of EventClass, you need to add
the following code to the Declarations section of EventClass:

Public WithEvents EventObject As New EventClass
The next step is coding the event handler for the declared event. As previously
mentioned, Event-Handling procedures are coded using the Sub and End Sub
statements, just like Sub procedures. To code the event handler, use the Handles
clause. The syntax for this clause is as follows:
 [AccessModifier] Sub ObjectName_EventName([ArgumentList]) Handles Object
Name.EventName
 'Code for handling event
End Sub

In the preceding syntax:
 AccessModifier defines the accessibility of an event handler.
 The Sub statement indicates that the procedure is a Sub procedure.
 ObjectName_EventName represents the name of the event handler.

The names of event handlers are based on a specific convention, as
previously mentioned.

 ArgumentList represents the list of arguments associated with the
event handler.

 The Handles clause is used to associate events with event handlers. In
the preceding syntax, the Handles clause associates the
ObjectName_EventName procedure with the EventName event of the
ObjectName object.

 The End Sub statement marks the end of a Sub procedure (here, an
Event-Handling procedure).

When you use the WithEvents statement and the Handles clause, Event-Handling
procedures are bound to the associated events at compile time. However, you can also
dynamically associate events with one or more Event-Handling procedures at runtime
by using the AddHandler and RemoveHandler statements.
Now, after declaring an event and its associated Event-Handling procedure, the next
logical step is to discuss how to raise a declared event. For raising an event, you use the
RaiseEvent statement. The following is the syntax for the RaiseEvent statement:

RaiseEvent EventName()

In the preceding syntax, EventName is the name of the declared event.
The following section discusses another type of procedure, the Property procedure.

Property Procedures
As discussed in the “Fields and Properties” section of Chapter 2, Property procedures
enable you to manipulate properties defined in a class, module, or structure. Property
procedures are defined in pairs by using the Get and Set keywords. As the name
suggests, Get is used to get or access the value of a property of an object, whereas Set
is used to assign a value to the property of an object.
For more details about Property procedures, refer to the "Fields and Properties"
section in Chapter 2. As discussed in the preceding sections, procedures of all types can
take parameters or arguments. The next section takes a look at them as well.
Arguments
As previously discussed, procedures can accept variables, constants, or expressions as
arguments. Therefore, each time you call a procedure that accepts arguments, you need
to pass arguments to the procedure. With each call to a procedure, the result can differ
depending on the data values passed as arguments. You can pass arguments to
procedures either by value or by reference. The following sections discuss these
argument-passing mechanisms.

Passing Arguments by Value
When you pass an argument variable by value, a copy of the original variable is created.
Therefore, the procedure cannot modify the contents of the original variable. Passing
arguments by value is the default argument-passing mechanism, and you use the ByVal
keyword to specify that an argument should be passed by value.
Consider the following procedure, which takes one Integer variable as an argument
and adds 20 to this argument:

Public Sub AddNumber(ByVal Number As Integer)
 Number = Number + 20
 MsgBox("The number is: " + CStr(Number))
End Sub
Next, you will see how to call this AddNumber procedure by passing the argument value.
Assume the value entered is 50.

Dim InputNum As Integer
InputNum = InputBox("Enter number:")
MsgBox("The entered number is: " + CStr(InputNum))

'Displays 50
AddNumber (InputNum)

'AddNumber procedure is called

'Displays 70
'Control returns to the calling code
MsgBox("The original number is: " + CStr(InputNum))

'Displays 50
Note in the preceding example that the original number is not affected because the
number is passed by value. In other words, a copy of the InputNum variable is passed
as an argument, and 20 is added to the value of this copy. Therefore, the original

variable remains unaffected. Now that you know how to pass arguments by value, the
next section explains passing arguments by reference.

Passing Arguments by Reference
When you pass a variable by reference, a reference to the original variable is passed to
the procedure. Therefore, the procedure can modify the contents of the variable. You
use the ByRef keyword to specify that an argument be passed by reference. The
following example modifies the previous procedure to accept arguments by reference:
Public Sub AddNumber(ByRef Number As Integer)
 Number = Number + 20
 MsgBox("The number is : " + CStr(Number))
End Sub
Assume that you call the AddNumber procedure and assume the value entered is 50.

Dim InputNum As Integer
InputNum = InputBox("Enter number:")
MsgBox("The entered number is: " + CStr(InputNum))

'Displays 50

'Displays 70
AddNumber(InputNum)

'AddNumber procedure is called

'Displays 70
'Control returns to the calling code
MsgBox("The original number is: " + CStr(InputNum))

'Displays 70
Note in the preceding example that the original number is also modified because the
argument is passed by reference and 20 is added to the value of the original variable.

Another way to classify the argument-passing mechanisms is by position and by name.
In other words, you can pass arguments by position (in which you use the order specified
in the procedure declaration), or you can pass arguments by name (in which you use the
argument name irrespective of the position). To understand this better, consider the
following procedure that takes three arguments:
Public Sub SupplierDetails(ByVal Id As String, ByVal Name As String,
ByVal Address As String)
 'Code statements
End Sub

You can pass arguments to this procedure in either of the following manners:
SupplierDetails("001", "Jon", "ABCD")
 'Passing arguments by position

or
SupplierDetails(Id="001", Address="ABCD", Name="John")

 'Passing arguments by name

You can also choose to pass arguments by both position and name. Consider the
following example:
SupplierDetails(Id="001","Jon", Address="ABCD")

Passing arguments by name is very useful when there is more than one optional
argument for a procedure. (Optional arguments are discussed in the following section.)
In other words, you don’t have to mention the commas, which are required to specify the
missing positional arguments. Another advantage is that it’s easier to keep track of which
arguments are passed and which are skipped.

Now that you’re familiar with the various argument-passing mechanisms, take a look at
two more concepts related to arguments: optional arguments and parameter arrays.

Optional Arguments
As the name suggests, arguments that are optional or that can be omitted are known as
optional arguments. When creating procedures, you can also specify any argument as
an optional argument. When you call a procedure, you can choose whether or not to
specify a value for an optional argument.

Consider a procedure that accepts supplier details such as the supplier code, name,
address, state, phone number, and fax number. Each supplier might not have a fax
number. Therefore, you can specify the fax number argument as an optional argument.
Similarly, you can also specify the state and phone number arguments as optional.
You use the Optional keyword to specify an argument as an optional argument. In
addition, during procedure declaration, you must specify a default value for each optional
argument. The default value should be a constant. In addition, you cannot specify any
nonoptional arguments after an optional argument when declaring a procedure. In other
words, optional arguments should be the last arguments specified for a procedure.
Consider the following example:
Sub SupplierDetails(Id As String, Name As String, Address As String,
Optional State As String = "California")
 'Code statements
End Sub
In the preceding example, the SupplierDetails procedure accepts four arguments:
Id, Name, Address, and State. Note that the State argument is an optional argument
that has a default value as California. When calling the SupplierDetails
procedure, you might or might not specify the value of the State argument. You can use
either of the following statements to call the SupplierDetails procedure:

SupplierDetails ("001", "Karen Brown","ab/d, xyz street", "New Jersey")

or
SupplierDetails ("002", "David Bacon","12/ze, pqrs street")
In the preceding code, the value for the State argument is not provided in the second
statement. Therefore, the State argument takes the default value California.

Parameter arrays are discussed in the following section.

Parameter Arrays
You might come across a situation in which you need to create a procedure that can
accept an indefinite number of arguments. Consider a procedure that accepts supplier
details such as ID, name, and items supplied. In this case, the number of items supplied
by each supplier will vary, so you can use a parameter array. A parameter array enables
a procedure to accept an array of values. When declaring a parameter array, you don’t
need to specify the number of elements in the array.

In Visual Basic.NET, you use the ParamArray keyword to declare a parameter array.
Consider the following example:
Sub SupplierDetails(ByVal Id As String, ByVal Name As String, ByVal Param
Array Items() As String)
 'Code statements
End Sub
Here, the SupplierDetails procedure accepts the ID, name, and items provided by a
supplier. Because a supplier can provide multiple items, a parameter array, Items, is
used to pass the details of the items provided by a supplier. You can call the
SupplierDetails procedure by using the following statement:

SupplierDetails ("008", "IDG Inc.","Toothpaste", "Toothbrush")
In this example, the SupplierDetails procedure is called with four arguments: the ID,
the name, and the two items provided by the supplier.

You can declare only one parameter array in a procedure, and the parameter array
should be passed by value. In addition, for a procedure declaration, there should be no
arguments following the parameter array. In other words, the parameter array should be
the last argument in a procedure declaration. By default, the parameter array is optional.
Additionally, a procedure that includes a parameter array cannot include any optional
arguments. The statements in a procedure with a parameter array should treat the
parameter array as a one-dimensional array when manipulating the values stored in it.

When specifying a value for the parameter array, you can specify any of the following
values:

 An array with the same data type as the parameter array.
 Any number of arguments, which are separated by commas.
 An empty array is passed if the parameter array is skipped.

The next section discusses overloading procedures.

Overloading Procedures
As the name suggests, overloading a procedure means having multiple versions of it. In
other words, it refers to procedures that have the same name but different signatures.
Here, signature refers to the type, number, and order of arguments for a procedure. To
understand this better, consider an application that accepts student details. A student
can be identified uniquely by ID, name, or both. You can create three different
procedures to accept these student details separately. However, it is difficult to give an
appropriate name to each of the procedures and then is even more difficult to memorize
these names. Instead, you can overload one procedure. In other words, you can create
multiple procedures having the same name but different signatures. You use the
Overloads keyword to overload a procedure.

For the student details example discussed in the preceding paragraph, consider the
following code statements:
Overloads Sub StudentDetails (ByVal StudId As Integer, ParamArray Scores()
As Integer)
 'Code statements
End Sub
In the preceding statement, the StudentDetails procedure accepts two arguments,
StudId and Scores. Now, consider the following statement:

Overloads Sub StudentDetails (ByVal StudName As String, ParamArray Scores()
As Integer)
 'Some code statements
End Sub

In the preceding statement, the StudentDetails procedure accepts two arguments,
StudName and Scores.

When overloading a procedure, consider the following rules:
 The versions of an overloaded procedure should have different

signatures, which does not mean different return types only.
 It is possible to overload a Function procedure with a Sub procedure or

vice versa. However, they must have different signatures.
A procedure with an optional parameter(s) is an example of an overloaded procedure
because it can be used in two forms: one with its optional parameter(s) and another one
without it. A procedure with a ParamArray argument is also another implicit form of
overloaded procedure. This is because a procedure with the ParamArray argument
differs in the number of arguments passed and, therefore, is overloaded.

Now that you’ve learned about the various types of procedures and argument-passing
mechanisms, the following section discusses the built-in functions that Visual Basic.NET
provides.

Built-in Functions
Visual Basic.NET provides various built-in functions that you can use in your
applications. Some of these include MsgBox, InputBox, CStr, DateDiff, and
StrComp. These built-in functions are defined in the Microsoft.VisualBasic
namespace. Depending on the tasks performed by the various built-in functions, you can
classify these functions as follows:

 Application-enhancement functions to enhance your programs. For example,
MsgBox and InputBox functions.

 String functions to manipulate strings. For example, StrComp, Len, and
Trim.

 Date functions to manipulate date and time values. For example, DateDiff,
Now, and Month.

 Conversion functions to convert from one data type to another. For example,
CStr, CDate, and Val.

The following sections discuss these functions in detail.

Application-Enhancement Functions
As the name suggests, you can use these functions to enhance your applications by
adding interactivity. This interactivity can be in the form of accepting data from the user
or displaying some message to the user. Two commonly used functions are MsgBox and
InputBox. The MsgBox function is used to display a customized message, and the
InputBox function is used to accept input from a user. Visual Basic.NET also provides
the MessageBox class, which enables you to display a message to the user. The
following sections describe these functions.

The MsgBox Function
You must have seen message boxes that display error messages or provide tips and
warnings. In some cases, message boxes also display the result of an operation. This
section discusses how you can display your own message box.
The MsgBox function is used to display information in a message box. The syntax for
this function is as follows:
RetValue=MsgBox(Message, [, Buttons][, Title])

In the preceding syntax:
 RetValue is an Integer value that traps the value of the button

clicked by the user. As previously mentioned, the return value of a
function can be ignored; therefore, it is up to you to trap it or not.

 Message is the prompt or message to be displayed. The number of
characters in a message cannot exceed 1,024.

 Buttons is the numeric expression that is the sum of the values that
specify the number and type of buttons, the icon to be displayed, the
default buttons, and the modality of the message box. A modal
message box is one that doesn’t allow you to work with the rest of the
application while the message box is displayed. The Buttons
argument is optional, and if not specified, the default value is 0.

 Title is the string value that appears as a title in the title bar of the
message box. It is optional, and if not specified, the application name
appears as the title of the message box.

Consider the following example:
MsgBox("My message")
 'Displays a message box
with default values
In the preceding statement, you don’t need the return value of the message box.
Therefore, you don’t need to store it in a variable. Figure 7-1 displays this message box.
Note that this message box has just an OK button, and the title of the message box
displays the name of the application.
Visual Basic.NET provides two enumerations (lists of constants) that you can use for a
message box. These enumerations contain certain members that, in turn, are associated
with some numeric values. The first enumeration is the MsgBoxStyle enumeration, and
it is used to specify buttons, icons, and the modality of the message box. The second
enumeration is the MsgBoxResult enumeration that is used to check the button clicked
by the user. The following sections discuss these enumerations in detail.

Figure 7-1: A message box with default values

The MsgBoxStyle Enumeration
As the name suggests, the MsgBoxStyle enumeration is used to specify the style of the
message box. The style of a message box includes the buttons and icons to be
displayed in the message box and also the modality of the message box. The
MsgBoxStyle enumeration contains members such as OKOnly and OKCancel, and
these members represent the OK button and the OK and Cancel button, respectively.
There is a numeric value associated with each one of these members. For example, 0 is
the value for OKOnly, and 1 is the value for OKCancel.

Consider the following statement:
MsgBox("My message", MsgBoxStyle.OKOnly, "Sample")
The preceding statement displays the message My message. The title bar of the
message box displays the text Sample. This message box contains an OK button along
with your message. Figure 7-2 displays this message box.

The preceding statement can also be written as follows:
MsgBox("My message", 0, "Sample")
Note in the preceding statement that the numeric value 0 refers to the MsgBoxStyle
enumeration. This statement also displays a message box containing the OK button
along with the message.

Next consider the following statement:
MsgBox("My message", MsgBoxStyle.OKCancel + MsgBoxStyle.Critical, "Sample")

Figure 7-2: A message box with a customized title

The preceding statement displays the message My message. The title bar of the
message box displays the text Sample. This message box contains the OK and Cancel
buttons and also a critical warning icon. Figure 7-3 displays this message box.

Figure 7-3: A message box with OK and Cancel buttons

Table 7-2 lists the MsgBoxStyle enumeration members and their values.
Table 7-2: The MsgBoxStyle Enumeration Members

Member Value Description
OKOnly 0 Displays the

OK button
OKCancel 1 Displays OK

and Cancel
buttons

AbortRetryIgnore 2 Displays
Abort, Retry,
and Ignore
buttons

YesNoCancel 3 Displays
Yes, No,
and Cancel
buttons

YesNo 4 Displays
Yes and No
buttons

RetryCancel 5 Displays
Retry and
Cancel
buttons

Critical 16 Displays the
Critical
message
icon

Table 7-2: The MsgBoxStyle Enumeration Members

Member Value Description
Question 32 Displays the

Warning
query icon

Exclamation 48 Displays the
Warning
message
icon

Information 64 Displays the
Information
message
icon

DefaultButton1 0 Selects the
first button
by default

DefaultButton2 256 Selects the
second
button by
default

DefaultButton3 512 Selects the
third button
by default

ApplicationModal 0 Specifies
that the
message
box is
application
modal,
which
means the
user first
needs to
respond to
the
message
box before
continuing
to work in
the current
application

SystemModal 4096 Specifies
that the
message
box is
system
modal,
which
means the
user first
needs to
respond to
the
message

Table 7-2: The MsgBoxStyle Enumeration Members

Member Value Description
box before
continuing
working with
any
application

MsgBoxSetForeground 65536 Specifies
that the
message
box window
is the
foreground
window

MsgBoxRight 524288 Right-aligns
the
message
box text

The next section describes the MsgBoxResult enumeration.
The MsgBoxResult Enumeration
When you click on any of the buttons in a message box, a value is returned. You can use
this value to find out which button is clicked. Visual Basic.NET provides the
MsgBoxResult enumeration, which you can use to trap the result of a message box. In
other words, you can find out which button is clicked. Some of the commonly used
MsgBoxResult enumeration members are OK, Cancel, Yes, No, and Abort.
Table 7-3 lists the MsgBoxResult enumeration members and their values.
Table 7-3: The MsgBoxResult Enumeration Members

Member Value
OK 1
Cancel 2
Abort 3
Retry 4
Ignore 5
Yes 6
No 7

Consider the following code, which illustrates the use of the MsgBoxStyle and
MsgBoxResult enumerations.

Dim Var As Integer
Var = MsgBox("My message", MsgBoxStyle.AbortRetryIgnore + MsgBoxStyle.Critical + _

MsgBoxStyle.DefaultButton2, "Sample")
If Var = MsgBoxResult.Abort Then
 MsgBox("You clicked the Abort button.")
ElseIf Var = MsgBoxResult.Retry Then
 MsgBox("You clicked the Retry button.")
Else
 MsgBox("You clicked the Ignore button.")
End If

In the preceding code, the second statement displays a message box with three buttons:
Abort, Retry, and Ignore. The return value of the message box is trapped in the variable
Var. The next statements check for the value of the variable Var using the
If…Then…Else statement. An appropriate message is displayed, depending on the
button clicked by the user. Figure 7-4 displays the message box you’ll get after the
execution of the second statement in the preceding code.

Figure 7-4: A message box with three buttons

Figure 7-5 displays the message box you’ll get if you click on the Retry button in the
message box shown in Figure 7-4.

Figure 7-5: A message box displaying the result message

The If…Then…Else statement is discussed in Chapter 6. The following section
discusses another application-enhancement function, the InputBox function.

The InputBox Function
As the name suggests, the InputBox function is used to accept input from the user.
The syntax is as follows:
InputBox(Prompt, [Title],[Default],[X],[Y])

In the preceding syntax:
 Prompt is the prompt or message to be displayed. If the message is

more than one line, you can use the carriage return character
(Chr(13)) and the linefeed characters (Chr(10)) to separate the lines.

 Title is the text to be displayed in the title bar of the input box. It is
optional, and if omitted, the name of the application appears in the title
bar.

 Default is the default value or response to be displayed in the text
box of the input box. It is optional, and if omitted, an empty text box
appears.

 X is the horizontal distance between the left edge of the input box and
the left edge of the screen and x-coordinate value specified in twips
(1/20th of a point). A twip is 1/1440th of an inch or 1/567th of a
centimeter. It is optional, and if omitted, the input box displays at the
horizontal center of the screen.

 Y is the vertical distance between the top edge of the input box and
the top edge of the screen and y-coordinate value specified in twips. It
is optional, and if omitted, the input box displays at a position that is
approximately one-third the distance from the lower edge of the
screen.

The InputBox function returns a string containing the value entered by the user.
Consider the following statement:
Dim InputValue As String

InputValue =InputBox("Enter a value:","Sample","Try", 100,100)
In the preceding example, the application prompts the user for a value. The input box
displays the text Sample in the title bar, and Try is the default value displayed in the text
box. Figure 7-6 displays the input box that will be displayed when the preceding
statement is executed.

Figure 7-6: An input box with a default response

Consider the following code:
Dim InputValue As String
InputValue =InputBox("Enter a value:", "Sample",,100,100)
In the preceding example, the application prompts the user for a value. The input box
displays the text Sample in the title bar and an empty text box. Figure 7-7 displays this
input box. Note that the default value is not specified. However, the corresponding
delimiter (,) is specified.

Figure 7-7: An input box with no default response

As previously mentioned, the input box returns a string value. How then do you accept
other types of data such as Integer, Single, or Double? For accepting other types of
data, you can use the type-conversion functions. These type-conversion functions
convert the accepted data to the required type. Type-conversion functions are discussed
later in this chapter.

Consider the following code:
Dim StrVar As String
Dim NumVar As Integer
StrVar =InputBox("Enter a number:", "Sample")
 'Accepts a string value in StrVar
NumVar =CInt(StrVar)
 'Converts the string value to
integer using the CInt function
The preceding code accepts a number from the user and converts the accepted value to
Integer using the CInt function.
The following section discusses the MessageBox class that has been included in Visual
Basic.NET.

The MessageBox Class
You can display messages—which can contain text, buttons, and symbols—using the
MessageBox class. This class is contained in the System.Windows.Forms
namespace and provides various methods such as Show, ToString, and Equals.
However, the most common method is the Show method. As the name suggests, the
Show method is used to display a message box. This method has been overloaded in

the class. This means that many forms are available in the class for this method. This
section examines one of the most commonly used forms of this method and explains
how to use it.
The syntax for the Show method is as follows:

MessageBox.Show([Window], Message, [Title], [Buttons], [Icon],
[DefaultButton],[Options])

In the preceding syntax:
 Window refers to the window in front of which the message box will

appear. It is an optional argument.
 Message is the message to be displayed.
 Title is the text to be displayed in the title bar of the message box

and is optional.
 Buttons specifies the buttons to be displayed in the message box

and is optional. For this, you can use the MessageBoxButtons
enumeration that Visual Basic.NET provides.

 Icon specifies the icons to be displayed in the message box and is
optional. You can use the MessageBoxIcon enumeration for the
icons.

 DefaultButton specifies the default button for the message box and
is optional. For this, you can use the MessageBoxDefaultButton
enumeration.

 Options specifies the various display and association options for the
message box and is optional. For this, you can use the
MessageBoxOptions enumeration.

Consider the following statement:
MessageBox.Show("My message","Sample")
The preceding statement displays a message box that contains the message My
message and the text Sample in the title bar of the message box.
The MessageBoxButtons Enumeration
The MessageBoxButtons enumeration contains the members you can use to specify
the buttons in a message box. Some of these members are OK, OKCancel, YesNo, and
YesNoCancel. Consider the following statement:

MessageBox.Show("My message","Sample",MessageBoxButtons.OKCancel)
The preceding statement displays a message box with OK and Cancel buttons. Table 7-
4 lists the various constants contained in the MessageBoxButtons enumeration.
Table 7-4: The MessageBoxButtons Enumeration Members

Member Displays
OK The OK

button
OKCancel The OK

and
Cancel
buttons

AbortRetryIgnore The
Abort,
Retry,
and
Ignore
buttons

YesNo The Yes
and No

Table 7-4: The MessageBoxButtons Enumeration Members

Member Displays
buttons

YesNoCancel The Yes,
No, and
Cancel
buttons

RetryCancel The
Retry
and
Cancel
buttons

The MessageBoxIcon Enumeration
Visual Basic.NET provides the MessageBoxIcon enumeration, which you can use to
specify the icons to be displayed in the message box. Some of the commonly used
members of this enumeration are Information, Error, and Exclamation. For
example, consider the following code statement:
MessageBox.Show("My message","Sample",MessageBoxButtons.YesNo,
MessageBoxIcon.Question)
The preceding statement displays a message box with a Question icon and two buttons,
Yes and No. Table 7-5 explains the MessageBoxIcon enumeration members you can
use.
Table 7-5: The MessageBoxIcon Enumeration Members

Member Displays
An Icon
Containi
ng

Question A
question
in a circle

Error A white X
in a circle
with a
red
backgrou
nd

Asterisk A
lowercas
e i in a
callout
with a
white
backgrou
nd

Information A
lowercas
e i in a
callout
with a
white
backgrou
nd

Table 7-5: The MessageBoxIcon Enumeration Members

Member Displays
An Icon
Containi
ng

Exclamation An
exclamati
on mark
in a
triangle
with a
yellow
backgrou
nd

Stop A white X
in a circle
with a
red
backgrou
nd

The MessageBoxDefaultButton Enumeration
The MessageBoxDefaultButton enumeration contains members you can use to
specify the default button in a message box. Some of the commonly used
MessageBoxDefaultButton enumeration members are Button1, Button2, and
Button3. The Button1 constant specifies the first button as the default button.
Similarly, Button2 and Button3 specify the second button and third button
(respectively) as the default button in a message box. For example, consider the
following statement:
MessageBox.Show("My message","Sample",MessageBoxButtons.YesNoCancel, _

MessageBoxIcon.Information, MessageBoxDefaultButton.Button3)

The preceding code statement displays a message box with the third button, Cancel, as
the default button.
The MessageBoxOptions Enumeration
The MessageBoxOptions enumeration contains members you can use to specify
options for a message box. Two of the commonly used MessageBoxOptions
enumeration members are RightAlign and RtlReading. RightAlign right-aligns
the text, and RtlReading sets the reading order for the message box from right to left.
For example, consider the following statement:
MessageBox.Show("My message","Sample",MessageBoxButtons.YesNoCancel, _
 MessageBoxIcon.Information, MessageBoxDefaultButton.Button3,
MessageBoxOptions.RightAlign))
The preceding code statement displays a message box with right-aligned text and the
third button as the default button. Figure 7-8 displays this message box.

Figure 7-8: A message box with the third button as the default button

Next you will look at the various string functions that Visual Basic.NET provides.

The String Functions
String functions are used to manipulate strings, and Visual Basic.NET provides a lot of
them. For example, the Len function is used to calculate the number of characters in a
string, and it returns an Integer value. Consider the following statement:

Dim Length As Integer
Length=Len("Sample")
 'Returns 6
Some of the other commonly used string functions are StrComp, StrConv,
StrReverse, InStr, Mid, LCase, UCase, Trim, LTrim, and RTrim. The following
sections take a look at these functions.

Comparing Strings
The StrComp function is used to compare two strings. Two types of comparison are
possible in Visual Basic.NET—textual and binary. Textual comparison depends on your
computer system’s settings. Binary comparison is based on the internal binary
representations of characters. You can specify the comparison type at the module level
of a project. To set the comparison type, you can use the Option Compare statement.
The syntax for this statement is as follows:
Option Compare <ComparisonType>
In the preceding syntax, ComparisonType refers to the default comparison type for a
project. It can be specified as Binary or Text. If omitted, Binary is the default
comparison type.
The syntax for the StrComp function is as follows:

StrComp(String1, String2 [,CompareType])

In the preceding syntax:
 String1 and String2 are the strings to be compared.
 CompareType is comparison type and is optional. It can take the

value CompareMethod.Text or CompareMethod.Binary. If
omitted, the comparison type is the one specified in the Option
Compare statement.

The StrComp function returns a numeric value that determines the result of the string
comparison. Table 7-6 lists various return values along with their descriptions, assuming
that String1 and String2 are the two strings being compared.
Table 7-6: Return Values for the StrComp Function

Return Value Description

1 String1 is
greater than
String2.

0 String1 is
equal to
String2.

-1 String1 is
less than
String2.

NULL String1 or
String2 is
NULL.

The following is a code example that uses the StrComp function:

Dim NumVar As Integer
Dim StrVar1,StrVar2 As String

StrVar1="SAMPLE"
StrVar2="sample"
NumVar=StrComp(StrVar1,StrVar2,CompareMethod.Text)

'Returns 0
NumVar=StrComp(StrVar1,StrVar2,CompareMethod.Binary)

'Returns 1
NumVar=StrComp(StrVar2,StrVar1,CompareMethod.Text)

'Returns 0
NumVar=StrComp(StrVar2,StrVar1,CompareMethod.Binary)

'Returns 1

Reversing Strings
You can use the StrReverse function to reverse a string. The following is the syntax for
this function:
StrReverse(String)
In the preceding syntax, String is the string to be reversed. The StrReverse function
returns the specified string with its characters reversed. Consider the following
statement:
Dim StrVar As String
StrVar=StrReverse("My string")
 'Returns gnirts yM

Searching for a String Within Another String
You can use the InStr function to search for a string within another string. The syntax
for the InStr function is as follows:

InStr([Start],String1,String2[,CompareType])

In the preceding syntax:
 Start is a numeric expression that indicates the starting index for the

search. If omitted, the search starts from the first character.
 String1 is the string in which you want to search.
 String2 is the string to be searched.
 CompareType specifies the comparison type. It can be specified as

Binary or Text and is optional. If omitted, the default comparison
type is the one specified in the Option Compare statement.

Table 7-7 lists the various return values for the InStr function, assuming that String2
needs to be searched in String1.
Table 7-7: The Return Values for the InStr Function

Return Value Description

0 String2 is
not found,
String1 is
zero length,
or Start is
greater than

Table 7-7: The Return Values for the InStr Function

Return Value Description
the length of
String2.

1 String2 is
NULL.

Null String1 is
NULL.

Position String2 is
found within
String1.

Start String2 is
zero length.

Consider the following code example:
Dim NumVar As String
NumVar=InStr("This is my sample string","sample", CompareMethod.Text)

'Returns 12
NumVar=InStr(15,"This is my sample string","sample", CompareMethod.Text)

'Returns 0
NumVar=InStr("This is my sample string", "", CompareMethod.Text)

'Returns 1

Extracting a Part of a String
You can use the Mid function to extract a specific number of characters from a string.
The syntax for the Mid function is as follows:

Mid(String, Start [,Length])

In the preceding syntax:
 String is the string from which you want to extract characters.
 Start is the starting index in the String from which you want to start

extracting.
 Length is the number of characters to be extracted and is optional. If

not specified, the characters are extracted up to the last character in
the String.

Consider the following example:
Dim StrVar As String
StrVar=Mid("This is my sample string",12)
 'Returns sample string
StrVar=Mid("This is my sample string",12,6)
 'Returns sample

Changing the Case of a String
You can use the LCase and UCase functions to change the case of a string. The LCase
function converts all the uppercase characters to lowercase, and the UCase function
converts all the lowercase characters to uppercase.
The syntax for the LCase function is as follows:

LCase(String)
In the preceding syntax, String is any string expression in which all the uppercase
characters needs to be converted to lowercase.
The syntax for the UCase function is as follows:

UCase(String)
In the preceding syntax, String is any string expression in which all the lowercase
characters needs to be converted to uppercase.
Consider the following code that uses the LCase and UCase functions:

Dim StrVar As String
StrVar=LCase("Sample string")
 'Returns sample string
StrVar=UCase("Sample string")
 'Returns SAMPLE STRING

Removing Spaces from a String
Visual Basic.NET provides three functions—LTrim, RTrim, and Trim—that you can
use to remove extra spaces from a string.

 The LTrim function removes all the leading spaces (or the spaces to
the left of a string).

 The RTrim function removes all the trailing spaces (or the spaces to
the right of a string).

 The Trim function removes both leading and trailing spaces from a
string.

Dim StrVar1,StrVar2 As String
StrVar1=" Sample "
 'Assume each—represents a space
StrVar2=LTrim(StrVar1)
 'Returns Sample
StrVar2=RTrim(StrVar1)
 'Returns Sample
StrVar2=Trim(StrVar1)
 'Returns Sample

Now that you’ve learned about various string-manipulation functions, you will take a look
at the various date functions that Visual Basic.NET provides.

Date Functions
The date functions enable you to manipulate date and time values. You can modify,
calculate, and extract the date and time parts from a Date variable using the date
functions. Some commonly used date functions are Now, DateAdd, DateDiff, and
DatePart. Table 7-8 lists some of the date functions. Here, datetime is the date value
passed as an argument to a date function.
Table 7-8: Date Functions

Function Syntax Returns
Now Now() The

Table 7-8: Date Functions

Function Syntax Returns
current
date and
time

Day Day(datetime) A whole
number
between
1 and 31
that
represe
nts the
day of a
month

Month Month(datetime) A
number
between
1 and 12
that
represe
nts the
month

Year Year(datetime) A
number
between
1 and
9999
that
represe
nts the
year

Second Second(datetime) A
number
between
1 and 59
that
represe
nts the
second

Minute Minute(datetime) A
number
between
1 and 59
that
represe
nts the
minute

Hour Hour(datetime) A
number
between
0 and 23
that
represe
nts the
hour of

Table 7-8: Date Functions

Function Syntax Returns
the day

In addition to the functions listed in the preceding table, Visual Basic.NET provides some
functions that you can use to extract a part of the date, calculate the difference between
two dates, and add a time interval to a date. The following sections describe these
functions.

The DatePart Function
You can use the DatePart function to extract a specific part or component—such as
the month, quarter, or day—from a date. The syntax for the DatePart function is as
follows:
DatePart(Interval, Date)

In the preceding syntax:
 Interval is a string expression that refers to the type of interval.

Some examples are DateInterval.Hour,
DateInterval.Second, and DateInterval.Year. For specifying
the Interval, you can use the DateInterval enumeration
provided by Visual Basic.NET. Table 7-9 lists the DateInterval
enumeration members along with their string equivalent values and
the return value.

 Date is the date value whose date part you want to extract.
Table 7-9: The DateInterval Enumeration Members

Member String
Value

Extracts

DateInterval.Second s Second
DateInterval.Minute m Minute
DateInterval.Hour h Hour
DateInterval.Day d Day of

month (1
to 31)

DateInterval.DayOfYear y Day of
year (1
to 366)

DateInterval.Weekday w Day of
week (1
to 7)

DateInterval.WeekOfYear ww Week of
year (1
to 53)

DateInterval.Year yyyy Year

Consider the following code:
Dim DateVar As Date = Now()
 'Declares a date variable and
initializes it with the current date
Dim NumVar As Integer

NumVar=DatePart(DateInterval.Weekday, DateVar)
 'Returns the week day
number of the current date
NumVar=DatePart("m", DateVar)
 'Returns the month
number of the current date

The DateAdd Function
The DateAdd function is used to add a specified time interval to a date value. This
function returns a date value. The syntax for this function is as follows:
DateAdd(Interval, Number, Date)

In the preceding syntax:
 Interval is a string expression that specifies the time interval you

want to add. You can use the DateInterval enumeration as
specified in Table 7-9.

 Number is the number of intervals to be added. For example, if the
Interval is specified as DateInterval.Year and the Number is
7, the interval that needs to be added to the specified date is 7 years.
The Number value can be either positive or negative. A positive value
returns a date after the specified date, and a negative value returns a
date earlier than the specified date.

 Date is the date value to which you want to add the specified time
interval.

Consider the following code statements:
Dim DateVar1 As Date = Now()
 'Declares a date variable and
initializes it with the current date
Dim DateVar2 As Date
 'Declares another date variable to
store the result
DateVar2=DateAdd(DateInterval.Month, 5, DateVar1)
 'Returns the date after adding 5
months to the current date
DateVar2=DateAdd(DateInterval.Year, 10, DateVar1)
 'Returns the date after adding 10
years to the current date

The DateDiff Function
The DateDiff function is used to calculate the time interval between two dates. This
function returns a Long value. The syntax for the DateDiff function is as follows:

DateDiff(Interval, Date1, Date2)

In the preceding syntax:
 Interval is a string expression that indicates the interval type in

which you want the difference to be shown. You can use the
DateInterval enumeration members mentioned in Table 7-9.

 Date1 and Date2 are the dates whose difference you want to
calculate. The value of Date1 is subtracted from Date2.

Consider the following example to calculate the time difference between the current date
and a date that is accepted from the user:
Dim DateVar1 As Date = Now()
Dim DateVar2 As Date
Dim NumVar As Integer
DateVar2=InputBox("Enter a date:")
 'The conversion function is not
required as the DateDiff function can take string
 'value as an argument
NumVar= DateDiff("d",DateVar2, DateVar1)
 'Returns the difference in
number of days
 'between the current date and the
date entered by the user
NumVar=DateDiff("yyyy",DateVar2,DateVar1)
 'Returns the difference in number
of years
 'between the current date and the
date entered by the user

Type-Conversion Functions
As discussed in the “Type Conversions” section in Chapter 4, “Variables and Operators,”
you can convert one data type to another. For such conversions, Visual Basic.NET
provides various type-conversion functions. These conversion functions takes strings or
numeric data or expressions as arguments and return the converted value in the
required data type. Table 7-10 lists some of the commonly used type-conversion
functions.
Table 7-10: Type-Conversion Functions

Function Converts
the
Given
Expressi
on To

Example

CInt Integer
format

Dim Var As Integer
Var=CInt("123.45")
 'Returns
123

CStr String
format

Dim Var As String
Var=CStr(123.45)
 'Returns
123.45

CBool Boolean
format

Dim Var As Boolean
Var=CBool(12<45)
 'Returns
True

CByte Byte
format

Dim Var As Byte
Var=CByte("123.67")
 'Returns
124

CChar Char
format

Dim Var As Char
Var=CChar("abcd")

Table 7-10: Type-Conversion Functions

Function Converts
the
Given
Expressi
on To

Example

 'Returns a
CDate Date

format
Dim Var As Date
Var=CDate("12/12/01")
 'Returns
12/12/2001

CDbl Double
format

Dim Var As Double
Var=CDbl("123.4567")
 'Returns
123.4567

CDec Decimal
format

Dim Var As Decimal
Var=CDec("123.456")
 'Returns
123.456

CLng Long
format

Dim Var As Long
Var=CLng("123.45")
 'Returns
123

CObj Object
format

Dim Var As Object
Var=CObj("123.45")
 'Returns
123

CShort Short
format

Dim Var As Short
Var=CShort("123.45")
 'Returns
123

CSng Single
format

Dim Var As Single
Var=CSng("123.45")
 'Returns
123.45

CType is another function that converts one data type value to another. The CType
function has the following syntax:
CType(Expression, DataType)

In the preceding syntax:
 Expression is the data to be converted.
 DataType is the name of the data type, class, or structure to which the

data needs to be converted.
The CType function returns a value of the type specified in the DataType argument of
the function.

Consider the following example:
Dim Var As Object
 'Declares an object type variable
to store any data of any type
Var=CType("123.45", Integer)
 'Returns an Integer value 123
Var=CType("123.708", Long)
 'Returns a Long value 124

Summary
In this chapter, you learned how to reuse code in your program by using procedures.
You also learned how to create and use different types of procedures. You also learned
about the various built-in functions provided by Visual Basic.NET that help you add
interactivity to your programs and develop your programs easily and quickly.

Part II: Professional Project 1—Introducing
Project Development Using VB.NET
Chapter List

Chapter 8: Upgrading Visual Basic 6.0 Projects to Visual Basic .NET

Project 1 Overview
In this project, you will learn to upgrade an existing Visual Basic 6.0 application to Visual
Basic.NET by using the Visual Basic Upgrade Wizard. You will also learn about the
considerations to take into account before upgrading an application to Visual Basic.NET.

This project uses a sample application—PrjLenConversion—to help you understand how
to upgrade a Visual Basic 6.0 project to Visual Basic.NET. The PrjLenConversion
application enables you to convert lengths from one unit to another. You will use the
Visual Basic Upgrade Wizard to upgrade the PrjLenConversion application. After you
upgrade the application, you will learn about the changes made to the code in the project
by the wizard. You will learn about the following changes:

 General changes
 Changes in the declaration of event-handling procedures
 Changes in manipulating controls
 Changes in data types
 Changes in the Msgbox function

In addition to preceding changes, this project will also explain how the Visual Basic
Upgrade Wizard manages changes made to the following:

 Arrays
 Property procedures
 Late-bound objects

Chapter 8: Upgrading Visual Basic 6.0 Projects to
Visual Basic .NET
Overview
In the preceding chapters, you learned about the features available in Visual Basic.NET.
You also learned about the differences between Visual Basic and Visual Basic.NET. In
this chapter, you will learn how to upgrade an existing project created in Visual Basic 6.0
to Visual Basic.NET.

Now that you’ve learned about the features of Visual Basic.NET and their advantages,
you might want to upgrade the projects you previously created in Visual Basic 6.0 to
Visual Basic.NET. By doing so, your projects can benefit from the various new and
enhanced features that the .NET framework provides. Visual Basic.NET provides tools
that enable you to upgrade projects created in Visual Basic 6.0.
Before you upgrade an existing project, however, you must consider a few things. As
discussed in Chapter 1, “.NET Overview,” Visual Basic.NET does not support many

features supported by Visual Basic 6.0. The following are a few of the features not
supported by Visual Basic.NET:

 Object linking and embedding (OLE) container control
 Dynamic data exchange (DDE)
 Web classes
 DHTML applications
 ActiveX documents

Therefore, if your existing project uses any of these features, you must modify your
project before you can upgrade it. However, the number of changes that you need to
make to a project depends on various factors such as the size and type of the project.
For example, Visual Basic.NET does not provide enhancements for all of the features of
Visual Basic 6.0, such as DHTML applications. Therefore, a lot of rework might be
required to upgrade a Visual Basic 6.0 project that uses DHTML applications. It is a good
idea to first estimate the amount of rework required to upgrade the project. You can
choose not to upgrade the DHTML application, as it can interoperate with Visual
Basic.NET Web applications.

Visual Basic.NET provides a Visual Basic Upgrade Wizard that enables you to upgrade
projects created in Visual Basic 6.0 to Visual Basic.NET. You will learn more about the
Visual Basic Upgrade Wizard in subsequent sections of this chapter. The upgrade
process involves either one or two steps, depending on the type of project you are
upgrading. The first step involves using the Visual Basic Upgrade Wizard to upgrade the
Visual Basic 6.0 project to a Visual Basic.NET project. The second step, if required,
involves modifying a few sections of the code.

The following sections provide an example to help you understand how to upgrade a
Visual Basic 6.0 project to Visual Basic.NET.

PrjLenConversion—A Visual Basic 6.0 Project
In this section, you will learn about the PrjLenConversion project that enables you to
convert lengths from one unit to another. For example, you can convert length in miles to
other units of measure such as yards, feet, or inches.
The interface of the PrjLenConversion project is displayed in Figure 8-1.

Figure 8-1: The interface of the PrjLenConversion project

To convert a length, enter the number in the text box in the Convert section and select
the unit you need to convert from the drop-down list next to the text box. Then, in the Into
section, select the unit into which the length should be converted. Then click on the
Calculate Result button to display the result in the Result section. To exit the project,
click on the Close button. The Refresh button enables you reset the controls in the
project.
Listing 8-1 contains the code for the PrjLenConversion project.

Listing 8-1: The PrjLenConversion Project

Dim InputNum As Long

Dim OutputNum As Long

Dim InputUnit As String

Dim OutputUnit As String

'Declaration of variables

Private Sub CmdCalculate_Click()

'Event handler for the Calculate button

 If TxtInput.Text = "" Or Not IsNumeric(TxtInput.Text) Then

'Validation for the text box

 MsgBox "Please enter a numeric value", vbOKOnly, "Value

Required"

 TxtInput.Text = ""

 TxtInput.SetFocus

 Exit Sub

 End If

 InputNum = TxtInput.Text

 InputUnit = CmbInputUnit.Text

'Picking up values from the combo box

 OutputUnit = CmbOutputUnit.Text

 If InputUnit = "miles" Then

'Calculating the result based on the

 'value entered in

the text box and the selections in the combo boxes

 Select Case OutputUnit

 Case "miles"

 OutputNum = InputNum

 Case "feet"

 OutputNum = 5280 * InputNum

 Case "yards"

 OutputNum = 1760 * InputNum

 Case "inches"

 OutputNum = 63360 * InputNum

 End Select

 ElseIf InputUnit = "feet" Then

 Select Case OutputUnit

 Case "miles"

 OutputNum = 0.000189 * InputNum

 Case "feet"

 OutputNum = InputNum

 Case "yards"

 OutputNum = 0.333333 * InputNum

 Case "inches"

 OutputNum = 12 * InputNum

 End Select

 ElseIf InputUnit = "yards" Then

 Select Case OutputUnit

 Case "miles"

 OutputNum = 0.000568 * InputNum

 Case "feet"

 OutputNum = 3 * InputNum

 Case "yards"

 OutputNum = InputNum

 Case "inches"

 OutputNum = 36 * InputNum

 End Select

 ElseIf InputUnit = "inches" Then

 Select Case OutputUnit

 Case "miles"

 OutputNum = 0.000016 * InputNum

 Case "feet"

 OutputNum = 0.083333 * InputNum

 Case "yards"

 OutputNum = 0.027778 * InputNum

 Case "inches"

 OutputNum = InputNum

 End Select

 End If

 TxtOutput.Text = OutputNum

'Displaying the result

 LblResult.Caption = OutputUnit

End Sub

Private Sub CmdRefresh_Click()

'Event handler for the Refresh button

 CmbInputUnit.ListIndex = 0

'Reinitializing the controls

 CmbOutputUnit.ListIndex = 0

 LblResult.Caption = ""

 TxtOutput.Text = ""

 TxtInput.Text = ""

 InputNum = 0

 OutputNum = 0

End Sub

Private Sub CmdClose_Click()

'Event handler for the Close button

 Unload Me

'Closing the form

End Sub

Private Sub Form_Initialize()

 CmbInputUnit.AddItem ("miles")

'Adding items to the combo boxes

 CmbInputUnit.AddItem ("feet")

 CmbInputUnit.AddItem ("yards")

 CmbInputUnit.AddItem ("inches")

 CmbInputUnit.ListIndex = 0

 CmbOutputUnit.AddItem ("miles")

 CmbOutputUnit.AddItem ("feet")

 CmbOutputUnit.AddItem ("yards")

 CmbOutputUnit.AddItem ("inches")

 CmbOutputUnit.ListIndex = 0

End Sub

The PrjLenConversion project was created in Visual Basic 6.0. Now let’s upgrade this
project from Visual Basic 6.0 to Visual Basic.NET by using Visual Basic Upgrade Wizard.
First, however, let’s take a look at the wizard.

The Visual Basic Upgrade Wizard
Visual Basic.NET provides Visual Basic Upgrade Wizard to help you upgrade projects
created in Visual Basic 6.0. To upgrade a project, open the project in Visual Basic.NET.
When you open a Visual Basic 6.0 project in Visual Basic.NET, the Visual Basic Upgrade
Wizard displays. This is because Visual Basic.NET automatically detects whether the
project you are opening was created in Visual Basic 6.0 and therefore needs to be
upgraded.

When you upgrade a project using the Visual Basic Upgrade Wizard, the existing project
remains unmodified. Instead, the Visual Basic Upgrade Wizard creates a new Visual
Basic.NET project with the modified code. In addition, the wizard copies each file from
the existing project to the new project and modifies the code in the new project according
to the Visual Basic.NET syntax. Also, the forms and controls in the existing Visual Basic
6.0 project are replaced with corresponding Visual Basic.NET forms and controls.

After the upgrade process is complete, the Visual Basic Upgrade Wizard creates an
upgrade report. The upgrade report lists the project files and other information about the
upgraded project, such as the location of the new project files. This upgrade report also
lists the issues encountered by the Visual Basic Upgrade Wizard. As previously
mentioned, in certain cases, due to the differences between Visual Basic 6.0 and Visual
Basic.NET, the Visual Basic Upgrade Wizard cannot upgrade the entire project. As a
result, you might need to modify the existing project to complete the upgrade process.
Before you can execute an upgraded project, you must fix the issues listed in the
upgrade report.

You need to perform the following steps to upgrade a Visual Basic 6.0 project to Visual
Basic.NET:

1. Open the Visual Basic 6.0 project in Visual Basic.NET. When you open
the project in Visual Basic.NET, the Visual Basic Upgrade Wizard
displays.

2. Click on the Next button on the first page of the Visual Basic Upgrade
Wizard, as shown in Figure 8-2. The second page of the wizard then
appears.

Figure 8-2: The first page of the Visual Basic Upgrade Wizard
On the second page of the wizard, specify whether you want to upgrade the
project as an EXE project or a DLL project. The options available in the Visual
Basic Upgrade Wizard differ depending on the type of project you are
upgrading. For example, when you upgrade an ActiveX EXE or ActiveX
Document EXE project created in Visual Basic 6.0, you can upgrade it to
either an EXE or a DLL file. In contrast, when you upgrade any other type of
project to Visual Basic.NET, the type of project to which you can upgrade is
already selected. Note in Figure 8-3 that the EXE option is selected.

Figure 8-3: The second page of the Visual Basic Upgrade Wizard

3. Click the Next button to display the third page of the Visual Basic
Upgrade Wizard, shown in Figure 8-4.

Figure 8-4: The third page of the Visual Basic Upgrade Wizard
On the third page of the wizard, specify the location where you want to save
the Visual Basic.NET project. The Visual Basic Upgrade Wizard creates a
new folder to store the upgraded project. The wizard creates the folder in the
same folder where the Visual Basic 6.0 project is stored and names it
<projectname>.NET, where projectname represents the name of the Visual
Basic 6.0 project. You can use the Browse button to specify a different
location for the Visual Basic.NET project.

Note If a folder that contains files is specified as the destination folder for
the Visual Basic.NET project, the Visual Basic Upgrade Wizard
displays a message box stating that the existing files in the folder will
be deleted. You can click on the OK button in the message box to
delete the existing files in the folder.

4. Click on the Next button on the third page of the wizard. A message box
appears, prompting you to confirm the creation of the folder in which the
upgraded project will be stored.

5. Click on the OK button in the message box to continue. The fourth page
of the Visual Basic Upgrade Wizard displays, as shown in Figure 8-5.

Figure 8-5: The fourth page of the Visual Basic Upgrade Wizard
6. Click on the Next button on the fourth page of the Visual Basic Upgrade

Wizard to start the upgrade process. The fifth page of the wizard
displays, as shown in Figure 8-6.

Figure 8-6: The fifth page of the Visual Basic Upgrade Wizard
7. The fifth page of the wizard displays the progress of the upgrade. After

the upgrade process is complete, you can view the new project in the
Solution Explorer window, as shown in Figure 8-7.

Figure 8-7: The Solution Explorer window
8. Note that the Solution Explorer window also displays the _Upgrade-

Report.htm file, which is the upgrade report. Double-click on the
_UpgradeReport.htm file in the Solution Explorer window to view the
upgrade report. Figure 8-8 displays the upgrade report for the upgraded
PrjLenConversion project.

Figure 8-8: The upgrade report for the PrjLenConversion project

As is evident from the upgrade report shown in Figure 8-8, the PrjLenConversion project
was upgraded successfully, and the Visual Basic Upgrade Wizard did not encounter any
issues during the upgrade process.

Next you’ll take a look at the changes made by the Visual Basic Upgrade Wizard to the
upgraded project.

Changes in the Upgraded Project
To view changes made to the upgraded project, you need to view its code. To view the
code, double-click the Form1.vb file in the Solution Explorer window. The form displays
in the designer. Select Code from the View menu to view the code associated with the
form. Listing 8-2 contains the code for the upgraded project.

Listing 8-2: The PrjLenConversion.NET Project

Option Strict Off

Option Explicit On

Friend Class LenConverter

'Added by the Visual Basic Upgrade Wizard

 Inherits System.Windows.Forms.Form

Windows Form Designer generated code

Upgrade Support

'Added by the Visual Basic Upgrade Wizard

 Dim InputNum As Integer

 Dim OutputNum As Integer

 Dim InputUnit As String

 Dim OutputUnit As String

'Declaration of variables

 Private Sub CmdCalculate_Click(ByVal eventSender As System.Object, ByVal

eventArgs As System.EventArgs) Handles CmdCalculate.Click

'Event handler for the Calculate button

 If TxtInput.Text = "" Or Not IsNumeric(TxtInput.Text) Then

'Validation for the text box

 MsgBox("Please enter a numeric value",

MsgBoxStyle.OKOnly, "Value Required")

 TxtInput.Text = ""

 TxtInput.Focus()

 Exit Sub

 End If

 InputNum = CInt(TxtInput.Text)

 InputUnit = CmbInputUnit.Text

'Picking up values from the combo box

 OutputUnit = CmbOutputUnit.Text

 If InputUnit = "miles" Then 'Calculating

the result based on the value entered in the text box and the selections in the

combo boxes

 Select Case OutputUnit

 Case "miles"

 OutputNum = InputNum

 Case "feet"

 OutputNum = 5280 * InputNum

 Case "yards"

 OutputNum = 1760 * InputNum

 Case "inches"

 OutputNum = 63360 * InputNum

 End Select

 ElseIf InputUnit = "feet" Then

 Select Case OutputUnit

 Case "miles"

 OutputNum = 0.000189 * InputNum

 Case "feet"

 OutputNum = InputNum

 Case "yards"

 OutputNum = 0.333333 * InputNum

 Case "inches"

 OutputNum = 12 * InputNum

 End Select

 ElseIf InputUnit = "yards" Then

 Select Case OutputUnit

 Case "miles"

 OutputNum = 0.000568 * InputNum

 Case "feet"

 OutputNum = 3 * InputNum

 Case "yards"

 OutputNum = InputNum

 Case "inches"

 OutputNum = 36 * InputNum

 End Select

 ElseIf InputUnit = "inches" Then

 Select Case OutputUnit

 Case "miles"

 OutputNum = 0.000016 * InputNum

 Case "feet"

 OutputNum = 0.083333 * InputNum

 Case "yards"

 OutputNum = 0.027778 * InputNum

 Case "inches"

 OutputNum = InputNum

 End Select

 End If

 TxtOutput.Text = CStr(OutputNum)

'Displaying the result

 LblResult.Text = OutputUnit

 End Sub

 Private Sub CmdRefresh_Click(ByVal eventSender As System.Object, ByVal

eventArgs As System.EventArgs) Handles CmdRefresh.Click

'Event handler for the Refresh button

 CmbInputUnit.SelectedIndex = 0

'Reinitializing the controls

 CmbOutputUnit.SelectedIndex = 0

 LblResult.Text = " "

 TxtOutput.Text = " "

 TxtInput.Text = " "

 InputNum = 0

 OutputNum = 0

 End Sub

 Private Sub CmdClose_Click(ByVal eventSender As System.Object, ByVal

eventArgs As System.EventArgs) Handles CmdClose.Click

'Event handler for the Close button

 Me.Close()

'Closing the form

 End Sub

'UPGRADE_NOTE: Form_Initialize was upgraded to Form_Initialize_Renamed.

 Private Sub Form_Initialize_Renamed()

 CmbInputUnit.Items.Add(("miles"))

'Adding items to the combo boxes

 CmbInputUnit.Items.Add(("feet"))

 CmbInputUnit.Items.Add(("yards"))

 CmbInputUnit.Items.Add(("inches"))

 CmbInputUnit.SelectedIndex = 0

 CmbOutputUnit.Items.Add(("miles"))

 CmbOutputUnit.Items.Add(("feet"))

 CmbOutputUnit.Items.Add(("yards"))

 CmbOutputUnit.Items.Add(("inches"))

 CmbOutputUnit.SelectedIndex = 0

 End Sub

End Class

The following sections describe the changes made by the Visual Basic Upgrade Wizard
to the PrjLenConversion project.

General Changes

Note that the Visual Basic Upgrade Wizard adds the following two lines at the top of the
code:
Option Strict Off
Option Explicit On
The first statement in the code enables the code to perform implicit data-type
conversions. Implicit conversions may, however, result in loss of data when you convert
a data type of a higher capacity to a data type of a lower capacity. For example, data
may be lost when you convert a value of the Integer data type to the Short data type.
In Visual Basic.NET, you can restrict implicit data-type conversions by using the Option
Strict statement. When Option Strict is enabled (that is, set to On), you cannot
perform any conversions that might result in data loss. By default, Option Strict is
set to Off.
The second statement in the code ensures that you cannot use any undeclared variables
in the code. The Option Explicit statement is used to ensure explicit declaration of
all the variables used in a project. When the Option Explicit statement is set to On,
you need to declare all variables that are used in the code.
As discussed in Chapter 2, “Object-Oriented Features in Visual Basic.NET,” Visual
Basic.NET, unlike Visual Basic 6.0, supports classes. When you upgrade a Visual Basic
6.0 project, the Visual Basic Upgrade Wizard also creates classes. Notice that the Visual
Basic Upgrade Wizard includes the entire code in the following statements:
Friend Class LenConverter
 Inherits System.Windows.Forms.Form
 'Code statements
End Class
Thus, the wizard declares the LenConverter class, which is derived from the
System.Windows.Forms.Form class. All the variables and methods of the
PrjLenConversion project are, as a result, part of the LenConverter class. Note that
the LenConverter class is declared with the Friend access modifier. This implies that
the LenConverter class is accessible only within the upgraded project.
In addition to the preceding changes, notice that the code window displays two additional
nodes: Windows Form Designer generated code and Upgrade Support. These nodes are
added during the upgrade process. The Windows Form Designer generated code node
contains the Sub New and Dispose methods. This node also contains the code for the
form and the controls on the form. In addition, it specifies the size, location, and other
properties (such as font and name) for controls. The Upgrade Support node contains the
code statements to complete the class definition for the upgraded project.

Changes in the Declaration of Event-Handling Procedures

Note that the Visual Basic Upgrade Wizard also changes the syntax for event-handling
procedures.
In Visual Basic 6.0, you would use the following syntax to declare an event handler for
the Click event of the Close button.

Private Sub CmdClose_Click()
 'Code statements
End Sub

In contrast, you need to use the following statements to define the same event-handling
procedure in Visual Basic.NET:
Private Sub CmdClose_Click(ByVal eventSender As System.Object, ByVal eventArgs As
System.EventArgs) Handles CmdClose.Click
 'Code statements

End Sub
You can refer to Chapter 7, “Procedures and Functions,” to revise the concepts related
to event-handling procedures. Also note that the Form_Initialize procedure in a
Visual Basic 6.0 project is changed to Form_Initialize_Renamed.

Changes in Manipulating Controls

The methods used to manipulate controls—such as combo boxes, text boxes, and
labels—in Visual Basic 6.0 and Visual Basic.NET are also different.

Take a look at the following two statements that are part of a Visual Basic 6.0 project:
CmbInputUnit.AddItem ("inches") 'In Visual Basic 6.0
CmbInputUnit.ListIndex = 0
In the first statement, the AddItem method adds the inches item to the
CmbInputUnit combo box. In the second statement, the ListIndex method is used
to specify the item at index position zero as the currently selected item.

Now take a look at the same code in Visual Basic.NET:
CmbInputUnit.Items.Add(("inches")) 'In Visual Basic.NET
CmbInputUnit.SelectedIndex = 0
In the first statement, note that the name of the combo box is followed by the Items
property, which in turn is followed by the Add method. The Items property returns an
object representing a member of the CmbInputUnit combo box. The Add method adds
the inches item to the CmbInputUnit combo box at the position returned by the
Items property.
In the second statement, the SelectedIndex property sets the item at the specified
index as the currently selected item.

Similar to combo boxes, the methods used with text boxes and labels have also
changed. Consider the following examples.
In a Visual Basic 6.0 project, you would use the following statement to set the focus to
the TxtInput text box:

TxtInput.SetFocus
In a Visual Basic.NET project, however, the following statement is used to set the focus
to the TxtInput text box:

TxtInput.Focus()
Thus, the SetFocus method in Visual Basic 6.0 is replaced with the Focus method in
Visual Basic.NET.

Similarly, the property used to specify the caption of a label control is also different in
Visual Basic 6.0 and Visual Basic.NET. Consider the following example:
LblResult.Caption = OutputUnit 'In Visual Basic 6.0
LblResult.Text = OutputUnit 'In Visual Basic.NET

Changes in Data Types

Note the change in the variable declaration statements in the upgraded project. First look
at how variables are declared in the PrjLenConversion project:
Dim InputNum As Long
Dim OutputNum As Long

The same statements are represented in the following manner in the upgraded project:
Dim InputNum As Integer
Dim OutputNum As Integer

It is evident from the comparison that the Visual Basic Upgrade Wizard changes the data
type of the variables from Long to Integer. This is because the numeric data types in
Visual Basic 6.0 and Visual Basic.NET are different.

In Visual Basic 6.0:
 A variable of the Integer data type is stored as a 16-bit (2-byte)

number.
 A variable of the Long data type is stored as a 32-bit (4-byte) number.

In contrast, Visual Basic.NET offers three numeric data types. In Visual Basic.NET:
 A variable of the Short data type is stored as a 16-bit (2-byte) number.
 A variable of the Integer data type is stored as a 32-bit (4-byte)

number.
 A variable of the Long data type is stored as a 64-bit (8-byte) number.

Therefore, when you upgrade a Visual Basic 6.0 project, the Visual Basic Upgrade
Wizard converts all variables of the Long data type to the Integer data type.

Changes in the MsgBox Function

In the PrjLenConversion project, you used the following statement to display a message
box:
MsgBox "Please enter a numeric value", vbOKOnly, "Value Required"

In the preceding statement:
 The first argument represents the message to be displayed.
 The second value is the constant used to specify the buttons to be

displayed in the message box.
 The third argument specifies the title of the message box.

Now take a look at how the MsgBox function has changed in the upgraded project:

MsgBox("Please enter a numeric value", MsgBoxStyle.OKOnly, "Value Required")
Note the difference in the second argument. As discussed in Chapter 7, the second
argument in the MsgBox function specifies the buttons to be displayed in the message
box. In Visual Basic.NET, you can use members of the MsgBoxStyle enumeration to
specify values for the second argument. The MsgBoxStyle enumeration includes
members such as OKOnly, OKCancel, YesNoCancel, and YesNo. You can refer to
Chapter 7 to revise the concepts related to the MsgBox function.

Now that you’ve looked at the changes made by the Visual Basic Upgrade Wizard to the
project during the upgrade process, the following sections look at some other changes
that the Visual Basic Upgrade Wizard makes to code while upgrading projects.

Other Modifications
In addition to the changes discussed in the preceding sections, the Visual Basic Upgrade
Wizard makes various other changes to code during the upgrade process. In this
section, you will learn how the Visual Basic Upgrade Wizard handles the following while
upgrading projects:

 Arrays
 Property procedures
 Late-bound objects:

Arrays
Unlike in Visual Basic 6.0, in Visual Basic.NET, you cannot specify the lower bound for
an array. In Visual Basic 6.0, the default lower bound for an array is 0, but you can
change this by using the Option Base statement. In contrast, Visual Basic.NET does
not support the Option Base statement. Therefore, you cannot modify the lower bound
for an array in Visual Basic.NET.

Consider the following statement that is part of a project in Visual Basic 6.0:
Dim MyArray(11 To 22) As String

When you upgrade the Visual Basic 6.0 project containing the preceding code statement
to Visual Basic.NET, the Visual Basic Upgrade Wizard successfully upgrades the project.
However, the upgrade report for the project generated by the wizard displays the
following run-time warning:

“Lower bound of array MyArray was changed from 11 to 0.”

Now look at the same statement in the upgraded project. Because the wizard changes
the lower bound of the array, the array declaration in the Visual Basic.NET project
changes as shown in the following statement:
Dim MyArray(22) As String
Note that the size of MyArray has increased. Thus, when you upgrade a project to
Visual Basic.NET, if the lower bound of an array in the Visual Basic 6.0 project is greater
than 0, the size of the array changes.
If the code in your project relies on the array size, you might need to modify the code.
For example, consider a situation in which you are assigning the values of MyArray1 to
MyArray2 in a project. MyArray1 has a lower bound greater than 0, and MyArray2
has a lower bound of 0. After you upgrade the project, you will need to modify the code
because the size of MyArray1 will change.

Property Procedures
The syntax to define properties in Visual Basic 6.0 and Visual Basic.NET is different. In
Visual Basic 6.0, you use the Property Get and Property Let statements to define
properties. In contrast, Visual Basic.NET does not support the Property Let
statement.

Consider the following code declared in a Visual Basic 6.0 project:
Dim MyProp As Integer
Public Property Get MyProperty() As Integer
 MyProperty = MyProp
End Property
Public Property Let MyProperty(ByVal MyValue As Integer)
 MyProp = MyValue
End Property

When you upgrade the project, the Visual Basic Upgrade Wizard modifies the code. The
modified code is as follows:
Dim MyProp As Short
Public Property MyProperty() As Short
 Get
 MyProperty = MyProp
 End Get
 Set(ByVal Value As Short)
 MyProp = Value
 End Set
End Property
While upgrading the project, the Visual Basic Upgrade Wizard changes the Property
Let procedure to a Property Set procedure.

Late-Bound Objects

Like Visual Basic 6.0, Visual Basic.NET supports late-bound objects. When you upgrade
your projects to Visual Basic.NET, however, late-bound objects can introduce problems.
When upgrading a project, the Visual Basic Upgrade Wizard might not be able to resolve
or convert the properties of a late-bound object. This is because Visual Basic Upgrade
Wizard cannot determine the type of a late-bound object.
Let’s look at an example to understand this. Consider the following code that is part of a
Visual Basic 6.0 project. The following code is executed when you click on the button
Command1:

Private Sub Command1_Click()
 Dim MyInt As Integer
 Dim MyObject As Object
 MyInt = InputBox("Enter 1 to change the caption of the first label and 2
to change the caption of the second label.")
 Select Case (MyInt)
 Case "1"
 Set MyObject = Label1
 MyObject.Caption = "My First Label"
 Case "2"
 Set MyObject = Label2
 MyObject.Caption = "My Second Label"
 End Select
End Sub

When you upgrade the project to Visual Basic.NET, the upgrade report displays the
following warning:

“Couldn’t resolve default property of object MyObject.Caption.”
Because late binding is used to change the captions of labels, the Visual Basic Upgrade
Wizard cannot identify the type of the MyObject object. Therefore, the wizard generates
a run-time warning.
In Visual Basic 6.0, you set the caption of a label control by using the Caption property
of the label. In Visual Basic.NET, however, the Caption property is replaced with the
Text property. The following is the upgraded code for the Click event of the
Command1 button.

Private Sub Command1_Click(ByVal eventSender As System.Object, ByVal eventArgs
As
System.EventArgs) Handles Command1.Click
 Dim MyInt As Short
 Dim MyObject As Object
 MyInt = CShort(InputBox("Enter 1 to change the caption of the text box and
2 to change the caption of the command button."))
 Select Case (MyInt)
 Case CInt("1")
 MyObject = Label1
'UPGRADE_WARNING: Couldn't resolve default property of object MyObject.Caption.
 MyObject.Caption = "My First Label"
 Case CInt("2")

 MyObject = Label2
'UPGRADE_WARNING: Couldn't resolve default property of object MyObject.Caption.
 MyObject.Caption = "My Second Label"
 End Select
End Sub
In the preceding code, note that the wizard has added warnings stating that it cannot
resolve the default property of MyObject. To ensure that the preceding code runs
smoothly, you need to modify the upgraded code.

Alternatively, if you modify the code in the Visual Basic 6.0 project using early binding,
the Visual Basic Upgrade Wizard will not generate any warnings. In such cases, you do
not need to make any modifications to the code.

Summary
In this chapter, you learned about upgrading Visual Basic 6.0 projects to Visual
Basic.NET. You also learned about the considerations to take into account before
upgrading a project to Visual Basic.NET. In addition, you learned to upgrade an existing
project to Visual Basic.NET by using the Visual Basic Upgrade Wizard. Next, you
upgraded a sample project, PrjLenConversion, to Visual Basic.NET and learned about
the changes made to the code in the project by the wizard. Finally, you learned how the
Visual Basic Upgrade Wizard handles the changes made to arrays, Property
procedures, and late-bound objects while upgrading projects.

Part III: Professional Project 2—Project
Development Using ADO.NET
Chapter List

Chapter 9: Project Case Study—Creating a Video Kiosk
Chapter 10: Using ADO.NET
Chapter 11: Error Handling in Visual Basic .NET
Chapter 12: Designing the User Interface of the Customer Module
Chapter 13: Adding Functionality to the Main Form
Chapter 14: Adding Functionality to the Search Form
Chapter 15: Adding Functionality to the Registration Form
Chapter 16: Adding Functionality to the Place Order Form
Chapter 17: Designing the User Interface of the Administration Module
Chapter 18: Adding Functionality to the Main Form
Chapter 19: Adding Functionality to the Update/Delete Form
Chapter 20: Adding Functionality to the Insert Forms
Chapter 21: Adding Functionality to the Reports Form

Project 2 Overview
In this project, you will learn to create the MyMovies application for a fictitious video
company that sells movie videos. The MyMovies application is designed for the
customers and administrators of the various stores.

Customers visiting the MyMovies stores can use this application to perform the following
tasks:

 To browse the database to obtain information related to movies
 To search for specific information by using the various criterions
 To purchase the movies

The database administrator can use this application to perform the following tasks:
 To add records to the tables in the database

 To update the tables in the database
 To generate reports

The MyMovies application is a Windows application developed by using Visual
Basic.NET and ADO.NET. This application stores all client- and movie-specific details in
a Microsoft SQL 2000 database. The key concepts used to create the MyMovies
application are as follows:

 Visual Basic.NET
 Working with the Windows forms
 Error handling
 Connecting to a database using ADO.NET
 Retrieving data using ADO.NET and Writing data using ADO.NET

You will also learn to write the code for the various forms in the application to add
functionality to the application.

Chapter 9: Project Case Study—Creating a Video
Kiosk
In the preceding chapter, you learned how to upgrade an existing Visual Basic project to
Visual Basic.NET. Starting with this chapter, you will create your own projects in Visual
Basic.NET. Before actually creating a project, however, you first need to take a look at
the case study for the project you are going to create. This chapter describes the
MyMovies Video Kiosk case study as well as its design.

MyMovies Video Kiosk: The Present Scenario
MyMovies is a video company based in New Jersey. The company sells movie videos
and also provides information about the movies. The company owns a chain of stores in
various cities across the United States. MyMovies enjoyed its monopoly in the video-
selling market until few months back. Let’s take a look at the company’s existing system
to identify reasons why the company is losing its market share in the movie video
market.

Each MyMovies store provides information about movies in catalogs, and customers go
through the catalogs to find movies of interest. After selecting a movie, a customer can
buy the movie in the DVD, CD, or LCD format. When the sale of videos began to decline,
the management of the company assigned a team to conduct a market survey to find out
why. The team suggested that, in this time of automation, the old manual system of
paper catalogs has become obsolete and slow, and at times, this leads to a disappointed
customer. Hence, the solution for this problem lies in automating the existing system.

MyMovies Video Kiosk: The Solution
As mentioned in the preceding section, the solution is to automate the existing system. In
other words, any customer walking into the store should be able to use a computer
running an application that provides all the information related to a movie, such as the
name of the movie, its cast, and the director’s name. Using this information, the
customer can then decide whether or not to buy the movie.

In addition, customers should be able to search for a movie based on some criteria, such
as its name, director, or cast. Customers should also be able to view details about a
specific movie, actor, or director. This information is stored in a Microsoft SQL 2000
database. What is required is a front-end desktop application to provide a simple and
interactive interface. The following section describes a typical project cycle for
developing an application.

Project Life Cycle
The development of a project actually starts when there is a need to develop or
significantly change an existing system. In the case of MyMovies, there is a need to
regain the company’s lost monopoly in the video market. In other words, they need to
change their existing old-age system of catalogs.

The development life cycle of a project involves three phases:
 Project initiation
 Project execution
 Project deployment

In the project initiation phase, a comprehensive project plan is prepared. This plan lists
the tasks to be performed during the life cycle of the project. It also identifies the team
members and assigns responsibilities to them based on their skills.
In the project execution phase, the team develops the required application. Because this
is the most elaborate phase in terms of project cost and time, this phase can be further
divided into the following stages:

 Requirements analysis
 High-level design
 Low-level design
 Construction
 Integration and testing
 User acceptance test

These stages are discussed in the following sections. First, however, I’ll discuss the final
phase in a project life cycle, the project deployment phase. As the name suggests,
during this phase, the application is deployed at the client location. In addition, support is
provided to the client for a particular period of time to take care of any bugs that might
occur in the application after deployment.

Before proceeding any further, let’s take a look at each of the stages in the project
execution phase.

Requirements Analysis
As the name suggests, during the requirements analysis stage, the team analyzes the
various requirements that need to be fulfilled by the video kiosk application. For this, the
team working on the video kiosk application studies various existing automated video
kiosk applications at the numerous video kiosks that have opened recently in various
cities around the country. In addition, the team also interviews various customers who
use these automated video kiosks. As a result, the following requirements are identified
for the video kiosk application being created. The application should:

 Be easy to use in terms of navigation and should provide enough tips as
well.

 Be simple, fast, and interactive.
 Provide a feature to search for a particular movie based on a criterion,

such as a movie, director, or actor’s name.
 Provide enough information about a movie to attract a customer to buy it.

After analyzing these requirements, the MyMovies team decided to make the following
two modules for the video kiosk application:

 Customer module
 Administration module

The customers at the video kiosk will use the Customer module to browse the Movies
database for the required information. They also will be able to search for specific
information using the various criteria and will be able to purchase videos. The system
administrators of MyMovies will use the Administration module to maintain the database
and keep it updated.

The following requirements will be addressed by the Customer module:
 Provide an easy method for browsing the movie information.

 Offer an option to search based on various criteria.
 Provide a registration form that accepts information about a customer,

such as his or her name, address, and e-mail address.

The following requirements will be addressed by the Administration module:
 Provide a simple and easy method for maintaining and updating the

various tables in the Movies database
 Generate reports showing collated data, such as daily sales, movies in

demand, and details of regular customers

High-Level Design
In the high-level design phase, the team decides on the functionality of the system. In
addition, the various data input and output formats are finalized, and the operating
requirements are identified. Approval is requested from the client regarding the functional
specifications documentation of the proposed interfaces for the application. The design
of the next phase is based on this design.
Figure 9-1 displays the Main screen for the customers. This screen provides options for
registered customers as well as new customers.

Figure 9-1: The Main screen for the Customer module

A registered customer needs to enter his or her Customer ID in a text box and then click
on the Submit button. This will take the customer to the Search screen, shown in Figure
9-2.

Figure 9-2: The Search screen

Using the Search screen, customers can search for movies of their choice and then
select movies to buy. This screen has a text box in which customers can enter the text
they want to search for, and they also can select a category from the Browse By drop-
down list. Clicking the Search button displays the results in the Search Result section.
The customers can select the movies of their choice and click on the Place Order button.
This displays the Place Order screen, shown in Figure 9-3.

Figure 9-3: The Place Order screen

The Place Order screen displays the movies selected by the customer as well as the
total amount payable for the order being placed. This screen also displays the credit card
details for the customer. The customer needs to click the Place Order button to place the
order, and the corresponding database tables also get updated. If a customer is not
registered, clicking the Place Order button displays the Registration screen, as shown in
Figure 9-4.

Figure 9-4: The Registration screen

The Registration screen also appears if the customer clicks the Register button shown in
the Main screen (refer to Figure 9-1).
For the Administration module, there will be a main form containing two menu options,
Operations and Generate Reports. The Operations menu option is for the various
database maintenance operations, and it further contains two suboptions, Insert and
Update/Delete. The Insert option enables the administrator to insert data into the
database tables. The Update/Delete option enables the administrator to update and
delete records from the tables in the database. Figure 9-5 displays the Insert Movie Info
screen for the Administration module. The other screens for adding data will also be
similar, containing the corresponding fields of each table in the Movies database.

Figure 9-5: The Insert Movie Info screen

Figure 9-6 displays the Update/Delete screen, which is common for all the tables in the
database. In this screen, the Search In drop-down list displays the various tables in the
database, and the Search By drop-down list displays the various search criteria that can
be used. Clicking on the Search button displays the results in the Search Results
section, from which the administrator can select the data that needs to be updated or
deleted. Then, after making modifications to the required data, the administrator can click
the Update button to send the changes to the database. Clicking the Delete button
deletes the record from the table.

Figure 9-6: The Update/Delete screen

As previously mentioned, the Administration module contains a Generate Reports menu,
which provides three options:

 Daily Sales. Displays the daily sales for the store. The report displays the
video ID, movie ID, and total amount of each purchase.

 Movies in Demand. Displays the details of movies that are in maximum
demand.

 Customer Details. Displays the details of customers who frequently visit
the store.

Low-Level Design
During the low-level design phase, a detailed design of the various software modules is
prepared using the high-level design. The team decides on various standards, such as
naming conventions for variables, controls, and forms for a project. All these
specifications are documented so that consistency can be maintained among the various
modules for an application. The MyMovies team also has documented the various
standards to be followed while constructing this project.

Construction
During the construction phase, various components of the application are coded. The
various specifications identified during the low-level design phase are used to
accomplish this. In the case of MyMovies, the Customer and Administration modules are
coded.

Integration and Testing
In the testing phase, various tests and validations are carried out on the various
modules, and their integration functionality is checked. In the case of MyMovies, all the
forms required for each of the modules (Customer and Administration) are integrated
and tested.

User Acceptance Test
In the acceptance phase, various tests are carried out based on the predefined
acceptance criteria provided by the client. In addition, system support is provided to
troubleshoot any issues or bugs identified at this phase. In the case of MyMovies, a few
users can be asked to use the application and provide feedback.

The Database Schema
As previously mentioned, the MyMovies video store is using an existing Microsoft SQL
2000 database. Figure 9-7 shows the database schema for this Movies database.

Figure 9-7: The schema for the Movies database

Figure 9-7 displays the database schema for the Movies database. This includes the
following eight tables:

 Actor. Contains actor details such as actor ID, first name, last name, and date
of birth

 Movie. Contains movie details such as movie ID, title, release year, and
category

 Director. Contains director details such as director ID, first name, last name,
and date of birth

 Producer. Contains producer details such as producer ID and name
 ActorMovie. Contains actor details such as actor ID, movie ID, and role
 Video. Contains video details such as video ID, movie ID, format, and price
 Orders. Contains order details such as order ID, order date, customer ID,

video ID, and order value
 Customer. Contains customer details such as customer ID, first name, last

name, date of birth, and credit card details
 OrderDetails. Contains video order details, such as order ID, video ID, and

quantity ordered:

Summary
In this chapter, you learned about the MyMovies video company that is still using the
age-old system of paper catalogs, which has resulted in a decline in sales for the
company. You then looked at the proposed solution for this problem—automation. Then
you looked at the various requirements for this solution and were introduced to the
various screens required for the application. Finally, you were introduced to the database
schema for the Microsoft SQL 2000 database that the company is presently using.
In the next chapter, you will learn to create the user interface for the Customer module.

Chapter 10: Using ADO.NET
Overview
So far in this project, you have learned about the video kiosk application. This chapter
provides an overview of the technology you’ll use to connect to the SQL database—
ADO.NET.

Visual Studio.NET provides ActiveX Data Objects for the .NET framework (ADO.NET).
ADO.NET is an enhanced version of ActiveX Data Objects (ADO).

With the introduction of the .NET framework, Microsoft has redesigned ADO to create
ADO.NET. This is because the .NET framework has brought with it a new programming
model that supports disconnected data architecture. In disconnected data architecture,
an application does not remain connected to a data source throughout a series of
transactions. Instead, the application connects to a data source as and when required.
Data access technologies—such as Data Access Object (DAO) and Remote Data
Objects (RDO)—do not support disconnected data architecture. However, you can work
with distributed Web applications by using ADO with Remote Data Services (RDS).

ADO

ADO, a technology developed by Microsoft, is based on the Component Object Model
(COM). Unlike other data access technologies, such as Data Access Objects (DAO)
and Remote Data Objects (RDO), ADO enables you to access data from nonrelational
databases. Using ADO, you can work with connected and disconnected architectures.

ADO.NET includes various enhancements over the existing data access technologies. In
other words, ADO.NET resolves the limitations of earlier data access technologies.
Unlike DAO and RDO, ADO.NET supports disconnected data architecture. ADO.NET
includes a set of classes that enable to you create distributed Web applications. Using
ADO.NET, you can also create distributed multitier and data-sharing applications.

In this chapter, you will learn about the features and functions of ADO.NET. This chapter
also covers the architecture and components of ADO.NET. The following section
discusses the features of ADO.NET.

Features of ADO.NET
Because ADO.NET is an enhanced version of ADO, it provides features that earlier data
access technologies were lacking. Take a look at the features of ADO.NET:

 It uses disconnected data architecture. In disconnected data architecture, an
application connects to the data source only to access or update data. This
means that after the application connects to the data source and retrieves
the required data, the connection is terminated. To update the data source,
the application again connects to it. Therefore, the application connects to
the data source only to save or retrieve records. In addition, the use of
disconnected data architecture ensures optimum utilization of system
resources because ADO.NET does not retain database locks or active
connections for extended time periods.

 It provides datasets. Similar to the record set available in ADO, ADO.NET
provides a dataset. Unlike a record set, however, a dataset is a virtual
database. This is because, unlike in connected data architecture, in
disconnected data architecture an application cannot access the data
source after processing each record. Because the application cannot
access the data source repeatedly, after the data is retrieved, it needs to be
stored somewhere. This is where the dataset is useful. The dataset is used
to store data retrieved from the data source. It can contain one or more
tables. In addition to tables, a dataset can also store additional information
about relationships and constraints between tables in a dataset. Therefore,
disconnected data architecture is implemented by using datasets.

 It supports eXtensible Markup Language (XML). ADO.NET uses XML to
transfer data from the data source to the dataset and from the dataset to
other components. Applications created in ADO.NET are interoperable with
other applications. This is because any application or component that
understands XML can access data from an ADO.NET application.

The following section describes the benefits of using ADO.NET.
Benefits of ADO.NET
As compared to other data access technologies, ADO.NET provides multiple benefits.
The following sections discuss the benefits provided by ADO.NET.

Scalability

Disconnected data architecture enables applications to service more users efficiently as
compared to connected data architecture. This is because, in disconnected data
architecture, the connection with a data source is terminated as soon as data is retrieved
from the data source, leaving the data source available for other users. In other words,
applications created in ADO.NET can effectively manage multiple users. Therefore,
ADO.NET makes applications scalable.

Performance

In ADO, COM marshalling is used to transfer data between applications. This mode of
data transfer requires that the data types used in an application be converted to a data
type supported by COM. Unlike ADO, ADO.NET uses XML to transfer data between
applications. In ADO.NET, no conversion of data types is required. Therefore, ADO.NET
applications provide better performance as compared to ADO applications.

Programmability
ADO.NET enables quick and easy programming with a minimum of errors. ADO.NET
also enables you to use typed programming, which makes the code more readable.
Typed programming also makes it easier to write code. Furthermore, it checks for errors
at compile time, which increases the safety of the code. For example, if you misspell the
name of the TxtActor text box as TxActor, the misspelled word is highlighted. When
you move the cursor to the misspelled word, an error message displays stating that the

control TxActor is not declared. Therefore, unlike untyped programming, typed
programming generates errors at compile time.

Interoperability

As previously mentioned, ADO.NET supports XML to transfer data. Any application that
interprets XML can exchange data with an ADO.NET application. Therefore, applications
created in ADO.NET are interoperable with other applications.

Maintainability

Using ADO.NET, you can create applications that are logically divided into layers. For
example, you can create an application with separate layers for the user interface,
business logic, and data access. Dividing an application into logical layers simplifies the
maintenance of the application. In addition, you can add layers to an ADO.NET
application as and when required. For example, consider a scenario in which you need
to make changes to an existing application to improve its performance. The application
was created in ADO.NET. To solve this problem, you can either modify an existing layer
or add a layer to the application to improve its performance.

The following section describes the components of ADO.NET.

Components of ADO.NET
ADO.NET enables you to create distributed multitier and data-sharing applications by
allowing you to access data from a relational database, an XML source, or another
application. To enable you to access and manage data, ADO.NET provides two
components:

 .NET data provider
 Dataset

The .NET data provider is used to access data, and the dataset is used to manipulate
data. Figure 10-1 illustrates the components of ADO.NET. The subsequent sections
describe the components of ADO.NET.

Figure 10-1: Components of ADO.NET

.NET Data Provider

The .NET data provider links an application to a data source and enables the application
to access data from it. Using the .NET data provider, you can perform the following
tasks:

 Connect to a data source
 Execute commands
 Retrieve results

Using ADO.NET, you can access and manage data from different data sources. To
enable you to access and manipulate different data sources, ADO.NET provides different
types of .NET data providers. You will learn more about the types of .NET data providers
later in this chapter.
To enable an application to communicate with a data source, the .NET data provider
uses four objects. These objects are known as the .NET data provider objects, and they
are discussed in the next section.

The .NET Data Provider Objects
As previously mentioned, the .NET data provider enables you to connect to a data
source, execute commands, and retrieve the results of the commands. To enable you to
perform these tasks, the .NET data provider uses .NET data provider objects. The .NET
data provider objects are as follows:

 The Connection object
 The Command object
 The DataReader object
 The DataAdapter object

The Connection Object
The Connection object of ADO.NET is similar to the Connection object of ADO.
Using the Connection object, you can establish a connection to a data source. You can
also manage a connection using the Connection object.
To establish a connection, use the Open method of the Connection object. The Open
method accepts the data source name, user ID, and password as parameters to
establish a connection. After you retrieve the required data from the data source, you
need to close the connection. To do so, you can use either the Close or Dispose
method of the Connection object.
The Command Object
After you connect to a data source, you must use the Command object to execute
commands—such as SQL queries or stored procedures—and return results from the
data source.
Before you can execute a command, however, you must specify the type of command
for the Command object. To specify the command type, you must specify the
CommandType property of the Command object. For example, to execute a stored
procedure, you must set the CommandType property of the Command object to
StoredProcedure. When you set the CommandType property to StoredProcedure,
in addition to specifying the CommandType property, you must specify the name of the
stored procedure by using the CommandText property.
The DataReader Object
After you execute a command, you need to retrieve the data returned by the command.
To do so, you can use the DataReader object. The DataReader object is similar to a
read- and forward-only cursor. To elaborate, the DataReader object retrieves a read-
only stream of data from the data source in a sequential manner.
The DataReader object also helps reduce system overhead and increase application
performance. This is because the DataReader object does not cache the entire result
set into the system memory. Instead, the DataReader object retrieves only one row at a
time.
The DataAdapter Object
As previously mentioned, ADO.NET uses disconnected data architecture. Disconnected
data architecture is implemented in an application by using datasets. A dataset is a
virtual database that stores the data retrieved from any data source. ADO.NET provides
the DataAdapter object to help you manipulate datasets.
The DataAdapter object acts as a link between the dataset and the data source. It
enables you to transfer data from the dataset to the data source and vice versa. To
enable you to access and manipulate data, the DataAdapter object provides multiple
properties. Table 10-1 lists the commonly used properties of the DataAdapter object.
Table 10-1: Properties of the DataAdapter Object

Property Enables
You To
…

SelectCommand Select
records
from a

Table 10-1: Properties of the DataAdapter Object

Property Enables
You To
…
data
source

InsertCommand Insert
records
into a
data
source

UpdateCommand Update
records
in a data
source

DeleteCommand Delete
records
from a
data
source

Figure 10-2 illustrates the interaction between the .NET data provider objects.

Figure 10-2: Interaction between the .NET data provider objects

As previously mentioned, ADO.NET provides different types of .NET data providers that
enable you to access data from different data sources. The following sections describe
the types of .NET data providers.

Types of .NET Data Providers
ADO.NET enables you to access data from a relational database, an XML source, or
another application by providing different types of .NET data providers. ADO.NET
provides the following .NET data providers:

 OLE DB .NET data provider
 SQL Server .NET data provider

As previously discussed, to enable an application to communicate with a data source,
the .NET data provider uses the Connection, Command, DataReader, and

DataAdapter objects. The OLE DB and SQL Server .NET data providers also provide
these objects.

The following sections describe the SQL Server .NET data provider and the OLE DB
.NET data provider.

The SQL Server .NET Data Provider

The SQL Server .NET data provider enables you to access data from any SQL Server
7.0 or higher database. The SQL Server .NET data provider uses the Tabular Data
System (TDS) protocol to connect to Microsoft SQL Server databases. Using the TDS
protocol, the SQL Server .NET data provider can connect directly to a SQL Server.

Using the SQL Server .NET data provider, you can access data from Microsoft SQL
Server 7.0 or later. To access data from previous versions of Microsoft SQL Server, you
need to use the OLE DB .NET data provider.
The classes associated with the SQL Server .NET data provider are stored in the
System.Data.SqlClient namespace. Therefore, to implement the SQL Server .NET
data provider in your application, you need to import the System.Data.SqlClient
namespace. You can use the following statement to import this namespace:
Imports System.Data.SqlClient
The System.Data.SqlClient namespace includes other namespaces and classes
related to the SQL Server .NET data provider. Table 10-2 describes some of the classes
in the System.Data.SqlClient namespace.
Table 10-2: Classes in the System.Data.SqlClient Namespace

Class Description
SqlConnection Represents

a
connection
to a
database

SqlCommand Represents
a Transact-
SQL
statement or
stored
procedure
that can be
executed on
a database

SqlDataReader Represents
a forward-
only object
used to read
a stream of
data from
the
database

SqlDataAdapter Represents
the data
commands
and
database
connection
used by the

Table 10-2: Classes in the System.Data.SqlClient Namespace

Class Description
application
to transfer
data from a
database to
a dataset
and vice
versa

SqlException Represents
the
exception
thrown
when the
database
returns an
error or
warning

SqlError Used to
create
objects that
can store
error- or
warning-
related
information
returned by
the
database

The OLE DB .NET Data Provider

As the name suggests, the OLE DB .NET data provider enables you to access data from
OLE DB–compliant data sources such as Oracle and SQL Server 6.0 or earlier. Unlike
the SQL Server .NET data provider, the OLE DB .NET data provider cannot connect to
the data source directly. Instead, the OLE DB .NET data provider uses the following
components to access the data source:

 OLE DB service component
 OLE DB provider

To enable you to access data from OLE DB–compliant data sources, the OLE DB .NET
data provider interacts with an OLE DB service component that provides pooling and
transaction services. The OLE DB service component, in turn, communicates with an
OLE DB provider.
Figure 10-3 illustrates the relationship between the OLE DB .NET data provider, the OLE
DB service component, and the OLE DB provider.

Figure 10-3: The relationship between the OLE DB .NET data provider, the OLE DB service
component, and the OLE DB provider

The OLE DB .NET data provider can work with the following OLE DB providers:
 SQL OLE DB provider (SQLOLEDB)
 Oracle OLE DB provider (MSDAORA)
 Jet OLE DB provider (Microsoft.Jet.OLEDB.4.0)

Note The OLE DB .NET data provider does not support MSDASQL, the
OLE DB provider for open database connectivity (ODBC). In
addition, the OLE DB .NET data provider does not support OLE
DB version 2.5 interfaces.

The classes related to the OLE DB .NET data provider are stored in the
System.Data.OleDb namespace. To implement the OLE DB .NET data provider in
your application, you need to import the System.Data.OleDb namespace to your
application by using the following statement:
Imports System.Data.OleDb
Similar to the System.Data.SqlClient namespace, the System.Data.OleDb
namespace includes other namespaces and classes associated with the OLE DB .NET
data provider. Some of the commonly used classes in the System.Data.OleDb
namespace are as follows:

 OleDbConnection
 OleDbCommand
 OleDbDataReader
 OleDbDataAdapter
 OleDbException
 OleDbError

Note that the classes in the System.Data.OleDb namespace are similar to those in
the System.Data.SqlClient namespace. The classes in the System.Data.OleDb
namespace perform the same function as their counterparts in the System.
Data.SqlClient namespace.

Now that you’ve looked at the .NET data provider, I’ll discuss the dataset.

Dataset

After you connect to a data source, execute commands, and retrieve the results using
the .NET data provider, you need to store the retrieved data. This is where the dataset
comes into the picture.

As previously mentioned, data retrieved from a data source can be stored in a dataset,
which is a virtual database. In other words, datasets enable you to work with data
independent of the data source. In addition, datasets enable you to use disconnected
data architecture in your applications.

In addition, unlike the DataReader object that stores only one row at a time, the dataset
enables you to store multiple tables. Consider a scenario in which you need to retrieve
data from multiple data sources. In this case, using the DataReader object would mean
reading one row of data into memory and combining data from multiple data sources. In
contrast, the dataset retrieves the required data from the data source and stores it in
memory. Now you can perform data-manipulation operations on the dataset. Therefore,
unlike the DataReader object, which is suitable in scenarios in which you need to
retrieve data from a single data source, datasets are suitable in scenarios in which you
need to retrieve data from multiple data sources.
The namespaces and classes associated with datasets are stored in the System.Data
namespace. The DataSet class in the System.Data namespace represents a dataset.
Now that you have learned about the classes associated with .NET data providers and
the dataset, look at the following example to understand how you can use these classes
in your applications. Assume that the System.Data.SqlClient namespace is
imported in the application.
 Dim SqlConn As New SqlConnection()
 'Declares SqlConn as an object of the
SqlConnection class
 Dim MyDataset As New DataSet()
 'Declares MyDataset as an object of the
DataSet class
 Try
 SqlConn.ConnectionString = "Data Source=localhost;USER
ID=sa;pwd=;Initial Catalog=Pubs"
 'Specifies the connection string for
connecting to the data source
 SqlConn.Open()
 'Uses the open command to open the
connection
 Dim MySqlDataAdapter As New SqlDataAdapter("select * from
authors", SqlConn)
 'Specifies the query to select records from
the authors table
 MySqlDataAdapter.Fill(MyDataset)
 'Populates the MyDataset dataset with the
records
 Catch MyException As Exception
 'Declare MyException as an object of the
Exception class
 MsgBox(MyException.ToString, "Error")
 'Displays the error message if an exception
occurs
 End Try
 SqlConn.Close()
 'Used to close the connection
A dataset stores data in a format similar to a relational database. Just as a relational
database contains tables, a dataset can also contain tables. To elaborate, a DataSet

object consists of one or more DataTable objects. In addition to DataTable objects, a
DataSet object can contain various other objects. Table 10-3 describes the classes
associated with a DataSet object.
Table 10-3: Classes Associated with a Dataset Object

Class Description
DataTable Represents

a table in a
DataSet
object

DataRow Represents
a row of
data in a
DataTable
object

DataColumn Represents
a column
schema in a
DataTable
object

DataRelation Represents
the
relationship
between two
DataTable
objects

Constraint Represents
a constraint
that can be
enforced on
one or more
DataColum
n objects

In addition to the classes mentioned in Table 10-3, a DataSet object is associated with
the following objects:

 DataTableCollection
The DataTableCollection object associated with a DataSet object stores
the DataTable objects in the DataSet object. You can use the DataTable-
Collection object to manipulate the tables in the DataSet object. You can
use the Add and Remove methods of the DataTableCollection class to add
and remove tables from a dataset. You can also remove all the DataTable
objects stored in a DataTableCollection object by using the Clear method.
In addition, you can determine whether a table exists in a
DataTableCollection object by using the Contains method.

 DataRowCollection
As previously mentioned, a DataTable object is identical to a table in a
relational database because it is also composed of rows and columns. Each
DataTable object has a DataRowCollection object associated with it. The
DataRowCollection object associated with a DataTable object stores all
the rows for the DataTable object. The DataRowCollection object consists
of multiple DataRow objects, and each DataRow object represents a row in the
table. Therefore, the DataRowCollection contains the actual data for a table.
You can use the Add and Remove methods of the DataRowCollection class
to insert and delete DataRow objects.

 DataColumnCollection
In addition to the DataRowCollection object, a DataColumnCollection
object also is attached to each DataTable object. Just as the DataRow-

Collection object is made up of multiple DataRow objects, the Data
ColumnCollection object is made up of multiple DataColumn objects.
However, unlike the DataRowCollection object that stores the actual data of
a table, the DataColumnCollection object defines the schema of the table.
In addition, the DataColumnCollection object also determines the type of
data each DataColumn object can store. You can use the Add and Remove
methods of the DataColumnCollection class to insert and delete
DataColumn objects from a DataColumnCollection object. In addition, the
DataColumnCollection class provides the Contains method, which
enables you to check whether a column exists in the DataColumnCollection
object.

 DataRelationCollection
Similar to a relational database, a DataSet object can also store information
about the relationships between DataTable objects. The Data-
RelationCollection object stores the relations between columns of
DataTable objects in a DataSet object. The relations between columns of
DataTable objects are stored as objects of the DataRelation class in the
DataRelationCollection object. To access the
DataRelationCollection object for a DataSet object, you need to use the
Relations property of the DataSet object. In addition, you can use the Add,
Remove, and Clear methods to manipulate DataRelation objects in a
DataRelation- Collection object.

 ConstraintCollection
All the constraints on data in a table are stored in the Constraint
Collection object associated with the DataTable object. You can access the
ConstraintCollection object of a table by using the Constraints
property of the DataTable object. The ConstraintCollection object
consists of UniqueConstraint and ForeignKeyConstraint objects. The
UniqueConstraint and ForeignKeyConstraint objects ensure the
integrity of data.

Figure 10-4 illustrates the relationship between the components of a dataset and a table.

Figure 10-4: The components of a dataset

Summary
In this chapter, you learned about the features of ADO.NET. You also learned about the
benefits offered by ADO.NET as compared to other data access technologies. You then
learned about the components of ADO.NET. This chapter described the .NET data
provider objects and the types of .NET data providers. You also learned about the
features and components of a dataset.

Chapter 11: Error Handling in Visual Basic .NET
In the preceding chapters, you learned how to create the video kiosk application. When
executing an application, however, you might encounter some errors. Consider a
situation in which you’ve coded a complete application and it is running fine on your
computer. Your project leader is ready to walk through the application, but some
unexpected error messages crop up, and to your horror, the system running the
application crashes. At that point, you realize you have not handled the unexpected
errors that resulted in this crashing. This chapter provides insight into the error-handling
mechanisms you can use to save your application from such errors.

In this chapter, you will learn about the types of errors that can occur when you debug an
application. You also will learn about structured and unstructured error handling.
Furthermore, you will learn about the debugging tools available in Visual Basic.NET. To
start with, let’s take a look at the types of errors you might encounter when executing an
application.

Types of Errors
In this section, you will learn about errors that can slip into your code when compiling.
Even though you might write an assumingly error-free code, there are chances that your
error-free program might throw some obnoxious errors during execution. The types of
errors you might encounter while executing an application can be classified as follows:

 Syntax errors
 Runtime errors
 Logic errors
 The following sections describe these errors in greater detail.

Syntax Errors
A syntax error is the most common type of error. It occurs when you write code in a
manner that’s not allowed by the rules of the programming language. Syntax errors
typically are caught by the complier or an interpreter. When the complier or interpreter
encounters a syntax error, an error message informing you of the problem is displayed.
Visual Basic.NET enables you to fix such errors when you type the code. For example,
when you mistype or misspell a word, a wavy red line appears under the misspelled
word. The wavy red line acts as a visual clue to indicate that something’s amiss. In
addition, if you mistype a keyword, omit necessary punctuation, or use a Next statement
without a corresponding For statement at design time, Visual Basic.NET detects these
errors when you compile the application. Therefore, syntax errors are also known as
compile errors. Let’s consider an example. Assume you have the following statement in
your code:
Left
Although Left is a valid keyword (as in the preceding example), without an object, the
Left keyword does not meet the syntactical requirements for the keyword. The correct
syntax for this keyword is <Object>.Left, where <Object> represents the name of
an object.

Runtime Errors
Runtime errors are the errors that occur when the code is executed. These errors might
occur because you forgot to initialize a variable or assign memory to an object. For
example, a runtime error is generated when you divide any variable or number by zero.
Consider the following statement:
Speed = Miles / Hours
If the variable Hours contains zero, the division is an invalid operation even though the
statement is syntactically correct. In addition, when you try to execute this code, Visual
Basic.NET generates an error message.

Semantic/Logic Errors

You might encounter a situation in which the syntax you have used in the code is correct
but the program does not deliver the required output. This can occur due to semantic
errors in the code. Semantic errors occur when the meaning of the code does not match
the intended meaning.

Compilers or interpreters cannot catch semantic errors. This is because compilers and
interpreters deal with the structure of the code, not the meaning of the code.

Semantic errors can cause your program to terminate abnormally. Before termination,
the program might or might not display an error message. In addition, semantic errors
can cause your program to crash or hang.
At times, a program might continue to run even with semantic errors. However, the
internal state of the program will not be the intended one. When a program generates an
undesired output, such errors are defined as logic errors. For example, if you forget to
add a statement to increment the counter variable while working with loops in a program,
no errors are generated. However, when you execute the program, it goes into an infinite

loop. You can detect logic errors by testing your program manually or automatically and
verifying that the output is the required one.
To enable you to deal with errors, Visual Basic.NET provides the Exception class. The
next section describes the Exception class in detail.

The Exception Class
As the name suggests, the Exception class in Visual Basic.NET represents errors or
exceptions that might occur during application execution. Any abnormal condition
encountered by an application during execution is known as an exception. The condition
might occur due to an incorrect data type specified by a user or errors in programming
logic. For example, if your application tries to access a nonexistent member of an array,
the application throws an exception. If the exception is not caught, your application can
terminate abnormally.
The System namespace includes the Exception class, which acts as the parent class
for handling all types of exceptions. This Exception class provides multiple properties
that enable you to identify the location where the exception occurred, the exception type,
and the reason for the exception. You will learn how to use these properties later in this
chapter. Table 11-1 describes the properties of the Exception class.
Table 11-1: Properties of the Exception Class

Property Function
HelpLink Provides

detailed
informati
on in the
form of a
uniform
resource
locator
(URL) or
uniform
resource
name
(URN)

InnerException Provides
a method
to embed
exception
s within
exception
s, thus
enabling
develope
rs to
include
the
original
exception
with any
additional
exception
that they
throw

Message Provides
a
localized
descriptio

Table 11-1: Properties of the Exception Class

Property Function
n of the
exception
that has
occurred

StackTrace Provides
a
complete
trace of
the call
stack,
including
the line
number
and
source-
code
filename

The Exception class acts as a base class. In other words, multiple classes are derived
from the Exception class. Figure 11-1 displays the hierarchy of the exception classes.

Figure 11-1: The hierarchy of the exception classes

Visual Basic.NET provides these classes to enable you to work with exceptions. In most
cases, you would use the exception classes available in Visual Basic.NET. However,
Visual Basic.NET enables you to define your own exception classes. When you define a
new exception class, it is recommended that you derive the class from the
ApplicationException class instead of the Exception class. In addition, the name
of user-defined exception classes should end with the word "exception." Consider the
following example:
Imports System
Namespace Exp
 Public Class MyException Inherits ApplicationException
 Public Sub New()
 MyBase.New()
 End Sub
 Public Sub New(ByVal message As String)
 MyBase.New(message)
 End Sub
 Public Sub New(ByVal message As String, ByVal exp As Exception)
 MyBase.New(message, exp)

 End Sub
 End Class
End Namespace
After you define your own exception class, you can throw exceptions of your exception
class by using the Throw statement. You will learn more about the Throw statement
later in this chapter.

As previously mentioned, handling exceptions prevents your applications from
terminating abruptly. Unlike Visual Basic 6.0, which supports only unstructured exception
handling, Visual Basic.NET supports both structured and unstructured exception
handling. The following sections describe each of these exception-handling techniques.

Structured Error Handling
Structured error handling is an object-oriented approach to handling exceptions. This is
because when an exception is encountered, the actual exception information is stored in
an object. Visual Basic.NET allows structured error handling, which helps you create
programs with robust error handlers. This involves designing code in such a way that the
code can detect the errors during execution of the program and respond accordingly.
You can implement structured exception handling in Visual Basic.NET by using the
Try…Catch…Finally statement, which checks for errors. By using this statement, you
can separate the program code and the exception-handling code into Try and Catch
blocks, respectively. Program code that can generate an error is written within a Try
statement, and this set of statements is known as a Try block. Similarly, code that
handles exceptions thrown by a Try block is placed within a Catch statement, and this
set of code is known as a Catch block.

Tip When using the Try…Catch…Finally statement, you should put
the code that can generate an error within the Try block. In
addition, you should try to place all the Catch blocks at one
location. When you place all the Catch blocks together, make sure
you order the Catch blocks in a specific-to-generic sequence. In
other words, you must place the Catch blocks that trap exceptions
of the classes derived from the Exception class before the Catch
blocks that trap exceptions of the Exception class itself. For
example, a Catch block that handles an exception of the
ApplicationException class should be placed before a Catch
block that handles an exception of the Exception class.

Let’s take a look how the Try…Catch…Finally statement works in an application. The
following syntax demonstrates the use of the Try…Catch…Finally statement:

Try
 'Code that could cause an exception
Catch MyException As SomeSortofException
 'Code that will execute if the exception is encountered
Finally
 'Code that will always execute
End Try
In the preceding syntax, the Try block contains statements that can throw an exception.
Code enclosed within a Try block is executed until an exception occurs. If an exception
occurs in the code in the Try block, control moves to the Catch block. However, the
type of exception encountered determines the Catch block to which the control moves.
In other words, the Catch block executed depends on the type of exception encountered
in the Try block.
Next, the Catch block traps the exception and applies exception-handling logic. You can
include multiple Catch blocks in a Try…Catch…Finally statement, where each Catch

block traps an error of a different type. A Try…Catch…Finally statement must have at
least one Catch block.
The Finally block is executed regardless of the result of the code in the Try…Catch
blocks. Therefore, you can include code that needs to be executed whether the Try
block threw an exception in the Finally block or not. Typically, the Finally block is
used to handle cleanup code. For example, you can perform operations such as closing
files and database connections within the Finally block.
As the name suggests, the Exit Try statement is used to quit a Try block. This
statement is similar to the Exit For or Exit Do statements used with the For and Do
loops, respectively.

Tip When coding, you should use the Try…Catch…Finally statement
judiciously. You should avoid using it in situations in which you can
check for errors programmatically. Consider a scenario in which you
need to close a connection with a data source. To do so, you can
use the following code snippet.
Try
 SqlConnection1.Close()
Catch MySqlException as SqlException
 'Error-handling code
End Try

Alternatively, you can use this code snippet to close the connection:
If SqlConnection1.State <> ConnectionState.Closed Then
 SqlConnection1.Close()
End If
The method you use to close the connection will depend on the
frequency of the error’s occurrence. In addition, when deciding the
method to use, you should keep the criticality of the error in mind.
Typically, the Try…Catch…Finally statement is used with code in
which there is a lesser possibility of encountering errors.

Now that you know about structured exception handling, take a look at this example:
 Dim MyConn As String
 Dim MyDataSet As DataSet
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyAuthorId As String
'Declares variables
 MyConn = "data source=localhost;user id=sa;pwd=;initial catalog=pubs"
'Establishes the connection to the data source
 Try
 MyDataSet = New DataSet()
 MyDataAdapter = New SqlDataAdapter("select * from authors where
Au_id = 'A0001'", MyConn)
 MyDataAdapter.Fill(MyDataSet)
'Populates the MyDataSet object with the results returned by the MyDataAdapter
object
 MyAuthorId = MyDataSet.Tables(0).Rows(0).Item(0)
'Assigns the value of the Author ID stored in the dataset to the MyAuthorId string
 Catch MySqlException As SqlException
'Traps any database exception
 MsgBox("Message:" & MySqlException.Message & vbNewLine &

"Source: " & MySqlException.Source & vbNewLine & "Error Number:" &
MySqlException.Number)
'Displays the values stored in the Message, Source, and Number properties of the
MySqlException object
 Catch MyIndexException As IndexOutOfRangeException
'Traps the error raised if no data is found in the dataset
 MsgBox(MyIndexException.Message & "||" & MyIndexException.Source
& "||" & MyIndexException.HelpLink)
'Displays the values stored in the Message, Source, and Number properties of the
MyIndexException object
 Catch MyOtherException As Exception
'Traps any other exception
 MsgBox(MyOtherException.Message.ToString)
'Displays the value stored in the Message property of the MyOtherException object
 Finally
 MyDataSet.Dispose()
'Releases the resources used by the MyDataSet object
 MyDataAdapter.Dispose()
 'Releases the resources used by the MyDataAdapter object
 End Try
In addition to the Try…Catch…Finally statement, Visual Basic.NET provides the
Throw statement. There might be a situation in which you need to generate an
exception. For example, to where should control of the program pass when a condition
that is not valid is detected? In such situations, you can use the Throw statement. The
syntax of the Throw statement is as follows:

Throw ExceptionObject
In the preceding syntax, ExceptionObject is a mandatory parameter for the Throw
statement. The ExceptionObject parameter is an object of a class inherited from the
Exception class. Consider the following example:

Throw New Exception("This is to throw an exception.")
As previously mentioned, you can also throw exceptions of user-defined exception
classes. To throw an exception of the MyException class, you can use either of the
following statements:
Throw New MyException()
Throw New MyException("This is an exception of a user-defined exception class.")
To use any of the preceding statements in your application, however, you need to import
the namespace in which the MyException class is defined.
In the next section, you’ll learn about unstructured exception handling.

Unstructured Error Handling
Unstructured exception handling involves the use of the On Error statement. When an
exception is raised in a program, control of the program moves to the argument specified
in the On Error statement. You use an On Error statement at the beginning of a set
of statements, such as a procedure. There are four forms of the On Error statement:

 On Error GoTo <Line> statement
 On Error Resume Next statement
 On Error GoTo 0 statement
 On Error GoTo -1 statement

The subsequent sections describe each form of the On Error statement.

On Error GoTo <Line> Statement
You use the On Error GoTo <Line> statement to specify the error-handling code,
where the <Line> parameter indicates the starting of the error-handling code. When an
error is encountered in code that follows an On Error GoTo <Line> statement,
control moves to the line number specified as the <Line> parameter. Therefore, when
you use the On Error GoTo <Line> statement, you must place the error-handling
code after the line that you specify as an argument.
When a runtime error is encountered, control moves to the line specified as the <Line>
argument. In other words, the error handler is activated. Consider the following example:
Sub CheckSub
 On Error GoTo MyHandler
 'Code that may or may not have errors
Exit Sub
MyHandler:
 'Code that handles errors
 Resume
End Sub
In the preceding example, the name of the error handler is MyHandler. If any code in
the CheckSub procedure generates an error, the code following the MyHandler label is
immediately executed.
Also note that the Resume statement is used in the preceding code. The Resume
statement passes control back to the line of code where the error occurred. Therefore, in
this example, the Resume statement returns control back to the CheckSub procedure.
When you use the Resume statement in an error handler, you must include the Exit
Sub statement before the error handler. If you do not use the Exit Sub statement, the
error handler will also be executed again. If the error-handling code is executed
repeatedly, the procedure will not generate the required results. To prevent the repeated
execution of the error handler, you need to use the Exit Sub statement. The Exit
Sub statement exits the procedure before the error-handling code is executed.

On Error Resume Next Statement
As the name suggests, you use the On Error Resume Next statement to specify that,
when an error is encountered, control should move to the statement following the one in
which the error was encountered. By using the On Error Resume Next statement,
you can handle errors where they occur rather than transferring control to any other
location in the program.

Caution To be able to identify errors in code, make sure the On Error
Resume Next statement is disabled when you debug code.

As previously mentioned, you can also use the Resume statement independently. When
you use the Resume statement outside the On Error statement, Visual Basic.NET
returns control to the statement where the error occurred. Typically, after the error
handler corrects the error, the Resume statement is used to transfer control to the
statement where the error occurred.
In addition to the Resume statement, Visual Basic.NET provides the Resume Next
statement. The Resume Next statement moves control to the line following the line
where the error was encountered. Typically, the Resume Next statement is used to
ignore the error. You can use the Resume Next statement when you know that the
encountered error does not change the expected results of your application.
Visual Basic.NET provides another variation of the Resume statement—the Resume
Line statement. The Resume Line statement is similar to the On Error GoTo
<Line> statement. Unlike the On Error GoTo <Line> statement, however, you can
use the Resume Line statement only in an error handler.

On Error GoTo 0 Statement
There might be situation in which you do not want any error handler to be executed. In
such situations, you can use the On Error GoTo 0 statement. The On Error GoTo
0 statement is used to disable all error handlers in the current procedure. If you do not
use the On Error GoTo 0 statement, the error handlers in the current procedure are
disabled when the procedure completes execution.

On Error GoTo –1 Statement
The On Error GoTo -1 statement is used to disable exception handlers in the current
procedure. In addition, as with the On Error GoTo 0 statement, it is not mandatory to
use the On Error GoTo -1 statement. This is because the exception handlers in the
current procedure are automatically disabled when the procedure ends.

The following is the syntax for unstructured exception handling:
Sub ErrorCheck()
 On Error GoTo ErrHandler
 'Code that might generate an error
 Exit Sub
 ErrHandler:
 'Code that handles the error
 Resume
End Sub
In this section, you learned about unstructured exception handling and how it is
implemented in Visual Basic.NET. By using structured and unstructured exception
handling, you can handle the errors that occur when a program is executed. However,
just handling the errors is not enough. You need to locate the errors and remove them.
To help you to locate and remove errors, Visual Studio.NET provides various debugging
tools. The next section describes how you can use these debugging tools in Visual
Basic.NET.

Debugging Tools
Visual Basic.NET cannot diagnose or fix errors for you, but it does provide debugging
tools. Debugging tools enable you to perform the following tasks:

 Diagnose and resolve logic and runtime errors
 Observe the behavior of code that has no errors

To elaborate, debugging tools enable you to analyze how execution flows from one part
of the procedure to another. In addition, you can check how variables and property
settings change as statements are executed.

In this section, you will learn about the various debugging tools available in Visual
Basic.NET. Some of the commonly used debugging tools are as follows:

 Breakpoints
 The Watch window
 The QuickWatch dialog box
 The Autos window
 The Locals window
 The Call Stack window

You will learn more about the aforementioned debugging tools in the remainder of this
chapter.

You can access and use most debugging tools in Visual Basic.NET only when your
program is in break mode. In Visual Basic.NET, when the execution of a program halts

due to an error, the program is said to be in break mode. A program can enter break
mode automatically when it encounters one of the following:

 An error
 The Stop statement
 A breakpoint

You can use the Stop statement in code to stop the execution of an application. You will
learn about breakpoints in the next section.

Breakpoints
When Visual Basic.NET encounters a breakpoint in a program, it suspends the execution
of the program. A breakpoint is defined as a location in a program where execution is
halted and the application enters break mode. When an application is in break mode,
you can examine the status of the program, the contents of variables, and so on. In other
words, because the execution of the application is suspended, you can examine the
state of the application.

The steps for inserting a breakpoint in your application are as follows:
1. Position the cursor on the line of code where you want to insert

breakpoint.
2. Select the New Breakpoint command from Debug menu.

Tip Alternatively, you can click on the left margin of Code Editor to insert
a breakpoint.

The New Breakpoint dialog box appears, as shown in Figure 11-2. The New Breakpoint
dialog box enables you to add breakpoints to your application.

Figure 11-2: The New Breakpoint dialog box

As shown in Figure 11-2, the New Breakpoint dialog box contains four tabs. Each of the
tabs enables you to add a breakpoint of a specific type. The tabs in the New Breakpoint
dialog box are as follows:

 Function. This tab enables you to set a breakpoint in a function. You can
set a function breakpoint either at the beginning of a function or at a
certain position from the beginning.

 File. You can use this tab to set a breakpoint on a location in a file.
 Address. This tab enables you to set a breakpoint at a memory location.
 Data. You can use this tab to set a breakpoint on a variable.

Note that the four tabs in the New Breakpoint dialog box share a common set of buttons,
Condition and Hit Count.

When you click on the Hit Count button, the Breakpoint Hit Count dialog box displays.
Typically, the execution of an application stops as soon as a breakpoint is encountered.
In Visual Basic.NET, however, you can specify a breakpoint’s hit count, which is the
number of times the breakpoint is hit before the execution of an application halts. You
can specify a hit count in the Breakpoint Hit Count dialog box, which is shown in Figure
11-3.

Figure 11-3: The Breakpoint Hit Count dialog box

When you select an option from the When the breakpoint is hit list box, a text box
appears next to the list box, as shown in Figure 11-4.

Figure 11-4: The text box in the Breakpoint Hit Count dialog box

In this text box, you can specify the condition based on which the execution of the
application should be stopped.
In addition to the Hit Count button, the New Breakpoint dialog box displays the Condition
button. You can click on the Condition button to specify the condition based on which the
program will either execute or enter break mode. As with the hit count, each condition is
also associated with a breakpoint. The condition you specify is evaluated when the
breakpoint is hit. If the condition is met, the execution of the program stops; otherwise, it
continues. For example, consider a scenario in which you specify the condition as
Month>12. In this case, the program will stop executing when the value of the Month
variable is greater than 12.

The steps to specify a condition are as follows:
1. Click on the Condition button in the New Breakpoint dialog box. The

Breakpoint Condition dialog box displays, as shown in Figure 11-5.

Figure 11-5: The Breakpoint Condition dialog box

2. Specify an expression in the text box.
3. Click on OK to close the Breakpoint Condition dialog box.

After you add a breakpoint to code, a dark brown bullet appears next to the line of code
representing the breakpoint, as shown in Figure 11-6.

Figure 11-6: A new breakpoint added to code

Visual Studio.NET provides the Breakpoints window that enables you to edit and
manage breakpoints in your applications. In addition, you can use the Breakpoints
window to view all the breakpoints in your application. By using the Breakpoints window,
you can also remove breakpoints and change the properties of breakpoints.

Alternatively, you can modify a breakpoint by using the context menu. When you right-
click on a breakpoint symbol, the context menu displays multiple options such as Add
Task List Shortcut, Disable Breakpoint, and Remove Breakpoint.

After you add a breakpoint, you can run the application to check the output when the
application encounters the breakpoint. When the application encounters a breakpoint,
the execution halts and the application is said to be in break mode.

The Watch Window

The Watch window enables you to check the values of variables and expressions in your
program. By using the Watch window, you can also modify the value of a variable. You
cannot, however, use this window to edit the values of constant variables.

Consider a scenario in which you are creating a calculator application. This application
relies heavily on the values of variables and expressions. To check and correct
expressions for errors, instead of browsing through the entire code, you can use the
Watch window. You can open the Watch window only when your program is in break
mode. To do so, select the Windows command from the Debug menu. From the
Windows submenu, you need to select the Watch command. The Watch submenu
displays. Select the Watch 1, Watch 2, Watch 3, or Watch 4 option from the Watch
submenu.

When you select an option from the Watch submenu, a new Watch window displays. The
caption of the displayed window corresponds to the selected option. For example, when
you select the Watch 1 option, the window that is displayed has Watch 1 as the caption.
Let’s look at an example to understand the use of the Watch window. The following code
snippet is executed when you click on the Button1 control in an application:

Dim MyArray(5) As Integer
 Dim MyInt As Integer
 For MyInt = 1 To 5
 MyArray(MyInt) = MyInt + 2
 Next

Dim Num1, Num2 As Integer
 For Num2 = 1 To 5
 Num1 = Num1 + MyArray(Num2)
 Next
As previously mentioned, you can use the Watch window to check the values of
variables. The following steps describe how you can use this window to check the value
of the Num1 variable.

1. Before you can use the Watch window, you need to insert a breakpoint
into the code. To insert a breakpoint, click on the left margin in Code
Editor, as shown in Figure 11-7.

Figure 11-7: Inserting a breakpoint
After you insert a breakpoint, a dark brown bullet appears next to the line of
code, which also is highlighted in dark brown (see Figure 11-8).

Figure 11-8: The breakpoint inserted in the code

2. Execute the application and click on Button1. Note that the
application enters break mode. In addition, the line at which the
breakpoint is set is highlighted in yellow, as shown in Figure 11-9.

Figure 11-9: The line highlighted in yellow

3. Select the Windows command from the Debug menu to open the
Windows submenu. From the Windows submenu, select the Watch
command. Note that the Watch submenu displays. Select the Watch 1
command from the Watch submenu. The Watch 1 window displays, as
shown in Figure 11-10.

As shown in Figure 11-10, the Watch 1 window contains the following
columns:

 Name. Displays the name of the variables
 Value. Displays the current value of a variable or

expression
 Type. Displays the data type of the variable or

expression

Figure 11-10: The Watch 1 window

4. To add the Num1 variable to the Watch 1 window, right-click on the
Num1 variable in Code Editor and select the Add Watch option from
the context menu. The Num1 variable is added to the Watch 1 window,
as shown in Figure 11-11.

Figure 11-11: The Num1 variable added to the Watch 1 window

5. Select the Continue command from the Debug menu. Note that the
value of the Num1 variable is displayed in the Watch 1 window. Now
you can monitor the value of the Num1 variable by using the Watch 1
window.

Using the Watch window, you can also modify the values of variables. To modify the
value of the Num1 variable, select the Num1 entry in the Watch 1 window and change the
value of the variable.

When you stop debugging the application, the Watch 1 window closes.

The QuickWatch Dialog Box

In addition to the Watch window, Visual Studio.NET provides the QuickWatch dialog box
to enable you to view the values of variables or expressions. Although the QuickWatch
dialog box performs the same function as the Watch window, it is useful when you need
to perform scratch calculations. In addition, using the QuickWatch dialog box ensures
that you do not unnecessarily clutter the Watch window.

Like the Watch window, the QuickWatch dialog box is also available only when your
application is in break mode. However, unlike the Watch window, the QuickWatch dialog
box is resizable.

Note Visual Studio.NET also provides DataTips. When you place the
cursor over the variable, the value of the variable is displayed in a
small box. This small box is known as a DataTip.

As with the Watch window, you can open the QuickWatch dialog box only when the
application is in break mode. You can open the QuickWatch dialog box by selecting the
QuickWatch command from the Debug menu. Alternatively, you can right-click on a
variable name in Code Editor and select the QuickWatch command from the context
menu. This method automatically places the variable in the QuickWatch dialog box.
Figure 11-12 displays the QuickWatch dialog box.

Figure 11-12: The QuickWatch dialog box

The Autos Window

Visual Studio.NET provides the Autos window to enable you to edit the value of a
variable. The Autos window displays the variables used in the currently executing
statement. In addition, it also displays the variables used in three statements above and
below the currently executing statement. The Autos window derives its name from the
fact that the debugger automatically identifies the variables to be displayed.

As with the QuickWatch dialog box, you can open the Autos window only when the
application is in break mode. You can open the Autos window by using the following
steps:

1. Select the Windows command from the Debug menu. The Windows
submenu displays.

2. Select the Autos command from the Windows submenu.
Figure 11-13 displays the Autos window.

Figure 11-13: The Autos window

As shown in Figure 11-13, the Autos window displays three columns: Name, Value, and
Type. To modify the value of a variable, double-click on the value to be changed in the
Value column, type the new value, and press the Enter key.

The Locals Window

The Locals window displays all the variables local to the currently executing location. For
example, during the execution of a procedure, the Locals window displays the variables
local to the procedure. Using the Locals window, you can also edit the values of
variables.

You can open the Locals window only when the application is in break mode. You can
open the Locals window by using the following steps:

1. Select the Windows command from the Debug menu. The Windows
submenu displays.

2. Select the Locals command from the Windows submenu.
Figure 11-14 displays the Locals window.

Figure 11-14: The Locals window

As with the Autos window, the Locals window displays three columns: Name, Value, and
Type.

The Call Stack Window
You can use the Call Stack window to view the names of active procedure calls.
Procedures that are currently loaded in memory are known as active procedures. Using
the Call Stack window, you can view and check the sequence in which the various
procedures in a program are executed.

You can open the Call Stack window only when your application is in break mode. You
can open this window by using the following steps:

1. Select the Windows command from the Debug menu to open the
Windows submenu.

2. Select the Call Stack command from the Windows submenu.
Figure 11-15 displays the Call Stack window.
As shown in Figure 11-15, the Call Stack window displays two columns: Name and
Language.

Figure 11-15: The Call Stack window

Summary
In this chapter, you learned about the types of errors that can occur when you debug an
application. You also learned about structured exception handling and the
Try…Catch…Finally statement. This chapter also described unstructured exception
handling and the various forms of the On Error statement. Finally, you learned about
the various debugging tools available in Visual Basic.NET, such as breakpoints, the
Watch window, the QuickWatch dialog box, and the Autos window.

Chapter 12: Designing the User Interface of the
Customer Module
Overview
In Chapter 9, “Project Case Study—Creating a Video Kiosk,” you learned about the
MyMovies video kiosk application. In the rest of this part, you will learn how to create this
application. As discussed in Chapter 9, the video kiosk application is divided into two
modules—Customer module and Administration module.

In this chapter, you will learn to create the user interface of the Customer module, and
you will create the forms you need for this module. In addition, you will learn about the
controls you need to add to each form and the properties of these controls.
As discussed in Chapter 9, the Customer module of the video kiosk application consists
of the following forms:

 The Main form
 The Search form
 The Place Order form
 The Registration form

The following sections describe each of these forms in detail. To start with, take a look at
how to design the Main form of the Customer module.

The Main Form
As the name suggests, the Main form is the first form a customer will see in the
Customer module. The Main form is the central location from which customers can
browse for and place orders for movies. In addition, the Main form enables a customer to
register with the MyMovies kiosk and obtain a customer ID. Figure 12-1 shows the Main
form.

Figure 12-1: The interface of the Main form

Before adding controls, you need to specify some properties for the Main form. The
properties you need to assign to the Main form are as follows:

Property Value
Name FrmMain
Text MyMovies

World
Size 320, 368
WindowState Normal

The Customer module enables a customer to browse for movies regardless of whether
he or she is a registered user. As shown in Figure 12-1, the Main form contains two
group boxes, Registered Customer and New Customer.

If customers are registered users, they can use the controls in the Registered Customer
group box. Customers can enter their customer identification number in the Customer ID
text box and click on the Submit button. When a customer clicks on the Submit button,
the Search form displays. The Search form enables a customer to search for movies.

If a customer is not a registered user, he or she can use the controls in the New
Customer group box. In this group box, the customer can click on either the Register
button or the Search button. If the customer clicks on the Register button, the
Registration form displays. The customer can use the Registration form to register and
obtain a customer identification number. Alternatively, the customer can click on the
Search button to search for movies. You’ll learn more about the Registration and Search
forms later in this chapter.
Table 12-1 lists the properties of the Registered Customer and New Customer group
boxes.
Table 12-1: Properties Assigned to Group Boxes

Control Property Value

Group box 1 Name GrbRegisteredCustomer

Group box 1 Text Registered Customer

Table 12-1: Properties Assigned to Group Boxes

Control Property Value

Group box 1 Visible True

Group box 2 Name GrbNewCustomer

Group box 2 Text New Customer

Group box 2 Visible True

In addition to group boxes, the Main form contains four labels. Table 12-2 lists the
properties of the labels.
Table 12-2: Properties Assigned to Labels

Control Property Value

Label 1 Name LblWelcome

Label 1 Text Welcome to My
Movies

Label 1 Visible True

Label 2 Name LblCustomerID

Label 2 Text Customer ID:

Label 2 Visible True

Label 3 Name LblToRegister

Label 3 Text To register:

Label 3 Visible True

Label 4 Name LblWithoutReg

Label 4 Text Continue
without
registration:

Label 4 Visible True

The LblWelcome label is the caption on the Main form that displays the welcome
message. The Registered Customer group box contains the LblCustomerID label. The
New Customer group box contains the LblToRegister and LblWithoutReg labels.
Note that the font settings for the LblWelcome label differ from the font settings for the
other labels. The font settings you need to specify for the LblWelcome label are as
follows:

Property Value
Name Comic

Sans MS
Size 14.25
Unit Point
Bold True
ForeColor Desktop

In addition to the LblCustomerID label, the Registered Customer group box contains a
text box. The Name property of the text box is set to TxtCustomerID, and the Visible
property is set to True.
The Main form also displays four buttons, one of which is placed in the Registered
Customer group box, two are placed in the New Customer group box, and one is placed
on the form. Table 12-3 describes the properties for the four buttons on the Main form.

Table 12-3: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdRegCustomer

Button 1 Text Submit

Button 1 Visible True

Button 2 Name CmdRegister

Button 2 Text Register

Button 2 Visible True

Button 3 Name CmdSearch

Button 3 Text Search

Button 3 Visible True

Button 4 Name CmdExit

Button 4 Text Exit

Button 4 Visible True

As the name suggests, customers can use the Exit button to close the application. When
a customer enters a valid customer identification number in the Customer ID text box
and clicks on the Submit button, the Search form displays. The Search form also
displays when a customer clicks on the Search button in the New Customer group box.
The next section describes the Search form.

The Search Form
As the name suggests, the Search form of the Customer module enables customers to
search for movies. Figure 12-2 shows the Search form.

Figure 12-2: The interface of the Search form

To start with, take a look at the properties of the Search form. The properties you need to
assign to the Search form are as follows:

Property Value
Name FrmSearch
Text Search
Size 384, 336

Property Value
WindowState Normal

As shown in Figure 12-2, the Search form contains three labels. Table 12-4 lists the
properties of these labels.
Table 12-4: Properties Assigned to Labels

Control Property Value

Label 1 Name LblSearchText

Label 1 Text Search Text:

Label 1 Visible True

Label 2 Name LblBrowseBy

Label 2 Text Browse By:

Label 2 Visible True

Label 3 Name LblSearchResult

Label 3 Text Search Result:

Label 3 Visible True

The Search form also contains a text box and a combo box. Table 12-5 lists the
properties of these boxes.
Table 12-5: Properties Assigned to the Text Box and Combo Box

Control Property Value

Text box Name TxtSearch

Text box Visible True

Combo box Name CmbBrowseBy

Combo box Visible True

Combo box DropDownStyle DropDownList

In addition to these properties, you need to specify the Items property for the combo
box. When you select the Items property, an ellipsis button appears next to the
(Collection) value, as shown in Figure 12-3. You need to click on the ellipsis button
to add items to the Browse By combo box.

Figure 12-3: The Items property of the combo box

When you click on the ellipsis button, the String Collection Editor dialog box displays.
You can add items to the combo box by using this dialog box. Figure 12-4 shows the
String Collection Editor dialog box.

Figure 12-4: The String Collection Editor dialog box

In addition to the text box and combo box, the Search form also contains a list view
control. The properties you need to specify for the list view control are as follows:

Property Value
Name LvwSearchResult
View Details
FullRowSelect True
GridLines True

In addition to these properties, you also need to specify the Columns property for the list
view control. The Columns property enables you to specify column headers for the list
view control. When you select the Columns property, an ellipsis button appears next to
the (Collection) value, as shown in Figure 12-5.

Figure 12-5: The Columns property of the list view control

When you click on the ellipsis button, the ColumnHeader Collection Editor dialog box
appears, as shown in Figure 12-6.

Figure 12-6: The ColumnHeader Collection Editor dialog box

Using the ColumnHeader Collection Editor dialog box, you can specify the columns for
the list view control. To add a column to the list view control, click on the Add button in
the ColumnHeader Collection Editor dialog box. When you click on the Add button, a
column header object is added to the Members pane, as shown in Figure 12-7.

Figure 12-7: The column added to the list view control

Note that the properties for the selected column appear in the right pane of the
ColumnHeader Collection Editor dialog box. To edit the column name, you need to
modify the Text property of the column header, as shown in Figure 12-8.

Figure 12-8: Modifying the Text property for the ColumnHeader

In the ColumnHeader Collection Editor dialog box, you need to add five columns and
modify the Text property for each column. The properties you need to specify for the
column headers are shown on page 274.
Name of Column Header Value of

Text
Property

ColumnHeader1 Movie ID
ColumnHeader2 Movie

Title
ColumnHeader3 Actor
ColumnHeader4 Director
ColumnHeader5 Producer

Figure 12-9 shows the ColumnHeader Collection Editor dialog box with all the columns.

Figure 12-9: The dialog box with all the columns

After you add the columns to the list view control, you need to click on the OK button in
the ColumnHeader Collection Editor dialog box. The Search form displays the columns
you added to the dialog box. Figure 12-10 shows the Search form.

Figure 12-10: The Search form after adding columns to the list view control

The Search form contains three buttons. Table 12-6 lists the properties assigned to the
buttons on the Search form.
Table 12-6: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdSearch

Button 1 Text Search

Button 1 Visible True

Button 2 Name CmdPlaceOrder

Button 2 Text Place Order

Button 2 Visible True

Button 3 Name CmdExit

Table 12-6: Properties Assigned to Buttons

Control Property Value

Button 3 Text Exit

Button 3 Visible True

As the name suggests, the Exit button enables customers to close the Search form.
Alternatively, customers can use the Search button to browse the Movies database. To
search for a movie, a customer needs to perform the following steps:

1. Type the text to search for in the Search Text text box. This text could be
the name of an actor, director, producer, or movie.

2. Select a category from the Browse By combo box. The selection in this
combo box determines the table to be searched. For example, if a
customer selects the Actor option in the Browse By combo box, the text
is searched for in the Actor table in the database.

3. Click on the Search button.
When a customer clicks on the Search button, results are displayed in the list view
control. These results are based on the selection and the text entered in the text box. For
example, if a customer enters “Harrison” in the text box, selects Actor from the Browse
By combo box, and clicks on the Search button, the Search form appears as shown in
Figure 12-11.

Figure 12-11: The Search form with the results

After the list view control displays the search results, a customer can choose to purchase
a movie. To place an order for a movie, the customer needs to select the movie from the
list view control and click on the Place Order button.

To place an order, a customer needs to be registered. So, depending on whether the
customer specified a customer ID in the Main form, the Registration form or the Place
Order form displays.

If the customer specified a customer identification number in the Main form, the Place
Order form displays when the customer clicks on the Place Order button. In addition, the
Place Order form displays the details of the selected movies. You will learn more about
the Place Order form later in this chapter.
If the customer did not specify a customer identification number in the Main form, the
Registration form displays when the customer clicks on the Place Order button. The next
section describes the Registration form.

The Registration Form
As the name suggests, the Registration form enables customers to register. Figure 12-12
shows the Registration form.

Figure 12-12: The Registration form

The Registration form appears when a customer clicks on the Register button in the
Main form. The Registration form also appears when a customer does not specify an
identification number in the Main form and then clicks on the Place Order button in the
Search form.

The properties you need to assign to the Registration form are as follows:

Property Value
Name FrmRegistration
Text Registration
Size 392, 376
WindowState Normal

As shown in Figure 12-12, the Registration form contains multiple text boxes and labels.
Table 12-7 lists the properties assigned to the labels on the Registration form.
Table 12-7: Properties Assigned to Labels

Control Property Value

Label 1 Name LblFName

Label 1 Text First Name:

Label 1 Visible True

Label 2 Name LblLName

Label 2 Text Last Name:

Label 2 Visible True

Label 3 Name LblAddress

Label 3 Text Address:

Label 3 Visible True

Label 4 Name LblCity

Label 4 Text City:

Label 4 Visible True

Label 5 Name LblState

Label 5 Text State:

Label 5 Visible True

Table 12-7: Properties Assigned to Labels

Control Property Value

Label 6 Name LblZip

Label 6 Text Zip:

Label 6 Visible True

Label 7 Name LblPhone

Label 7 Text Phone:

Label 7 Visible True

Label 8 Name LblEmail

Label 8 Text Email:

Label 8 Visible True

Label 9 Name LblCCNumber

Label 9 Text Credit Card
Number:

Label 9 Visible True

Label 10 Name LblValidUpto

Label 10 Text Valid Upto:

Label 10 Visible True

Label 11 Name LblDOB

Label 11 Text DOB:

Label 11 Visible True

Table 12-8 lists the properties assigned to the text boxes on the Registration form.
Table 12-8: Properties Assigned to Text Boxes

Control Property Value

Text box 1 Name TxtFName

Text box 1 Visible True

Text box 2 Name TxtLName

Text box 2 Visible True

Text box 3 Name TxtAddress

Text box 3 Visible True

Text box 4 Name TxtCity

Text box 4 Visible True

Text box 5 Name TxtState

Text box 5 Visible True

Text box 6 Name TxtZip

Text box 6 Visible True

Text box 7 Name TxtPhone

Table 12-8: Properties Assigned to Text Boxes

Control Property Value

Text box 7 Visible True

Text box 8 Name TxtEmail

Text box 8 Visible True

Text box 9 Name TxtCCNumber

Text box 9 Visible True

In addition to labels and text boxes, the Registration form contains two date time picker
controls. One is associated with the Valid Upto label, and the other is associated with the
DOB label. The Name property of the date time picker control associated with the Valid
Upto label is set to DtpCCValidUpto. The Name property of the date time picker control
associated with the DOB label is set to DtpDOB.
The Registration form also contains three buttons. Table 12-9 lists the properties of the
buttons on the Registration form.
Table 12-9: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdSubmitReg

Button 1 Text Submit

Button 1 Visible True

Button 2 Name CmdClear

Button 2 Text Clear

Button 2 Visible True

Button 3 Name CmdCancel

Button 3 Text Cancel

Button 3 Visible True

Customers can use the Submit button to update the database with the information
entered in the Registration form. The Clear button enables customers to clear the
controls on the Registration form. Customers can use the Cancel button to close the
Registration form.

The Place Order Form
As previously mentioned, the Place Order form enables customers to place orders for
movies. When a customer selects a movie in the Search form and clicks on the Place
Order button, the Place Order form displays. Figure 12-13 shows the Place Order form.

Figure 12-13: The Place Order form

To start with, take a look at the properties you need to assign to the Place Order form.
They are as follows:

Property Value
Name FrmOrder
Text Place

Order
Size 376, 352
WindowState Normal

As shown in Figure 12-13, the Place Order form contains four labels. Table 12-10 lists
the properties assigned to the labels on the form.
Table 12-10: Properties Assigned to Labels

Control Property Value

Label 1 Name LblSelectedItems

Label 1 Text Selected Items:

Label 1 Visible True

Label 2 Name LblTotalAmount

Label 2 Text Total Amount:

Label 2 Visible True

Label 3 Name LblCCNumber

Label 3 Text Credit Card
Number:

Label 3 Visible True

Label 4 Name LblValidUpto

Label 4 Text Valid Upto:

Label 4 Visible True

The Place Order form also contains a list view control. The properties you need to assign
to the list view control are as follows:

Property Value
Name LvwItemsOrdered
View Details
FullRowSelect True
GridLines True

In addition to these properties, you also need to specify column headers for the list view
control by using the Columns property.

The properties you need to specify for the column headers are as follows:
Name of Column Header Value of

Text
Property

ColumnHeader1 Movie ID
ColumnHeader2 Movie

Title
ColumnHeader3 Actor
ColumnHeader4 Director
ColumnHeader5 Producer
ColumnHeader6 Price

After you specify the values for the Columns property, the ColumnHeader Collection
Editor dialog box appears, as shown in Figure 12-14.

Figure 12-14: The ColumnHeader Collection Editor dialog box

After you specify the values for the Columns property for the list view control, the Place
Order form appears, as shown in Figure 12-15.

Figure 12-15: The list view control in the Place Order form

In addition to the list view control, the Place Order form contains three text boxes. Table
12-11 lists the properties assigned to the text boxes in the Place Order form.
Table 12-11: Properties Assigned to Text Boxes

Control Property Value

Text box 1 Name TxtTotalAmount

Text box 1 Visible True

Text box 2 Name TxtCCNumber

Text box 2 Visible True

Text box 3 Name TxtValidUpto

Text box 3 Visible True

In addition to text boxes, the Place Order form also contains two buttons, Place Order
and Cancel. The properties of these buttons are listed in Table 12-12.
Table 12-12: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdPlaceOrderFinal

Button 1 Text Place Order

Button 1 Visible True

Button 2 Name CmdCancel

Button 2 Text Cancel

Button 2 Visible True

To order the selected movie(s), a customer needs to click on the Place Order button in
the Place Order form. To close the Place Order form, a customer can click on the Cancel
button.

Summary
In this chapter, you learned to create the forms for the Customer module of the video
kiosk application. You learned to create the Main, Search, Registration, and Place Order
forms. This chapter also described the properties you need to assign to the various
controls on the forms. The next four chapters will discuss the functionality you need to
add to the Customer module.

Chapter 13: Adding Functionality to the Main Form
Overview
In Chapter 12, “Designing the User Interface of the Customer Module,” you learned to
create the user interface for the Customer module of the video kiosk application. In these
next few chapters, you will add functionality to forms in the Customer module.

As previously discussed, the Customer module consists of the following forms:
 The Main form
 The Search form
 The Place Order form
 The Registration form

In this chapter, you will learn to write code to add functionality to the Main form of the
Customer module. To review, take a look at the Main form in Figure 13-1.

Figure 13-1: The interface of the Main form

To enable the Main form to connect to the Movies database, you need to use the SQL
Server .NET data provider. To use the classes associated with the SQL Server .NET
data provider, you must import the System.Data.SqlClient namespace. You can
include the following statement in the Main form to import the
System.Data.SqlClient namespace:

Imports System.Data.SqlClient
'Imports classes used by the SQL Server .NET data provider.

In addition to the preceding statement, you need to include the following statements in
the Main form:
Imports System
Imports System.Data
'Includes the classes that make up the ADO.NET architecture
Imports System.String
'Includes the classes that enable you to work with strings
Imports System.Collections

'Includes the collection classes
Imports System.Data.SqlTypes
'Includes the classes for native data types within SQL Server
Imports App1.Module1
'Includes the StrConnectionString, which is used to initialize the connection object
In addition, to connect to the Movies database from the Main form, you need to use an
object of the SqlConnection class. To transfer data from the Main form to a dataset
and vice versa, you need to use an object of the SqlDataAdapter class. You also
need to declare the following variables in the Main form:
Public Shared ObjSearch As FrmSearch
'Declares ObjSearch as an object of the FrmSearch class
Public Shared ObjRegistration As FrmRegistration
'Declares ObjRegistration as an object of the FrmRegistration class
Before you write code, take a look at the flow of the functions in the Main form. As
depicted in Figure 13-2, the Main form consists of the following functions:

 CmdRegCustomer_Click
 IsCustomerIDValid
 CmdRegister_Click
 CmdSearch_Click
 CmdExit_Click:

Figure 13-2: The flow of the functions in the Main form

The following sections describe the code for these functions.

The CmdRegCustomer_Click Function
The CmdRegCustomer_Click function is executed when a customer clicks on the
Submit button the Main form.
The CmdRegCustomer_Click function checks to see whether the value entered in the
Customer ID text box is numeric. Next, the function calls the IsCustomerID- Valid
function to see if the customer ID entered by the customer is valid. You will learn about
the IsCustomerIDValid function in the next section. After the IsCustomerIDValid
function validates the ID entered by the customer, the ID is passed to the
SetRegistrationID function of the FrmSearch class. Next, the Search form is
displayed.
Take a look at the code for the CmdRegCustomer_Click function:

Private Sub CmdRegCustomerSubmit_Click(ByVal sender As System.Object, ByVal e
As

System.EventArgs) Handles CmdRegCustomer.Click

 If TxtCustomerID.Text.Trim = "" Then
'Checks if user has not entered the customer ID
 MessageBox.Show("Please enter your ID.")
 Else

 ObjSearch = New FrmSearch()
'Creates an object of the FrmSearch class
 If (IsNumeric(TxtCustomerID.Text)) Then
'Checks if the ID entered by the customer is a number
 If (IsCustomerIDValid(TxtCustomerID.Text)) Then
'Passes the ID entered by the customer to the IsCustomerIDValid function
 ObjSearch.SetRegistrationID(TxtCustomerID.Text)
'Passes the ID entered by the customer to the SetRegistrationID function of the
FrmSearch class
 ObjSearch.Show()
'Displays the Search form
 Else
 MessageBox.Show("Invalid CustomerID")
'Displays a message if customer ID is not found in the database
 End If
 Else
 MessageBox.Show("Invalid CustomerID")
'Displays a message if the ID entered by the customer is not numeric
 End If
 End If
 End Sub

The IsCustomerIDValid Function
The IsCustomerIDValid function validates the customer ID entered by the customer.
To do so, the IsCustomerIDValid function takes the customer ID entered by the user
as a parameter. The IsCustomerIDValid function contains statements to connect to
the Movies database and check whether the ID entered by the customer exists in the
Customer table. This function returns a value of True if the ID entered by the user exists
in the database and returns False if the ID does not exist in the database.

The code for this function is as follows:
Private Function IsCustomerIDValid(ByVal custID As String) As Boolean
 Dim StrRowCount As String
 Dim StrQuery As String
'Declares variables
 Dim SqlConnection1 As New SqlConnection(StrConnectionString)
'Declares the connection object

 StrQuery = "SELECT COUNT(CustID) FROM Customer WHERE CustID ='" &
custID
& "'"
'Specifies the query
 SqlConnection1.Open()
'Establishes a connection with the database
 Dim SelectCmd As New SqlCommand(StrQuery, SqlConnection1)
'Executes the query
 StrRowCount = SelectCmd.ExecuteScalar()
'Stores the first column of the first row in the results returned by the query in
the StrRowCount variable
 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlConnection1.Dispose()
'Releases the resources used by the SqlConnection1 object
 SelectCmd.Dispose()
'Releases the resources used by the SelectCmd object

 If (CInt(StrRowCount) > 0) Then
 IsCustomerIDValid = True
'Returns True if the customer ID exists in the dataset
 Else
 IsCustomerIDValid = False
'Returns False if the customer ID does not exist in the dataset
 End If
End Function

The CmdRegister_Click Function
As discussed in the preceding chapter, a customer can click on the Register button to
obtain a customer ID. The CmdRegister_Click function is executed when the
customer clicks on the Register button in the Main form.
The code for the CmdRegister_Click function is as follows:

Private Sub CmdRegister_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdRegister.Click
 ObjRegistration = New FrmRegistration()
'Declares ObjRegistration as an object of the FrmRegistration class
 ObjRegistration.Show()
'Displays the Registration form
End Sub

When the customer clicks on the Register button, the Registration form opens.

The CmdSearch_Click Function
The Customer module enables registered and unregistered customers to browse the
Movies database. To browse the Movies database, a registered customer needs to click
on the Submit button after entering his or her customer ID. An unregistered customer

can click on the Search button to browse the Movies database. The CmdSearch_Click
function is executed when a customer clicks on the Search button in the Main form.
The code of the CmdSearch_Click function is as follows:

Private Sub CmdSearch_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdSearch.Click
 ObjSearch = New FrmSearch()
'Declares ObjSearch as an object of the FrmSearch class
 ObjSearch.Show()
'Displays the Search form
End Sub

When the customer clicks on the Search button, the Search form opens.

The CmdExit_Click Function
The CmdExit_Click function is executed when a customer clicks on the Exit button in
the Main form.
The code for the CmdExit_Click function is as follows:

Private Sub CmdExit_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdExit.Click
 Me.Close()
'Closes the current form, which is the Main form
End Sub

A customer can click on the Exit button to close the Customer module.

Complete Code for the Main Form
In the preceding sections, you looked at the code associated with the events and
functions in the Main form. Listing 13-1 lists the complete code for the Main form.

Listing 13-1: The Code for the Main Form

Imports System

Imports System.Data

Imports System.String

Imports System.Collections

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Imports App1.Module1

Public Class FrmMain

 Inherits System.Windows.Forms.Form

 Public Shared ObjSearch As FrmSearch

 Public Shared ObjRegistration As FrmRegistration

Windows Form Designer generated code

 'Contains the code that specifies the size, location, and other properties, such

as font and name, for the controls on the form.

 Private Sub CmdRegCustomerSubmit_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles CmdRegCustomer.Click

 If TxtCustomerID.Text.Trim = "" Then

 MessageBox.Show("Please enter your ID.")

 Else

 ObjSearch = New FrmSearch()

 If (IsNumeric(TxtCustomerID.Text)) Then

 If

(IsCustomerIDValid(TxtCustomerID.Text)) Then

ObjSearch.SetRegistrationID(TxtCustomerID.Text)

 ObjSearch.Show()

 Else

 MessageBox.Show

("Invalid CustomerID")

 End If

 Else

 MessageBox.Show("Invalid

CustomerID")

 End If

 End If

 End Sub

 Private Function IsCustomerIDValid(ByVal custID As String) As Boolean

 Dim StrQuery As String

 Dim StrRowCount As String

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 StrQuery = "SELECT COUNT(CustID) FROM Customer WHERE CustID ='" &

custID & "'"

 SqlConnection1.Open()

 Dim SelectCmd As New SqlCommand(StrQuery, SqlConnection1)

 StrRowCount = SelectCmd.ExecuteScalar()

 SqlConnection1.Close()

 SqlConnection1.Dispose()

 SelectCmd.Dispose()

 If (CInt(StrRowCount) > 0) Then

 IsCustomerIDValid = True

 Else

 IsCustomerIDValid = False

 End If

 End Function

 Private Sub CmdRegister_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdRegister.Click

 ObjRegistration = New FrmRegistration()

 ObjRegistration.Show()

 End Sub

 Private Sub CmdSearch_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdSearch.Click

 ObjSearch = New FrmSearch()

 ObjSearch.Show()

 End Sub

 Private Sub CmdExit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdExit.Click

 Me.Close()

 End Sub

End Class

Summary
In this chapter, you learned to add functionality to the Main form. You also learned about
the functions you need to create in the Main form. This chapter also described the events
you need to trap to add functionality to the Main form. Finally, you looked at the complete
code for the Main form.

Chapter 14: Adding Functionality to the Search
Form
Overview
In the preceding chapter, you learned to add functionality to the Main form. In this
chapter, you will learn to add functionality to the Search form of the Customer module.
First let’s review what the Search form looks like (see Figure 14-1).

Figure 14-1: The interface of the Search form

The Search form enables customers to search the Movies database. To connect to the
database from the Search form, you need to use the SQL Server .NET data provider. To

use the SQL Server .NET data provider, you need to import the classes stored in the
System.Data.SqlClient namespace. You can import the
System.Data.SqlClient namespace by including the following statement in the
Search form:
Imports System.Data.SqlClient
'Imports classes used by the SQL Server .NET data provider

In addition to the preceding statement, you need to include the following statements in
the Search form:
 Imports System.Data
'Includes the classes that make up the ADO.NET architecture
Imports System.String
'Includes the classes that enable you to work with strings
Imports System.Collections
'Includes the collection classes
Imports System.Data.SqlTypes
'Includes the classes for native data types within SQL Server

You also need to declare the following variables in the Search form:
Public Shared ObjPlaceOrder As FrmOrder
'Declares ObjPlaceOrder as an object of the FrmOrder class
Public Shared ObjRegistration As FrmRegistration
'Declares ObjRegistration as an object of the FrmRegistration class
Public Shared ArrayMovieID() As String = New String(10) {}
'Declares a string array
Private Shared StrRegistrationID As String
'Declares a string, which stores the customer ID
Before you write code, take a look at the flow of the functions in the Search form. Figure
14-2 depicts this flow.
As depicted in Figure 14-2, the Search form consists of the following functions:

 FrmSearch_Load
 CmdSearch_Click
 SetRegistrationID
 CmdPlaceOrder_Click
 CmdExit_Click

Figure 14-2: The flow of functions in the Search form

The following sections describe the code for these functions.

The FrmSearch_Load Function
As the name suggests, the FrmSearch_Load function is executed before an instance of
the FrmSearch form displays. In the Search form, the FrmSearch_Load function
performs the following tasks:

 It specifies that Movie is displayed in the Browse By combo box when the
Search form loads.

 It disables the Place Order button.:
Therefore, when the customer opens the Search form, the Movie option is selected in the
Browse By combo box, and the Place Order button is disabled. The code for the
FrmSearch_Load function is as follows:

Private Sub FrmSearch_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 CmbBrowseBy.SelectedIndex = 0
 'Specifies Movie as the default option in the Browse By combo box
 CmdPlaceOrder.Enabled = False
'Disables the Place Order button
 End Sub

The CmdSearch_Click Function
The CmdSearch_Click function is executed when the customer clicks on the Search
button.
When the CmdSearch_Click function is executed, it first checks to see whether the
customer entered any text in the Search text box. If the Search text box is blank, a
message box asks the customer to enter text in the Search text box. Next, based on the

value specified in the Browse By combo box and the text entered in the Search text box,
a query is created. Then the query is executed, and results are stored in a dataset.
Finally, the results, if any, are displayed in the list view control. In addition, the Place
Order button is enabled. If the query returns no records and the dataset is empty, a
message stating this is displayed.
The code for the CmdSearch_Click function is as follows:

Private Sub CmdSearch_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdSearch.Click
 Dim DsDataSet As DataSet
 Dim DrRowPicker As DataRow
 Dim StrBrowseBy As String
 Dim StrQuery As String
 Dim Result As Integer
 Dim StrMessage As String
 Dim BSearchStrEmpty As Boolean
 Dim SqlConnection1 As New SqlConnection(StrConnectionString)
 Dim SqlDataAdapter1 As New SqlDataAdapter()
 Dim SqlSelectCommand1 As New SqlCommand()
'Declares variables

 BSearchStrEmpty = False
'Assigns a value of False to the BSearchStrEmpty variable

 If TxtSearch.Text.Trim = "" Then
 'Checks if the Search text box is empty
 BSearchStrEmpty = True
'Assigns True to the BSearchStrEmpty variable
 End If

 StrBrowseBy = CmbBrowseBy.Text
'Stores the option selected by the customer in the Browse By combo box in the
StrBrowseBy string
 If (Compare(StrBrowseBy, "Movie", True) = 0) Then
'Checks if the customer has selected the Movie option in the Browse By combo box
 Result = 0
'Assigns a value of 0 to the Result flag
 StrQuery = "SELECT DISTINCT a.MovID, b.ActorID, c.DirID,
d.ProdID, a.MovTitle, b.FirstName AS Actor, c.FirstName AS Director, d.name AS
Producer FROM movie a, actor b, director c, producer d, actormovie e WHERE a.MovID
=
e.MovID AND e.ActorID = b.ActorID AND a.DirID = c.DirID AND a.ProdID = d.ProdID "
 If Not BSearchStrEmpty Then
 StrQuery += " AND a.MovTitle LIKE '" & TxtSearch.Text
& "%'"

'Specifies the query to search for the text entered in the Search Text text box in
the Movie Title field of the Movie table. If a match is found, the Movie ID, Actor,
Director, and Producer associated with the Movie are displayed in the list view
control. If the customer has not entered any text in the Search Text text box, all
records from the Movie table are displayed.
 End If
 ElseIf (Compare(StrBrowseBy, "Actor", True) = 0) Then
'Checks if the customer has selected the Actor option in the Browse By combo box
 Result = 1
'Assigns a value of 1 to the Result flag
 StrQuery = "SELECT DISTINCT a.MovID, b.ActorID, c.DirID,
d.ProdID, a.MovTitle, b.FirstName AS Actor, c.FirstName AS Director, d.name AS
Producer FROM movie a, actor b, director c, producer d, actormovie e WHERE a.MovID
=
e.MovID AND e.ActorID = b.ActorID AND a.DirID = c.DirID AND a.ProdID = d.ProdID "
 If Not BSearchStrEmpty Then
 StrQuery += "AND (b.FirstName LIKE '" & TxtSearch.Text
& "%' OR b.LastName LIKE '" & TxtSearch.Text & "%') "
'Specifies the query to search for the text entered in the Search Text text box in
the First Name and Last Name fields of the Actor table. If a match is found, the
 Movie ID, Actor, Director, and Producer associated with the Movie are displayed in
the list view control. If the customer has not entered any text in the Search Text
text box, all records from the Actor table are displayed.
 End If
 ElseIf (Compare(StrBrowseBy, "Director", True) = 0) Then
'Checks if the customer has selected the Director option in the Browse By combo box
 Result = 2
'Assigns a value of 2 to the Result flag
 StrQuery = "SELECT DISTINCT a.MovID, b.ActorID,
c.DirID, d.ProdID, a.MovTitle, b.FirstName AS Actor, c.FirstName AS Director, d.name
AS Producer FROM movie a, actor b, director c, producer d, actormovie e WHERE
a.MovID = e.MovID AND e.ActorID = b.ActorID AND a.DirID = c.DirID AND a.ProdID =
d.ProdID "
 If Not BSearchStrEmpty Then
 StrQuery += "AND (b.FirstName LIKE '" & TxtSearch.Text
& "%' OR b.LastName LIKE '" & TxtSearch.Text & "%') "
'Specifies the query to search for the text entered in the Search Text text box in
the First Name and Last Name fields of the Director table. If a match is found, the
Movie ID, Actor, Director, and Producer associated with the Movie are displayed in
the list view control. . If the customer has not entered any text in the Search Text
text box, all records from the Director table are displayed.
 End If
 ElseIf (Compare(StrBrowseBy, "Producer", True) = 0) Then

'Checks if the customer has selected the Producer option in the Browse By combo box
 Result = 3
'Assigns a value of 3 to the Result flag
 StrQuery = "SELECT DISTINCT a.MovID, b.ActorID,
c.DirID, d.ProdID, a.MovTitle, b.FirstName AS Actor, c.FirstName AS Director, d.name
AS Producer FROM movie a, actor b, director c, producer d, actormovie e WHERE
a.MovID = e.MovID AND e.ActorID = b.ActorID AND a.DirID = c.DirID AND a.ProdID =
d.ProdID "
 If Not BSearchStrEmpty Then
 StrQuery += " AND d.Name LIKE '" & TxtSearch.Text &
"%'"
'Specifies the query to search for the text entered in the Search Text text box in
the Name field of the Producer table. If a match is found, the Movie ID, Actor,
Director, and Producer associated with the Movie are displayed in the list view
control. If the customer has not entered any text in the Search Text text box, all
 records from the Producer table are displayed.
 End If
 Else
 Result = -1
'Assigns a value of -1 to the Result flag
 StrQuery = ""
'Assigns a space to the StrQuery variables
 End If

 DsDataSet = New DataSet()
'Creates the dataset
 SqlDataAdapter1.SelectCommand = SqlSelectCommand1
 SqlDataAdapter1.SelectCommand.CommandText = StrQuery
'Executes the query
 SqlDataAdapter1.SelectCommand.Connection = SqlConnection1
 SqlDataAdapter1.Fill(DsDataSet, "SearchResult")
'Populates the SearchResult table in the DsDataSet dataset with the query results

 LvwSearchResult.Items.Clear()
'Clears the list view control
 Dim IntRowCount As Integer
'Declares IntRowCount as a Integer variable
 IntRowCount = 0
'Assigns a value of 0 to the IntRowCount variable

 For Each DrRowPicker In DsDataSet.Tables("SearchResult").Rows
 Dim StrSearchRow As String() = {DrRowPicker(0), DrRowPicker(4),
DrRowPicker(5), DrRowPicker(6), DrRowPicker(7)}

'Picks up the values of the Movie ID, Movie Title, First Name of Actor, First Name
of Director, and Producer name for each record in the dataset and adds it to the
StrSearchRow array
 LvwSearchResult.Items.Add(New ListViewItem(StrSearchRow))
'Displays each member of the StrSearchRow array in the list view control
 IntRowCount += 1
'Increments the IntRowCount variable by 1
 Next

 Dim IntRes As Integer
 IntRes = CInt(Result)
'Assigns the value stored in the Result flag to the IntRes variable

 If (IntRowCount = 0) Then
 CmdPlaceOrder.Enabled = False
'Disables the Place Order button if the dataset is empty
 Else
 CmdPlaceOrder.Enabled = True
'Enables the Place Order button if the dataset contains records
 End If

 If IntRowCount = 0 Then
'Checks if the table in the dataset contains no records
 If (IntRes = 0) Then
'Checks if the customer had selected the Movie option in the Browse By combo box
 MessageBox.Show("Couldn't find this movie.")
 ElseIf (IntRes = 1) Then
'Checks if the customer had selected the Actor option in the Browse By combo box
 MessageBox.Show("Couldn't find any movie of this
actor.")
 ElseIf (IntRes = 2) Then
'Checks if the customer had selected the Director option in the Browse By combo box
 MessageBox.Show("Couldn't find any movie of this
director.")
 ElseIf (IntRes = 3) Then
'Checks if the customer had selected the Producer option in the Browse By combo box
 MessageBox.Show("Couldn't find any movie of this
producer.")
 End If
 End If

 SqlConnection1.Close()
'Closes the SqlConnection1 object

 SqlConnection1.Dispose()
'Releases the resources used by the SqlConnection1 object
 SqlSelectCommand1.Dispose()
'Releases the resources used by the SqlSelectCommand1 object
 SqlDataAdapter1.Dispose()
 'Closes the SqlDataAdapter1 object
End Sub

The SetRegistrationID Function
As discussed in the preceding chapter, when the customer enters his or her customer ID
in the Main form and clicks on the Submit button, the ID entered by the customer is
validated. In addition, after the ID is validated, the Main form passes the ID to the
SetRegistrationID function of the FrmSearch class. Therefore, the
SetRegistrationID function accepts a string as a parameter.
The code for the SetRegistrationID function is as follows:

Public Sub SetRegistrationID(ByVal RegID As String)
'Takes the ID entered by the customer as a parameter and stores it in the RegID
variable
 StrRegistrationID = RegID
'Assigns the value in the RegID variable to the StrRegistrationID variable
End Sub

The CmdPlaceOrder_Click Function
As previously discussed, a customer can select a record from the list view control in the
Search form and click on the Place Order button to place an order for the movie. The
CmdPlaceOrder_Click function executes when the customer selects a record from
the list view control and clicks on the Place Order button.
When the CmdPlaceOrder_Click function executes, it first checks to see if the
customer has selected any records from the list view control. If the customer has not
selected any movies from the list view control, a message box prompts the customer to
select a record. If the customer selects a movie from the list view control and clicks on
the Place Order button, either the Registration form or the Place Order form displays.
The form displayed depends on the whether the customer specified a customer ID in the
Main form. If the customer is a registered user and specified his or her customer ID in
the Main form, then the Place Order form displays when the customer clicks on the Place
Order button. If the customer did not specify a customer ID in the Main form, the
Registration form displays when the customer clicks on the Place Order button.
The code of the CmdPlaceOrder_Click function is as follows:

Private Sub CmdPlaceOrder_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdPlaceOrder.Click
 Dim LstViewCollection As ListView.SelectedListViewItemCollection
'Declares LstViewCollection as an object of the SelectedListViewItemCollection
class. The SelectedListViewItemCollection class represents the collection of
selected items in a list view control.
 LstViewCollection = New
ListView.SelectedListViewItemCollection(LvwSearchResult)
'Stores the selected item in the list view control in the LstViewCollection object
 Dim IntTotalSelectedCount As Integer
 IntTotalSelectedCount = LstViewCollection.Count()

'Stores the number of items in the LstViewCollection object in the
IntTotalSelectedCount variable
 If (IntTotalSelectedCount < 1) Then
'Checks if the LstViewCollection object contains any items
 MessageBox.Show("You have not selected any movie. Please select
movies from the list and then click on the ""Place Order"" button")
'Displays a message informing the customer to select records from the list view
control
 Return
 End If

 If (StrRegistrationID = "") Then
'Checks if the StrRegistrationID variable is blank, which implies that the customer
is not a registered user
 MessageBox.Show("You need to register before placing any
order.")
 ObjRegistration = New FrmRegistration()
'Creates an object of the FrmRegistration class
 ObjRegistration.BlnFromSearchButton = True
'Assigns a value of True to the BlnFromSearchButton variable
 ObjRegistration.Show()
'Opens the Registration form
 Else
'Executed if the StrRegistrationID variable stores a customer ID, which implies that
the customer is a registered user
 ObjPlaceOrder = New FrmOrder()
'Creates an object of the FrmOrder class
 ObjPlaceOrder.SetRegistrationID(StrRegistrationID)
'Invokes the SetRegistrationID function of the FrmOrder class and passes the
customer Id as a parameter

 Dim IntCounter As Integer
 For IntCounter = 0 To IntTotalSelectedCount - 1
 ArrayMovieID(IntCounter) = LstViewCollection.Item(IntCounter).Text
'Stores the Movie Id associated with each item in the LstViewCollection object in
the ArrayMovieID array
 Next

 ObjPlaceOrder.SetSelectedMovies(ArrayMovieID,
IntTotalSelectedCount)
'Invokes the SetSelectedMovies function of the FrmOrder class. The SetSelectedMovies
function takes the array containing the Movie IDs of the selected records and the
number of selected records as parameters.

 ObjPlaceOrder.Show()
'Displays the Place Order form
 End If
End Sub

The CmdExit_Click Function
The CmdExit_Click function executes when a customer clicks on the Exit button in the
Search form. A customer can click on the Exit button to close the Search form.
The code for the CmdExit_Click function is as follows:

Private Sub CmdExit_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdExit.Click
 Me.Close()
'Closes the Search form
 End Sub

Complete Code for the Search Form
In the preceding sections, you looked at the code for the functions in the Search form.
Listing 14-1 lists the complete code for the Search form.

Listing 14-1: The Code for the Search Form

Imports System.Data

Imports System.String

Imports System.Collections

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Public Class FrmSearch

 Inherits System.Windows.Forms.Form

 Public Shared ObjPlaceOrder As FrmOrder

 Public Shared ObjRegistration As FrmRegistration

 Public Shared ArrayMovieID() As String = New String(10) {}

 Private Shared StrRegistrationID As String

Windows Form Designer generated code

'Contains the code that specifies the size, location, and other properties, such as

font and name, for the controls on the form.

 Private Sub CmdExit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdExit.Click

 Me.Close()

 End Sub

 Private Sub CmdPlaceOrder_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdPlaceOrder.Click

 Dim LstViewCollection As ListView.SelectedListViewItemCollection

 LstViewCollection = New

ListView.SelectedListViewItemCollection(LvwSearchResult)

 Dim IntTotalSelectedCount As Integer

 IntTotalSelectedCount = LstViewCollection.Count()

 If (IntTotalSelectedCount < 1) Then

 MessageBox.Show("You have not selected any movie.

Please select movies from the list and then click on the ""Place Order"" button")

 Return

 End If

 If (StrRegistrationID = "") Then

 MessageBox.Show("You need to register before placing

any order.")

 ObjRegistration = New FrmRegistration()

 ObjRegistration.BlnFromSearchButton = True

 ObjRegistration.Show()

 Else

 ObjPlaceOrder = New FrmOrder()

 ObjPlaceOrder.SetRegistrationID(StrRegistrationID)

 Dim IntCounter As Integer

 For IntCounter = 0 To IntTotalSelectedCount - 1

 ArrayMovieID(IntCounter) =

LstViewCollection.Item(IntCounter).Text

 Next

 ObjPlaceOrder.SetSelectedMovies(ArrayMovieID,

IntTotalSelectedCount)

 ObjPlaceOrder.Show()

 End If

 End Sub

 Private Sub CmdSearch_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdSearch.Click

 Dim DsDataSet As DataSet

 Dim DrRowPicker As DataRow

 Dim StrBrowseBy As String

 Dim StrQuery As String

 Dim Result As Integer

 Dim StrMessage As String

 Dim BSearchStrEmpty As Boolean

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 Dim SqlDataAdapter1 As New SqlDataAdapter()

 Dim SqlSelectCommand1 As New SqlCommand()

 BSearchStrEmpty = False

 If TxtSearch.Text.Trim = "" Then

 BSearchStrEmpty = True

 End If

 StrBrowseBy = CmbBrowseBy.Text

 If (Compare(StrBrowseBy, "Movie", True) = 0) Then

 Result = 0

 StrQuery = "SELECT DISTINCT a.MovID, b.ActorID, c.DirID,

d.ProdID, a.MovTitle, b.FirstName AS Actor, c.FirstName AS Director, d.name AS

Producer FROM movie a, actor b, director c, producer d, actormovie e WHERE a.MovID =

e.MovID AND e.ActorID = b.ActorID AND a.DirID = c.DirID AND a.ProdID = d.ProdID "

 If Not BSearchStrEmpty Then

 StrQuery += " AND a.MovTitle LIKE '" & TxtSearch.Text

& "%'"

 End If

 ElseIf (Compare(StrBrowseBy, "Actor", True) = 0) Then

 Result = 1

 StrQuery = "SELECT DISTINCT a.MovID, b.ActorID,

c.DirID, d.ProdID, a.MovTitle, b.FirstName AS Actor, c.FirstName AS Director, d.name

AS Producer FROM movie a, actor b, director c, producer d, actormovie e WHERE

a.MovID = e.MovID AND e.ActorID = b.ActorID AND a.DirID = c.DirID AND a.ProdID =

d.ProdID "

 If Not BSearchStrEmpty Then

 StrQuery += "AND (b.FirstName LIKE '" & TxtSearch.Text

& "%' OR b.LastName LIKE '" & TxtSearch.Text & "%') "

 End If

 ElseIf (Compare(StrBrowseBy, "Director", True) = 0) Then

 Result = 2

 StrQuery = "SELECT DISTINCT a.MovID, b.ActorID,

c.DirID, d.ProdID, a.MovTitle, b.FirstName AS Actor, c.FirstName AS Director, d.name

AS Producer FROM movie a, actor b, director c, producer d, actormovie e WHERE

a.MovID = e.MovID AND e.ActorID = b.ActorID AND a.DirID = c.DirID AND a.ProdID =

d.ProdID "

 If Not BSearchStrEmpty Then

 StrQuery += "AND (b.FirstName LIKE '" &

 TxtSearch.Text & "%' OR b.LastName LIKE '" & TxtSearch.Text & "%') "

 End If

 ElseIf (Compare(StrBrowseBy, "Producer", True) = 0) Then

 Result = 3

 StrQuery = "SELECT DISTINCT a.MovID, b.ActorID,

c.DirID, d.ProdID, a.MovTitle, b.FirstName AS Actor, c.FirstName AS Director, d.name

AS Producer FROM movie a, actor b, director c, producer d, actormovie e WHERE

a.MovID = e.MovID AND e.ActorID = b.ActorID AND a.DirID = c.DirID AND a.ProdID =

d.ProdID "

 If Not BSearchStrEmpty Then

 StrQuery += " AND d.Name LIKE '" & TxtSearch.Text &

"%'"

 End If

 Else

 Result = -1

 StrQuery = ""

 End If

 DsDataSet = New DataSet()

 SqlDataAdapter1.SelectCommand = SqlSelectCommand1

 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlDataAdapter1.SelectCommand.Connection = SqlConnection1

 SqlDataAdapter1.Fill(DsDataSet, "SearchResult")

 LvwSearchResult.Items.Clear()

 Dim IntRowCount As Integer

 IntRowCount = 0

 For Each DrRowPicker In DsDataSet.Tables("SearchResult").Rows

 Dim StrSearchRow As String() = {DrRowPicker(0),

DrRowPicker(4), DrRowPicker(5), DrRowPicker(6), DrRowPicker(7)}

 LvwSearchResult.Items.Add(New

ListViewItem(StrSearchRow))

 IntRowCount += 1

 Next

 Dim IntRes As Integer

 IntRes = CInt(Result)

 If (IntRowCount = 0) Then

 CmdPlaceOrder.Enabled = False

 Else

 CmdPlaceOrder.Enabled = True

 End If

 If IntRowCount = 0 Then

 If (IntRes = 0) Then

 MessageBox.Show("Couldn't find this movie.")

 ElseIf (IntRes = 1) Then

 MessageBox.Show("Couldn't find any movie of

this actor.")

 ElseIf (IntRes = 2) Then

 MessageBox.Show("Couldn't find any movie of

this director.")

 ElseIf (IntRes = 3) Then

 MessageBox.Show("Couldn't find any movie of

this producer.")

 End If

 End If

 SqlConnection1.Close()

 SqlConnection1.Dispose()

 SqlSelectCommand1.Dispose()

 SqlDataAdapter1.Dispose()

 End Sub

 Private Sub FrmSearch_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 CmbBrowseBy.SelectedIndex = 0

 CmdPlaceOrder.Enabled = False

 End Sub

 Public Sub SetRegistrationID(ByVal RegID As String)

 StrRegistrationID = RegID

 End Sub

End Class

Summary
In this chapter, you learned to add functionality to the Search form. This chapter also
described the functions you need to create in the Search form. Finally, you looked at the
complete code for the Search form.

Chapter 15: Adding Functionality to the
Registration Form
Overview
In the preceding chapter, you learned to add functionality to the Search form. In this
chapter, you will learn to add functionality to the Registration form of the Customer
module.
Before you learn to add functionality to the form, let’s review what it looks like (see
Figure 15-1).

Figure 15-1: The interface of the Registration form

You learned to create the interface of the Registration form in Chapter 12, “Designing the
User Interface of the Customer Module.” Before you can add functionality to this form,
you need to import the System.Data.SqlClient namespace. To import the
namespace, you need to add the following statement to the Registration form:
Imports System.Data.SqlClient
'Imports classes used by the SQL Server .NET data provider

In addition to the preceding statement, you need to include the following statements in
the Registration form:
Imports System.Data
'Includes the classes that make up the ADO.NET architecture
Imports System.Data.SqlTypes
'Includes the classes for native data types within SQL Server

In addition to including namespaces, you also need to declare the following variables in
the Registration form:
Public Shared BlnFromSearchButton As Boolean
'Declares a Boolean variable to checks if the customer is a registered user
Public Shared ObjSearch As FrmSearch
'Declares an object of the FrmSearch class

The Registration form consists of the following functions:
 FrmRegistration_Load
 CmdSubmitReg_Click
 CmdClear_Click
 Empty_Controls
 CmdCancel_Click:

The following sections describe the code you need to add to each of these functions.

The FrmRegistration_Load Function
The FrmRegistration_Load function executes before an instance of the
FrmRegistration class displays. The code for the FrmRegistration_Load function
is as follows:
Private Sub FrmRegistration_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 DtpDOB.Format = DateTimePickerFormat.Custom
'Specifies that the DtpDOB date time picker control displays the date-time value in

a customized format
 DtpDOB.CustomFormat = "MM/dd/yyyy"
'Sets the format for the DtpDOB date time picker control to MM/dd/yyyy
 DtpCCValidUpto.Format = DateTimePickerFormat.Custom
'Specifies that the DtpCCValidUpto date time picker control displays the date-time
value in a customized format
 DtpCCValidUpto.CustomFormat = "MM/dd/yyyy"
'Sets the format for the DtpCCValidUpto date time picker control to MM/dd/yyyy
End Sub
The FrmRegistration_Load function specifies the format in which date-time values
are displayed in the two date time picker controls in the Registration form. This function
specifies MM/dd/yyyy as the format for the DtpDOB and DtpCCValidUpto controls.

The CmdSubmitReg_Click Function
When the customer enters information in the Registration form and clicks on the Submit
button, the CmdSubmitReg_Click function executes. The CmdSubmit- Reg_Click
function checks and validates the data entered by the customer in the Registration form.
If the customer has not specified any information, a message box stating this displays. If
the customer has entered the required data, the data specified by the customer is added
to the Customers table, and the customer is assigned a customer ID. Finally, the
Registration form closes and the Search form displays.
The code for the CmdSubmitReg_Click function of the FrmRegistration class is as
follows:
Private Sub CmdSubmitReg_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdSubmitReg.Click
 Dim StrQuery As String
 Dim SqlConnection1 As New SqlConnection(StrConnectionString)
 Dim SqlDataAdapter1 As New SqlDataAdapter()
'Declares variables

 If (TxtFName.Text.Trim = "") Then
'Checks if the customer has not entered the first name
 MessageBox.Show("Please enter the First name.", "Message Box",
MessageBoxButtons.OK)
'Displays a message asking the customer to enter the first name
 TxtFName.Focus()
 'Sets the focus on the First Name text box
 Return
 End If

 If (TxtLName.Text.Trim = "") Then
'Checks if the customer has not entered the last name
 MessageBox.Show("Please enter the Last name.", "Message Box",
MessageBoxButtons.OK)
'Displays a message asking the customer to enter the last name
 TxtLName.Focus()

'Sets the focus on the Last Name text box
 Return
 End If

 If (TxtAddress.Text.Trim = "") Then
'Checks if the customer has not entered the address
 MessageBox.Show("Please enter the Address.", "Message Box",
MessageBoxButtons.OK)
'Displays a message asking the customer to enter the address
 TxtAddress.Focus()
'Sets the focus on the Address text box
 Return
 End If

 If (TxtCCNumber.Text.Trim = "") Then
'Checks if the customer has not entered the credit card number
 MessageBox.Show("Please enter the Credit card number.", "Message
Box", MessageBoxButtons.OK)
'Displays a message asking the customer to enter the credit card number
 TxtCCNumber.Focus()
'Sets the focus on the Credit Card Number text box
 Return
 ElseIf (TxtCCNumber.Text.Trim.Length <> 16) Then
'Checks if the credit card number entered by the customer is not equal to 16 digits
 MessageBox.Show("Invalid Credit card number. Please enter your
credit card number again.", "Message Box", MessageBoxButtons.OK)
'Displays a message asking the customer to enter a valid credit card number
 TxtCCNumber.Focus()
 'Sets the focus on the Credit Card Number text box
 Return
 End If

 If (CDate(DtpCCValidUpto.Text) < Now()) Then
'Checks if the date entered by the customer is less than the current date
 MessageBox.Show("Invalid date.")
'Displays a message asking the customer to enter a valid date
 DtpCCValidUpto.Focus()
'Sets the focus on the Valid Upto date time picker control
 Return
 End If

 StrQuery = "INSERT INTO customer (FirstName, LastName, Address, City,
State, Zip, Phone, EMail, DOB, CreditCardNum, CreditCardValidUpto) VALUES

(@FirstName, " & _
 "@LastName, @Address, @City, @State, @Zip, @Phone, @EMail, @DOB,
@CreditCardNum, " & _
 "@CreditCardValidUpto)"
'Specifies the query to insert the details entered by the customer to the Customer
table
'Note that named parameter variables (variables prefixed with the @ symbol) are used
to assign values to the fields in the table

 Dim CmdString As New SqlCommand(StrQuery, SqlConnection1)
'Declares CmdString as an object of the SqlCommand object

 SqlDataAdapter1.InsertCommand = CmdString
'Specifies the query stored in the CmdString variable as the query to be executed
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter
("@FirstName", System.Data.SqlDbType.VarChar, 50, "FirstName"))
 SqlDataAdapter1.InsertCommand.Parameters(0).Value = TxtFName.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter
("@LastName", System.Data.SqlDbType.VarChar, 50, "LastName"))
 SqlDataAdapter1.InsertCommand.Parameters(1).Value = TxtLName.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@Address",
System.Data.SqlDbType.VarChar, 25, "Address"))
 SqlDataAdapter1.InsertCommand.Parameters(2).Value = TxtAddress.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@City",
System.Data.SqlDbType.VarChar, 25, "City"))
 SqlDataAdapter1.InsertCommand.Parameters(3).Value = TxtCity.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@State",
System.Data.SqlDbType.VarChar, 15, "State"))
 SqlDataAdapter1.InsertCommand.Parameters(4).Value = TxtState.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@Zip",
System.Data.SqlDbType.VarChar, 7, "Zip"))
 SqlDataAdapter1.InsertCommand.Parameters(5).Value = TxtZip.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@Phone",
System.Data.SqlDbType.VarChar, 10, "Phone"))
 SqlDataAdapter1.InsertCommand.Parameters(6).Value = TxtPhone.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@EMail",
System.Data.SqlDbType.VarChar, 50, "EMail"))
 SqlDataAdapter1.InsertCommand.Parameters(7).Value = TxtEmail.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@DOB",
System.Data.SqlDbType.DateTime, 8, "DOB"))
 SqlDataAdapter1.InsertCommand.Parameters(8).Value = DtpDOB.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@CreditCardNum", System.Data.SqlDbType.VarChar, 16,
"CreditCardNum"))
 SqlDataAdapter1.InsertCommand.Parameters(9).Value = TxtCCNumber.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@CreditCardValidUpto", System.Data.SqlDbType.DateTime, 8,
"CreditCardValidUpto"))
 SqlDataAdapter1.InsertCommand.Parameters(10).Value = DtpCCValidUpto.Text
'Associates the named parameter variables with the fields in the table
'Assigns the value specified by the customer in the controls to the named parameter
variables

 Dim LCustID As Long
 Try
 SqlConnection1.Open()
'Establishes a connection
 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()
'Executes the query
 CmdString.CommandText = "SELECT MAX(CustID) from Customer"
'Specifies the query to be executed
 LCustID = CmdString.ExecuteScalar
 'Stores the first column of the first row of the results returned by the query in
the LCustID variable
 Dim Strmsg As String
 Strmsg = CStr(LCustID)
'Converts the Customer ID stored in the LCustID variable into the string data type
and stores it in the Strmsg variable
 MessageBox.Show("Customer's registration ID is: " & Strmsg,
"Message Box", MessageBoxButtons.OK, MessageBoxIcon.Information)
'Displays a message informing the customer of the ID assigned to the customer
 Catch MyException As SqlException
 MessageBox.Show(("Source: " & MyException.Source &
ControlChars.Cr & _
 "Number: " & MyException.Number.ToString() &
ControlChars.Cr & _
 "State: " & MyException.State.ToString() &
ControlChars.Cr & _
 "Class: " & MyException.Class.ToString() &
ControlChars.Cr & _
 "Server: " & MyException.Server & ControlChars.Cr & _
 "Message: " & MyException.Message & ControlChars.Cr &
_
 "Procedure: " & MyException.Procedure & ControlChars.Cr & _
 "Line: " & MyException.LineNumber.ToString()))

 CmdString.Dispose()
'Releases the resources used by the CmdString object in case an exception occurs
 SqlConnection1.Close()
'Closes the SqlConnection1 object in case an exception occurs
 SqlConnection1. Dispose ()
'Releases the resources used by the SqlConnection1 object in case an exception
occurs
 SqlDataAdapter1.Dispose()
'Releases the resources used by the SqlDataAdapter1 object in case an exception
occurs
 Return
 End Try

 MessageBox.Show("The record has been added.", "Record added",
MessageBoxButtons.OK, MessageBoxIcon.Information)
'Displays a message informing the customer that the record has been added

 ObjSearch = New FrmSearch()
'Creates a new instance of the Search form
 ObjSearch.SetRegistrationID(CStr(LCustID))
'Opens the Search form and passes the ID of the customer to the SetRegistrationID
function

 CmdString.Dispose()
'Releases the resources used by the CmdString object
 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Closes the SqlDataAdapter1 object
 Me.Close()
'Closes the Registration form
End Sub

The CmdClear_Click Function
The CmdClear_Click function executes when the customer clicks on the Clear button
in the Registration form. The code for the CmdClear_Click function is as follows:

Private Sub CmdClear_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdClear.Click
 Empty_Controls()
'Calls the Empty_Controls function
End Sub
When a customer clicks on the Clear button, the Empty_Controls function is invoked.
You will learn about the Empty_Controls function in the next section.

The Empty_Controls Function
As the name suggests, the Empty_Controls function clears the controls in the
Registration form.
The code of the Empty_Controls function is given below.
Private Sub Empty_Controls()
 TxtFName.Text = ""
'Clears the First Name text box
 TxtFName.Focus()
'Sets the focus on the First Name text box
 TxtLName.Text = ""
'Clears the Last Name text box
 TxtAddress.Text = ""
'Clears the Address text box
 TxtCity.Text = ""
'Clears the City text box
 TxtState.Text = ""
'Clears the State text box
 TxtZip.Text = ""
'Clears the Zip text box
 TxtPhone.Text = ""
'Clears the Phone text box
 TxtEmail.Text = ""
'Clears the EMail text box
 TxtCCNumber.Text = ""
'Clears the Credit Card Number text box
 DtpCCValidUpto.Text = ""
'Clears the Valid Upto date time picker control
 DtpDOB.Text = ""
'Clears the DOB date time picker control
End Sub
In addition to clearing all the controls in the Registration form, the Empty_ Controls
function sets the focus on the First Name text box.

The CmdCancel_Click Function
The CmdCancel_Click function executes when a customer clicks on the Cancel button
in the Registration form. The code for the CmdCancel_Click function is as follows:

Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdCancel.Click
 Me.Close()
'Closes the Registration form
End Sub

A customer can click on the Cancel button to close the Registration form.

Complete Code for the Registration Form
In the preceding sections, you looked at code for the functions in the Registration form.
Listing 15-1 lists the complete code for the Registration form.

Listing 15-1: The Code for the Registration Form

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Public Class FrmRegistration

 Inherits System.Windows.Forms.Form

 Public Shared BlnFromSearchButton As Boolean

 Public Shared ObjSearch As FrmSearch

Windows Form Designer generated code

'Contains the code that specifies the size, location, and other properties, such as

font and name, for the controls on the form.

 Private Sub CmdSubmitReg_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdSubmitReg.Click

 Dim StrQuery As String

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 Dim SqlDataAdapter1 As New SqlDataAdapter()

 If (TxtFName.Text.Trim = "") Then

 MessageBox.Show("Please enter the First name.",

"Message Box", MessageBoxButtons.OK)

 TxtFName.Focus()

 Return

 End If

 If (TxtLName.Text.Trim = "") Then

 MessageBox.Show("Please enter the Last name.",

"Message Box", MessageBoxButtons.OK)

 TxtLName.Focus()

 Return

 End If

 If (TxtAddress.Text.Trim = "") Then

 MessageBox.Show("Please enter the Address.", "Message

Box", MessageBoxButtons.OK)

 TxtAddress.Focus()

 Return

 End If

 If (TxtCCNumber.Text.Trim = "") Then

 MessageBox.Show("Please enter the Credit card

number.", "Message Box", MessageBoxButtons.OK)

 TxtCCNumber.Focus()

 Return

 ElseIf (TxtCCNumber.Text.Trim.Length <> 16) Then

 MessageBox.Show("Invalid Credit card number. Please

enter your credit card number again.", "Message Box", MessageBoxButtons.OK)

 TxtCCNumber.Focus()

 Return

 End If

 If (CDate(DtpCCValidUpto.Text) < Now()) Then

 MessageBox.Show("Invalid date.") ', "Message Box",

MessageBoxButtons.OK)

 DtpCCValidUpto.Focus()

 Return

 End If

 StrQuery = "INSERT INTO customer (FirstName, LastName, Address,

City, State, Zip, Phone, EMail, DOB, CreditCardNum, CreditCardValidUpto) VALUES

(@FirstName, " & _

 "@LastName, @Address, @City, @State, @Zip, @Phone, @EMail, @DOB,

@CreditCardNum, " & _

 "@CreditCardValidUpto)"

 Dim CmdString As New SqlCommand(StrQuery, SqlConnection1)

 SqlDataAdapter1.InsertCommand = CmdString

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@FirstName", System.Data.SqlDbType.VarChar, 50, "FirstName"))

 SqlDataAdapter1.InsertCommand.Parameters(0).Value =

TxtFName.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@LastName", System.Data.SqlDbType.VarChar, 50, "LastName"))

 SqlDataAdapter1.InsertCommand.Parameters(1).Value =

TxtLName.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@Address", System.Data.SqlDbType.VarChar, 25, "Address"))

 SqlDataAdapter1.InsertCommand.Parameters(2).Value =

TxtAddress.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@City", System.Data.SqlDbType.VarChar, 25, "City"))

 SqlDataAdapter1.InsertCommand.Parameters(3).Value = TxtCity.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@State", System.Data.SqlDbType.VarChar, 15, "State"))

 SqlDataAdapter1.InsertCommand.Parameters(4).Value =

TxtState.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@Zip", System.Data.SqlDbType.VarChar, 7, "Zip"))

 SqlDataAdapter1.InsertCommand.Parameters(5).Value = TxtZip.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@Phone", System.Data.SqlDbType.VarChar, 10, "Phone"))

 SqlDataAdapter1.InsertCommand.Parameters(6).Value =

TxtPhone.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@EMail", System.Data.SqlDbType.VarChar, 50, "EMail"))

 SqlDataAdapter1.InsertCommand.Parameters(7).Value =

TxtEmail.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@DOB", System.Data.SqlDbType.DateTime, 8, "DOB"))

 SqlDataAdapter1.InsertCommand.Parameters(8).Value = DtpDOB.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@CreditCardNum", System.Data.SqlDbType.VarChar, 16,
"CreditCardNum"))

 SqlDataAdapter1.InsertCommand.Parameters(9).Value =

TxtCCNumber.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@CreditCardValidUpto", System.Data.SqlDbType.DateTime, 8,

"CreditCardValidUpto"))

 SqlDataAdapter1.InsertCommand.Parameters(10).Value =

DtpCCValidUpto.Text

 Dim LCustID As Long

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()

 CmdString.CommandText = "SELECT MAX(CustID) from

Customer"

 LCustID = CmdString.ExecuteScalar

 Dim Strmsg As String

 Strmsg = CStr(LCustID)

 MessageBox.Show("Customer's registration ID is: " &

Strmsg, "Message Box", MessageBoxButtons.OK, MessageBoxIcon.Information)

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source &

ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() &

ControlChars.Cr & _

 "State: " & MyException.State.ToString() &

ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() &

ControlChars.Cr & _

 "Server: " & MyException.Server &

ControlChars.Cr & _

 "Message: " & MyException.Message &

ControlChars.Cr & _

 "Procedure: " & MyException.Procedure &

ControlChars.Cr & _

 "Line: " &

MyException.LineNumber.ToString()))

 CmdString.Dispose()

 SqlConnection1.Close()

 SqlConnection1.Dispose()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been added.", "Record added",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 ObjSearch = New FrmSearch()

 ObjSearch.SetRegistrationID(CStr(LCustID))

 CmdString.Dispose()

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Me.Close()

 End Sub

 Private Sub CmdClear_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdClear.Click

 Empty_Controls()

 End Sub

 Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdCancel.Click

 Me.Close()

 End Sub

 Private Sub Empty_Controls()

 TxtFName.Text = ""

 TxtFName.Focus() 'Set focus on first control

 TxtLName.Text = ""

 TxtAddress.Text = ""

 TxtCity.Text = ""

 TxtState.Text = ""

 TxtZip.Text = ""

 TxtPhone.Text = ""

 TxtEmail.Text = ""

 TxtCCNumber.Text = ""

 DtpCCValidUpto.Text = ""

 DtpDOB.Text = ""

 End Sub

 Private Sub FrmRegistration_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 DtpDOB.Format = DateTimePickerFormat.Custom

 DtpDOB.CustomFormat = "MM/dd/yyyy"

 DtpCCValidUpto.Format = DateTimePickerFormat.Custom

 DtpCCValidUpto.CustomFormat = "MM/dd/yyyy"

 End Sub

End Class

Summary
In this chapter, you learned to add functionality to the Registration form. You also
learned about the functions you need to create in the Registration form. Finally, you
looked at the complete code for the Registration form.

Chapter 16: Adding Functionality to the Place
Order Form
Overview
In the preceding chapter, you learned to add functionality to the Registration form of the
Customer module. In this chapter, you will learn to add functionality to the Place Order
form.
To start with, let’s review what the Place Order form looks like (see Figure 16-1).

Figure 16-1: The interface of the Place Order form

You already know how to create the interface of the Place Order form. To add
functionality to this form, you need to add a data adapter object to it.
The steps to add a SqlDataAdapter object to the Place Order form are as follows:

1. Select and drag the SqlDataAdapter control from the Data tab of the
Toolbox to the form. When you do so, the SqlDataAdapter1 object is
added to the form, and the first screen of the Data Adapter Configuration
Wizard displays. Figure 16-2 shows the first screen of the Data Adapter
Configuration Wizard.

Figure 16-2: The first screen of the Data Adapter Configuration Wizard
2. Click on the Next button in this first screen to continue. The second

screen of the Data Adapter Configuration Wizard displays. Figure 16-3
shows this second screen.

Figure 16-3: The second screen of the Data Adapter Configuration Wizard
In the second screen, you can specify the connection that the data adapter
should use. You can either create a new connection or select an existing one
from the drop-down list.
To create a new connection, you need to click on the New Connection button.
When you click on this button, the Data Link Properties dialog box displays.
This dialog box contains four tabs—Provider, Connection, Advanced, and All.
You need to specify the name of the server and database in the Connection
tab. In this tab, you also need to specify the username and password. The
Provider tab enables you to edit the provider to be used. After you specify the
settings, you can click on the Test Connection button to check the settings. If

the settings are correct and the connection is established, a message box
appears confirming this.
3. Click on the Next button in the second screen of the Data Adapter

Configuration Wizard. The third screen of the wizard displays. Figure 16-
4 shows the third screen of the Data Adapter Configuration Wizard.

Figure 16-4: The third screen of the Data Adapter Configuration Wizard
In the third screen of the wizard, you can specify whether the data adapter
should use SQL statements or stored procedures to access the database.
4. Select the Use SQL statements option in the third screen of the wizard

and click on the Next button. The screen that displays next depends on
the option you selected. When you select the Use SQL statements
option, the screen shown in Figure 16-5 displays. This screen enables
you to specify the SQL Select statement to be used.

Figure 16-5: The screen to specify the SQL statement when the Use SQL
statements option is selected
In this screen, you can either type a SQL Select statement or use the Query
Builder to create a query. You can click on the Query Builder button to use
this feature. You can also set advanced options to specify how the wizard
should create the Insert, Update, and Delete commands for the data
adapter. To specify these advanced options, you need to click on the
Advanced Options button.
5. Click on the Next button to open the last screen of the wizard. This

screen provides a list of the tasks that the wizard has performed, as
shown in Figure 16-6.

Figure 16-6: The last screen of the Data Adapter Configuration Wizard
As shown in Figure 16-6, the last screen of the wizard informs you that the
wizard has successful configured the SqlDataAdapter1 object. The last
screen also indicates that the wizard has generated the Select, Insert,
Update, and Delete statements along with the table mappings for the data
adapter.
6. Click on the Finish button in the last screen to complete the process of

configuring the data adapter. When you click on this button, the selected
settings are applied to the data adapter. Note that an object of the
SqlConnection class also appears on the Place Order form.

After you add the data adapter object to the Place Order form, the form appears as
shown in Figure 16-7.

Figure 16-7: The Place Order form after adding the data adapter

To use the data adapter and connection object, you need to import the
System.Data.SqlClient namespace by adding the following statement to the Place
Order form:
Imports System.Data.SqlClient
'Imports classes used by the SQL Server .NET data provider

In addition to the preceding statement, you need to include the following statements in
the Place Order form:
Imports System

Imports System.Data
'Includes the classes that make up the ADO.NET architecture
Imports System.String
'Includes the classes that enable you to work with strings
Imports System.Collections
'Includes the collection classes
Imports System.Data.SqlTypes
'Includes the classes for native data types within SQL Server

You also need to declare the following global variables in the Place Order form:
Private Shared IntSelectedCount As Integer
'Used to store the number of selected records
Private StrRegistrationID As String
'Used to store the customer ID
Private Shared ArraySelectedMovieID() As String = New String(10) {}
'Used to store the Movie IDs of the selected records

The Place Order form consists of the following functions:
 SetRegistrationID
 SetSelectedMovies
 FrmOrder_Load
 CmdOrderNow_Click
 GetAutoGeneratedOrderID
 CmdCancel_Click

The following sections describe the code associated with these functions.

The SetRegistrationID Function
As discussed in previous chapters, when a customer enters his or her customer ID in the
Main form and clicks on the Submit button, the ID entered by the customer is validated.
In addition, after the ID is validated, the Main form passes the ID to the
SetRegistrationID function of the FrmSearch class. When the customer selects
movies in the Search form and clicks on the Place Order button, the
SetRegistrationID function of the FrmOrder class is called.
The code for the SetRegistrationID function is as follows:

Public Sub SetRegistrationID(ByVal RegID As String)
'Takes the ID entered by the customer as a parameter
 StrRegistrationID = RegID
'Assigns the value in the RegID variable to the StrRegistrationID variable
End Sub
The SetRegistrationID function accepts the customer ID of the customer as a
parameter. The customer ID is then stored in the StrRegistrationID variable.

The SetSelectedMovies Function
When the customer selects one or more movies in the Search form and clicks on the
Place Order button, the SetSelectedMovies function is called. The
CmdPlaceOrder_Click function of the FrmSearch class invokes the SetSelected
Movies function of the FrmOrder class.
The code for the SetSelectedMovies function of the FrmOrder class is as follows:

Public Sub SetSelectedMovies(ByVal ArrayMovieID() As String, ByVal

IntTotalSelectedCount As Integer)
 Dim i As Integer
 IntSelectedCount = IntTotalSelectedCount
 For i = 0 To IntTotalSelectedCount - 1
 ArraySelectedMovieID(i) = ArrayMovieID(i)
 Next i
End Sub
As shown in preceding code, the SetSelectedMovies function takes two parameters.
The first parameter, ArrayMovieID, stores the movie IDs associated with the records
selected by the customer. The second parameter, IntTotalSelectedCount, stores
the number of records selected by the customer.
The SetSelectedMovies function stores the movie IDs of the selected records and
the number of selected records in the ArraySelectedMovieID array and the Int-
SelectedCount variable, respectively. The ArraySelectedMovieID array and Int-
SelectedCount variable are global variables accessed in the FrmOrder_Load
function.

The FrmOrder_Load Function
The FrmOrder_Load function executes when the Place Order form loads. The code for
the FrmOrder_Load function is as follows:

Private Sub FrmOrder_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Dim DsDataSet As DataSet
 Dim DrRowPicker As DataRow
 Dim DrRowPicker2 As DataRow
 Dim StrConnectionString As String
 Dim StrBrowseBy As String
 Dim StrQuery As String
 Dim Result As Integer
 Dim StrMessage As String
 Dim SelectCmd As New SqlCommand()
'Declares variables

 If IntSelectedCount < 1 Then
'Checks if the customer has not selected any items
 Me.Close()
'Closes the Place Order form
 End If

 Dim i As Integer
 Dim StrTemp As String
 For i = 0 To IntSelectedCount - 1
 StrTemp += "'"
'Adds a single quotation mark
 StrTemp += ArraySelectedMovieID(i)
'Stores the ID of the selected movies in the StrTemp string

 StrTemp += "'"
'Adds another single quotation mark
 If i < IntSelectedCount - 1 Then
 StrTemp += ","
'Adds a comma to separate the movie IDs in the StrTemp string
 End If
 Next i

 StrQuery = "SELECT DISTINCT a.MovID, a.MovTitle, b.FirstName AS Actor,
c.FirstName AS Director, d.name AS Producer, f.Price as Price FROM movie a, actor b,
director c, producer d, actormovie e, video f WHERE a.MovID = e.MovID AND e.ActorID
= b.ActorID AND a.DirID = c.DirID AND a.ProdID = d.ProdID AND a.MovID = f.MovID
AND
a.Movid in (" & StrTemp & ")"
'Specifies the query to search for the Movie ID, Movie Title, Actor, Director,
Producer, and Price associated with the movies selected by the customer
 DsDataSet = New DataSet()
'Creates a dataset

 SqlDataAdapter1.SelectCommand = SelectCmd
 SqlDataAdapter1.SelectCommand.Connection = SqlConnection1
'Associates the SqlDataAdapter1 object with the SqlConnection1 object
 SqlDataAdapter1.SelectCommand.CommandText = StrQuery
'Specifies the query stored in the StrQuery variable as the query to be executed
 SqlDataAdapter1.Fill(DsDataSet, "SearchResult2")
'Populates the SearchResult2 table in the DsDataSet dataset with the query results

 LvwItemsOrdered.Items.Clear()
'Clears the list view control before displaying the result

 Dim DblTotalCost As Double
 For Each DrRowPicker In DsDataSet.Tables("SearchResult2").Rows
 Dim StrSearchRow As String() = {DrRowPicker(0), DrRowPicker(1),
DrRowPicker(2), DrRowPicker(3), DrRowPicker(4), DrRowPicker(5)}
'Picks up the values of the Movie ID, Movie Title, First Name of Actor, First Name
of Director, Producer name, and Price for each record in the dataset and adds it to
the StrSearchRow array
 LvwItemsOrdered.Items.Add(New ListViewItem(StrSearchRow))
'Displays each member of the StrSearchRow array in the list view control
 DblTotalCost += CDbl(DrRowPicker(5))
'Adds the price of each movie to the DblTotalCost variable to calculate the total
cost for the movies
 Next

 TxtTotalAmount.Text = DblTotalCost
'Displays the total cost of the movies in the Total Amount text box

 StrQuery = "SELECT CreditCardNum, CreditCardValidUpto FROM customer
WHERE
CustID = '" & StrRegistrationID & "'"
'Specifies the query to retrieve the credit card number and the validity of the
credit card for the customer
 SqlDataAdapter1.SelectCommand.CommandText = StrQuery
'Specifies the query stored in the StrQuery variable as the query to be executed
 SqlDataAdapter1.Fill(DsDataSet, "CreditCardInfo")
'Populates the CreditCardInfo table in the dataset with the query results
 For Each DrRowPicker2 In DsDataSet.Tables("CreditCardInfo").Rows
 TxtCCNumber.Text = DrRowPicker2(0)
 'Displays the credit card number in the Credit Card Number text box
 TxtValidUpto.Text = DrRowPicker2(1) 'Card Validity
'Displays the validity of the credit card in the Valid upto text box
 Next

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Closes the SqlDataAdapter1 object
End Sub
In the Place Order form, the FrmOrder_Load function performs the following tasks:

 It populates the list view control with the details of the movies selected by the
customer.

 It displays the credit card information for the customer.:

Therefore, when the customer opens the Place Order form, the list view control displays
the details of the movies selected by the customer in the Search form. In addition, the
credit card information for the customer is displayed.

The CmdOrderNow_Click Function
When a customer selects one or more records from the list view control in the Search
form and clicks on the Place Order button, the Place Order form displays. The Place
Order form displays the details of the movies selected by the customer. It also displays
the customer’s credit card details. To place an order for the movies displayed in the list
view control, the customer clicks on the Order Now button. The CmdOrderNow_Click
function executes when the customer clicks on the Order Now button.
The code of the CmdOrderNow_Click function is as follows:

Private Sub CmdOrderNow_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdOrderNow.Click
 Dim StrQuery As String
 Dim StrOrderID As String
 Dim StrTemp As String

 Dim IntOrderID As Integer
 'Declares variables

 StrOrderID = GetAutoGeneratedOrderID()
'Calls the GetAutoGeneratedOrderID function and stores the maximum Order ID
returned
by the GetAutoGeneratedOrderID function in the StrOrderID variable
 StrOrderID = StrOrderID.Substring(1, 4)
'Retrieves the integer part of the order ID
 IntOrderID = CInt(StrOrderID) + 1
'Increments the Order ID by 1 and stores it in the IntOrderID variable
 StrTemp = CStr(IntOrderID)
'Converts the value in the IntOrderID variable to the string data type and stores
the value in the StrTemp variable
 StrOrderID = "'"
'Adds a single quotation mark
 StrOrderID += "O"
'Stores O as the first character in the StrOrderID string
 If StrTemp.Length = 1 Then
 StrOrderID += "000"
 ElseIf StrTemp.Length = 2 Then
 StrOrderID += "00"
 ElseIf StrTemp.Length = 3 Then
 StrOrderID += "0"
'Adds 000,00, or 0 to the StrOrderID string based on the length of the StrTemp
variable
 End If
 StrOrderID += StrTemp
'Concatenates the StrTemp to the StrOrderID string
 StrOrderID += "'"
'Adds another single quotation mark

 Dim i As Integer
 StrTemp = ""
'Reinitializes the StrTemp string
 For i = 0 To IntSelectedCount - 1
 StrTemp += "'"
'Adds a single quotation mark
 StrTemp += ArraySelectedMovieID(i)
'Stores the IDs of the selected movies in the StrTemp string
 StrTemp += "'"
'Adds another single quotation mark
 If i < IntSelectedCount - 1 Then

 StrTemp += ","
'Adds a comma to separate the movie IDs in the StrTemp string
 End If
 Next i

 Dim StrSelectString As String
 StrSelectString = "SELECT MAX(VideoID), COUNT(MovID) from Video WHERE
MovID IN (" & StrTemp & ") GROUP BY MovID"
'Returns the Video IDs for the selected Movie IDs

 Dim DsDataSet As DataSet
 DsDataSet = New DataSet()
'Creates the dataset object
 Dim SelectCmd As New SqlCommand(StrSelectString, SqlConnection1)
 Try
 SqlDataAdapter1.SelectCommand = SelectCmd
 SqlConnection1.Open()
'Establishes the connection
 SqlDataAdapter1.Fill(DsDataSet, "VideoInfo")
'Populates the VideoInfo tables in the DsDataSet dataset with the query results
 Catch MyException As SqlException
 MessageBox.Show(("Source: " & MyException.Source &
ControlChars.Cr & _
 "Number: " & MyException.Number.ToString() &
ControlChars.Cr & _
 "State: " & MyException.State.ToString() &
ControlChars.Cr & _
 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _
 "Server: " & MyException.Server & ControlChars.Cr & _
 "Message: " & MyException.Message & ControlChars.Cr &
_
 "Procedure: " & MyException.Procedure &
ControlChars.Cr & _
 "Line: " & MyException.LineNumber.ToString()))
'Displays an error message showing the details of the error

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SelectCmd.Dispose()
'Releases the resources used by the SelectCmd object
 SqlDataAdapter1.Dispose()
'Closes the SqlDataAdapter1 object
 Return

 End Try

 Dim DrRowPicker As DataRow
 Dim StrVideoList As String
 Dim StrMovieCount As String
 Dim NTotalCount, NCount As Integer
'Declares variables

 NCount = 0
'Initializes the NCount variable to zero
 NTotalCount = DsDataSet.Tables("VideoInfo").Rows.Count()
'Stores the number of rows in the VideoInfo table in the NTotalCount variable

 Dim ArrayVideoList() As String = New String(10) {}
'Declares the ArrayVideoList array
 For Each DrRowPicker In DsDataSet.Tables("VideoInfo").Rows
 StrVideoList += "'"
'Adds a single quotation mark
 StrVideoList += DrRowPicker(0)
'Stores the Video IDs from the dataset in the StrVideoList string
 StrVideoList += "'"
'Adds another single quotation mark
 ArrayVideoList(NCount) = StrVideoList
'Stores the value in the StrVideoList string in the ArrayVideoList array
 NCount += 1
'Increments the NCount variable by 1
 StrMovieCount = DrRowPicker(1)
'Stores the movie count in the StrMovieCount variable
 Next

 Dim StrTotalOrderValue As String
 StrQuery = "SELECT SUM(Price) FROM Video WHERE VideoID IN (" &
StrVideoList & ")"
'Specifies the query to calculate the total price of the movies ordered by the
customer
 SqlDataAdapter1.SelectCommand.CommandText = StrQuery
'Specifies the query stored in the StrQuery variable as the query to be executed
 SqlDataAdapter1.Fill(DsDataSet, "OrderValue")
'Populates the OrderValue table in the DsDataSet dataset with the query results
 StrTotalOrderValue = DsDataSet.Tables("OrderValue").Rows(0).Item(0)
'Stores the first column of the first row in the results returned by the query in
the StrTotalOrderValue variable

 Dim StrTotalQty As String
 StrQuery = "SELECT COUNT(VideoID) FROM Video WHERE VideoID IN (" &
StrVideoList & ")"
'Specifies the query to calculate the number of items ordered by the customer
 SqlDataAdapter1.SelectCommand.CommandText = StrQuery
'Specifies the query stored in the StrQuery variable as the query to be executed
 SqlDataAdapter1.Fill(DsDataSet, "TotalQty")
'Populates the TotalQty table in the DsDataSet dataset with the query results
 StrTotalQty = DsDataSet.Tables("TotalQty").Rows(0).Item(0)
'Stores the first column of the first row in the results returned by the query in
the StrTotalQty variable

 Dim StrVideoID As String
 Dim j As Integer
 Dim IntQtyOrdered As Integer
 Dim StrTemp1 As String
'Declares variables

 StrQuery = "INSERT INTO Orders (OrderID, OrderDate, CustID,
TotalQtyOrdered, OrderValue) VALUES (" & StrOrderID & ", @OrderDate, @CustID," &
StrTotalQty & "," & StrTotalOrderValue & "); SELECT OrderID, OrderDate, CustID,
OrderValue FROM Orders WHERE OrderID = " & StrOrderID
'Specifies the query to insert data into the Orders table
 Dim InsertCmd As New SqlCommand(StrQuery, SqlConnection1)
'Creates the InsertCmd object of the SqlCommand class
 SqlDataAdapter1.InsertCommand = InsertCmd
'Specifies the query stored in the InsertCmd variable as the query to be executed
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter
("@OrderDate", System.Data.SqlDbType.DateTime, 8, "OrderDate"))
'Associates the @OrderDate parameter with the OrderDate field in the table
 SqlDataAdapter1.InsertCommand.Parameters(0).Value = Now()
'Assigns the system date to the @OrderDate parameter
 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@CustID",
System.Data.SqlDbType.SmallInt, 2, "CustID"))
'Associates the @CustID parameter with the CustID field in the table
 SqlDataAdapter1.InsertCommand.Parameters(1).Value = StrRegistrationID
'Assigns the value stored in the StrRegistrationID to the @CustID parameter
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter
("@OrderValue", System.Data.SqlDbType.Money, 8, "OrderValue"))
'Associates the @OrderValue parameter with the OrderValue field in the table
 SqlDataAdapter1.InsertCommand.Parameters(2).Value =
CDbl(TxtTotalAmount.Text)

'Assigns the value in the Total Amount text box to the @OrderValue parameter

 Try
 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()
'Executing the query

 For j = 0 To NCount - 1
 StrVideoID = ArrayVideoList(j)
'Picks up a Video ID from the ArrayVideoList array
 IntQtyOrdered = CInt(StrMovieCount)
'Stores the movie count in the IntQtyOrdered variable
 SqlDataAdapter1.InsertCommand.CommandText = "INSERT
INTO OrderDetail (OrderID, VideoID, Qty) VALUES (" & StrOrderID & "," & StrVideoID &
", 1)"
'Specifies the query to insert a record in the OrderDetail table
 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()
'Executes the query
 Next j

 Catch MyException As SqlException
 MessageBox.Show(("Source: " & MyException.Source &
ControlChars.Cr & _
 "Number: " & MyException.Number.ToString() &
ControlChars.Cr & _
 "State: " & MyException.State.ToString() &
ControlChars.Cr & _
 "Class: " & MyException.Class.ToString() &
ControlChars.Cr & _
 "Server: " & MyException.Server &
ControlChars.Cr & _
 "Message: " & MyException.Message &
ControlChars.Cr & _
 "Procedure: " & MyException.Procedure &
ControlChars.Cr & _
 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Closes the SqlDataAdapter1 object
 Return
 End Try

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SelectCmd.Dispose()
'Releases the resources used by the SelectCmd object
 SqlDataAdapter1.Dispose()
'Closes the SqlDataAdapter1 object
 Me.Close()

 MessageBox.Show("You will receive your order within 5 business days. Thank
you for shopping with us.", "Order Message", MessageBoxButtons.OK)
'Displays the thank you message
End Sub
When the CmdPlaceOrder_Click function executes, it first calls the GetAuto-
GeneratedOrderID function of the FrmOrder class. The
GetAutoGeneratedOrderID function returns the order ID. The function then updates
the Orders table based on the movies selected by the customer. Finally, the function
also updates the OrderDetail table.

The GetAutoGeneratedOrderID Function
As the name suggests, the GetAutoGeneratedOrderID function generates the order
ID for each order. The code of the GetAutoGeneratedOrderID function is as follows:

Private Function GetAutoGeneratedOrderID() As String
 Dim StrSelectString As String
 StrSelectString = "SELECT MAX(OrderID) FROM Orders"
'Specifies the query to return the maximum value in the Order ID field from the
Orders table

 Dim SelectCmd As New SqlCommand(StrSelectString, SqlConnection1)
'Creates SelectCmd as an object of the SqlCommand class
 Dim DsDataSet As DataSet
 DsDataSet = New DataSet()

 Try
 SqlDataAdapter1.SelectCommand = SelectCmd
'Specifies the SelectCmd query as the query to be executed
 SqlConnection1.Open()
'Establishes the connection with the database
 SqlDataAdapter1.Fill(DsDataSet, "OrderID")
'Populates the OrderID table in the DsDataSet dataset with the query results
 Catch MyException As SqlException
 MessageBox.Show(("Source: " & MyException.Source &
ControlChars.Cr & _
 "Number: " & MyException.Number.ToString() &
ControlChars.Cr & _

 "State: " & MyException.State.ToString() &
ControlChars.Cr & _
 "Class: " & MyException.Class.ToString() &
ControlChars.Cr & _
 "Server: " & MyException.Server &
ControlChars.Cr & _
 "Message: " & MyException.Message &
ControlChars.Cr & _
 "Procedure: " & MyException.Procedure &
ControlChars.Cr & _
 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SelectCmd.Dispose()
'Releases the resources used by the SelectCmd object
 SqlDataAdapter1.Dispose()
'Closes the SqlDataAdapter1 object
 Return ""
 End Try

 Dim DrRowPicker As DataRow
 Dim StrOrderID As String
 For Each DrRowPicker In DsDataSet.Tables("OrderID").Rows
 If DrRowPicker.IsNull(0) Then
 StrOrderID = "O0001"
'Assigns a value of O0001 to the StrOrderID variable if the Order ID field in the
dataset is empty
 Else
 StrOrderID = DrRowPicker(0)
'Stores the value in the Order ID field in the dataset in the StrOrderID variable
 End If
 Next

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Closes the SqlDataAdapter1 object
 GetAutoGeneratedOrderID = StrOrderID
 'Specifies the value stored in the StrOrderID variable as the return value for the
function
End Function

When the GetAutoGeneratedOrderID function executes, it retrieves the maximum
value of the Order ID field from the database and returns this value. However, if the
Order ID field does not contain any values, the Order ID field is initialized.

The CmdCancel_Click Function
The CmdCancel_Click function executes when a customer clicks on the Cancel button
in the Place Order form. The code for the CmdCancel_Click function is as follows:

Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdCancel.Click
 Me.Close()
'Closes the Place Order form
End Sub

A customer can click on the Cancel button to close the Place Order form.

Complete Code for the Place Order Form
In the preceding sections, you looked at the code for the functions in the Place Order
form. Listing 16-1 lists the complete code for the Place Order form.

Listing 16-1: The Code for the Place Order Form

Imports System

Imports System.Data

Imports System.String

Imports System.Collections

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

 Public Class FrmOrder

 Inherits System.Windows.Forms.Form

 Private Shared IntSelectedCount As Integer

 Private StrRegistrationID As String

 Private Shared ArraySelectedMovieID() As String = New String(10) {}

Windows Form Designer generated code

'Contains the code that specifies the size, location, and other properties, such as

font and name, for the controls on the form.

 Public Sub SetSelectedMovies(ByVal ArrayMovieID() As String, ByVal

IntTotalSelectedCount As Integer)

 Dim i As Integer

 IntSelectedCount = IntTotalSelectedCount

 For i = 0 To IntTotalSelectedCount - 1

 ArraySelectedMovieID(i) = ArrayMovieID(i)

 Next i

 End Sub

 Public Sub SetRegistrationID(ByVal RegID As String)

 StrRegistrationID = RegID

 End Sub

 Private Function GetAutoGeneratedOrderID() As String

 Dim StrSelectString As String

 StrSelectString = "SELECT MAX(OrderID) FROM Orders"

 Dim SelectCmd As New SqlCommand(StrSelectString, SqlConnection1)

 Dim DsDataSet As DataSet

 DsDataSet = New DataSet()

 Try

 SqlDataAdapter1.SelectCommand = SelectCmd

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "OrderID")

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source &

ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() &

ControlChars.Cr & _

 "State: " & MyException.State.ToString() &

ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() &

ControlChars.Cr & _

 "Server: " & MyException.Server &

ControlChars.Cr & _

 "Message: " & MyException.Message &

ControlChars.Cr & _

 "Procedure: " & MyException.Procedure &

ControlChars.Cr & _

 "Line: " &

MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SelectCmd.Dispose()

 SqlDataAdapter1.Dispose()

 Return ""

 End Try

 Dim DrRowPicker As DataRow

 Dim StrOrderID As String

 For Each DrRowPicker In DsDataSet.Tables("OrderID").Rows

 If DrRowPicker.IsNull(0) Then

 StrOrderID = "O0001"

 Else

 StrOrderID = DrRowPicker(0)

 End If

 Next

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 GetAutoGeneratedOrderID = StrOrderID

 End Function

 Private Sub FrmOrder_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 Dim DsDataSet As DataSet

 Dim DrRowPicker As DataRow

 Dim DrRowPicker2 As DataRow

 Dim StrConnectionString As String

 Dim StrBrowseBy As String

 Dim StrQuery As String

 Dim Result As Integer

 Dim StrMessage As String

 Dim SelectCmd As New SqlCommand()

 If IntSelectedCount < 1 Then

 Me.Close()

 End If

 Dim i As Integer

 Dim StrTemp As String

 For i = 0 To IntSelectedCount - 1

 StrTemp += "'"

 StrTemp += ArraySelectedMovieID(i)

 StrTemp += "'"

 If i < IntSelectedCount - 1 Then

 StrTemp += ","

 End If

 Next i

 StrQuery = "SELECT DISTINCT a.MovID, a.MovTitle, b.FirstName AS

Actor, c.FirstName AS Director, d.name AS Producer, f.Price as Price FROM movie a,

actor b, director c, producer d, actormovie e, video f WHERE a.MovID = e.MovID AND

e.ActorID = b.ActorID AND a.DirID = c.DirID AND a.ProdID = d.ProdID AND a.MovID =

f.MovID AND a.Movid in (" & StrTemp & ")"

 DsDataSet = New DataSet()

 SqlDataAdapter1.SelectCommand = SelectCmd

 SqlDataAdapter1.SelectCommand.Connection = SqlConnection1

 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlDataAdapter1.Fill(DsDataSet, "SearchResult2")

 LvwItemsOrdered.Items.Clear()

 Dim DblTotalCost As Double

 For Each DrRowPicker In DsDataSet.Tables("SearchResult2").Rows

 Dim StrSearchRow As String() = {DrRowPicker(0),

DrRowPicker(1), DrRowPicker(2), DrRowPicker(3), DrRowPicker(4), DrRowPicker(5)}

 LvwItemsOrdered.Items.Add(New

ListViewItem(StrSearchRow))

 DblTotalCost += CDbl(DrRowPicker(5))

 Next

 TxtTotalAmount.Text = DblTotalCost

 StrQuery = "SELECT CreditCardNum, CreditCardValidUpto FROM

customer WHERE CustID = '" & StrRegistrationID & "'"

 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlDataAdapter1.Fill(DsDataSet, "CreditCardInfo")

 For Each DrRowPicker2 In DsDataSet.Tables("CreditCardInfo").Rows

 TxtCCNumber.Text = DrRowPicker2(0)

 TxtValidUpto.Text = DrRowPicker2(1)

 Next

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 End Sub

 Private Sub CmdOrderNow_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdOrderNow.Click

 Dim StrQuery As String

 Dim StrOrderID As String

 Dim StrTemp As String

 Dim IntOrderID As Integer

 StrOrderID = GetAutoGeneratedOrderID()

 StrOrderID = StrOrderID.Substring(1, 4)

 IntOrderID = CInt(StrOrderID) + 1

 StrTemp = CStr(IntOrderID)

 StrOrderID = "'"

 StrOrderID += "O"

 If StrTemp.Length = 1 Then

 StrOrderID += "000"

 ElseIf StrTemp.Length = 2 Then

 StrOrderID += "00"

 ElseIf StrTemp.Length = 3 Then

 StrOrderID += "0"

 End If

 StrOrderID += StrTemp

 StrOrderID += "'"

 Dim i As Integer

 StrTemp = ""

 For i = 0 To IntSelectedCount - 1

 StrTemp += "'"

 StrTemp += ArraySelectedMovieID(i)

 StrTemp += "'"

 If i < IntSelectedCount - 1 Then

 StrTemp += ","

 End If

 Next i

 Dim StrSelectString As String

 StrSelectString = "SELECT MAX(VideoID), COUNT(MovID) from Video

WHERE MovID IN (" & StrTemp & ") GROUP BY MovID"

 Dim DsDataSet As DataSet

 DsDataSet = New DataSet()

 Dim SelectCmd As New SqlCommand(StrSelectString, SqlConnection1)

 Try

 SqlDataAdapter1.SelectCommand = SelectCmd

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "VideoInfo")

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & myException.Source &

ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() &

ControlChars.Cr & _

 "State: " & MyException.State.ToString() &

ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() &

ControlChars.Cr & _

 "Server: " & MyException.Server &

ControlChars.Cr & _

 "Message: " & MyException.Message &

ControlChars.Cr & _

 "Procedure: " & MyException.Procedure &

ControlChars.Cr & _

 "Line: " &

MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SelectCmd.Dispose()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 Dim DrRowPicker As DataRow

 Dim StrVideoList As String

 Dim StrMovieCount As String

 Dim NTotalCount, NCount As Integer

 NCount = 0

 NTotalCount = DsDataSet.Tables("VideoInfo").Rows.Count()

 Dim ArrayVideoList() As String = New String(10) {}

 For Each DrRowPicker In DsDataSet.Tables("VideoInfo").Rows

 StrVideoList += "'"

 StrVideoList += DrRowPicker(0)

 StrVideoList += "'"

 ArrayVideoList(NCount) = StrVideoList

 NCount += 1

 StrMovieCount = DrRowPicker(1)

 Next

 Dim StrTotalOrderValue As String

 StrQuery = "SELECT SUM(Price) FROM Video WHERE VideoID IN (" &

StrVideoList & ")"

 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlDataAdapter1.Fill(DsDataSet, "OrderValue")

 StrTotalOrderValue =

DsDataSet.Tables("OrderValue").Rows(0).Item(0)

 Dim StrTotalQty As String

 StrQuery = "SELECT COUNT(VideoID) FROM Video WHERE VideoID IN ("

& StrVideoList & ")"

 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlDataAdapter1.Fill(DsDataSet, "TotalQty")

 StrTotalQty = DsDataSet.Tables("TotalQty").Rows(0).Item(0)

 Dim StrVideoID As String

 Dim j As Integer

 Dim IntQtyOrdered As Integer

 Dim StrTemp1 As String

 StrQuery = "INSERT INTO Orders (OrderID, OrderDate, CustID,

TotalQtyOrdered, OrderValue) VALUES (" & StrOrderID & ", @OrderDate, @CustID," &

StrTotalQty & "," & StrTotalOrderValue & "); SELECT OrderID, OrderDate, CustID,

OrderValue FROM Orders WHERE OrderID = " & StrOrderID

 Dim InsertCmd As New SqlCommand(StrQuery, SqlConnection1)

 SqlDataAdapter1.InsertCommand = InsertCmd

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@OrderDate", System.Data.SqlDbType.DateTime, 8, "OrderDate"))

 SqlDataAdapter1.InsertCommand.Parameters(0).Value = Now()

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@CustID", System.Data.SqlDbType.SmallInt, 2, "CustID"))

 SqlDataAdapter1.InsertCommand.Parameters(1).Value =

 StrRegistrationID

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@OrderValue", System.Data.SqlDbType.Money, 8, "OrderValue"))

 SqlDataAdapter1.InsertCommand.Parameters(2).Value =

CDbl(TxtTotalAmount.Text)

 Try

 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()

 For j = 0 To NCount - 1

 StrVideoID = ArrayVideoList(j)

 IntQtyOrdered = CInt(StrMovieCount)

 SqlDataAdapter1.InsertCommand.CommandText =

"INSERT INTO OrderDetail (OrderID, VideoID, Qty) VALUES (" & StrOrderID & "," &

StrVideoID & ", 1)"

 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()

 Next j

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source &

ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() &

ControlChars.Cr & _

 "State: " & MyException.State.ToString() &

ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() &

ControlChars.Cr & _

 "Server: " & MyException.Server &

ControlChars.Cr & _

 "Message: " & MyException.Message &

ControlChars.Cr & _

 "Procedure: " & MyException.Procedure &

ControlChars.Cr & _

 "Line: " &

MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 SqlConnection1.Close()

 SelectCmd.Dispose()

 SqlDataAdapter1.Dispose()

 Me.Close()

 MessageBox.Show("You will receive your order within 5 business

days. Thank you for shopping with us.", "Order Message", MessageBoxButtons.OK)

 End Sub

 Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdCancel.Click

 Me.Close()

 End Sub

End Class

Summary
In this chapter, you learned to add functionality to the Place Order form. This chapter
also described the functions you need to create in the Place Order form. Finally, you
looked at the complete code for the Place Order form

Chapter 17: Designing the User Interface of the
Administration Module
Overview
In the preceding chapters, you learned to add functionality to the forms in the Customer
module of the video kiosk application. In this chapter, you will learn to create the user
interface of the Administration module and will learn about the forms you need to create
for this module. You will also learn about the properties and controls associated with
each form.

As previously discussed, the Administration module of the video kiosk application is
designed to help the administrator manage the database. Using the Administration
module, the administrator can add, modify, and delete records from the tables in the
Movies database. In addition, the administrator can generate reports by using the
Administration module.

The Administration module of the video kiosk application consists of the following forms:
 The Main form
 The Insert Actor form
 The Insert Director form
 The Insert Producer form
 The Insert Video form
 The Insert Movie form
 The Insert Customer form
 The Update/Delete form
 The Reports form

The following sections describe each of these forms in detail. First take a look at the
Main form of the Administration module.

The Main Form
As the name suggests, the Main form is the startup form of the Administration module.
The Main form is also the central location from which the administrator can perform the
following tasks:

 Maintain and update the tables in the database
 Generate reports

Figure 17-1 shows the Main form.

Figure 17-1: The interface of the Main form

The properties you need to assign to the Main form are as follows:

Property Value
Name FrmMainAdmin
Text MyMovies

Admin
Size 300, 208
WindowState Normal

As shown in Figure 17-1, the Main form contains a menu bar. The menu bar in the Main
form displays the Operations, Generate Reports, and Exit menus. The rest of this section
describes the menus in the Main form.
The Operations menu provides commands that enable the administrator to add, modify,
and delete records from the tables in the database. Figure 17-2 shows the commands in
the Operations menu.

Figure 17-2: The commands in the Operations menu

As shown in Figure 17-2, the Operations menu contains two commands, Insert and
Update/Delete. Also note that a submenu is associated with the Insert command. When
the administrator selects a command from the Insert submenu, the form associated with
the selected command displays. For example, if the administrator selects the Actor
command from the Insert submenu, the Insert Actor form appears. Similarly, if the
administrator selects the Movie command from the Insert submenu, the Insert Movie

form displays. Therefore, the commands in the Insert menu enable the administrator to
add records to the various tables in the database. The administrator can use the
Update/Delete command to update or delete records from tables in the database. You
will learn about the various Insert forms later in this chapter.
The menu bar in the Main form also displays the Generate Reports menu. Figure 17-3
shows the commands available in the Generate Reports menu.

Figure 17-3: The commands in the Generate Reports menu

The commands in the Generate Reports menu enable the administrator to create
reports. Using these commands, the administrator can create reports related to daily
sales, the most requested movies, and customer details.

The Main form also displays the Exit menu. The administrator can select the Exit menu
to close the Administration module.
Now that you know about the commands in the various menus in the Main form, you’ll
learn how to create the menu. To do this, you need to drag the MainMenu control from
the Windows Form tab of the Toolbox to the form. After you add the MainMenu control to
the Main form, the form appears as shown in Figure 17-4.

Figure 17-4: The Main form with the MainMenu control

You do not need to change any properties for the MainMenu control.
As shown in Figure 17-4, when you add a MainMenu control to a form, a menu bar
appears on the form. When you click on the menu bar, a box with the message “Type
Here” displays. To specify the menus and menu items, you need to type the names of
the menus and menu items in the appropriate box. For example, to create the
Operations menu, you need to type “Operations” in the first Type Here box. Then, to add
the Insert menu item to the Operations menu, you need to type “Insert” in the Type Here
box below the Operations menu. Next type “Update/Delete” in the box below the Insert
menu item to add the Update/Delete menu item to the Operations menu, as shown in
Figure 17-5.

Figure 17-5: Adding menu items to the MainMenu control

Table 17-1 lists the properties you need to assign to the menus in the MainMenu control.
Table 17-1: Properties Assigned to Menus

Menu Property Value

Menu 1 Name MmnuOperations

Menu 1 Text Operations

Menu 2 Name MmnuReports

Menu 2 Text Generate
Reports

Menu 3 Name MmnuExit

Menu 3 Text Exit

Table 17-2 lists the properties you need to assign to the menu items in the menus in the
Main form.
Table 17-2: Properties Assigned to Menu Items

Menu
Item

Name of
Container Menu

Property Value

Menu
item 1

MmnuOperations Name MitmInsert

Menu
item 1

MmnuOperations Text Insert

Menu
item 2

MmnuOperations Name MitmUpdateDelete

Menu
item 2

MmnuOperations Text Update/Delete

Menu
item 3

MmnuReports Name MitmDailySales

Table 17-2: Properties Assigned to Menu Items

Menu
Item

Name of
Container Menu

Property Value

Menu
item 3

MmnuReports Text Daily Sales

Menu
item 4

MmnuReports Name MitmMoviesInDemand

Menu
item 4

MmnuReports Text Movies in Demand

Menu
item 5

MmnuReports Name MitmCustDetails

Menu
item 5

MmnuReports Text Customer Details

As shown in Figure 17-2, the Insert menu contains a submenu. Table 17-3 lists the
properties you need to assign to the menu items in the MitmInsert submenu.
Table 17-3: Properties Assigned to the Menu Items in the MitmInsert Submenu

Form Property Value

Menu item 1 Name MitmActor

Menu item 1 Text Actor

Menu item 2 Name MitmDirector

Menu item 2 Text Director

Menu item 3 Name MitmProducer

Menu item 3 Text Producer

Menu item 4 Name MitmVideo

Menu item 4 Text Video

Menu item 5 Name MitmMovie

Menu item 5 Text Movie

Menu item 6 Name MitmCustomer

Menu item 6 Text Customer

After you create the menu, the Main form appears as shown in Figure 17-6.

Figure 17-6: The menu control added to the Main form

Next you will learn to create the other forms. The next section describes the Insert Actor
form.

The Insert Actor Form
As previously mentioned, the Insert Actor form enables the administrator to add records
to the Actor table. The Insert Actor form displays when the administrator selects the
Actor command from the Insert submenu in the Main form.
Figure 17-7 shows the Insert Actor form.

Figure 17-7: The Insert Actor form

The properties you need to assign to the Insert Actor form are as follows:

Property Value
Name FrmInsertActor
Text Insert Actor

Info
Size 240, 240
WindowState Normal

As shown in Figure 17-7, the Insert Actor form contains five labels. Table 17-4 lists the
properties you need to assign to the labels in the Insert Actor form.
Table 17-4: Properties Assigned to Labels

Control Property Value

Table 17-4: Properties Assigned to Labels

Control Property Value

Label 1 Name LblActorID

Label 1 Text Actor ID:

Label 1 Visible True

Label 2 Name LblFName

Label 2 Text First Name:

Label 2 Visible True

Label 3 Name LblLName

Label 3 Text Last Name:

Label 3 Visible True

Label 4 Name LblDOB

Label 4 Text DOB:

Label 4 Visible True

Label 5 Name LblBackground

Label 5 Text Background:

Label 5 Visible True

The Insert Actor form also contains text boxes. Table 17-5 lists the properties you need
to assign to these text boxes.
Table 17-5: Properties Assigned to Text Boxes

Control Property Value

Text box 1 Name TxtActorID

Text box 1 Visible True

Text box 2 Name TxtFName

Text box 2 Visible True

Text box 3 Name TxtLName

Text box 3 Visible True

Text box 4 Name TxtBackground

Text box 4 Visible True

In addition to text boxes, the Insert Actor form contains a date time picker control, which
is associated with the LblDOB label. The Name property of the date time picker control is
set to DtpDOB.
The Insert Actor form also contains two buttons. Table 17-6 lists the properties you need
to assign to these buttons.
Table 17-6: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdSubmit

Button 1 Text Submit

Table 17-6: Properties Assigned to Buttons

Control Property Value

Button 1 Visible True

Button 2 Name CmdCancel

Button 2 Text Cancel

Button 2 Visible True

The Insert Director Form
As the name suggests, the Insert Director form enables the administrator to add records
to the Director table. The Insert Director form displays when the administrator selects the
Director command from the Insert submenu.
Figure 17-8 shows the Insert Director form.

Figure 17-8: The Insert Director form

The properties you need to assign to the Insert Director form are as follows:

Property Value
Name FrmInsertDirector
Text Insert Director

Info
Size 240, 240
WindowState Normal

As shown in Figure 17-8, the Insert Director form contains five labels. Table 17-7 lists the
properties you need to assign to the labels in the Insert Director form.
Table 17-7: Properties Assigned to Labels

Control Property Value

Label 1 Name LblDirectorID

Label 1 Text Director ID:

Label 1 Visible True

Label 2 Name LblFName

Label 2 Text First Name:

Label 2 Visible True

Table 17-7: Properties Assigned to Labels

Control Property Value

Label 3 Name LblLName

Label 3 Text Last Name:

Label 3 Visible True

Label 4 Name LblDOB

Label 4 Text DOB:

Label 4 Visible True

Label 5 Name LblBackground

Label 5 Text Background:

Label 5 Visible True

The Insert Director form also contains four text boxes. The properties you need to assign
to the four text boxes are listed in Table 17-8.
Table 17-8: Properties Assigned to Text Boxes

Control Property Value

Text box 1 Name TxtDirectorID

Text box 1 Visible True

Text box 2 Name TxtFName

Text box 2 Visible True

Text box 3 Name TxtLName

Text box 3 Visible True

Text box 4 Name TxtBackground

Text box 4 Visible True

Note that a date time picker control is associated with the DOB text box in the Insert
Director form. You need to set the Name property of this date time picker control to
DtpDOB.
The Insert Director form also contains two buttons. Table 17-9 lists the properties you
need to assign to these buttons.
Table 17-9: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdSubmit

Button 1 Text Submit

Button 1 Visible True

Button 2 Name CmdCancel

Button 2 Text Cancel

Button 2 Visible True

You will learn to create the Insert Producer form in the next section.

The Insert Producer Form
As the name suggests, the Insert Producer form enables the administrator to add
records to the Producer table. The Insert Producer form displays when the administrator
selects the Producer command from the Insert submenu.
Figure 17-9 shows the Insert Producer form.

Figure 17-9: The Insert Producer form

The properties you need to assign to the Insert Producer form are as follows:

Property Value
Name FrmInsertProducer
Text Insert Producer

Info
Size 240, 144
WindowState Normal

As shown in Figure 17-9, the Insert Director form contains two labels and two text boxes.
Table 17-10 lists the properties you need to assign to the labels.
Table 17-10: Properties Assigned to Labels

Control Property Value

Label 1 Name LblProducerID

Label 1 Text Producer ID:

Label 1 Visible True

Label 2 Name LblName

Label 2 Text Name:

Label 2 Visible True

The properties you need to assign to the text boxes in the Insert Director form are listed
in Table 17-11.
Table 17-11: Properties Assigned to Text Boxes

Control Property Value

Text box 1 Name TxtProducerID

Text box 1 Visible True

Text box 2 Name TxtName

Text box 2 Visible True

In addition to the labels and text boxes, the Insert Producer form contains two buttons.
Table 17-12 lists the properties you need to assign to these buttons.
Table 17-12: Properties Assigned to Buttons

Control Property Value

Table 17-12: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdSubmit

Button 1 Text Submit

Button 1 Visible True

Button 2 Name CmdCancel

Button 2 Text Cancel

Button 2 Visible True

You will learn to create the Insert Video form in the next section.

The Insert Video Form
The Insert Video form enables the administrator to add records to the Video table. The
Insert Video form displays when the administrator selects the Video command from the
Insert submenu.
Figure 17-10 shows the Insert Video form.

Figure 17-10: The Insert Video form

The properties you need to assign to the Insert Video form are as follows:

Property Value
Name FrmInsertVideo
Text Insert Video

Info
Size 224, 208
WindowState Normal

As shown in Figure 17-10, the Insert Video form contains four labels. Table 17-13 lists
the properties you need to assign to these labels.
Table 17-13: Properties Assigned to Labels

Control Property Value

Label 1 Name LblVideoID

Label 1 Text Video ID:

Label 1 Visible True

Label 2 Name LblMovieID

Label 2 Text Movie ID:

Table 17-13: Properties Assigned to Labels

Control Property Value

Label 2 Visible True

Label 3 Name LblFormat

Label 3 Text Format:

Label 3 Visible True

Label 4 Name LblPrice

Label 4 Text Price:

Label 4 Visible True

In addition to the labels, the Insert Video form contains four text boxes. The properties
you need to assign to the four text boxes are listed in Table 17-14.
Table 17-14: Properties Assigned to Text Boxes

Control Property Value

Text box 1 Name TxtVideoID

Text box 1 Visible True

Text box 2 Name TxtMovieID

Text box 2 Visible True

Text box 3 Name TxtFormat

Text box 3 Visible True

Text box 4 Name TxtPrice

Text box 4 Visible True

Table 17-15 lists the properties you need to assign to the two buttons on the Insert Video
form.
Table 17-15: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdSubmit

Button 1 Text Submit

Button 1 Visible True

Button 2 Name CmdCancel

Button 2 Text Cancel

Button 2 Visible True

In the next section, you will learn to create the Insert Movie form.

The Insert Movie Form
The administrator can use the Insert Movie form to add records to the Movie table. The
Insert Movie form (see Figure 17-11) displays when the administrator selects the Movie
command from the Insert submenu.

Before adding controls to the Insert Movie form, you need to specify the properties for
the form.

The properties you need to assign to the Insert Movie form are as follows:

Property Value
Name FrmInsertMovie
Text Insert Movie

Info
Size 256, 328
WindowState Normal

After you set the properties for the form, you need to add controls to the form. As shown
above in Figure 17-11, the Insert Movie form contains eight labels. Table 17-16 lists the
properties you need to assign to these labels.

Figure 17-11: The Insert Movie form

Table 17-16: Properties Assigned to Labels

Control Property Value

Label 1 Name LblMovieID

Label 1 Text Movie ID:

Label 1 Visible True

Label 2 Name LblMovieTitle

Label 2 Text Movie Title:

Label 2 Visible True

Label 3 Name LblDirectorID

Label 3 Text Director ID:

Label 3 Visible True

Label 4 Name LblProducerID

Label 4 Text Producer ID:

Label 4 Visible True

Label 5 Name LblDuration

Table 17-16: Properties Assigned to Labels

Control Property Value

Label 5 Text Duration:

Label 5 Visible True

Label 6 Name LblDescription

Label 6 Text Description:

Label 6 Visible True

Label 7 Name LblCategory

Label 7 Text Category:

Label 7 Visible True

Label 8 Name LblRelYear

Label 8 Text Release Year:

Label 8 Visible True

In addition to labels, you also need to add text boxes to the Insert Movie form. The
properties you need to assign to the text boxes in the Insert Movie form are listed in
Table 17-17.
Table 17-17: Properties Assigned to Text Boxes

Control Property Value

Text box 1 Name TxtMovieID

Text box 1 Visible True

Text box 2 Name TxtMovieTitle

Text box 2 Visible True

Text box 3 Name TxtDirectorID

Text box 3 Visible True

Text box 4 Name TxtProducerID

Text box 4 Visible True

Text box 5 Name TxtDuration

Text box 5 Visible True

Text box 6 Name TxtDescription

Text box 6 Visible True

Text box 7 Name TxtCategory

Text box 7 Visible True

Text box 8 Name TxtRelYear

Text box 8 Visible True

In addition to the labels and text boxes, the Insert Movie form also contains buttons.
Table 17-18 lists the properties you need to assign to the two buttons on the Insert Video
form.
Table 17-18: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdSubmit

Button 1 Text Submit

Button 1 Visible True

Button 2 Name CmdCancel

Button 2 Text Cancel

Button 2 Visible True

The next section describes the interface of the Insert Customer form.

The Insert Customer Form
As the name suggests, the Insert Customer form enables the administrator to add
records to the Customer table. The Insert Customer form displays when the
administrator selects the Customer command from the Insert submenu.
Figure 17-12 shows the Insert Customer form.

Figure 17-12: The Insert Customer form

To start with, you need to assign properties to the Insert Customer form. The properties
you need to assign are as follows:

Property Value
Name FrmInsertCustomer
Text Insert Customer

Info
Size 400, 376
WindowState Normal

As shown in Figure 17-12, the Insert Customer form contains multiple text boxes and
labels. Table 17-19 lists the properties you need to assign to the labels on the Insert
Customer form.
Table 17-19: Properties Assigned to Labels

Control Property Value

Label 1 Name LblFName

Label 1 Text First Name:

Label 1 Visible True

Label 2 Name LblLName

Table 17-19: Properties Assigned to Labels

Control Property Value

Label 2 Text Last Name:

Label 2 Visible True

Label 3 Name LblAddress

Label 3 Text Address:

Label 3 Visible True

Label 4 Name LblCity

Label 4 Text City:

Label 4 Visible True

Label 5 Name LblState

Label 5 Text State:

Label 5 Visible True

Label 6 Name LblZip

Label 6 Text Zip:

Label 6 Visible True

Label 7 Name LblPhone

Label 7 Text Phone:

Label 7 Visible True

Label 8 Name LblEmail

Label 8 Text Email:

Label 8 Visible True

Label 9 Name LblCCNumber

Label 9 Text Credit Card
Number:

Label 9 Visible True

Label 10 Name LblValidUpto

Label 10 Text Valid Upto:

Label 10 Visible True

Label 11 Name LblDOB

Label 11 Text DOB:

Label 11 Visible True

The Insert Customer form also contains text boxes. Table 17-20 lists the properties you
need to assign to the text boxes on the Insert Customer form.
Table 17-20: Properties Assigned to Text Boxes

Control Property Value

Text box 1 Name TxtFName

Table 17-20: Properties Assigned to Text Boxes

Control Property Value

Text box 1 Visible True

Text box 2 Name TxtLName

Text box 2 Visible True

Text box 3 Name TxtAddress

Text box 3 Visible True

Text box 4 Name TxtCity

Text box 4 Visible True

Text box 5 Name TxtState

Text box 5 Visible True

Text box 6 Name TxtZip

Text box 6 Visible True

Text box 7 Name TxtPhone

Text box 7 Visible True

Text box 8 Name TxtEmail

Text box 8 Visible True

Text box 9 Name TxtCCNumber

Text box 9 Visible True

In addition to text boxes, the Insert Customer form contains two date time picker
controls. One is associated with the Valid Upto label, and the other is associated with the
DOB label. The Name property of the date time picker control associated with the Valid
Upto label is set to DtpCCValidUpto. The Name property of the date time picker control
associated with the DOB label is set to DtpDOB.
The Insert Customer form also contains two buttons. Table 17-21 lists the properties you
need to assign to these buttons.
Table 17-21: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdSubmitReg

Button 1 Text Submit

Button 1 Visible True

Button 2 Name CmdCancel

Button 2 Text Cancel

Button 2 Visible True

Now that you have learned to design the forms to add records to the various tables, the
next section describes the Update/Delete form.

The Update/Delete Form
In addition to adding records, the Administration module enables the administrator to edit
the records in the various tables. The Administration module provides the Update/Delete
form to enable the administrator to modify and delete the records in the tables. The

Update/Delete form displays when the administrator selects the Update/Delete command
from the Operations menu. Figure 17-13 shows the Update/Delete form.

Figure 17-13: The Update/Delete form

Before adding controls to the Update/Delete form, you need to specify properties for the
form. The properties you need to assign to the Update/Delete form are as follows:

Property Value
Name FrmUpdateDelete
Text Update/Delete
Size 488, 320
WindowState Normal

As shown in Figure 17-13, the Update/Delete form contains four labels. Table 17-22 lists
the properties you need to assign to these labels.
Table 17-22: Properties Assigned to Labels

Control Property Value

Label 1 Name LblSearchIn

Label 1 Text Search In:

Label 1 Visible True

Label 2 Name LblSearchBy

Label 2 Text Search By:

Label 2 Visible True

Label 3 Name LblSearchText

Label 3 Text Search Text:

Label 3 Visible True

Label 4 Name LblSearchResult

Label 4 Text Search Result:

Label 4 Visible True

The Update/Delete form contains a text box and two combo boxes. Table 17-23 lists the
properties you need to assign to the text box and combo boxes.
Table 17-23: Properties Assigned to the Text Box and Combo Boxes

Control Property Value

Text box 1 Name TxtSearchText

Text box 1 Visible True

Table 17-23: Properties Assigned to the Text Box and Combo Boxes

Control Property Value

Combo box 1 Name CmbSearchIn

Combo box 1 Visible True

Combo box 1 DropDownStyle DropDownList

Combo box 2 Name CmbSearchBy

Combo box 2 Visible True

Combo box 2 DropDownStyle DropDownList

In addition to the properties mentioned in the preceding table, you also need to specify
the Columns property for the CmbSearchIn combo box. You need to use the Columns
property of a combo box to add items to the combo box. To add items to the
CmbSearchIn combo box, click on the ellipsis button next to the (Collection) value
in the Properties window. When you click on the ellipsis button, the String Collection
Editor dialog box displays. In the String Collection Editor dialog box, add the items for the
CmbSearchIn combo box. Figure 17-14 shows the String Collection Editor dialog box
with the items of the CmbSearchIn combo box.

Figure 17-14: The String Collection Editor dialog box

You do not need to specify the Columns property for the CmbSearchBy combo box.
This is because the items that need to be displayed in the CmbSearchBy combo box
depend on the value selected by the user in the CmbSearchIn combo box. For
example, if a user selects the Actor option in the CmbSearchIn combo box, the names
of fields from the Actor table should be displayed in the CmbSearchBy combo box.
Therefore, instead of specifying the items for the CmbSearchBy combo box at design
time, you must populate the CmbSearchBy combo box at runtime. This can be done
programmatically. You will learn how to specify the items for the CmbSearchBy combo
box programmatically later in this book.

In addition to the combo boxes, the Update/Delete form contains a list view control. The
properties you need to assign to the list view control are as follows:

Property Value
Name LvwSearchResult
View Details
FullRowSelect True
GridLines True

In the list view control, you do not need to specify the Columns property. This is
because the column headers that should display in the list view control depend on the
value selected in the CmbSearchIn combo box. For example, if a user selects the Actor

option from the CmbSearchIn combo box, column headers from that table should be
displayed in the LvwSearchResult control. Therefore, as in the case of the
CmbSearchBy combo box, you must specify the column headers of the
LvwSearchResult control programmatically. You will learn about adding column
headers to a list view control programmatically in subsequent chapters.
The Update/Delete form also contains five buttons. Table 17-24 lists the properties you
need to assign to these buttons.
Table 17-24: Properties Assigned to Buttons

Control Property Value

Button 1 Name CmdSearch

Button 1 Text Search

Button 1 Visible True

Button 2 Name CmdUpdate

Button 2 Text Update

Button 2 Visible True

Button 3 Name CmdDelete

Button 3 Text Delete

Button 3 Visible True

Button 4 Name CmdClear

Button 4 Text Clear

Button 4 Visible True

Button 5 Name CmdCancel

Button 5 Text Cancel

Button 5 Visible True

As the name suggests, the Search button enables the administrator to search the
database based on the criteria specified in the Update/Delete form. The search results
are displayed in the list view control.

The Update button enables the administrator to edit records. To edit a record, the
administrator can select the record in the list view control and click on the Update button.
When the administrator clicks on the Update button, the selected record is displayed in a
form. The form in which the record is displayed, however, depends on the type of record
the administrator selects. For example, if the administrator selects a record from the
Actor table and clicks on the Update button, the Update Actor form displays. Similarly, if
the administrator selects a record from the Movie table and clicks on the Update button,
the Update Movie form displays. You will learn more about the Update Actor and Update
Movie forms in subsequent chapters. After the administrator makes the required
modifications to the selected record, he or she can click on the Submit button in the form.

Alternatively, the administrator can click on the Delete button to delete the selected
record from the database. To delete a record, the administrator can select the record
from the list view control and click on the Delete button. When the administrator click on
the Delete button, a message box confirming the deletion of the record displays.

The administrator can click on the Clear button to clear all the items from the list view
control. In addition, the Cancel button enables the administrator to close the
Update/Delete form.
The next section describes the Reports form.

The Reports Form
As the name suggests, the Reports form displays the various reports. There are three
variations of the Reports form—Daily Sales, Movies in Demand, and Customer Details.
The Reports form displays when the administrator selects any command from the
Generate Reports menu of the Main form. When the administrator does this, the
corresponding Reports form displays. For example, if the administrator selects the Daily
Sales command from the Generate Reports menu, the Daily Sales Report form displays.
Figure 17-15 shows the Daily Sales Report form.

Figure 17-15: The Daily Sales Report form

The properties you need to assign to the Reports form are as follows:

Property Value
Name FrmReport
Text Reports
Size 472, 430
WindowState Normal

As shown in Figure 17-15, the Reports form contains a menu control. To add a menu
control to the Reports form, drag the MainMenu control from the Windows Form tab of
the Toolbox to the form. After you add the MainMenu control to the Main form, you need
to add the Exit menu to it. The properties you need to specify for the Exit menu are as
follows:

Property Value
Name MmnuExit
Text Exit

The Reports form also contains a list view control. The properties you need to assign to
the list view control are as follows:

Property Value
Name LvwReport
View Details
FullRowSelect True
GridLines True

In the Reports form, you do not need to specify the Columns property for the
LvwReport control at the time of designing the form. Instead, you need to specify the
column headers for the list view control programmatically. This is because the column
headers that should display in the list view control in the Reports form depend on the

command selected by the administrator in the Main form. For example, if the
administrator selects the Daily Sales command from the Generate Reports menu, the list
view control in the form should display columns that correspond to the Daily Sales report.
Similarly, if the administrator selects the Customer Details command from the Generate
Reports menu, the list view control in the form should display columns that correspond to
Customer Details report. You will learn about programmatically adding column headers
to a list view control in subsequent chapters.

In addition to the menu and the list view control, the Reports form contains a label and
text box. The properties you need to assign to the label control are as follows:

Property Value
Name LblTotalAmountSale
Text Total Sale:
Visible True

The properties you need to assign to the text box are as follows:

Property Value
Name TxtTotalAmountSale
Visible False

Summary
In this chapter, you learned to create the forms for the Administration module of the
video kiosk application. You learned to create the Main, Insert Actor, Insert Director,
Insert Producer, Insert Video, Insert Movie, and Insert Customer forms. You also learned
to create the Update/Delete and Reports forms. This chapter also described the
properties you need to assign to the various controls on the forms.

Chapter 18: Adding Functionality to the Main Form
Overview
In the preceding chapter, you learned to create the user interface for the Administration
module of the video kiosk application. In this chapter and the next three, you will add
functionality to forms in the Administration module.

As previously discussed, the Administration module consists of the following forms:
 The Main form
 The Insert Actor form
 The Insert Director form
 The Insert Producer form
 The Insert Video form
 The Insert Movie form
 The Insert Customer form
 The Update/Delete form
 The Reports form

In this chapter, you will learn to write code to add functionality to the Main form of the
Administration module. To start with, let’s review what the Main form looks like. See
Figure 18-1.

Figure 18-1: The interface of the Main form

As shown in Figure 18-1, the Main form contains a menu bar that displays the
Operations, Generate Reports, and Exit menus. In addition, the administrator can use
the menus in the Main form to access the other forms in the Administration module.

Before you look at the events you need to trap to add functionality to the Main form, take
a look at the menu items in each menu. The Operations menu contains the Insert and
Update/Delete commands. When the administrator clicks on the Insert command, a
submenu displays. The Insert submenu displays the following commands:

 Actor
 Director
 Producer
 Video
 Movie
 Customer

As discussed in the preceding chapter, the administrator can click on any option in the
Insert submenu to open the associated form. To do this, you need to trap the event
generated when the command is selected. In other words, you need to trap the Click
event for each command in the Insert submenu. Similarly, you need to trap the Click
events for the commands in the other menus in the Main form.

Before you create functions, you need to declare the following variables in the Main form:
Public Shared ObjActor As FrmInsertActor
Public Shared ObjDirector As FrmInsertDirector
Public Shared ObjProducer As FrmInsertProducer
Public Shared ObjMovie As FrmInsertMovie
Public Shared ObjVideo As FrmInsertVideo
Public Shared ObjCustomer As FrmInsertCustomer
Public Shared ObjUpdateDelete As FrmUpdateDelete
Public Shared ObjReport As FrmReports
'Declares objects used to open other forms

The Main form consists of the following functions:
 MitmActor_Click
 MitmDirector_Click
 MitmProducer_Click
 MitmVideo_Click
 MitmMovie_Click
 MitmCustomer_Click
 MitmUpdateDelete_Click
 MitmDailySales_Click
 MitmMoviesInDemand_Click

 MitmCustDetails_Click
 MmnuExit_Click:

The following sections describe the code for these functions.

The MitmActor_Click Function
The MitmActor_Click function executes when the administrator selects the Actor
command from the Insert submenu.
The code for the MitmActor_Click function is as follows:

Private Sub MitmActor_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MitmActor.Click
 ObjActor = New FrmInsertActor()
'Declares ObjActor as an object of the FrmInsertActor class
 ObjActor.Show()
'Displays the Insert Actor form
End Sub
When the administrator selects the Actor command, the MitmActor_Click function
opens the Insert Actor form. The administrator can use the Insert Actor form to add
records to the Actor table in the Movies database.

The MitmDirector_Click Function
The MitmDirector_Click function executes when the administrator selects the
Director command from the Insert submenu.
The code for the MitmDirector_Click function is as follows:

Private Sub MitmDirector_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MitmDirector.Click
 ObjDirector = New FrmInsertDirector()
'Declares ObjDirector as an object of the FrmInsertDirector class
 ObjDirector.Show()
'Displays the Insert Director form
End Sub
The MitmDirector_Click function opens the Insert Director form, which enables the
administrator to add records to the Director table.

The MitmProducer_Click Function
As the name suggests, the MitmProducer_Click function executes when the
administrator selects the Producer command from the Insert submenu.
The code for the MitmProducer_Click function is as follows:

Private Sub MitmProducer_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MitmProducer.Click
 ObjProducer = New FrmInsertProducer()
'Declares ObjProducer as an object of the FrmInsertProducer class
 ObjProducer.Show()
'Displays the Insert Producer form
End Sub
After the MitmProducer_Click function executes, the Insert Producer form displays.
The Insert Producer form enables the administrator to add records to the Producer table.

The MitmVideo_Click Function
The MitmVideo_Click function executes when the administrator selects the Video
option from the Insert submenu.
The code for the MitmVideo_Click function is as follows:

Private Sub MitmVideo_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MitmVideo.Click
 ObjVideo = New FrmInsertVideo()
'Declares ObjVideo as an object of the FrmInsertVideo class
 ObjVideo.Show()
'Displays the Insert Video form
End Sub
The MitmDirector_Click function displays the Insert Video form, which enables the
administrator to add records to the Video table.

The MitmMovie_Click Function
The MitmMovie_Click function executes when the administrator selects the Movie
command from the Insert menu. The code for the MitmMovie_Click function is as
follows:
Private Sub MitmMovie_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MitmMovie.Click
 ObjMovie = New FrmInsertMovie()
'Declares ObjMovie as an object of the FrmInsertMovie class
 ObjMovie.Show()
'Opens the Insert Movie form
End Sub
The MitmMovie_Click function displays the Insert Movie form, which enables the
administrator to insert records on the Movie table.

The MitmCustomer_Click Function
The MitmCustomer_Click function executes when the administrator selects the
Customer command from the Insert submenu. The code for the MitmCustomer_Click
function is as follows:
Private Sub MitmCustomer_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MitmCustomer.Click
 ObjCustomer = New FrmInsertCustomer()
'Declares ObjCustomer as an object of the FrmInsertCustomer class
 ObjCustomer.Show()
'Displays the Insert Customer form
End Sub
When the MitmCustomer_Click function executes, the Insert Customer form opens.
The Insert Customer form enables the administrator to add records to the Customer
table.

The MitmUpdateDelete_Click Function
The MitmUpdateDelete_Click function executes when the administrator selects the
Update/Delete command from the Operations menu. The code for the
MitmUpdateDelete_Click function is as follows:

Private Sub MitmUpdateDelete_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MitmUpdateDelete.Click
 ObjUpdateDelete = New FrmUpdateDelete()
'Declares ObjUpdateDelete as an object of the FrmUpdateDelete class
 ObjUpdateDelete.Show()
'Opens the Update/Delete form
End Sub
The MitmUpdateDelete_Click function displays the Update/Delete form, which
enables the administrator to modify and delete the records in the various tables in the
database.

The MitmDailySales_Click Function
The MitmDailySales_Click function executes when the administrator selects the
Daily Sales command from the Generate Reports menu. The code for this function is as
follows:
Private Sub MitmDailySales_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MitmDailySales.Click
 ObjReport = New FrmReports()
'Declares ObjReport as an object of the FrmReports class
 ObjReport.IntReportType = 0
'Assigns a value of 0 to the IntReportType variable
 ObjReport.Show()
'Opens the Daily Sales report
End Sub
The MitmDailySales_Click function opens the Daily Sales report.

The MitmMoviesInDemand_Click Function
The MitmMoviesInDemand_Click function executes when the administrator selects
the Movies in Demand command from the Generate Reports menu. The code for the
MitmMoviesInDemand_Click function is as follows:

Private Sub MitmMoviesInDemand_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MitmMoviesInDemand.Click
 ObjReport = New FrmReports()
'Declares ObjReport as an object of the FrmReports class
 ObjReport.IntReportType = 1
'Assigns a value of 1 to the IntReportType variable
 ObjReport.Show()
'Opens the Movies In Demand report
End Sub
The MitmMoviesInDemand_Click function displays the Movies In Demand report.

The MitmCustDetails_Click Function
The MitmCustDetails_Click function executes when the administrator selects the
Customer Details command from the Generate Reports menu. The code for the
MitmCustDetails_Click function is as follows:

Private Sub MitmCustDetails_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MitmCustDetails.Click

 ObjReport = New FrmReports()
'Declares ObjReport as an object of the FrmReports class
 ObjReport.IntReportType = 2
'Assigns a value of 2 to the IntReportType variable
 ObjReport.Show()
'Displays the Customer Details report
End Sub
The MitmCustDetails_Click function displays the Customer Details report.

The Complete Code for the Main Form
In the preceding sections, you looked at the code associated with the events and
functions in the Main form. Listing 18-1 provides the complete code for the Main form.

Listing 18-1: The Code for the Main Form

Public Class FrmMainAdmin

 Inherits System.Windows.Forms.Form

 Public Shared ObjActor As FrmInsertActor

 Public Shared ObjDirector As FrmInsertDirector

 Public Shared ObjProducer As FrmInsertProducer

 Public Shared ObjMovie As FrmInsertMovie

 Public Shared ObjVideo As FrmInsertVideo

 Public Shared ObjCustomer As FrmInsertCustomer

 Public Shared ObjUpdateDelete As FrmUpdateDelete

 Public Shared ObjReport As FrmReports

Windows Form Designer generated code

'Contains the code that specifies the size, location, and other properties, such as

font and name, for the controls on the form.

 Private Sub MitmActor_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MitmActor.Click

 ObjActor = New FrmInsertActor()

 ObjActor.Show()

End Sub

 Private Sub MitmDirector_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MitmDirector.Click

 ObjDirector = New FrmInsertDirector()

 ObjDirector.Show()

 End Sub

 Private Sub MitmProducer_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MitmProducer.Click

 ObjProducer = New FrmInsertProducer()

 ObjProducer.Show()

 End Sub

 Private Sub MitmVideo_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MitmVideo.Click

 ObjVideo = New FrmInsertVideo()

 ObjVideo.Show()

 End Sub

 Private Sub MitmMovie_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MitmMovie.Click

 ObjMovie = New FrmInsertMovie()

 ObjMovie.Show()

 End Sub

 Private Sub MitmCustomer_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MitmCustomer.Click

 ObjCustomer = New FrmInsertCustomer()

 ObjCustomer.Show()

 End Sub

 Private Sub MitmUpdateDelete_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles MitmUpdateDelete.Click

 ObjUpdateDelete = New FrmUpdateDelete()

 ObjUpdateDelete.Show()

 End Sub

 Private Sub MitmDailySales_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MitmDailySales.Click

 ObjReport = New FrmReports()

 ObjReport.IntReportType = 0

 ObjReport.Show()

 End Sub

 Private Sub MitmMoviesInDemand_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles MitmMoviesInDemand.Click

 ObjReport = New FrmReports()

 ObjReport.IntReportType = 1

 ObjReport.Show()

 End Sub

 Private Sub MitmCustDetails_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles MitmCustDetails.Click

 ObjReport = New FrmReports()

 ObjReport.IntReportType = 2

 ObjReport.Show()

 End Sub

 Private Sub MmnuExit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MmnuExit.Click

 Close()

 End Sub

End Class

Summary
In this chapter, you learned to add functionality to the Main form. This chapter also
described the functions that you need to create to add functionality to the Main form. You
also looked at the complete code for the Main form

Chapter 19: Adding Functionality to the
Update/Delete Form
Overview
In the preceding chapter, you learned to add functionality to the Main form. In this
chapter, you will learn to add functionality to the Update/Delete form of the
Administration module.
To start with, let’s review the Update/Delete form as shown in Figure 19-1.

Figure 19-1: The interface of the Update/Delete form

The Update/Delete form enables the administrator to edit and delete records from the
tables in the Movies database. To connect to the database from the Update/Delete form,
you need to import the classes stored in the System.Data.SqlClient namespace.
You can import the System.Data.SqlClient namespace by including the following
statement in the Update/Delete form:
Imports System.Data.SqlClient
'Includes classes used by the SQL Server .NET data provider

In addition to the preceding statement, you need to include the following statements in
the Update/Delete form:
Imports System.Data
'Includes the classes that make up the ADO.NET architecture
 Imports System.String
'Includes the classes that enable you to work with strings
Imports System.Data.OleDb
'Includes classes used by the OLE DB .NET Data Provider
Imports System.Collections
'Includes the collection classes
Imports System.Data.SqlTypes

'Includes the classes for native data types within SQL Server

You also need to declare the following variables in the Update/Delete form:
Dim SqlConnection1 As New SqlConnection(StrConnectionString)
Dim SqlDataAdapter1 As New SqlDataAdapter()
Dim Result As Integer
Before you write code, take a look at the flow of the functions in the Update/Delete form.
Figure 19-2 depicts this flow.

Figure 19-2: The flow chart of the Update/Delete form

The Update/Delete form consists of the following functions:
 FrmUpdateDelete_Load
 CmbSearchIn_SelectedIndexChanged
 HandleComboIndexes()
 CmdSearch_Click
 CmdUpdate_Click
 CmdDelete_Click
 CmdClear_Click
 CmdCancel_Click

The following sections describe the code for these functions.

The FrmUpdateDelete_Load Function
The FrmUpdateDelete_Load function executes when the Update/Delete form loads,
and the Update/Delete form loads when the administrator selects the Update/Delete
command from the Operations menu in the Main form.
The code for the FrmUpdateDelete_Load function is as follows:

Private Sub FrmUpdateDelete_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 CmbSearchIn.SelectedIndex = 0
'Specifies the Actor option as the selected option in the Search In combo box

 HandleComboIndexes()
'Calls the HandleComboIndexes function
End Sub
In the Update/Delete form, the FrmUpdateDelete_Load function performs the
following tasks:

 It specifies that the Actor option is displayed in the Search In combo box when
the Update/Delete form loads.

 It invokes the HandleComboIndexes function.:
You will learn about the HandleComboIndexes function later in this chapter.

The CmbSearchIn_Selected IndexChanged Function
The CmbSearchIn_SelectedIndexChanged function executes when the
administrator selects an option from the Search In combo box. This function also
executes when the administrator changes the selected index in the Search In combo
box.
The code for the CmbSearchIn_SelectedIndexChanged function is as follows:

Private Sub CmbSearchIn_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e
As System.EventArgs) Handles CmbSearchIn.SelectedIndexChanged
 HandleComboIndexes()
'Calls the HandleComboIndexes function
End Sub
When the administrator selects or changes the selection in the Search In combo box, the
CmbSearchIn_SelectedIndexChanged function calls the HandleComboIndexes
function.

The HandleComboIndexes() Function
As previously discussed, the items that need to be displayed in the Search By combo
box depend on the value selected by the administrator in the Search In combo box. The
HandleComboIndexes function populates the Search By combo box based on the
option selected by the administrator in the Search In combo box. For example, if the
administrator selects the Actor option in the Search In combo box, the
HandleComboIndexes function populates the Search By combo box with the names of
fields from the Actor table.
The code for the HandleComboIndexes function is as follows:

Private Sub HandleComboIndexes()
 Dim StrSearchIn As String
 Dim StrSearchBy As String
 Dim StrQuery As String
'Declares variables
 'Select the first item by default in "Search in" combo
 CmbSearchBy.Items.Clear()
'Removes all items from the Search By combo box
 StrSearchIn = CmbSearchIn.Text
'Stores the option selected by the administrator in the Search In combo box in the
StrSearchIn variable
 If (Compare(StrSearchIn, "Movie", True) = 0) Then
'Checks if the administrator has selected the Movie option
 CmbSearchBy.Items.Add("Movie Id")

 CmbSearchBy.Items.Add("Movie Title")
 CmbSearchBy.Items.Add("Release Year")
 CmbSearchBy.Items.Add("Category")
'Populates the Search By combo box with the names of the fields of the Movie table
 ElseIf (Compare(StrSearchIn, "Actor", True) = 0) Then
'Checks if the administrator has selected the Actor option
 CmbSearchBy.Items.Add("Actor Id")
 CmbSearchBy.Items.Add("First Name")
 CmbSearchBy.Items.Add("Last Name")
'Populates the Search By combo box with the names of the fields of the Actor table
 ElseIf (Compare(StrSearchIn, "Director", True) = 0) Then
'Checks if the administrator has selected the Director option
 CmbSearchBy.Items.Add("Director Id")
 CmbSearchBy.Items.Add("First Name")
 CmbSearchBy.Items.Add("Last Name")
'Populates the Search By combo box with the names of the fields of the Director
table
 ElseIf (Compare(StrSearchIn, "Producer", True) = 0) Then
'Checks if the administrator has selected the Producer option
 CmbSearchBy.Items.Add("Producer Id")
 CmbSearchBy.Items.Add("Name")
'Populates the Search By combo box with the names of the fields of the Producer
table
 ElseIf (Compare(StrSearchIn, "Video", True) = 0) Then
'Checks if the administrator has selected the Video option
 CmbSearchBy.Items.Add("Video Id")
 CmbSearchBy.Items.Add("Format")
'Populates the Search By combo box with the names of the fields of the Video table
 ElseIf (Compare(StrSearchIn, "Customer", True) = 0) Then
 'Checks if the administrator has selected the Customer option
 CmbSearchBy.Items.Add("Customer Id")
 CmbSearchBy.Items.Add("First Name")
 CmbSearchBy.Items.Add("Last Name")
 CmbSearchBy.Items.Add("State")
'Populates the Search By combo box with the names of the fields of the Customer
table
 Else
 StrQuery = ""
 End If
 CmbSearchBy.SelectedIndex = 0
'Sets the first item in the Search By combo box as the selected option
End Sub

The CmdSearch_Click Function
The CmdSearch_Click function executes when the administrator clicks on the Search
button in the Update/Delete form. The CmdSearch_Click function populates the list
view control based on the options selected by the administrator in the Update/Delete
form. The CmdSearch_Click function is populated based on the option selected by the
administrator in the Search In and Search By combo boxes and the text entered in the
Search Text text box.
The code for the CmdSearch_Click function is as follows:

Private Sub CmdSearch_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdSearch.Click
 Dim DsDataSet As DataSet
 Dim DrRowPicker As DataRow
 Dim StrSearchIn As String
 Dim StrSearchBy As String
 Dim StrQuery As String
 Dim BSearchStrEmpty As Boolean
'Declares variables
 BSearchStrEmpty = False
'Assigns a value of False to the BSearchStrEmpty variable

 If TxtSearchText.Text.Trim = "" Then
'Checks if the administrator has not entered any text in the Search Text text box
 MessageBox.Show("Please enter some text to search.")
'Displays a message asking the administrator to enter text in the Search Text text
box
 BSearchStrEmpty = True
'Assigns a value of True to the BSearchStrEmpty variable
 End If

 StrSearchIn = CmbSearchIn.Text
'Stores the option selected by the administrator in the Search In combo box in the
StrSearchIn variable
 StrSearchBy = CmbSearchBy.Text
'Stores the option selected by the administrator in the Search By combo box in the
StrSearchBy variable

 If (Compare(StrSearchIn, "Movie", True) = 0) Then
'Checks if the administrator has selected the Movie option in the Search In combo
box
 Result = 0
'Assigns a value of 0 to the Result variable
 StrQuery = "SELECT DISTINCT MovID, MovTitle, DirID, ProdID, Duration,
Description, Category, ReleaseYear FROM Movie "
 If (Not BSearchStrEmpty) Then

 If (Compare(StrSearchBy, "Movie Id", True) = 0) Then
 StrQuery += "WHERE MovID = '"
 StrQuery += TxtSearchText.Text & "'"
 ElseIf (Compare(StrSearchBy, "Movie Title", True) = 0) Then
 StrQuery += "WHERE MovTitle LIKE '"
 StrQuery += TxtSearchText.Text & "%'"
 ElseIf (Compare(StrSearchBy, "Release Year", True) = 0) Then
 StrQuery += "WHERE ReleaseYear = '"
 StrQuery += TxtSearchText.Text & "'"
 ElseIf (Compare(StrSearchBy, "Category", True) = 0) Then
 StrQuery += "WHERE Category = '"
 StrQuery += TxtSearchText.Text & "'"
 End If
'Specifies the query to retrieve records from the Movie table based on the option
selected in the Search By combo box and the text entered in the Search Text text box
 End If
 ElseIf (Compare(StrSearchIn, "Actor", True) = 0) Then
'Checks if the administrator has selected the Actor option in the Search In combo
box
 Result = 1
'Assigns a value of 1 to the Result variable
 StrQuery = "SELECT DISTINCT ActorID, FirstName, LastName FROM Actor "
 If (Not BSearchStrEmpty) Then
 If (Compare(StrSearchBy, "Actor Id", True) = 0) Then
 StrQuery += "WHERE ActorID = '"
 StrQuery += TxtSearchText.Text & "'"
 ElseIf (Compare(StrSearchBy, "First Name", True) = 0) Then
 StrQuery += "WHERE FirstName LIKE '"
 StrQuery += TxtSearchText.Text & "%'"
 ElseIf (Compare(StrSearchBy, "Last Name", True) = 0) Then
 StrQuery += "WHERE LastName LIKE '"
 StrQuery += TxtSearchText.Text & "%'"
 End If
'Specifies the query to retrieve records from the Actor table based on the option
selected in the Search By combo box and the text entered in the Search Text text box
 End If
 ElseIf (Compare(StrSearchIn, "Director", True) = 0) Then
'Checks if the administrator has selected the Director option in the Search In combo
box
 Result = 2
'Assigns a value of 2 to the Result variable
 StrQuery = "SELECT DISTINCT DirID, FirstName, LastName FROM Director "
 If (Not BSearchStrEmpty) Then

 If (Compare(StrSearchBy, "Director Id", True) = 0) Then
 StrQuery += "WHERE DirID = '"
 StrQuery += TxtSearchText.Text & "'"
 ElseIf (Compare(StrSearchBy, "First Name", True) = 0) Then
 StrQuery += "WHERE FirstName LIKE '"
 StrQuery += TxtSearchText.Text & "%'"
 ElseIf (Compare(StrSearchBy, "Last Name", True) = 0) Then
 StrQuery += "WHERE LastName LIKE '"
 StrQuery += TxtSearchText.Text & "%'"
 End If
'Specifies the query to retrieve records from the Director table based on the option
selected in the Search By combo box and the text entered in the Search Text text box
 End If
 ElseIf (Compare(StrSearchIn, "Producer", True) = 0) Then
'Checks if the administrator has selected the Producer option in the Search In combo
box
 Result = 3
'Assigns a value of 3 to the Result variable
 StrQuery = "SELECT DISTINCT ProdID, Name FROM Producer "
 If (Not BSearchStrEmpty) Then
 If (Compare(StrSearchBy, "Producer ID", True) = 0) Then
 StrQuery += "WHERE ProdID = '"
 StrQuery += TxtSearchText.Text & "'"
 ElseIf (Compare(StrSearchBy, "Name", True) = 0) Then
 StrQuery += "WHERE Name LIKE '"
 StrQuery += TxtSearchText.Text & "%'"
 End If
'Specifies the query to retrieve records from the Producer table based on the option
selected in the Search By combo box and the text entered in the Search Text text box
 End If
 ElseIf (Compare(StrSearchIn, "Video", True) = 0) Then
'Checks if the administrator has selected the Video option in the Search In combo
box
 Result = 4
'Assigns a value of 4 to the Result variable
 StrQuery = "SELECT DISTINCT VideoID, MovID, Format, Price FROM Video "
 If (Not BSearchStrEmpty) Then
 If (Compare(StrSearchBy, "Video ID", True) = 0) Then
 StrQuery += "WHERE VideoID = '"
 ElseIf (Compare(StrSearchBy, "Format", True) = 0) Then
 StrQuery += "WHERE Format = '"
 End If
 StrQuery += TxtSearchText.Text & "'"

 End If
 'Specifies the query to retrieve records from the Video table based on the option
selected in the Search By combo box and the text entered in the Search Text text box
 ElseIf (Compare(StrSearchIn, "Customer", True) = 0) Then
'Checks if the administrator has selected the Customer option in the Search In combo
box
 Result = 5
'Assigns a value of 5 to the Result variable
 StrQuery = "SELECT DISTINCT CustID, FirstName, LastName, Address, City,
State, Zip, Phone, Email FROM Customer "
 If (Not BSearchStrEmpty) Then
 If (Compare(StrSearchBy, "Customer Id", True) = 0) Then
 StrQuery += "WHERE CustID = '"
 StrQuery += TxtSearchText.Text & "'"
 ElseIf (Compare(StrSearchBy, "First Name", True) = 0) Then
 StrQuery += "WHERE FirstName LIKE '"
 StrQuery += TxtSearchText.Text & "%'"
 ElseIf (Compare(StrSearchBy, "Last Name", True) = 0) Then
 StrQuery += "WHERE LastName LIKE '"
 StrQuery += TxtSearchText.Text & "%'"
 ElseIf (Compare(StrSearchBy, "State", True) = 0) Then
 StrQuery += "WHERE State = '"
 StrQuery += TxtSearchText.Text & "'"
 End If
'Specifies the query to retrieve records from the Customer table based on the option
selected in the Search By combo box and the text entered in the Search Text text box
 End If
 Else
 Result = -1
'Assigns a value of -1 to the Result variable
 StrQuery = ""
'Assigns space to the StrQuery variable
 End If

 Dim SelectCmd1 As New SqlCommand(StrQuery, SqlConnection1)
'Declares SelectCmd1 as an object of the SqlCommand class and associates the object
with the SqlConnection1 object

 DsDataSet = New DataSet()
'Declares the dataset

 SqlDataAdapter1.SelectCommand = SelectCmd1
 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlConnection1.Open()
'Establishes a connection with the database
 SqlDataAdapter1.Fill(DsDataSet, "SearchResultAdmin")
'Populates the SearchResultAdmin table in the DsDataSet dataset with the query
results

 LvwSearchResult.Items.Clear()
 LvwSearchResult.Columns.Clear()
'Clears the list view control

 Dim IntRowCount As Integer
 IntRowCount = 0
'Initializes the IntRowCount variable

 Dim IntKind As Integer
 IntKind = CInt(Result)
'Assigns the value of the Result variable to the IntKind variable

 Dim ColumnHeader1 As New ColumnHeader()
 Dim ColumnHeader2 As New ColumnHeader()
 Dim ColumnHeader3 As New ColumnHeader()
 Dim ColumnHeader4 As New ColumnHeader()
 Dim ColumnHeader5 As New ColumnHeader()
 Dim ColumnHeader6 As New ColumnHeader()
 Dim ColumnHeader7 As New ColumnHeader()
 Dim ColumnHeader8 As New ColumnHeader()
 Dim ColumnHeader9 As New ColumnHeader()
'Declares column header objects
 Dim StrMessage As String

 If (IntKind = 0) Then
'Checks if the query was executed on the Movie table
 StrMessage = "Couldn't find this movie."
'Assigns a value to the StrMessage variable based on the selection in the form
 LvwSearchResult.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()
{ColumnHeader1, ColumnHeader2, ColumnHeader3, ColumnHeader4, ColumnHeader5,
ColumnHeader6, ColumnHeader7, ColumnHeader8})
'Adds column headers to the list view control
 ColumnHeader1.Text = "Movie ID"
 ColumnHeader2.Text = "Movie Title"
 ColumnHeader3.Text = "Director ID"
 ColumnHeader4.Text = "Producer ID"

 ColumnHeader5.Text = "Duration"
 ColumnHeader6.Text = "Description"
 ColumnHeader7.Text = "Category"
 ColumnHeader8.Text = "Release Year"
'Sets the field names of the Movie table as the Text property for the column headers
 ElseIf (IntKind = 1) Then
'Checks if the query was executed on the Actor table
 StrMessage = "Couldn't find this actor."
'Assigns a value to the StrMessage variable based on the selection in the form
 LvwSearchResult.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()
{ColumnHeader1, ColumnHeader2, ColumnHeader3})
'Adds column headers to the list view control
 ColumnHeader1.Text = "Actor ID"
 ColumnHeader2.Text = "First Name"
 ColumnHeader3.Text = "Last Name"
'Sets the field names of the Actor table as the Text property for the column
headers
 ElseIf (IntKind = 2) Then
'Checks if the query was executed on the Director table
 StrMessage = "Couldn't find this director."
'Assigns a value to the StrMessage variable based on the selection in the form

 LvwSearchResult.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()
{ColumnHeader1, ColumnHeader2, ColumnHeader3})
'Adds column headers to the list view control
 ColumnHeader1.Text = "Director ID"
 ColumnHeader2.Text = "First Name"
 ColumnHeader3.Text = "Last Name"
 'Sets the field names of the Director table as the Text property for the column
headers
 ElseIf (IntKind = 3) Then
'Checks if the query was executed on the Procedure table
 StrMessage = "Couldn't find this producer."
'Assigns a value to the StrMessage variable based on the selection in the form
 LvwSearchResult.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()
{ColumnHeader1, ColumnHeader2})
'Adds column headers to the list view control
 ColumnHeader1.Text = "Producer ID"
 ColumnHeader2.Text = "Name"
'Sets the field names of the Procedure table as the Text property for the column

headers
 ElseIf (IntKind = 4) Then
'Checks if the query was executed on the Video table
 StrMessage = "Couldn't find this video."
'Assigns a value to the StrMessage variable based on the selection in the form
 LvwSearchResult.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()
{ColumnHeader1, ColumnHeader2, ColumnHeader3, ColumnHeader4})
'Adds column headers to the list view control
 ColumnHeader1.Text = "Video ID"
 ColumnHeader2.Text = "Movie ID"
 ColumnHeader3.Text = "Format"
 ColumnHeader4.Text = "Price"
'Sets the field names of the Video table as the Text property for the column headers
 ElseIf (IntKind = 5) Then
'Checks if the query was executed on the Customer table
 StrMessage = "Couldn't find this customer."
 LvwSearchResult.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()
{ColumnHeader1, ColumnHeader2, ColumnHeader3, ColumnHeader4, ColumnHeader5,
ColumnHeader6, ColumnHeader7, ColumnHeader8, ColumnHeader9})
'Adds column headers to the list view control
 ColumnHeader1.Text = "Customer ID"
 ColumnHeader2.Text = "First Name"
 ColumnHeader3.Text = "Last Name"
 ColumnHeader4.Text = "Address"
 ColumnHeader5.Text = "City"
 ColumnHeader6.Text = "State"
 ColumnHeader7.Text = "Zip"
 ColumnHeader8.Text = "Phone"
 ColumnHeader9.Text = "Email"
'Sets the field names of the Customer table as the Text property for the column
headers
 End If

 Dim StrValue0, StrValue1, StrValue2, StrValue3, StrValue4, StrValue5,
StrValue6, StrValue7, StrValue8 As String
 Dim IntCounter As Integer
'Declares variables

 'Display the records from the dataset
 For Each DrRowPicker In DsDataSet.Tables("SearchResultAdmin").Rows
 If (IntKind = 0) Then

'Checks if the query was executed on the Movie table
 For IntCounter = 0 To 7
 If (DrRowPicker.IsNull(IntCounter)) Then
'Checks if the dataset contains no records
 If IntCounter = 0 Then
 StrValue0 = ""
 ElseIf IntCounter = 1 Then
 StrValue1 = ""
 ElseIf IntCounter = 2 Then
 StrValue2 = ""
 ElseIf IntCounter = 3 Then
 StrValue3 = ""
 ElseIf IntCounter = 4 Then
 StrValue4 = ""
 ElseIf IntCounter = 5 Then
 StrValue5 = ""
 ElseIf IntCounter = 6 Then
 StrValue6 = ""
 ElseIf IntCounter = 7 Then
 StrValue7 = ""
 End If
'Assigns a space to the string variables where the column has null value
 Else
'Executes if the dataset contains records
 If IntCounter = 0 Then
 StrValue0 = DrRowPicker(0)
 ElseIf IntCounter = 1 Then
 StrValue1 = DrRowPicker(1)
 ElseIf IntCounter = 2 Then
 StrValue2 = DrRowPicker(2)
 ElseIf IntCounter = 3 Then
 StrValue3 = DrRowPicker(3)
 ElseIf IntCounter = 4 Then
 StrValue4 = DrRowPicker(4)
 ElseIf IntCounter = 5 Then
 StrValue5 = DrRowPicker(5)
 ElseIf IntCounter = 6 Then
 StrValue6 = DrRowPicker(6)
 ElseIf IntCounter = 7 Then
 StrValue7 = DrRowPicker(7)
 End If
'Picks up the values from the dataset and stores the values in string variables
 End If

 Next

 Dim StrSearchRow As String() = {StrValue0, StrValue1, StrValue2,
StrValue3, StrValue4, StrValue5, StrValue6, StrValue7}
'Picks up the values from the string variables and stores the values in a single
string variable
 LvwSearchResult.Items.Add(New ListViewItem(StrSearchRow))
'Displays the row in the list view control
 ElseIf (IntKind = 1) Then
'Checks if the query was executed on the Actor table
 For IntCounter = 0 To 2
 If (DrRowPicker.IsNull(IntCounter)) Then
'Checks if the dataset contains no records
 If IntCounter = 0 Then
 StrValue0 = ""
 ElseIf IntCounter = 1 Then
 StrValue1 = ""
 ElseIf IntCounter = 2 Then
 StrValue2 = ""
 End If
'Assigns a space to the string variables where the column has null value
 Else
'Executes if the dataset contains records
 If IntCounter = 0 Then
 StrValue0 = DrRowPicker(IntCounter)
 ElseIf IntCounter = 1 Then
 StrValue1 = DrRowPicker(IntCounter)
 ElseIf IntCounter = 2 Then
 StrValue2 = DrRowPicker(IntCounter)
 End If
'Picks up the values from the dataset and stores the values in string variables
 End If
 Next

 Dim StrSearchRow As String() = {StrValue0, StrValue1, StrValue2}
'Picks up the values from the string variables and stores the values in a single
string variable
 LvwSearchResult.Items.Add(New ListViewItem(StrSearchRow))
'Displays the row in the list view control

 ElseIf (IntKind = 2) Then
'Checks if the query was executed on the Director table
 For IntCounter = 0 To 2

 If (DrRowPicker.IsNull(IntCounter)) Then
'Checks if the dataset contains no records
 If IntCounter = 0 Then
 StrValue0 = ""
 ElseIf IntCounter = 1 Then
 StrValue1 = ""
 ElseIf IntCounter = 2 Then
 StrValue2 = ""
 End If
'Assigns a space to the string variables where the column has null value
 Else
'Executes if the dataset contains records
 If IntCounter = 0 Then
 StrValue0 = DrRowPicker(0)
 ElseIf IntCounter = 1 Then
 StrValue1 = DrRowPicker(1)
 ElseIf IntCounter = 2 Then
 StrValue2 = DrRowPicker(2)
 End If
'Picks up the values from the dataset and stores the values in string variables
 End If
 Next

 Dim StrSearchRow As String() = {StrValue0, StrValue1, StrValue2}
'Picks up the values from the string variables and stores the values in a single
string variable
 LvwSearchResult.Items.Add(New ListViewItem(StrSearchRow))
'Displays the row in the list view control

 ElseIf (IntKind = 3) Then
'Checks if the query was executed on the Producer table
 For IntCounter = 0 To 1
 If (DrRowPicker.IsNull(IntCounter)) Then
'Checks if the dataset contains no records
 If IntCounter = 0 Then
 StrValue0 = ""
 ElseIf IntCounter = 1 Then
 StrValue1 = ""
 End If
'Assigns a space to the string variables where the column has null value
 Else
'Executes if the dataset contains records
 If IntCounter = 0 Then

 StrValue0 = DrRowPicker(0)
 ElseIf IntCounter = 1 Then
 StrValue1 = DrRowPicker(1)
 End If
'Picks up the values from the dataset and stores the values in string variables
 End If
 Next
 Dim StrSearchRow As String() = {StrValue0, StrValue1}
'Picks up the values from the string variables and stores the values in a single
string variable
 LvwSearchResult.Items.Add(New ListViewItem(StrSearchRow))
'Displays the row in the list view control

 ElseIf (IntKind = 4) Then
'Checks if the query was executed on the Video table
 For IntCounter = 0 To 3
 If (DrRowPicker.IsNull(IntCounter)) Then
'Checks if the dataset contains no records
 If IntCounter = 0 Then
 StrValue0 = ""
 ElseIf IntCounter = 1 Then
 StrValue1 = ""
 ElseIf IntCounter = 2 Then
 StrValue2 = ""
 ElseIf IntCounter = 3 Then
 StrValue3 = ""
 End If
'Assigns a space to the string variables where the column has null value
 Else
'Executes if the dataset contains records
 If IntCounter = 0 Then
 StrValue0 = DrRowPicker(0)
 ElseIf IntCounter = 1 Then
 StrValue1 = DrRowPicker(1)
 ElseIf IntCounter = 2 Then
 StrValue2 = DrRowPicker(2)
 ElseIf IntCounter = 3 Then
 StrValue3 = DrRowPicker(3)
 End If
'Picks up the values from the dataset and stores the values in string variables
 End If
 Next

 Dim StrSearchRow As String() = {StrValue0, StrValue1, StrValue2,
StrValue3}
'Picks up the values from the string variables and stores the values in a single
string variable
 LvwSearchResult.Items.Add(New ListViewItem(StrSearchRow))
'Displays the row in the list view control

 ElseIf (IntKind = 5) Then
'Checks if the query was executed on the Customer table
 For IntCounter = 0 To 8
 If (DrRowPicker.IsNull(IntCounter)) Then
'Checks if the dataset contains no records
 If IntCounter = 0 Then
 StrValue0 = ""
 ElseIf IntCounter = 1 Then
 StrValue1 = ""
 ElseIf IntCounter = 2 Then
 StrValue2 = ""
 ElseIf IntCounter = 3 Then
 StrValue3 = ""
 ElseIf IntCounter = 4 Then
 StrValue4 = ""
 ElseIf IntCounter = 5 Then
 StrValue5 = ""
 ElseIf IntCounter = 6 Then
 StrValue6 = ""
 ElseIf IntCounter = 7 Then
 StrValue7 = ""
 ElseIf IntCounter = 8 Then
 StrValue8 = ""
 End If
'Assigns a space to the string variables where the column has null value
 Else
'Executes if the dataset contains records
 If IntCounter = 0 Then
 StrValue0 = DrRowPicker(0)
 ElseIf IntCounter = 1 Then
 StrValue1 = DrRowPicker(1)
 ElseIf IntCounter = 2 Then
 StrValue2 = DrRowPicker(2)
 ElseIf IntCounter = 3 Then
 StrValue3 = DrRowPicker(3)
 ElseIf IntCounter = 4 Then

 StrValue4 = DrRowPicker(4)
 ElseIf IntCounter = 5 Then
 StrValue5 = DrRowPicker(5)
 ElseIf IntCounter = 6 Then
 StrValue6 = DrRowPicker(6)
 ElseIf IntCounter = 7 Then
 StrValue7 = DrRowPicker(7)
 ElseIf IntCounter = 8 Then
 StrValue8 = DrRowPicker(8)
 End If
'Picks up the values from the dataset and stores the values in string variables
 End If
 Next

 Dim StrSearchRow As String() = {StrValue0, StrValue1, StrValue2,
StrValue3, StrValue4, StrValue5, StrValue6, StrValue7, StrValue8}
'Picks up the values from the string variables and stores the values in a single
string variable
 LvwSearchResult.Items.Add(New ListViewItem(StrSearchRow))
'Displays the row in the list view control
 End If

 IntRowCount += 1
'Increments the IntRowCount variable by 1
 Next

 If IntRowCount = 0 Then
 MessageBox.Show(StrMessage)
'Displays a message if no rows were found in the dataset
 End If

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Closes the SqlDataAdapter1 object
End Sub

The CmdUpdate_Click Function
As previously discussed, the administrator can click on the Update button in the
Update/Delete form to update a record. In addition, when the administrator clicks on the
Update button, the CmdUpdate_Click function executes. The Cmd- Update_Click
function opens the record selected by the administrator in a form. The administrator can
then edit the record. However, the form that displays when the administrator clicks on the
Update button depends on the type of record selected by the administrator. For example,
if the record selected by the administrator is contained in the Actor table, the Update

Actor form displays when the administrator clicks on the Update button. Similarly, if the
record selected by the administrator is contained in the Movie table, the Update Movie
form displays. The Update Actor and Update Movie forms are identical to the Insert Actor
and Insert Movie forms, respectively.
The code for the CmdUpdate_Click function is as follows:

Private Sub CmdUpdate_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdUpdate.Click
 Dim LstViewCollection As ListView.SelectedListViewItemCollection
'Declares LstViewCollection as an object of the SelectedListViewItemCollection class
 LstViewCollection = New
ListView.SelectedListViewItemCollection(LvwSearchResult)
'Stores the item selected by the administrator in the LstViewCollection object

 Dim IntTotalSelectedCount As Integer
 IntTotalSelectedCount = LstViewCollection.Count()
'Stores the number of items selected by the administrator in the
IntTotalSelectedCount variable
 If (IntTotalSelectedCount < 1) Then
'Checks if the administrator has not selected any items in the list view control
 MessageBox.Show("You have not selected any records.")
'Displays a message asking the administrator to select a record
 Return
 ElseIf IntTotalSelectedCount > 1 Then
'Checks if the administrator has not selected multiple items from the list view
control
 Return
 End If

 Dim StrQuery, StrTemp, StrIDToUpdate As String
 Dim IntKind As Integer
 IntKind = CInt(Result)
'Stores the value of the Result variable in the IntKind variable

 Dim ObjActor As FrmInsertActor
 Dim ObjDirector As FrmInsertDirector
 Dim ObjProducer As FrmInsertProducer
 Dim ObjMovie As FrmInsertMovie
 Dim ObjVideo As FrmInsertVideo
 Dim ObjCustomer As FrmInsertCustomer
'Declares objects

 Dim StrUpdateID As String = LstViewCollection.Item(0).Text()
'Stores the text of the item selected by the administrator in the StrUpdateID
variable

 If (IntKind = 0) Then
'Checks if the query was executed on the Movie table
 ObjMovie = New FrmInsertMovie()
'Declares ObjMovie as an object of the FrmInsertMovie class
 ObjMovie.SetUpdateID(StrUpdateID)
'Calls the SetUpdateID function and passes the text of the selected item to the
function
 ObjMovie.Show()
'Displays the Insert Movie form
 ElseIf (IntKind = 1) Then
'Checks if the query was executed on the Actor table
 ObjActor = New FrmInsertActor()
'Declares ObjActor as an object of the FrmInsertActor class
 ObjActor.SetUpdateID(StrUpdateID)
'Calls the SetUpdateID function and passes the text of the selected item to the
function
 ObjActor.Show()
'Opens the Insert Actor form
 ElseIf (IntKind = 2) Then
'Checks if the query was executed on the Director table
 ObjDirector = New FrmInsertDirector()
'Declares ObjDirector as an object of the FrmInsertDirector class
 ObjDirector.SetUpdateID(StrUpdateID)
'Calls the SetUpdateID function and passes the text of the selected item to the
function
 ObjDirector.Show()
'Displays the Insert Director form
 ElseIf (IntKind = 3) Then
'Checks if the query was executed on the Producer table
 ObjProducer = New FrmInsertProducer()
'Declares ObjProducer as an object of the FrmInsertProducer class
 ObjProducer.SetUpdateID(StrUpdateID)
'Calls the SetUpdateID function and passes the text of the selected item to the
function
 ObjProducer.Show()
'Displays the Insert Producer form
 ElseIf (IntKind = 4) Then
'Checks if the query was executed on the Video table
 ObjVideo = New FrmInsertVideo()
'Declares ObjVideo as an object of the FrmInsertVideo class
 ObjVideo.SetUpdateID(StrUpdateID)
'Calls the SetUpdateID function and passes the text of the selected item to the
function

 ObjVideo.Show()
'Displays the Insert Video form
 ElseIf (IntKind = 5) Then
'Checks if the query was executed on the Customer table
 ObjCustomer = New FrmInsertCustomer()
'Declares ObjCustomer as an object of the FrmInsertCustomer class
 ObjCustomer.SetUpdateID(StrUpdateID)
'Calls the SetUpdateID function and passes the text of the selected item to the
function
 ObjCustomer.Show()
 'Displays the Insert Customer form
 End If
End Sub

The CmdDelete_Click Function
The administrator also can delete records by using the Update/Delete form. To delete a
record, the administrator needs to click on the Delete button in the Update/Delete form.
When the administrator clicks on the Delete button, the CmdDelete_Click function
executes.
The CmdDelete_Click function prompts the administrator to confirm the deletion of the
selected record. If the administrator clicks on the Yes button in the message box, the
selected record is deleted from the database.
The code of the CmdDelete_Click function is as follows:

Private Sub CmdDelete_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdDelete.Click
 Dim LstViewCollection As ListView.SelectedListViewItemCollection
'Declares LstViewCollection as an object of the SelectedListViewItemCollection class
 LstViewCollection = New
ListView.SelectedListViewItemCollection(LvwSearchResult)
'Stores the item selected by the administrator in the LstViewCollection object

 Dim IntTotalSelectedCount As Integer
 IntTotalSelectedCount = LstViewCollection.Count()
'Stores the number of items selected by the administrator in the
IntTotalSelectedCount variable

 If (IntTotalSelectedCount < 1) Then
'Checks if the administrator has not selected any items in the list view control
 MessageBox.Show("You have not selected any records.")
'Displays a message asking the administrator to select a record
 Return
 End If

Dim IntRes As DialogResult
 IntRes = MessageBox.Show("Are you sure you want to delete this record?",

"", MessageBoxButtons.YesNo)
'Displays a message confirming the deletion of the selected record
 If (IntRes = DialogResult.No) Then
 Return
 End If

 Dim IntCounter As Integer
 Dim StrIDToDelete As String
 For IntCounter = 0 To IntTotalSelectedCount - 1
 StrIDToDelete += "'"
'Adds a single quotation mark
 StrIDToDelete += LstViewCollection.Item(0).Text
'Adds the ID of the record to be deleted to the StrIDToDelete variable
 StrIDToDelete += "'"
'Adds another quotation mark
 If (IntCounter < IntTotalSelectedCount - 1) Then
 StrIDToDelete += ","
'Adds a comma
 End If
 LstViewCollection.Item(0).Remove()
'Removes the item from the list view control
 Next

 Dim StrQuery, StrTemp As String
 Dim IntKind As Integer
 IntKind = CInt(Result)
'Stores the value of the Result variable in the IntKind variable

 If (IntKind = 0) Then
'Checks if the selected record is contained in the Movie table
 StrQuery = "DELETE FROM movie WHERE MovID IN ("
 StrQuery += StrIDToDelete & ")"
'Specifies the query to delete records from the Movie table where the IDs of the
selected records match those in the table
 ElseIf (IntKind = 1) Then
'Checks if the selected record is contained in the Actor table
 StrQuery = "DELETE FROM actor WHERE ActorID IN ("
 StrQuery += StrIDToDelete & ")"
'Specifies the query to delete records from the Actor table where the IDs of the
selected records match those in the table
 ElseIf (IntKind = 2) Then
'Checks if the selected record is contained in the Director table
 StrQuery = "DELETE FROM director WHERE DirID IN ("

 StrQuery += StrIDToDelete & ")"
'Specifies the query to delete records from the Director table where the IDs of the
selected records match those in the table
 ElseIf (IntKind = 3) Then
'Checks if the selected record is contained in the Producer table
 StrQuery = "DELETE FROM producer WHERE ProdID IN ("
 StrQuery += StrIDToDelete & ")"
'Specifies the query to delete records from the Producer table where the IDs of the
selected records match those in the table
 ElseIf (IntKind = 4) Then
'Checks if the selected record is contained in the Video table
 StrQuery = "DELETE FROM video WHERE VideoID IN ("
 StrQuery += StrIDToDelete & ")"
'Specifies the query to delete records from the Video table where the IDs of the
selected records match those in the table
 ElseIf (IntKind = 5) Then
'Checks if the selected record is contained in the Customer table
 StrQuery = "DELETE FROM customer WHERE CustID IN ("
 StrQuery += StrIDToDelete & ")"
'Specifies the query to delete records from the Customer table where the IDs of the
selected records match those in the table
 End If

 Dim DeleteCmd1 As New SqlCommand(StrQuery, SqlConnection1)
'Declares DeleteCmd1 as an object of the SqlCommand class and associates the object
with the SqlConnection1 object

 SqlDataAdapter1.DeleteCommand = DeleteCmd1
 Try
 SqlConnection1.Open()
'Establishes a connection with the database
 SqlDataAdapter1.DeleteCommand.ExecuteNonQuery()
'Executes the query
 Catch MyException As SqlException
 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _
 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _
 "State: " & MyException.State.ToString() & ControlChars.Cr & _
 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _
 "Server: " & MyException.Server & ControlChars.Cr & _
 "Message: " & MyException.Message & ControlChars.Cr & _
 "Procedure: " & MyException.Procedure & ControlChars.Cr & _
 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Closes the SqlDataAdapter1 object
 Return
 End Try
End Sub

The CmdClear_Click Function
The CmdClear_Click function executes when the administrator clicks on the Clear
button in the Update/Delete form.
The code for the CmdClear_Click function is as follows:

Private Sub CmdClear_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdClear.Click
 LvwSearchResult.Items.Clear()
End Sub
The CmdClear_Click function clears the list view control.

The CmdCancel_Click Function
The CmdCancel_Click function executes when the administrator clicks on the Cancel
button in the Update/Delete form.
The code for the CmdCancel_Click function is as follows:

Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdCancel.Click
 Me.Close()
End Sub
The CmdCancel_Click function closes the Update/Delete form.

Complete Code for the Update/Delete Form
In the preceding sections, you looked at the code associated with the events and
functions in the Update/Delete form. Listing 19-1 provides the complete code for the
Update/Delete form.

Listing 19-1: The Code for the Update/Delete Form

Imports System.Data

Imports System.String

Imports System.Data.OleDb

Imports System.Collections

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Public Class FrmUpdateDelete

 Inherits System.Windows.Forms.Form

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 Dim SqlDataAdapter1 As New SqlDataAdapter()

 Dim Result As Integer

Windows Form Designer generated code

'Contains the code that specifies the size, location, and other properties, such as

 font and name, for the controls on the form.

 Private Sub FrmUpdateDelete_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 CmbSearchIn.SelectedIndex = 0

 HandleComboIndexes()

 End Sub

 Private Sub CmbSearchIn_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
CmbSearchIn.SelectedIndexChanged

 HandleComboIndexes()

 End Sub

 Private Sub HandleComboIndexes()

 Dim StrSearchIn As String

 Dim StrSearchBy As String

 Dim StrQuery As String

 CmbSearchBy.Items.Clear()

 StrSearchIn = CmbSearchIn.Text

 If (Compare(StrSearchIn, "Movie", True) = 0) Then

 CmbSearchBy.Items.Add("Movie Id")

 CmbSearchBy.Items.Add("Movie Title")

 CmbSearchBy.Items.Add("Release Year")

 CmbSearchBy.Items.Add("Category")

 ElseIf (Compare(StrSearchIn, "Actor", True) = 0) Then

 CmbSearchBy.Items.Add("Actor Id")

 CmbSearchBy.Items.Add("First Name")

 CmbSearchBy.Items.Add("Last Name")

 ElseIf (Compare(StrSearchIn, "Director", True) = 0) Then

 CmbSearchBy.Items.Add("Director Id")

 CmbSearchBy.Items.Add("First Name")

 CmbSearchBy.Items.Add("Last Name")

 ElseIf (Compare(StrSearchIn, "Producer", True) = 0) Then

 CmbSearchBy.Items.Add("Producer Id")

 CmbSearchBy.Items.Add("Name")

 ElseIf (Compare(StrSearchIn, "Video", True) = 0) Then

 CmbSearchBy.Items.Add("Video Id")

 CmbSearchBy.Items.Add("Format")

 ElseIf (Compare(StrSearchIn, "Customer", True) = 0) Then

 CmbSearchBy.Items.Add("Customer Id")

 CmbSearchBy.Items.Add("First Name")

 CmbSearchBy.Items.Add("Last Name")

 CmbSearchBy.Items.Add("State")

 Else

 StrQuery = ""

 End If

 CmbSearchBy.SelectedIndex = 0

 End Sub

 Private Sub CmdSearch_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdSearch.Click

 Dim DsDataSet As DataSet

 Dim DrRowPicker As DataRow

 Dim StrSearchIn As String

 Dim StrSearchBy As String

 Dim StrQuery As String

 Dim BSearchStrEmpty As Boolean

 BSearchStrEmpty = False

 If TxtSearchText.Text.Trim = "" Then

 MessageBox.Show("Please enter some text to search.")

 BSearchStrEmpty = True

 End If

 StrSearchIn = CmbSearchIn.Text

 StrSearchBy = CmbSearchBy.Text

 If (Compare(StrSearchIn, "Movie", True) = 0) Then

 Result = 0

 StrQuery = "SELECT DISTINCT MovID, MovTitle, DirID,

ProdID, Duration, Description, Category, ReleaseYear FROM Movie "

 If (Not BSearchStrEmpty) Then

 If (Compare(StrSearchBy, "Movie Id",

 True) = 0) Then

 StrQuery += "WHERE MovID = '"

 StrQuery += TxtSearchText.Text &

"'"

 ElseIf (Compare(StrSearchBy, "Movie Title",

True) = 0) Then

 StrQuery += "WHERE MovTitle LIKE

'"

 StrQuery += TxtSearchText.Text &

"%'"

 ElseIf (Compare(StrSearchBy, "Release Year",

True) = 0) Then

 StrQuery += "WHERE ReleaseYear =

'"

 StrQuery += TxtSearchText.Text &

"'"

 ElseIf (Compare(StrSearchBy, "Category",

True) = 0) Then

 StrQuery += "WHERE Category = '"

 StrQuery += TxtSearchText.Text &

"'"

 End If

 End If

 ElseIf (Compare(StrSearchIn, "Actor", True) = 0) Then

 Result = 1

 StrQuery = "SELECT DISTINCT ActorID, FirstName,

LastName FROM Actor "

 If (Not BSearchStrEmpty) Then

 If (Compare(StrSearchBy, "Actor Id", True) =

0) Then

 StrQuery += "WHERE ActorID = '"

 StrQuery += TxtSearchText.Text &

"'"

 ElseIf (Compare(StrSearchBy, "First Name",

True) = 0) Then

 StrQuery += "WHERE FirstName LIKE

'"

 StrQuery += TxtSearchText.Text &

"%'"

 ElseIf (Compare(StrSearchBy, "Last Name",

True) = 0) Then

 StrQuery += "WHERE LastName LIKE

'"

 StrQuery += TxtSearchText.Text &

"%'"

 End If

 End If

 ElseIf (Compare(StrSearchIn, "Director", True) = 0) Then

 Result = 2

 StrQuery = "SELECT DISTINCT DirID, FirstName, LastName

FROM Director "

 If (Not BSearchStrEmpty) Then

 If (Compare(StrSearchBy, "Director Id",

True) = 0) Then

 StrQuery += "WHERE DirID = '"

 StrQuery += TxtSearchText.Text &

"'"

 ElseIf (Compare(StrSearchBy, "First Name",

True) = 0) Then

 StrQuery += "WHERE FirstName LIKE

'"

 StrQuery += TxtSearchText.Text &

"%'"

 ElseIf (Compare(StrSearchBy, "Last Name",

True) = 0) Then

 StrQuery += "WHERE LastName LIKE

'"

 StrQuery += TxtSearchText.Text &

"%'"

 End If

 End If

 ElseIf (Compare(StrSearchIn, "Producer", True) = 0) Then

 Result = 3

 StrQuery = "SELECT DISTINCT ProdID, Name FROM Producer

"

 If (Not BSearchStrEmpty) Then

 If (Compare(StrSearchBy, "Producer ID",

True) = 0) Then

 StrQuery += "WHERE ProdID = '"

 StrQuery += TxtSearchText.Text &

"'"

 ElseIf (Compare(StrSearchBy, "Name", True) =

0) Then

 StrQuery += "WHERE Name LIKE '"

 StrQuery += TxtSearchText.Text &

"%'"

 End If

 End If

 ElseIf (Compare(StrSearchIn, "Video", True) = 0) Then

 Result = 4

 StrQuery = "SELECT DISTINCT VideoID, MovID, Format,

Price FROM Video "

 If (Not BSearchStrEmpty) Then

 If (Compare(StrSearchBy, "Video ID", True) =

0) Then

 StrQuery += "WHERE VideoID = '"

 ElseIf (Compare(StrSearchBy, "Format", True)

= 0) Then

 StrQuery += "WHERE Format = '"

 End If

 StrQuery += TxtSearchText.Text &

"'"

 End If

 ElseIf (Compare(StrSearchIn, "Customer", True) = 0) Then

 Result = 5

 StrQuery = "SELECT DISTINCT CustID, FirstName,

LastName, Address, City, State, Zip, Phone, Email FROM Customer "

 If (Not BSearchStrEmpty) Then

 If (Compare(StrSearchBy, "Customer Id",

True)

 = 0) Then

 StrQuery += "WHERE CustID = '"

 StrQuery += TxtSearchText.Text &

"'"

 ElseIf (Compare(StrSearchBy, "First Name",

True) = 0) Then

 StrQuery += "WHERE FirstName LIKE

'"

 StrQuery += TxtSearchText.Text &

"%'"

 ElseIf (Compare(StrSearchBy, "Last Name",

True) = 0) Then

 StrQuery += "WHERE LastName LIKE

'"

 StrQuery += TxtSearchText.Text &

"%'"

 ElseIf (Compare(StrSearchBy, "State", True)

= 0) Then

 StrQuery += "WHERE State = '"

 StrQuery += TxtSearchText.Text &

"'"

 End If

 End If

 Else

 Result = -1

 StrQuery = ""

 End If

 Dim SelectCmd1 As New SqlCommand(StrQuery, SqlConnection1)

 DsDataSet = New DataSet()

 SqlDataAdapter1.SelectCommand = SelectCmd1

 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "SearchResultAdmin")

 LvwSearchResult.Items.Clear()

 LvwSearchResult.Columns.Clear()

 Dim IntRowCount As Integer

 IntRowCount = 0

 Dim IntKind As Integer

 IntKind = CInt(Result)

 Dim ColumnHeader1 As New ColumnHeader()

 Dim ColumnHeader2 As New ColumnHeader()

 Dim ColumnHeader3 As New ColumnHeader()

 Dim ColumnHeader4 As New ColumnHeader()

 Dim ColumnHeader5 As New ColumnHeader()

 Dim ColumnHeader6 As New ColumnHeader()

 Dim ColumnHeader7 As New ColumnHeader()

 Dim ColumnHeader8 As New ColumnHeader()

 Dim ColumnHeader9 As New ColumnHeader()

 Dim StrMessage As String

 If (IntKind = 0) Then

 StrMessage = "Couldn't find this movie."

 LvwSearchResult.Columns.AddRange(New

System.Windows.Forms.ColumnHeader() {ColumnHeader1, ColumnHeader2,
ColumnHeader3,

ColumnHeader4, ColumnHeader5, ColumnHeader6, ColumnHeader7, ColumnHeader8})

 ColumnHeader1.Text = "Movie ID"

 ColumnHeader2.Text = "Movie Title"

 ColumnHeader3.Text = "Director ID"

 ColumnHeader4.Text = "Producer ID"

 ColumnHeader5.Text = "Duration"

 ColumnHeader6.Text = "Description"

 ColumnHeader7.Text = "Category"

 ColumnHeader8.Text = "Release Year"

 ElseIf (IntKind = 1) Then

 StrMessage = "Couldn't find this actor."

 LvwSearchResult.Columns.AddRange(New

System.Windows.Forms.ColumnHeader() {ColumnHeader1, ColumnHeader2,
ColumnHeader3})

 ColumnHeader1.Text = "Actor ID"

 ColumnHeader2.Text = "First Name"

 ColumnHeader3.Text = "Last Name"

 ElseIf (IntKind = 2) Then

 StrMessage = "Couldn't find this director."

 LvwSearchResult.Columns.AddRange(New

System.Windows.Forms.ColumnHeader() {ColumnHeader1, ColumnHeader2,
ColumnHeader3})

 ColumnHeader1.Text = "Director ID"

 ColumnHeader2.Text = "First Name"

 ColumnHeader3.Text = "Last Name"

 ElseIf (IntKind = 3) Then

 StrMessage = "Couldn't find this producer."

 LvwSearchResult.Columns.AddRange(New

System.Windows.Forms.ColumnHeader() {ColumnHeader1, ColumnHeader2})

 ColumnHeader1.Text = "Producer ID"

 ColumnHeader2.Text = "Name"

 ElseIf (IntKind = 4) Then

 StrMessage = "Couldn't find this video."

 LvwSearchResult.Columns.AddRange(New

System.Windows.Forms.ColumnHeader() {ColumnHeader1, ColumnHeader2,
ColumnHeader3,

ColumnHeader4})

 ColumnHeader1.Text = "Video ID"

 ColumnHeader2.Text = "Movie ID"

 ColumnHeader3.Text = "Format"

 ColumnHeader4.Text = "Price"

 ElseIf (IntKind = 5) Then

 StrMessage = "Couldn't find this customer."

 LvwSearchResult.Columns.AddRange(New

System.Windows.Forms.ColumnHeader() {ColumnHeader1, ColumnHeader2,
ColumnHeader3,

ColumnHeader4, ColumnHeader5, ColumnHeader6, ColumnHeader7, ColumnHeader8,

ColumnHeader9})

 ColumnHeader1.Text = "Customer ID"

 ColumnHeader2.Text = "First Name"

 ColumnHeader3.Text = "Last Name"

 ColumnHeader4.Text = "Address"

 ColumnHeader5.Text = "City"

 ColumnHeader6.Text = "State"

 ColumnHeader7.Text = "Zip"

 ColumnHeader8.Text = "Phone"

 ColumnHeader9.Text = "Email"

 End If

 Dim StrValue0, StrValue1, StrValue2, StrValue3, StrValue4,

StrValue5, StrValue6, StrValue7, StrValue8 As String

 Dim IntCounter As Integer

 For Each DrRowPicker In

DsDataSet.Tables("SearchResultAdmin").Rows

 If (IntKind = 0) Then

 For IntCounter = 0 To 7

 If

(DrRowPicker.IsNull(IntCounter)) Then

 If IntCounter = 0 Then

 StrValue0 = ""

 ElseIf IntCounter = 1

Then

 StrValue1 = ""

 ElseIf IntCounter = 2

Then

 StrValue2 = ""

 ElseIf IntCounter = 3

Then

 StrValue3 = ""

 ElseIf IntCounter = 4

Then

 StrValue4 = ""

 ElseIf IntCounter = 5

Then

 StrValue5 = ""

 ElseIf IntCounter = 6

Then

 StrValue6 = ""

 ElseIf IntCounter = 7

Then

 StrValue7 = ""

 End If

 Else

 If IntCounter = 0 Then

 StrValue0 =

DrRowPicker(0)

 ElseIf IntCounter = 1

Then

 StrValue1 =

DrRowPicker(1)

 ElseIf IntCounter = 2

Then

 StrValue2 =

DrRowPicker(2)

 ElseIf IntCounter = 3

Then

 StrValue3 =

DrRowPicker(3)

 ElseIf IntCounter = 4

Then

 StrValue4 =

DrRowPicker(4)

 ElseIf IntCounter = 5

Then

 StrValue5 =

DrRowPicker(5)

 ElseIf IntCounter = 6

Then

 StrValue6 =

DrRowPicker(6)

 ElseIf IntCounter = 7

Then

 StrValue7 =

DrRowPicker(7)

 End If

 End If

 Next

 Dim StrSearchRow As String() = {StrValue0,

StrValue1, StrValue2, StrValue3, StrValue4, StrValue5, StrValue6, StrValue7}

 LvwSearchResult.Items.Add(New

ListViewItem(StrSearchRow))

 ElseIf (IntKind = 1) Then

 For IntCounter = 0 To 2

 If

(DrRowPicker.IsNull(IntCounter)) Then

 If IntCounter = 0 Then

 StrValue0 = ""

 ElseIf IntCounter = 1

Then

 StrValue1 = ""

 ElseIf IntCounter = 2

Then

 StrValue2 = ""

 End If

 Else

 If IntCounter = 0 Then

 StrValue0 =

DrRowPicker(IntCounter)

 ElseIf IntCounter = 1

Then

 StrValue1 =

DrRowPicker(IntCounter)

 ElseIf IntCounter = 2

Then

 StrValue2 =

DrRowPicker(IntCounter)

 End If

 End If

 Next

 Dim StrSearchRow As String() = {StrValue0,

StrValue1, StrValue2}

 LvwSearchResult.Items.Add(New

ListViewItem(StrSearchRow))

 ElseIf (IntKind = 2) Then

 For IntCounter = 0 To 2

 If

(DrRowPicker.IsNull(IntCounter)) Then

 If IntCounter = 0 Then

 StrValue0 = ""

 ElseIf IntCounter = 1

Then

 StrValue1 = ""

 ElseIf IntCounter = 2

Then

 StrValue2 = ""

 End If

 Else

 If IntCounter = 0 Then

 StrValue0 =

DrRowPicker(0)

 ElseIf IntCounter = 1

Then

 StrValue1 =

DrRowPicker(1)

 ElseIf IntCounter = 2

Then

 StrValue2 =

DrRowPicker(2)

 End If

 End If

 Next

 Dim StrSearchRow As String() = {StrValue0,

StrValue1, StrValue2}

 LvwSearchResult.Items.Add(New

ListViewItem(StrSearchRow))

 ElseIf (IntKind = 3) Then

 For IntCounter = 0 To 1

 If

(DrRowPicker.IsNull(IntCounter)) Then

 If IntCounter = 0 Then

 StrValue0 = ""

 ElseIf IntCounter = 1

Then

 StrValue1 = ""

 End If

 Else

 If IntCounter = 0 Then

 StrValue0 =

DrRowPicker(0)

 ElseIf IntCounter = 1

Then

 StrValue1 =

DrRowPicker(1)

 End If

 End If

 Next

 Dim StrSearchRow As String() = {StrValue0,

StrValue1}

 LvwSearchResult.Items.Add(New

ListViewItem(StrSearchRow))

 ElseIf (IntKind = 4) Then

 For IntCounter = 0 To 3

 If

(DrRowPicker.IsNull(IntCounter)) Then

 If IntCounter = 0 Then

 StrValue0 = ""

 ElseIf IntCounter = 1

Then

 StrValue1 = ""

 ElseIf IntCounter = 2

Then

 StrValue2 = ""

 ElseIf IntCounter = 3

Then

 StrValue3 = ""

 End If

 Else

 If IntCounter = 0 Then

 StrValue0 =

DrRowPicker(0)

 ElseIf IntCounter = 1

Then

 StrValue1 =

DrRowPicker(1)

 ElseIf IntCounter = 2

Then

 StrValue2 =

DrRowPicker(2)

 ElseIf IntCounter = 3

Then

 StrValue3 =

DrRowPicker(3)

 End If

 End If

 Next

 Dim StrSearchRow As String() = {StrValue0,

StrValue1, StrValue2, StrValue3}

 LvwSearchResult.Items.Add(New

ListViewItem(StrSearchRow))

 ElseIf (IntKind = 5) Then

 For IntCounter = 0 To 8

 If

(DrRowPicker.IsNull(IntCounter)) Then

 If IntCounter = 0 Then

 StrValue0 = ""

 ElseIf IntCounter = 1

Then

 StrValue1 = ""

 ElseIf IntCounter = 2

Then

 StrValue2 = ""

 ElseIf IntCounter = 3

Then

 StrValue3 = ""

 ElseIf IntCounter = 4

Then

 StrValue4 = ""

 ElseIf IntCounter = 5

Then

 StrValue5 = ""

 ElseIf IntCounter = 6

Then

 StrValue6 = ""

 ElseIf IntCounter = 7

Then

 StrValue7 = ""

 ElseIf IntCounter = 8

Then

 StrValue8 = ""

 End If

 Else

 If IntCounter = 0 Then

 StrValue0 =

DrRowPicker(0)

 ElseIf IntCounter = 1

Then

 StrValue1 =

DrRowPicker(1)

 ElseIf IntCounter = 2

Then

 StrValue2 =

DrRowPicker(2)

 ElseIf IntCounter = 3

Then

 StrValue3 =

DrRowPicker(3)

 ElseIf IntCounter = 4

Then

 StrValue4 =

DrRowPicker(4)

 ElseIf IntCounter = 5

Then

 StrValue5 =

DrRowPicker(5)

 ElseIf IntCounter = 6

Then

 StrValue6 =

DrRowPicker(6)

 ElseIf IntCounter = 7

Then

 StrValue7 =

DrRowPicker(7)

 ElseIf IntCounter = 8

Then

 StrValue8 =

DrRowPicker(8)

 End If

 End If

 Next

 Dim StrSearchRow As String() = {StrValue0,

StrValue1, StrValue2, StrValue3, StrValue4, StrValue5, StrValue6, StrValue7,

StrValue8}

 LvwSearchResult.Items.Add(New

ListViewItem(StrSearchRow))

 End If

 IntRowCount += 1

 Next

 If IntRowCount = 0 Then

 MessageBox.Show(StrMessage)

 End If

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 End Sub

 Private Sub CmdUpdate_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdUpdate.Click

 Dim LstViewCollection As ListView.SelectedListViewItemCollection

 LstViewCollection = New

ListView.SelectedListViewItemCollection(LvwSearchResult)

 Dim IntTotalSelectedCount As Integer

 IntTotalSelectedCount = LstViewCollection.Count()

 If (IntTotalSelectedCount < 1) Then

 MessageBox.Show("You have not selected any records.")

 Return

 ElseIf IntTotalSelectedCount > 1 Then

 Return

 End If

 Dim StrQuery, StrTemp, StrIDToUpdate As String

 Dim IntKind As Integer

 IntKind = CInt(Result)

 Dim ObjActor As FrmInsertActor

 Dim ObjDirector As FrmInsertDirector

 Dim ObjProducer As FrmInsertProducer

 Dim ObjMovie As FrmInsertMovie

 Dim ObjVideo As FrmInsertVideo

 Dim ObjCustomer As FrmInsertCustomer

 Dim StrUpdateID As String = LstViewCollection.Item(0).Text()

 If (IntKind = 0) Then

 ObjMovie = New FrmInsertMovie()

 ObjMovie.SetUpdateID(StrUpdateID)

 ObjMovie.Show()

 ElseIf (IntKind = 1) Then

 ObjActor = New FrmInsertActor()

 ObjActor.SetUpdateID(StrUpdateID)

 ObjActor.Show()

 ElseIf (IntKind = 2) Then

 ObjDirector = New FrmInsertDirector()

 ObjDirector.SetUpdateID(StrUpdateID)

 ObjDirector.Show()

 ElseIf (IntKind = 3) Then

 ObjProducer = New FrmInsertProducer()

 ObjProducer.SetUpdateID(StrUpdateID)

 ObjProducer.Show()

 ElseIf (IntKind = 4) Then

 ObjVideo = New FrmInsertVideo()

 ObjVideo.SetUpdateID(StrUpdateID)

 ObjVideo.Show()

 ElseIf (IntKind = 5) Then

 ObjCustomer = New FrmInsertCustomer()

 ObjCustomer.SetUpdateID(StrUpdateID)

 ObjCustomer.Show()

 End If

 End Sub

 Private Sub CmdDelete_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdDelete.Click

 Dim LstViewCollection As ListView.SelectedListViewItemCollection

 LstViewCollection = New

ListView.SelectedListViewItemCollection(LvwSearchResult)

 Dim IntTotalSelectedCount As Integer

 IntTotalSelectedCount = LstViewCollection.Count()

 If (IntTotalSelectedCount < 1) Then

 MessageBox.Show("You have not selected any records.")

 Return

 End If

 Dim IntRes As DialogResult

 IntRes = MessageBox.Show("Are you sure you want to delete this

record?", "", MessageBoxButtons.YesNo)

 If (IntRes = DialogResult.No) Then

 Return

 End If

 Dim IntCounter As Integer

 Dim StrIDToDelete As String

 For IntCounter = 0 To IntTotalSelectedCount - 1

 StrIDToDelete += "'"

 StrIDToDelete += LstViewCollection.Item(0).Text

 StrIDToDelete += "'"

 If (IntCounter < IntTotalSelectedCount - 1) Then

 StrIDToDelete += ","

 End If

 LstViewCollection.Item(0).Remove()

 Next

 Dim StrQuery, StrTemp As String

 Dim IntKind As Integer

 IntKind = CInt(Result)

 If (IntKind = 0) Then

 StrQuery = "DELETE FROM movie WHERE MovID IN ("

 StrQuery += StrIDToDelete & ")"

 ElseIf (IntKind = 1) Then

 StrQuery = "DELETE FROM actor WHERE ActorID IN ("

 StrQuery += StrIDToDelete & ")"

 ElseIf (IntKind = 2) Then

 StrQuery = "DELETE FROM director WHERE DirID IN ("

 StrQuery += StrIDToDelete & ")"

 ElseIf (IntKind = 3) Then

 StrQuery = "DELETE FROM producer WHERE ProdID IN ("

 StrQuery += StrIDToDelete & ")"

 ElseIf (IntKind = 4) Then

 StrQuery = "DELETE FROM video WHERE VideoID IN ("

 StrQuery += StrIDToDelete & ")"

 ElseIf (IntKind = 5) Then

 StrQuery = "DELETE FROM customer WHERE CustID IN ("

 StrQuery += StrIDToDelete & ")"

 End If

 Dim DeleteCmd1 As New SqlCommand(StrQuery, SqlConnection1)

 SqlDataAdapter1.DeleteCommand = DeleteCmd1

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.DeleteCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source &

ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() &

ControlChars.Cr & _

 "State: " & MyException.State.ToString() &

ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() &

ControlChars.Cr & _

 "Server: " & MyException.Server &

ControlChars.Cr & _

 "Message: " & MyException.Message &

ControlChars.Cr & _

 "Procedure: " & MyException.Procedure &

ControlChars.Cr & _

 "Line: " &

MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 End Sub

 Private Sub CmdClear_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdClear.Click

 LvwSearchResult.Items.Clear()

 End Sub

 Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdCancel.Click

 Me.Close()

 End Sub

End Class

Summary
In this chapter, you learned to add functionality to the Update/Delete form. This chapter
also described the functions you need to create to add functionality to the Update/Delete
form. You also looked at the complete code for the Update/Delete form.

Chapter 20: Adding Functionality to the Insert
Forms
Overview
In the preceding chapter, you learned to add functionality to the Update/Delete form. In
this chapter, you will learn to add functionality to the Insert forms. The Insert forms
enable you to add records to the various tables in the Movies database.

This chapter describes how to add functionality to the following forms:
 The Insert Actor form
 The Insert Director form
 The Insert Producer form
 The Insert Video form
 The Insert Movie form
 The Insert Customer form

The following sections discuss each of these forms.

The Insert Actor Form
As the name suggests, the Insert Actor form enables the administrator to add records to
the Actor table. Let’s review the form shown in Figure 20-1.

Figure 20-1: The interface of the Insert Actor form

As with the other forms, you need to include the following statements in the Insert Actor
form:

Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes

The variables you need to declare in the Insert Actor form are as follows:
Dim SqlDataAdapter1 As New SqlDataAdapter()
Dim SqlConnection1 As New SqlConnection(StrConnectionString)
Private StrIDToUpdate As String
'Used to check if the form is opened from the Update/Delete form

You need to create the following functions in the Insert Actor form:
 SetUpdateID
 FrmInsertActor_Load
 CmdSubmit_Click
 CmdCancel_Click

The preceding functions are discussed in the following sections.

The SetUpdateID Function
As mentioned in the preceding chapter, the SetUpdateID function is called when the
administrator selects a record in the Update/Delete form and clicks on the Update button.
The Update/Delete form passes the text of the item selected by the administrator to the
SetUpdateID function.
The SetUpdateID function of the Insert Actor form executes if the administrator selects
a record contained in the Actor table and clicks on the Update button. Next, the
SetUpdateID function executes and stores the item selected by the administrator in the
StrIDToUpdate variable.

Public Sub SetUpdateID(ByVal StrUpID As String)
 StrIDToUpdate = StrUpID
 'Stores the item selected by the administrator in the StrIDToUpdate variable
End Sub

The FrmInsertActor_Load Function
The FrmInsertActor_Load function executes when the Insert Actor form is loaded.
This function checks to see if the Insert Actor form is opened from the Update/Delete
form. If the Insert Actor form is invoked from the Update/Delete form, the
FrmInsertActor_Load function retrieves the details for the record selected by the
administrator and displys the details in the form. In addition to displaying the records, the
FrmInsertActor_Load function also changes the caption of the form to Update Actor
Info and disables the Actor ID text box.

The code for this function is as follows:
Private Sub FrmInsertActor_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 DtpDOB.Format = DateTimePickerFormat.Custom
'Specifies that the DtpDOB date time picker control displays the date-time value in
a customized format
 DtpDOB.CustomFormat = "MM/dd/yyyy"
'Sets the format for the DtpDOB date time picker control to MM/dd/yyyy

 If StrIDToUpdate <> "" Then

'Checks if the form was opened from the Update/Delete form
 Me.Text = "Update Actor Info"
'Changes the Text property of the form
 TxtActorID.Enabled = False
'Disables the Actor ID text box

 Dim SelectString As String
 SelectString = "SELECT ActorID, FirstName, LastName, DOB, Background
FROM Actor WHERE ActorID = '" & StrIDToUpdate & "'"
'Specifies the query to retrieve the record from the Actor table

 Dim SelectCmd1 As New SqlCommand(SelectString, SqlConnection1)
'Creates an instance of the SqlCommand class

 Dim DsDataSet As DataSet
 DsDataSet = New DataSet()
'Creates the dataset
 SqlDataAdapter1.SelectCommand = SelectCmd1
 SqlDataAdapter1.SelectCommand.CommandText = SelectString
 Try

 SqlConnection1.Open()
'Establishes the connection
 SqlDataAdapter1.Fill(DsDataSet, "Result")
'Populates the Result table in the DsDataSet dataset with the query results
 Catch MyException As SqlException
 MessageBox.Show(("Source: " & MyException.Source &
ControlChars.Cr & _
 "Number: " & MyException.Number.ToString() &
ControlChars.Cr & _
 "State: " & MyException.State.ToString() &
ControlChars.Cr & _
 "Class: " & MyException.Class.ToString() &
ControlChars.Cr & _
 "Server: " & MyException.Server & ControlChars.Cr & _
 "Message: " & MyException.Message & ControlChars.Cr & _
 "Procedure: " & MyException.Procedure & ControlChars.Cr & _
 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Releases the resources used by the SqlDataAdapter1 object

 Return
 End Try

 TxtActorID.DataBindings.Add(New Binding("Text", DsDataSet,
"Result.ActorID"))
 TxtFName.DataBindings.Add(New Binding("Text", DsDataSet,
"Result.FirstName"))
 TxtLName.DataBindings.Add(New Binding("Text", DsDataSet,
"Result.LastName"))
 DtpDOB.DataBindings.Add(New Binding("Text", DsDataSet, "Result.DOB"))
 TxtBackground.DataBindings.Add(New Binding("Text", DsDataSet,
"Result.Background"))
'Binds the controls in the form with the fields in the dataset

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Releases the resources used by the SqlDataAdapter1 object
 End If
End Sub

The CmdSubmit_Click Function
The CmdSubmit_Click function executes when the administrator clicks on the Submit
button in the Insert Actor form.
The code for the CmdSubmit_Click function is as follows:

Private Sub CmdSubmit_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdSubmit.Click
 If TxtActorID.Text.Trim = "" Then
'Checks if the administrator has not entered any text in the Actor ID text box
 MessageBox.Show("Please enter the actor ID.")
'Displays a message asking the administrator to enter text in the Actor ID text box
 TxtActorID.Focus()
'Sets the focus on the Actor ID text box
 Return
 End If

 If TxtFName.Text.Trim = "" Then
'Checks if the administrator has not entered any text in the First Name text box
 MessageBox.Show("Please enter the first name.")
'Displays a message asking the administrator to enter text in the First Name text
box
 TxtFName.Focus()
'Sets the focus on the First Name text box
 Return

 End If

 If TxtLName.Text.Trim = "" Then
'Checks if the administrator has not entered any text in the Last Name text box
 MessageBox.Show("Please enter the last name.")
'Displays a message asking the administrator to enter text in the Last Name text box
 TxtLName.Focus()
'Sets the focus on the Last Name text box
 Return
 End If

 If StrIDToUpdate <> "" Then
'If the record needs to be updated
 Dim UpdString As String
 UpdString = "UPDATE Actor SET ActorID = @ActorID, FirstName =
@FirstName, LastName = @LastName, DOB = @" & _
 "DOB, Background = @Background WHERE ActorID = '" & StrIDToUpdate & "'"
'Specifies the query to update the record with the specified Actor ID
 Dim UpdateCmd1 As New SqlCommand(UpdString, SqlConnection1)
'Creates an instance of the SqlCommand class

 SqlDataAdapter1.UpdateCommand = UpdateCmd1
 SqlDataAdapter1.UpdateCommand.Parameters.Add(New
System.Data.SqlClient.SqlParameter("@ActorID", System.Data.SqlDbType.Char, 5,
"ActorID"))
 SqlDataAdapter1.UpdateCommand.Parameters(0).Value = TxtActorID.Text
 SqlDataAdapter1.UpdateCommand.Parameters.Add(New
System.Data.SqlClient.SqlParameter("@FirstName", System.Data.SqlDbType.VarChar,
50,
"FirstName"))
 SqlDataAdapter1.UpdateCommand.Parameters(1).Value = TxtFName.Text
 SqlDataAdapter1.UpdateCommand.Parameters.Add(New
System.Data.SqlClient.SqlParameter("@LastName", System.Data.SqlDbType.VarChar,
50,
"LastName"))
 SqlDataAdapter1.UpdateCommand.Parameters(2).Value = TxtLName.Text
 SqlDataAdapter1.UpdateCommand.Parameters.Add(New
System.Data.SqlClient.SqlParameter("@DOB", System.Data.SqlDbType.DateTime, 8,
"DOB"))
 SqlDataAdapter1.UpdateCommand.Parameters(3).Value = DtpDOB.Text
 SqlDataAdapter1.UpdateCommand.Parameters.Add(New
System.Data.SqlClient.SqlParameter("@Background",
System.Data.SqlDbType.VarChar,

255, "Background"))
 SqlDataAdapter1.UpdateCommand.Parameters(4).Value = TxtBackground.Text
'Associates the named parameter variables with the fields in the table
'Assigns the values specified by the administrator in the controls to the named
parameter variables

 Try
 SqlConnection1.Open()
'Establishes a connection
 SqlDataAdapter1.UpdateCommand.ExecuteNonQuery()
'Executes the query

 Catch MyException As SqlException
 MessageBox.Show(("Source: " & MyException.Source &
ControlChars.Cr & _
 "Number: " & MyException.Number.ToString() &
ControlChars.Cr & _
 "State: " & MyException.State.ToString() &
ControlChars.Cr & _
 "Class: " & MyException.Class.ToString() &
ControlChars.Cr & _
 "Server: " & MyException.Server & ControlChars.Cr & _
 "Message: " & MyException.Message & ControlChars.Cr & _
 "Procedure: " & MyException.Procedure & ControlChars.Cr & _
 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Releases the resources used by the SqlDataAdapter1object
 Return
 End Try
 MessageBox.Show("The record has been updated.")
 Else
'Executes if the record needs to be added
 Dim InsString As String
 InsString = "INSERT INTO Actor(ActorID, FirstName, LastName, DOB,
Background) VALUES (@ActorID" & _
 ", @FirstName, @LastName, @DOB, @Background); SELECT ActorID,
FirstName,
LastName" & _
 ", DOB, Background FROM Actor WHERE (ActorID = @ActorID)"
'Specifies the query to add a record to the Actor table

 Dim InsertCmd1 As New SqlCommand(InsString, SqlConnection1)
'Creates an instance of the SqlCommand class

 SqlDataAdapter1.InsertCommand = InsertCmd1
'Specifies the query stored in the InsertCmd1 variable as the query to be executed

 SqlDataAdapter1.InsertCommand.Connection = SqlConnection1
 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@ActorID", System.Data.SqlDbType.VarChar, 5, "ActorID"))
 SqlDataAdapter1.InsertCommand.Parameters(0).Value = TxtActorID.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@FirstName", System.Data.SqlDbType.VarChar, 50, "FirstName"))
 SqlDataAdapter1.InsertCommand.Parameters(1).Value = TxtFName.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@LastName", System.Data.SqlDbType.VarChar, 50, "LastName"))
 SqlDataAdapter1.InsertCommand.Parameters(2).Value = TxtLName.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@DOB",
System.Data.SqlDbType.DateTime, 8, "DOB"))
 SqlDataAdapter1.InsertCommand.Parameters(3).Value = DtpDOB.Text
 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@Background", System.Data.SqlDbType.VarChar, 255, "Background"))
 SqlDataAdapter1.InsertCommand.Parameters(4).Value = TxtBackground.Text
'Associates the named parameter variables with the fields in the table
'Assigns the values specified by the administrator in the controls to the named
parameter variables

 Try
 SqlConnection1.Open()
 'Establishes the connection with the database
 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()
'Executes the query
 Catch MyException As SqlException
 MessageBox.Show(("Source: " & MyException.Source &
ControlChars.Cr & _
 "Number: " & MyException.Number.ToString() &
ControlChars.Cr & _
 "State: " & MyException.State.ToString() &
ControlChars.Cr & _
 "Class: " & MyException.Class.ToString() &
ControlChars.Cr & _
 "Server: " & MyException.Server & ControlChars.Cr & _
 "Message: " & MyException.Message & ControlChars.Cr & _
 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Releases the resources used by the SqlDataAdapter1 object
 Return
 End Try

 MessageBox.Show("The record has been added.", "Record added",
MessageBoxButtons.OK, MessageBoxIcon.Information)
'Displays a message informing the administrator that the record was added to the
Actor table
 End If

 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
'Releases the resources used by the SqlDataAdapter1 object
 Me.Close()
End Sub

The CmdCancel_Click Function
The CmdCancel_Click function executes when the administrator clicks on the Cancel
button in the Insert Actor form.
The code for the CmdCancel_Click function is as follows:

Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdCancel.Click
 Me.Close()
'Closes the form
End Sub
When the CmdCancel_Click function executes, the Insert Actor form closes.

The Complete Code for the Insert Actor Form
In the preceding sections, you looked at the code associated with the events and
functions in the Insert Actor form. Listing 20-1 provides the complete code for the Insert
Actor form.

Listing 20-1: The Code for the Insert Actor Form

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Public Class FrmInsertActor

 Inherits System.Windows.Forms.Form

 Dim SqlDataAdapter1 As New SqlDataAdapter()

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 Private StrIDToUpdate As String

Windows Form Designer generated code

 Public Sub SetUpdateID(ByVal StrUpID As String)

 StrIDToUpdate = StrUpID

 End Sub

 Private Sub FrmInsertActor_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 DtpDOB.Format = DateTimePickerFormat.Custom

 DtpDOB.CustomFormat = "MM/dd/yyyy"

 If StrIDToUpdate <> "" Then

 Me.Text = "Update Actor Info"

 TxtActorID.Enabled = False

 Dim SelectString As String

 SelectString = "SELECT ActorID, FirstName, LastName, DOB, Background FROM

Actor WHERE ActorID = '" & StrIDToUpdate & "'"

 Dim SelectCmd1 As New SqlCommand(SelectString, SqlConnection1)

 Dim DsDataSet As DataSet

 DsDataSet = New DataSet()

 SqlDataAdapter1.SelectCommand = SelectCmd1

 SqlDataAdapter1.SelectCommand.CommandText = SelectString

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "Result")

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 TxtActorID.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.ActorID"))

 TxtFName.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.FirstName"))

 TxtLName.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.LastName"))

 DtpDOB.DataBindings.Add(New Binding("Text", DsDataSet, "Result.DOB"))

 TxtBackground.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.Background"))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 End If

 End Sub

 Private Sub CmdSubmit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdSubmit.Click

 If TxtActorID.Text.Trim = "" Then

 MessageBox.Show("Please enter the actor ID.")

 TxtActorID.Focus()

 Return

 End If

 If TxtFName.Text.Trim = "" Then

 MessageBox.Show("Please enter the first name.")

 TxtFName.Focus()

 Return

 End If

 If TxtLName.Text.Trim = "" Then

 MessageBox.Show("Please enter the last name.")

 TxtLName.Focus()

 Return

 End If

 If StrIDToUpdate <> "" Then

 Dim UpdString As String

 UpdString = "UPDATE Actor SET ActorID = @ActorID, FirstName = @FirstName,

LastName = @LastName, DOB = @DOB, Background = @Background WHERE ActorID =
'" &

StrIDToUpdate & "'"

 Dim UpdateCmd1 As New SqlCommand(UpdString, SqlConnection1)

 SqlDataAdapter1.UpdateCommand = UpdateCmd1

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@ActorID", System.Data.SqlDbType.Char, 5,

"ActorID"))

 SqlDataAdapter1.UpdateCommand.Parameters(0).Value = TxtActorID.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@FirstName", System.Data.SqlDbType.VarChar,
50,

"FirstName"))

 SqlDataAdapter1.UpdateCommand.Parameters(1).Value = TxtFName.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@LastName", System.Data.SqlDbType.VarChar,
50,

"LastName"))

 SqlDataAdapter1.UpdateCommand.Parameters(2).Value = TxtLName.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@DOB", System.Data.SqlDbType.DateTime, 8,

"DOB"))

 SqlDataAdapter1.UpdateCommand.Parameters(3).Value = DtpDOB.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Background", System.Data.SqlDbType.VarChar,

255, "Background"))

 SqlDataAdapter1.UpdateCommand.Parameters(4).Value = TxtBackground.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.UpdateCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been updated.")

 Else

 Dim InsString As String

 InsString = "INSERT INTO Actor(ActorID, FirstName, LastName, DOB,

Background) VALUES (@ActorID, @FirstName, @LastName, @DOB, @Background);
SELECT

ActorID, FirstName, LastName, DOB, Background FROM Actor WHERE (ActorID =
@ActorID)"

 Dim InsertCmd1 As New SqlCommand(InsString, SqlConnection1)

 SqlDataAdapter1.InsertCommand = InsertCmd1

 SqlDataAdapter1.InsertCommand.Connection = SqlConnection1

 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@ActorID",

System.Data.SqlDbType.VarChar, 5, "ActorID"))

 SqlDataAdapter1.InsertCommand.Parameters(0).Value = TxtActorID.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@FirstName",

System.Data.SqlDbType.VarChar, 50, "FirstName"))

 SqlDataAdapter1.InsertCommand.Parameters(1).Value = TxtFName.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@LastName",

System.Data.SqlDbType.VarChar, 50, "LastName"))

 SqlDataAdapter1.InsertCommand.Parameters(2).Value = TxtLName.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@DOB",

System.Data.SqlDbType.DateTime, 8, "DOB"))

 SqlDataAdapter1.InsertCommand.Parameters(3).Value = DtpDOB.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@Background", System.Data.SqlDbType.VarChar, 255, "Background"))

 SqlDataAdapter1.InsertCommand.Parameters(4).Value = TxtBackground.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been added.", "Record added",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 End If

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Me.Close()

 End Sub

 Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdCancel.Click

 Me.Close()

 End Sub

End Class

The Insert Director Form
The Insert Director form enables the administrator to add records to the Director table.
Let’s review the interface of the Insert Director form shown below.

Figure 20-2: The interface of the Insert Director form

As with the Insert Actor form, you need to include the following statements in the Insert
Director form:
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes

In addition to importing namespaces, you need to declare the following variables in the
Insert Director form:
Dim SqlDataAdapter1 As New SqlDataAdapter()
Dim SqlConnection1 As New SqlConnection(StrConnectionString)
Private StrIDToUpdate As String
'Used to check if the form is opened from the Update/Delete form

You need to create the following functions in the Insert Actor form:
 SetUpdateID
 FrmInsertDirector_Load
 CmdSubmit_Click
 CmdCancel_Click

Note that the functions you need to create to add functionality to the Insert Director form
are similar to the ones you need to create for the Insert Actor form. In addition, the
functions in the Insert Director form perform the same tasks as the Insert Actor form’s
functions, which have already been explained in detail in this chapter. Listing 20-2
provides the complete code for the Insert Director form.

Listing 20-2: The Code for the Insert Director Form

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Public Class FrmInsertDirector

 Inherits System.Windows.Forms.Form

 Private StrIDToUpdate As String

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 Dim SqlDataAdapter1 As New SqlDataAdapter()

Windows Form Designer generated code

 Public Sub SetUpdateID(ByVal StrUpID As String)

 StrIDToUpdate = StrUpID

 End Sub

 Private Sub CmdSubmit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdSubmit.Click

 If TxtDirectorID.Text.Trim = "" Then

 MessageBox.Show("Please enter director ID.")

 TxtDirectorID.Focus()

 Return

 End If

 If TxtFName.Text.Trim = "" Then

 MessageBox.Show("Please enter first name.")

 TxtFName.Focus()

 Return

 End If

 If TxtLName.Text.Trim = "" Then

 MessageBox.Show("Please enter last name.")

 TxtLName.Focus()

 Return

 End If

 If StrIDToUpdate <> "" Then

 Dim UpdString As String

 UpdString = "UPDATE Director SET DirID = @DirID, FirstName = @FirstName,

LastName = @LastName, DOB = @DOB, Background = @Background WHERE DirID = '"
&

StrIDToUpdate & "'"

 Dim UpdateCmd1 As New SqlCommand(UpdString, SqlConnection1)

 SqlDataAdapter1.UpdateCommand = UpdateCmd1

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@DirID", System.Data.SqlDbType.Char, 5,

"DirID"))

 SqlDataAdapter1.UpdateCommand.Parameters(0).Value = TxtDirectorID.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@FirstName", System.Data.SqlDbType.VarChar,
50,

"FirstName"))

 SqlDataAdapter1.UpdateCommand.Parameters(1).Value = TxtFName.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@LastName", System.Data.SqlDbType.VarChar,
50,

"LastName"))

 SqlDataAdapter1.UpdateCommand.Parameters(2).Value = TxtLName.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@DOB", System.Data.SqlDbType.DateTime, 8,

"DOB"))

 SqlDataAdapter1.UpdateCommand.Parameters(3).Value = DtpDOB.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Background", System.Data.SqlDbType.VarChar,

255, "Background"))

 SqlDataAdapter1.UpdateCommand.Parameters(4).Value = TxtBackground.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.UpdateCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been Updated")

 Else

 Dim InsString As String

 InsString = "INSERT INTO Director(DirID, FirstName, LastName, DOB,

Background) VALUES (@DirID, @FirstName, @LastName, @DOB, @Background);
SELECT DirID,

FirstName, LastName, DOB, Background FROM Director WHERE (DirID = @DirID)"

 Dim InsertCmd1 As New SqlCommand(InsString, SqlConnection1)

 SqlDataAdapter1.InsertCommand = InsertCmd1

 SqlDataAdapter1.InsertCommand.Connection = SqlConnection1

 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@DirID",

System.Data.SqlDbType.VarChar, 5, "DirID"))

 SqlDataAdapter1.InsertCommand.Parameters(0).Value = TxtDirectorID.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@FirstName",

System.Data.SqlDbType.VarChar, 50, "FirstName"))

 SqlDataAdapter1.InsertCommand.Parameters(1).Value = TxtFName.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New
SqlParameter("@LastName",

System.Data.SqlDbType.VarChar, 50, "LastName"))

 SqlDataAdapter1.InsertCommand.Parameters(2).Value = TxtLName.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@DOB",

System.Data.SqlDbType.DateTime, 8, "DOB"))

 SqlDataAdapter1.InsertCommand.Parameters(3).Value = DtpDOB.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

SqlParameter("@Background", System.Data.SqlDbType.VarChar, 255, "Background"))

 SqlDataAdapter1.InsertCommand.Parameters(4).Value = TxtBackground.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been added.", "Record added",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 End If

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Me.Close()

 End Sub

 Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdCancel.Click

 Me.Close()

 End Sub

 Private Sub FrmInsertDirector_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 DtpDOB.Format = DateTimePickerFormat.Custom

 DtpDOB.CustomFormat = "MM/dd/yyyy"

 If StrIDToUpdate <> "" Then

 Me.Text = "Update Director Info"

 TxtDirectorID.Enabled = False

 Dim SelectString As String

 SelectString = "SELECT DirID, FirstName, LastName, DOB, Background FROM

Director WHERE DirID = '" & StrIDToUpdate & "'"

 Dim SelectCmd1 As New SqlCommand(SelectString, SqlConnection1)

 Dim DsDataSet As DataSet

 DsDataSet = New DataSet()

 SqlDataAdapter1.SelectCommand = SelectCmd1

 SqlDataAdapter1.SelectCommand.CommandText = SelectString

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "Result")

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 TxtDirectorID.DataBindings.Add(New Binding("Text", DsDataSet, "Result.DirID"))

 TxtFName.DataBindings.Add(New Binding("Text", DsDataSet, "Result.FirstName"))

 TxtLName.DataBindings.Add(New Binding("Text", DsDataSet, "Result.LastName"))

 DtpDOB.DataBindings.Add(New Binding("Text", DsDataSet, "Result.DOB"))

 TxtBackground.DataBindings.Add(New Binding("Text", DsDataSet,
"Result.Background"))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 End If

 End Sub

End Class

The Insert Producer Form
The Insert Producer form enables the administrator to add records to the Producer table.
Figure 20-3 shows the interface of the Insert Producer form.

Figure 20-3: The interface of the Insert Producer form

As with the forms already discussed in this chapter, you need to include the following
statements in the Insert Producer form:
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes

In addition to importing namespaces, you need to declare the following variables in the
Insert Producer form:
Dim SqlDataAdapter1 As New SqlDataAdapter()
Dim SqlConnection1 As New SqlConnection(StrConnectionString)
Private StrIDToUpdate As String
'Used to check if the form is opened from the Update/Delete form

You need to create the following functions in the Insert Producer form:
 SetUpdateID
 FrmInsertProducer_Load
 CmdSubmit_Click
 CmdCancel_Click

The functions you need to create to add functionality to the Insert Producer form are
similar to the ones you need to create for the other forms. Listing 20-3 provides the
complete code for the Insert Producer form.

Listing 20-3: The Code for the Insert Producer Form

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Public Class FrmInsertProducer

 Inherits System.Windows.Forms.Form

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 Dim SqlDataAdapter1 As New SqlDataAdapter()

 Private StrIDToUpdate As String

Windows Form Designer generated code

 Public Sub SetUpdateID(ByVal StrUpID As String)

 StrIDToUpdate = StrUpID

 End Sub

 Private Sub CmdSubmit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdSubmit.Click

 If TxtProducerID.Text.Trim = "" Then

 MessageBox.Show("Please enter Producer ID")

 TxtProducerID.Focus()

 Return

 End If

 If TxtName.Text.Trim = "" Then

 MessageBox.Show("Please enter the producer name.")

 TxtName.Focus()

 Return

 End If

 If StrIDToUpdate <> "" Then

 Dim UpdString As String

 UpdString = "UPDATE Producer SET ProdID = @ProdID, Name = @Name WHERE

ProdID = '" & StrIDToUpdate & "'"

 Dim UpdateCmd1 As New SqlCommand(UpdString, SqlConnection1)

 SqlDataAdapter1.UpdateCommand = UpdateCmd1

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@ProdID", System.Data.SqlDbType.VarChar, 5,

 "ProdID"))

 SqlDataAdapter1.UpdateCommand.Parameters(0).Value = TxtProducerID.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New
System.Data.SqlClient.SqlParameter

("@Name", System.Data.SqlDbType.VarChar, 25, "Name"))

 SqlDataAdapter1.UpdateCommand.Parameters(1).Value = TxtName.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.UpdateCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been Updated")

 Else

 Dim InsString As String

 InsString = "INSERT INTO Producer(ProdID, Name) VALUES (@ProdID, @Name);

SELECT ProdID, Name FROM Producer WHERE (ProdID = @ProdID)"

 Dim InsertCmd1 As New SqlCommand(InsString, SqlConnection1)

 SqlDataAdapter1.InsertCommand = InsertCmd1

 SqlDataAdapter1.InsertCommand.Connection = SqlConnection1

 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@ProdID",

System.Data.SqlDbType.VarChar, 5, "ProdID"))

 SqlDataAdapter1.InsertCommand.Parameters(0).Value = TxtProducerID.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@Name",

System.Data.SqlDbType.VarChar, 25, "Name"))

 SqlDataAdapter1.InsertCommand.Parameters(1).Value = TxtName.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been added.", "Record added",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 End If

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Me.Close()

 End Sub

 Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdCancel.Click

 Me.Close()

 End Sub

 Private Sub FrmInsertProducer_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 If StrIDToUpdate <> "" Then

 Me.Text = "Update Producer Info"

 TxtProducerID.Enabled = False

 Dim SelectString As String

 SelectString = "SELECT ProdID, Name FROM Producer WHERE ProdID = '" &

StrIDToUpdate & "'"

 Dim SelectCmd1 As New SqlCommand(SelectString, SqlConnection1)

 Dim DsDataSet As DataSet

 DsDataSet = New DataSet()

 SqlDataAdapter1.SelectCommand = SelectCmd1

 SqlDataAdapter1.SelectCommand.CommandText = SelectString

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "Result")

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 TxtProducerID.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.ProdID"))

 TxtName.DataBindings.Add(New Binding("Text", DsDataSet, "Result.Name"))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 End If

 End Sub

End Class

The Insert Video Form
The administrator can use the Insert Video form to add records to the Video table. Figure
20-4 shows the Insert Video form.

Figure 20-4: The interface of the Insert Video form

In the Insert Video form, you need to import the same namespaces as in the forms
discussed earlier. In addition, you need to declare the same variables as were declared
in the earlier forms.

Similar to the forms already discussed, the Insert Video form also contains the following
functions:

 SetUpdateID
 FrmInsertVideo_Load
 CmdSubmit_Click
 CmdCancel_Click

The complete code for the Insert Video form is provided in Listing 20-4.
Listing 20-4: The Code for the Insert Video Form

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Public Class FrmInsertVideo

 Inherits System.Windows.Forms.Form

 Private StrIDToUpdate As String

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 Dim SqlDataAdapter1 As New SqlDataAdapter()

Windows Form Designer generated code

 Public Sub SetUpdateID(ByVal StrUpID As String)

 StrIDToUpdate = StrUpID

 End Sub

 Private Sub CmdSubmit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdSubmit.Click

 If TxtVideoID.Text.Trim = "" Then

 MessageBox.Show("Please enter video ID.")

 TxtVideoID.Focus()

 Return

 End If

 If TxtMovieID.Text.Trim = "" Then

 MessageBox.Show("Please enter the movie ID.")

 TxtMovieID.Focus()

 Return

 End If

 If TxtPrice.Text.Trim = "" Then

 MessageBox.Show("Please enter price for the video.")

 TxtPrice.Focus()

 Return

 End If

 If StrIDToUpdate <> "" Then

 Dim UpdString As String

 UpdString = "UPDATE Video SET MovID = @MovID, Format = @Format, Price =

@Price WHERE VideoID = '" & StrIDToUpdate & "'"

 Dim UpdateCmd1 As New SqlCommand(UpdString, SqlConnection1)

 SqlDataAdapter1.UpdateCommand = UpdateCmd1

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New
System.Data.SqlClient.SqlParameter

("@MovID", System.Data.SqlDbType.VarChar, 5, "MovID"))

 SqlDataAdapter1.UpdateCommand.Parameters(0).Value = TxtMovieID.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Format", System.Data.SqlDbType.VarChar, 4,

"Format"))

 SqlDataAdapter1.UpdateCommand.Parameters(1).Value = TxtFormat.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Price", System.Data.SqlDbType.Money, 8,

"Price"))

 SqlDataAdapter1.UpdateCommand.Parameters(2).Value = TxtPrice.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.UpdateCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been Updated")

 Else

 Dim InsString As String

 InsString = "INSERT INTO Video(VideoID, MovID, Format, Price) VALUES

(@VideoID, @MovID, @Format, @Price); SELECT VideoID, MovID, Format, Price FROM
Video

WHERE (VideoID = @VideoID)"

 Dim InsertCmd1 As New SqlCommand(InsString, SqlConnection1)

 SqlDataAdapter1.InsertCommand = InsertCmd1

 SqlDataAdapter1.InsertCommand.Connection = SqlConnection1

 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@VideoID",

System.Data.SqlDbType.VarChar, 5, "VideoID"))

 SqlDataAdapter1.InsertCommand.Parameters(0).Value = TxtVideoID.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@MovID",

System.Data.SqlDbType.VarChar, 5, "MovID"))

 SqlDataAdapter1.InsertCommand.Parameters(1).Value = TxtMovieID.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@Format",

System.Data.SqlDbType.VarChar, 4, "Format"))

 SqlDataAdapter1.InsertCommand.Parameters(2).Value = TxtFormat.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New SqlParameter("@Price",

System.Data.SqlDbType.Money, 8, "Price"))

 SqlDataAdapter1.InsertCommand.Parameters(3).Value = TxtPrice.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been added", "Record added",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 End If

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Me.Close()

 End Sub

 Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdCancel.Click

 Me.Close()

 End Sub

 Private Sub FrmInsertVideo_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 If StrIDToUpdate <> "" Then

 Me.Text = "Update Video Info"

 TxtVideoID.Enabled = False

 Dim SelectString As String

 SelectString = "SELECT VideoID, MovID, Format, Price FROM Video WHERE

VideoID = '" & StrIDToUpdate & "'"

 Dim SelectCmd1 As New SqlCommand(SelectString, SqlConnection1)

 Dim DsDataSet As DataSet

 DsDataSet = New DataSet()

 SqlDataAdapter1.SelectCommand = SelectCmd1

 SqlDataAdapter1.SelectCommand.CommandText = SelectString

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "Result")

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 TxtVideoID.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.VideoID"))

 TxtMovieID.DataBindings.Add(New Binding("Text", DsDataSet, "Result.MovID"))

 TxtFormat.DataBindings.Add(New Binding("Text", DsDataSet, "Result.Format"))

 TxtPrice.DataBindings.Add(New Binding("Text", DsDataSet, "Result.Price"))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 End If

 End Sub

End Class

The Insert Movie Form
The Insert Video form enables the administrator to add records to the Movie table. Figure
20-5 displays the Insert Movie form.

Figure 20-5: The interface of the Insert Movie form

Just as you imported namespaces and declared variables in the preceding forms, you
need to do so in the Insert Movie form. In the Insert Movie form, you need to import the
same namespaces and declare the same variables as you declared in the earlier forms.

The Insert Movie form also contains the following functions:
 SetUpdateID
 FrmInsertVideo_Load
 CmdSubmit_Click
 CmdCancel_Click

Listing 20-5 provides the complete code for the Insert Movie form.
Listing 20-5: The Code for the Insert Movie Form

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Public Class FrmInsertMovie

 Inherits System.Windows.Forms.Form

 Private StrIDToUpdate As String

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 Dim SqlDataAdapter1 As New SqlDataAdapter()

Windows Form Designer generated code

 Public Sub SetUpdateID(ByVal StrUpID As String)

 StrIDToUpdate = StrUpID

 End Sub

 Private Sub CmdSubmit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdSubmit.Click

 If TxtMovieID.Text.Trim = "" Then

 MessageBox.Show("Please enter the movie ID.")

 TxtMovieID.Focus()

 Return

 End If

 If TxtMovieTitle.Text.Trim = "" Then

 MessageBox.Show("Please enter the movie title.")

 TxtMovieTitle.Focus()

 Return

 End If

 If TxtDirectorID.Text.Trim = "" Then

 MessageBox.Show("Please enter the director ID.")

 TxtDirectorID.Focus()

 Return

 End If

 If TxtProducerID.Text.Trim = "" Then

 MessageBox.Show("Please enter the producer ID.")

 TxtProducerID.Focus()

 Return

 End If

 If TxtDuration.Text.Trim = "" Then

 MessageBox.Show("Please enter the duration of movie.")

 TxtDuration.Focus()

 Return

 End If

 If TxtRelYear.Text.Trim = "" Then

 MessageBox.Show("Please enter year of release of the movie.")

 TxtRelYear.Focus()

 Return

 End If

 If StrIDToUpdate <> "" Then

 Dim UpdString As String

 UpdString = "UPDATE Movie SET MovID = @MovID, MovTitle = @MovTitle, DirID

= @DirID, ProdID = @ProdID, Duration = @Duration, Description = @Description,

Category = @Category, ReleaseYear = @ReleaseYear WHERE MovID = '" &
StrIDToUpdate &

"'"

 Dim UpdateCmd1 As New SqlCommand(UpdString, SqlConnection1)

 SqlDataAdapter1.UpdateCommand = UpdateCmd1

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@MovID", System.Data.SqlDbType.VarChar, 5,

"MovID"))

 SqlDataAdapter1.UpdateCommand.Parameters(0).Value = TxtMovieID.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@MovTitle", System.Data.SqlDbType.VarChar, 40,

"MovTitle"))

 SqlDataAdapter1.UpdateCommand.Parameters(1).Value = TxtMovieTitle.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@DirID", System.Data.SqlDbType.VarChar, 5,

"DirID"))

 SqlDataAdapter1.UpdateCommand.Parameters(2).Value = TxtDirectorID.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@ProdID", System.Data.SqlDbType.VarChar, 5,

"ProdID"))

 SqlDataAdapter1.UpdateCommand.Parameters(3).Value = TxtProducerID.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Duration", System.Data.SqlDbType.Int,

"Duration"))

 SqlDataAdapter1.UpdateCommand.Parameters(4).Value = TxtDuration.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Description", System.Data.SqlDbType.VarChar,

255, "Description"))

 SqlDataAdapter1.UpdateCommand.Parameters(5).Value = TxtDescription.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Category", System.Data.SqlDbType.VarChar, 20,

"Category"))

 SqlDataAdapter1.UpdateCommand.Parameters(6).Value = TxtCategory.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@ReleaseYear", System.Data.SqlDbType.Int,

"ReleaseYear"))

 SqlDataAdapter1.UpdateCommand.Parameters(7).Value = TxtRelYear.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.UpdateCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been Updated")

 Else

 Dim InsString As String

 InsString = "INSERT INTO Movie(MovID, MovTitle, DirID, ProdID, Duration,

Description, Category, ReleaseYear) VALUES (@MovID, @MovTitle, @DirID, @ProdID,

@Duration, @Description, @Category, @ReleaseYear); SELECT MovID, MovTitle, DirID,

ProdID, Duration, Description, Category, ReleaseYear FROM Movie WHERE (MovID =

@MovID)"

 Dim InsertCmd1 As New SqlCommand(InsString, SqlConnection1)

 SqlDataAdapter1.InsertCommand = InsertCmd1

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@MovID", System.Data.SqlDbType.VarChar, 5,

"MovID"))

 SqlDataAdapter1.InsertCommand.Parameters(0).Value = TxtMovieID.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@MovTitle", System.Data.SqlDbType.VarChar, 40,

"MovTitle"))

 SqlDataAdapter1.InsertCommand.Parameters(1).Value = TxtMovieTitle.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@DirID", System.Data.SqlDbType.VarChar, 5,

"DirID"))

 SqlDataAdapter1.InsertCommand.Parameters(2).Value = TxtDirectorID.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@ProdID", System.Data.SqlDbType.VarChar, 5,

"ProdID"))

 SqlDataAdapter1.InsertCommand.Parameters(3).Value = TxtProducerID.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Duration", System.Data.SqlDbType.Int, 4,

"Duration"))

 SqlDataAdapter1.InsertCommand.Parameters(4).Value = TxtDuration.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Description", System.Data.SqlDbType.VarChar,

255, "Description"))

 SqlDataAdapter1.InsertCommand.Parameters(5).Value = TxtDescription.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Category", System.Data.SqlDbType.VarChar, 20,

"Category"))

 SqlDataAdapter1.InsertCommand.Parameters(6).Value = TxtCategory.Text

 If TxtRelYear.Text = "" Then

 TxtRelYear.Text = "Null"

 End If

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@ReleaseYear", System.Data.SqlDbType.Int, 4,

"ReleaseYear"))

 SqlDataAdapter1.InsertCommand.Parameters(7).Value = TxtRelYear.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 Catch MyException As Exception

 MessageBox.Show(MyException.Message)

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been added.", "Record added",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 End If

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Me.Close()

 End Sub

 Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdCancel.Click

 Me.Close()

 End Sub

 Private Sub FrmInsertMovie_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 If StrIDToUpdate <> "" Then

 Me.Text = "Update Movie Info"

 TxtMovieID.Enabled = False

 Dim SelectString As String

 SelectString = "SELECT MovID, MovTitle, DirID, ProdID, Duration,

Description, Category, ReleaseYear FROM Movie WHERE MovID = '" & StrIDToUpdate &
"'"

 Dim SelectCmd1 As New SqlCommand(SelectString, SqlConnection1)

 Dim DsDataSet As DataSet

 DsDataSet = New DataSet()

 SqlDataAdapter1.SelectCommand = SelectCmd1

 SqlDataAdapter1.SelectCommand.CommandText = SelectString

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "Result")

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 TxtMovieID.DataBindings.Add(New Binding("Text", DsDataSet, "Result.MovID"))

 TxtMovieTitle.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.MovTitle"))

 TxtDirectorID.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.DirID"))

 TxtProducerID.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.ProdID"))

 TxtDuration.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.Duration"))

 TxtDescription.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.Description"))

 TxtCategory.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.Category"))

 TxtRelYear.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.ReleaseYear"))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 End If

 End Sub

End Class

The Insert Customer Form
The administrator can use the Insert Customer form to add records to the Customer
table. Figure 20-6 shows the Insert Customer form.

Figure 20-6: The interface of the Insert Customer form

Before you write the code for the Insert Customer form, you need to import namespaces
and declare the variables in the form.

Similar to the forms already discussed, the Insert Customer form contains the following
functions:

 SetUpdateID
 FrmInsertVideo_Load
 CmdSubmit_Click
 CmdCancel_Click:

The complete code for the Insert Customer form is provided in Listing 20-6.
Listing 20-6: The Code for the Insert Customer Form

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Public Class FrmInsertCustomer

 Inherits System.Windows.Forms.Form

 Private StrIDToUpdate As String

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 Dim SqlDataAdapter1 As New SqlDataAdapter()

Windows Form Designer generated code

 Public Sub SetUpdateID(ByVal StrUpID As String)

 StrIDToUpdate = StrUpID

 End Sub

 Private Sub CmdSubmitReg_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdSubmitReg.Click

 If TxtFName.Text.Trim = "" Then

 MessageBox.Show("Please enter the first name.")

 TxtFName.Focus()

 Return

 End If

 If TxtLName.Text.Trim = "" Then

 MessageBox.Show("Please enter the last name.")

 TxtLName.Focus()

 Return

 End If

 If TxtAddress.Text.Trim = "" Then

 MessageBox.Show("Please enter the address.")

 TxtAddress.Focus()

 Return

 End If

 If (TxtCCNumber.Text.Trim = "") Then

 MessageBox.Show("Please enter the credit card number.", "Message Box",

MessageBoxButtons.OK)

 TxtCCNumber.Focus()

 Return

 ElseIf (TxtCCNumber.Text.Trim.Length <> 16) Then

 MessageBox.Show("Invalid credit card number. Please re-enter the credit

card number.", "Message Box", MessageBoxButtons.OK)

 TxtCCNumber.Focus()

 Return

 End If

 If (CDate(DtpCCValidUpto.Text) < Now()) Then

 MessageBox.Show("Invalid date")

 DtpCCValidUpto.Focus()

 Return

 End If

 If StrIDToUpdate <> "" Then

 Dim UpdString As String

 UpdString = "UPDATE Customer SET FirstName = @FirstName, LastName =

@LastName, Address = @Address, City = @City, State = @State, Zip = @Zip, Phone =

@Phone, EMail = @EMail, DOB = @DOB, CreditCardNum = @CreditCardNum,

CreditCardValidUpto = @CreditCardValidUpto WHERE CustID = " & StrIDToUpdate

 Dim UpdateCmd1 As New SqlCommand(UpdString, SqlConnection1)

 SqlDataAdapter1.UpdateCommand = UpdateCmd1

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@FirstName", System.Data.SqlDbType.VarChar,
50,

"FirstName"))

 SqlDataAdapter1.UpdateCommand.Parameters(0).Value = TxtFName.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@LastName", System.Data.SqlDbType.VarChar,
50,

"LastName"))

 SqlDataAdapter1.UpdateCommand.Parameters(1).Value = TxtLName.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Address", System.Data.SqlDbType.VarChar, 25,

"Address"))

 SqlDataAdapter1.UpdateCommand.Parameters(2).Value = TxtAddress.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@City", System.Data.SqlDbType.VarChar, 25,

"City"))

 SqlDataAdapter1.UpdateCommand.Parameters(3).Value = TxtCity.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@State", System.Data.SqlDbType.VarChar, 15,

"State"))

 SqlDataAdapter1.UpdateCommand.Parameters(4).Value = TxtState.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Zip", System.Data.SqlDbType.VarChar, 7, "Zip"))

 SqlDataAdapter1.UpdateCommand.Parameters(5).Value = TxtZip.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Phone", System.Data.SqlDbType.VarChar, 10,

"Phone"))

 SqlDataAdapter1.UpdateCommand.Parameters(6).Value = TxtPhone.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@EMail", System.Data.SqlDbType.VarChar, 50,

"EMail"))

 SqlDataAdapter1.UpdateCommand.Parameters(7).Value = TxtEmail.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@DOB", System.Data.SqlDbType.DateTime, 8,

"DOB"))

 SqlDataAdapter1.UpdateCommand.Parameters(8).Value = DtpDOB.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@CreditCardNum",
System.Data.SqlDbType.VarChar,

16, "CreditCardNum"))

 SqlDataAdapter1.UpdateCommand.Parameters(9).Value = TxtCCNumber.Text

 SqlDataAdapter1.UpdateCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@CreditCardValidUpto",

System.Data.SqlDbType.DateTime, 8, "CreditCardValidUpto"))

 SqlDataAdapter1.UpdateCommand.Parameters(10).Value = DtpCCValidUpto.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.UpdateCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been Updated")

 Else

 Dim InsString As String

 InsString = "INSERT INTO Customer(FirstName, LastName, Address, City,

State, Zip, Phone, EMail, DOB, CreditCardNum, CreditCardValidUpto) VALUES

(@FirstName, @LastName, @Address, @City, @State, @Zip, @Phone, @EMail, @DOB,

@CreditCardNum, @CreditCardValidUpto)"

 Dim InsertCmd1 As New SqlCommand(InsString, SqlConnection1)

 SqlDataAdapter1.InsertCommand = InsertCmd1

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@FirstName", System.Data.SqlDbType.VarChar,
50,

"FirstName"))

 SqlDataAdapter1.InsertCommand.Parameters(0).Value = TxtFName.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@LastName", System.Data.SqlDbType.VarChar,
50,

"LastName"))

 SqlDataAdapter1.InsertCommand.Parameters(1).Value = TxtLName.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Address", System.Data.SqlDbType.VarChar, 25,

"Address"))

 SqlDataAdapter1.InsertCommand.Parameters(2).Value = TxtAddress.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@City", System.Data.SqlDbType.VarChar, 25,

"City"))

 SqlDataAdapter1.InsertCommand.Parameters(3).Value = TxtCity.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@State", System.Data.SqlDbType.VarChar, 15,

"State"))

 SqlDataAdapter1.InsertCommand.Parameters(4).Value = TxtState.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Zip", System.Data.SqlDbType.VarChar, 7, "Zip"))

 SqlDataAdapter1.InsertCommand.Parameters(5).Value = TxtZip.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@Phone", System.Data.SqlDbType.VarChar, 10,

"Phone"))

 SqlDataAdapter1.InsertCommand.Parameters(6).Value = TxtPhone.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@EMail", System.Data.SqlDbType.VarChar, 50,

"EMail"))

 SqlDataAdapter1.InsertCommand.Parameters(7).Value = TxtEmail.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@DOB", System.Data.SqlDbType.DateTime, 8,

"DOB"))

 SqlDataAdapter1.InsertCommand.Parameters(8).Value = DtpDOB.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@CreditCardNum",
System.Data.SqlDbType.VarChar,

16, "CreditCardNum"))

 SqlDataAdapter1.InsertCommand.Parameters(9).Value = TxtCCNumber.Text

 SqlDataAdapter1.InsertCommand.Parameters.Add(New

System.Data.SqlClient.SqlParameter("@CreditCardValidUpto",

System.Data.SqlDbType.DateTime, 8, "CreditCardValidUpto"))

 SqlDataAdapter1.InsertCommand.Parameters(10).Value = DtpCCValidUpto.Text

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.InsertCommand.ExecuteNonQuery()

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 MessageBox.Show("The record has been added", "Record added",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 End If

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Me.Close()

 End Sub

 Private Sub CmdCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CmdCancel.Click

 Me.Close()

 End Sub

 Private Sub FrmInsertCustomer_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 DtpDOB.Format = DateTimePickerFormat.Custom

 DtpDOB.CustomFormat = "MM/dd/yyyy"

 DtpCCValidUpto.Format = DateTimePickerFormat.Custom

 DtpCCValidUpto.CustomFormat = "MM/dd/yyyy"

 If StrIDToUpdate <> "" Then

 Me.Text = "Update Customer Info"

 Dim SelectString As String

 SelectString = "SELECT FirstName, LastName, Address, City, State, Zip,

Phone, EMail, DOB, CreditCardNum, CreditCardValidUpto FROM Customer WHERE
CustID =

'" & StrIDToUpdate & "'"

 Dim SelectCmd1 As New SqlCommand(SelectString, SqlConnection1)

 Dim DsDataSet As DataSet

 DsDataSet = New DataSet()

 SqlDataAdapter1.SelectCommand = SelectCmd1

 SqlDataAdapter1.SelectCommand.CommandText = SelectString

 Try

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "Result")

 Catch MyException As SqlException

 MessageBox.Show(("Source: " & MyException.Source & ControlChars.Cr & _

 "Number: " & MyException.Number.ToString() & ControlChars.Cr & _

 "State: " & MyException.State.ToString() & ControlChars.Cr & _

 "Class: " & MyException.Class.ToString() & ControlChars.Cr & _

 "Server: " & MyException.Server & ControlChars.Cr & _

 "Message: " & MyException.Message & ControlChars.Cr & _

 "Procedure: " & MyException.Procedure & ControlChars.Cr & _

 "Line: " & MyException.LineNumber.ToString()))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 Return

 End Try

 TxtFName.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.FirstName"))

 TxtLName.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.LastName"))

 TxtAddress.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.Address"))

 TxtCity.DataBindings.Add(New Binding("Text", DsDataSet, "Result.City"))

 TxtState.DataBindings.Add(New Binding("Text", DsDataSet, "Result.State"))

 TxtZip.DataBindings.Add(New Binding("Text", DsDataSet, "Result.Zip"))

 TxtPhone.DataBindings.Add(New Binding("Text", DsDataSet, "Result.Phone"))

 TxtEmail.DataBindings.Add(New Binding("Text", DsDataSet, "Result.Email"))

 DtpDOB.DataBindings.Add(New Binding("Text", DsDataSet, "Result.DOB"))

 TxtCCNumber.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.CreditCardNum"))

 DtpCCValidUpto.DataBindings.Add(New Binding("Text", DsDataSet,

"Result.CreditCardValidUpto"))

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 End If

 End Sub

End Class

Summary
In this chapter, you learned to add functionality to the Insert forms. This chapter also
described the functions you need to create to add functionality to the each Insert form.
This chapter also provided the complete code for each Insert form.

Chapter 21: Adding Functionality to the Reports
Form
Overview
In the preceding chapter, you learned to add functionality to the Insert forms. In this
chapter, you will learn to add functionality to the Reports form of the Administration
module.

The Reports form displays reports related to daily sales, movies in demand, and
customer details. However, these reports are not displayed simultaneously in the
Reports form. In other words, there are three variations of the Reports form—Daily
Sales, Movies in Demand, and Customer Details.
Figure 21-1 shows the Daily Sales Report form.

Figure 21-1: The interface of the Daily Sales Report form

Figure 21-2 shows the Movies In Demand Report form.

Figure 21-2: The interface of the Movies In Demand Report form

Figure 21-3 shows the Customer Details Report form.

Figure 21-3: The interface of the Customer Details Report form

The Reports form displays when the administrator selects any command from the
Generate Reports menu of the Main form. The Reports form that displays depends on
the option selected by the administrator.
To display records from the database, you need to use the SQL Server .NET data
provider in the Reports form. To use the SQL Server .NET data provider, you need to
import the classes stored in the System.Data.SqlClient namespace. You can
import the System.Data.SqlClient namespace by including the following statement
in the Reports form:
Imports System.Data.SqlClient
'Includes classes used by the SQL Server .NET data provider

In addition to the preceding statement, you need to include the following statements in
the Reports form:
Imports System.Data
'Includes the classes that make up the ADO.NET architecture
Imports System.Data.SqlTypes
'Includes the classes for native data types within SQL Server
In addition, to connect to the Movies database from the Reports form, you need to use
an object of the SqlConnection class. To transfer data from the Main form to a dataset
and vice versa, you need to use an object of the SqlDataAdapter class.

You need to declare the following variables in the Reports form:
Dim SqlConnection1 As New SqlConnection(StrConnectionString)
'Declares the connection object
Dim SqlDataAdapter1 As New SqlDataAdapter()
'Declares the data adapter
Dim DsDataSet As DataSet
'Declares the dataset
Public Shared IntReportType As Integer
'Declares a variable that is accessible across instances

The Reports form consists of the following functions:
 FrmReport_Load
 MmnuExit_Click:

The following sections describe the code for these functions.

The FrmReport_Load Function
The FrmReport_Load function executes when the Reports form loads. The Reports
form loads when the administrator selects any command from the Generate Reports
menu in the Main form.

As previously mentioned, there are three variations of the Reports form. The Reports
form that displays when the administrator selects an option from the Generate Reports
menu depends on the command selected by the administrator. For example, if the
administrator selects the Daily Sales command, the Daily Sales report displays. If the
administrator selects the Movies In Demand command, the Movies In Demand report
displays. In addition, if the administrator selects the Customer Details command, the
Customer Details report displays.
This implies that you need to populate the Reports form programmatically. To do this,
when the administrator selects a command from the Generate Reports menu, the
IntReportType variable is assigned a value. For example, if the administrator selects
the Daily Sales command, the IntReportType variable is assigned a value of 0.
Similarly, if the administrator selects the Movies In Demand command, the
IntReportType variable is assigned a value of 1. If the administrator selects the
Customer Details command, the IntReportType variable is assigned a value of 2.
The FrmReport_Load function checks the value of the IntReportType variable and
populates the Reports form. The code for the FrmReport_Load function is as follows:

Private Sub FrmReport_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load
 Dim DblSum As Double
 Dim RowPicker1 As DataRow
 Dim RowPicker2 As DataRow
 Dim StrQuery As String
'Declares variables
 LvwReport.Items.Clear()
'Clears the list view control

 DsDataSet = New DataSet()
'Creating the dataset

 Try
 Dim ColumnHeader1 As New ColumnHeader()
 Dim ColumnHeader2 As New ColumnHeader()
 Dim ColumnHeader3 As New ColumnHeader()
 Dim ColumnHeader4 As New ColumnHeader()
 Dim ColumnHeader5 As New ColumnHeader()
 Dim ColumnHeader6 As New ColumnHeader()
 Dim ColumnHeader7 As New ColumnHeader()
 Dim ColumnHeader8 As New ColumnHeader()
 Dim ColumnHeader9 As New ColumnHeader()
 Dim ColumnHeader10 As New ColumnHeader()
'Declares column headers

 If (IntReportType = 2) Then
'Checks if the administrator selected the Customer Details command
 Text = "Customer Details Report"
'Specifies the Text property of the Reports form
 TxtTotalAmountSale.Enabled = False
'Disables the Total Amount text box
 LblTotalAmountSale.Visible = False
'Hides the Total Amount label
 LvwReport.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()
{ColumnHeader1, ColumnHeader2, ColumnHeader3, ColumnHeader4, ColumnHeader5,
ColumnHeader6,
ColumnHeader7, ColumnHeader8, ColumnHeader9, ColumnHeader10})
'Adds column headers to the list view control
 ColumnHeader1.Text = "Customer ID"
 ColumnHeader2.Text = "First Name"
 ColumnHeader3.Text = "Last Name"
 ColumnHeader4.Text = "Address"
 ColumnHeader5.Text = "City"
 ColumnHeader6.Text = "State"
 ColumnHeader7.Text = "Zip"
 ColumnHeader8.Text = "Phone"
 ColumnHeader9.Text = "Email"
 ColumnHeader10.Text = "Date of Birth"
'Specifies the column headers for the list view control

 StrQuery = "SELECT CustID, FirstName, LastName, Address, City,
State, Zip, Phone, Email, DOB FROM Customer a WHERE ((SELECT COUNT(*)
FROM Orders
WHERE a.CustID = Orders.CustID) >= 5)"
'Specifies the query to retrieve the details of customers who have placed more
than 5 orders

 Dim SelectCmd0 As New SqlCommand(StrQuery, SqlConnection1)
'Declares SelectCmd0 as an object of the SqlCommand class and associates it with
the SqlConnection1 object
 DsDataSet = New DataSet()
'Creates the dataset

 SqlDataAdapter1.SelectCommand = SelectCmd0
 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlConnection1.Open()
'Establishes a connection with the database
 SqlDataAdapter1.Fill(DsDataSet, "CustomerReport")
'Populates the CustomerReport table in the DsDataSet dataset with the query results

 For Each RowPicker1 In DsDataSet.Tables("CustomerReport").Rows
 Dim StrCustomerDetails As String() = {RowPicker1("CustID"),
RowPicker1("FirstName"), RowPicker1("LastName"), RowPicker1("Address"),
RowPicker1("City"),
RowPicker1("State"), RowPicker1("Zip"), RowPicker1("Phone"), RowPicker1("Email"),
RowPicker1("DOB")}
'Retrieves the records from the dataset
 LvwReport.Items.Add(New ListViewItem(StrCustomerDetails))
'Displays the records in the list view control
 Next
 ElseIf (IntReportType = 1) Then
'Checks if the administrator selected the Movies In Demand command
 Text = "Movies In Demand Report"
'Specifies the Text property of the Reports form
 TxtTotalAmountSale.Enabled = False
'Disables the Total Amount text box
 LblTotalAmountSale.Visible = False
'Shows the Total Amount label
 LvwReport.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()
{ColumnHeader1, ColumnHeader2, ColumnHeader3, ColumnHeader4, ColumnHeader5,
ColumnHeader6})
'Adds column headers to the list view control
 ColumnHeader1.Text = "Movie ID"
 ColumnHeader2.Text = "Movie Title"
 ColumnHeader3.Text = "Director"
 ColumnHeader4.Text = "Producer"
 ColumnHeader5.Text = "Category"
 ColumnHeader6.Text = "Release Year"
'Specifies the column headers for the list view control
 'Make Query string
 StrQuery = "SELECT a.MovID, a.MovTitle, b.FirstName, c. Name, a.Category,
a.ReleaseYear FROM Movie a, Director b, Producer c WHERE MovID IN (SELECT
movid FROM Video WHERE
videoid IN (SELECT b.VideoID FROM Orders a, OrderDetail b WHERE
a.OrderID=b.OrderID AND a.OrderDate >
DateADD(day, -7, GetDate()) GROUP BY b.VideoID)) AND a.DirID = b.DirID AND
a.ProdID = c.ProdID"
'Specifies the query to retrieve the details of movies

 Dim SelectCmd1 As New SqlCommand(StrQuery, SqlConnection1)
'Declares SelectCmd1 as an object of the SqlCommand class and associates it with the
SqlConnection1 object

 SqlDataAdapter1.SelectCommand = SelectCmd1
 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlConnection1.Open()
'Establishes a connection with the database
 SqlDataAdapter1.Fill(DsDataSet, "MoviesInDemandReport")
'Populates the MoviesInDemandReport table in the DsDataSet dataset with the query
results

 For Each RowPicker1 In DsDataSet.Tables("MoviesInDemandReport").Rows
 Dim StrCategory As String
 If RowPicker1.IsNull(4) Then
'Checks of the Category field is null
 StrCategory = ""
 Else
 StrCategory = RowPicker1(4)
'Stores the value in the Category field in the StrCategory variable
 End If

 Dim IntRelYear As Integer
 If RowPicker1.IsNull(5) Then
'Checks of the Release Year field is null
 IntRelYear = 0
'Assigns a value of 0 to the IntRelYear variable
 Else
 IntRelYear = RowPicker1(5)
'Stores the value in the Release Year field in the IntRelYear variable
 End If

 Dim StrSalesDetails As String() = {RowPicker1(0), RowPicker1(1),
RowPicker1(2), RowPicker1(3), StrCategory, IntRelYear}
'Retrieves the records from the dataset
 LvwReport.Items.Add(New ListViewItem(StrSalesDetails))
'Displays the records in the list view control
 Next
 Else
'Executes if the administrator selects the Daily Sales command
 Text = "Daily Sales Report"
'Specifies the Text property of the Reports form

 TxtTotalAmountSale.Visible = True
'Enables the Total Amount text box
 LblTotalAmountSale.Visible = True
'Shows the Total Amount label
 LvwReport.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()
{ColumnHeader1, ColumnHeader2, ColumnHeader3, ColumnHeader4, ColumnHeader5,
ColumnHeader6})
'Adds column headers to the list view control
 ColumnHeader1.Text = "Order ID"
 ColumnHeader2.Text = "Order Date"
 ColumnHeader3.Text = "Movie ID"
 ColumnHeader4.Text = "Movie Title"
 ColumnHeader5.Text = "Quantity Ordered"
 ColumnHeader6.Text = "Order Value"
'Specifies the column headers for the list view control

 StrQuery = "SELECT DISTINCT a.OrderID, a.OrderDate, d.MovID, d.MovTitle,
a.TotalQtyOrdered, a.OrderValue FROM Orders a, OrderDetail b, Video c, Movie d
WHERE a.OrderID =
b.OrderID AND b.VideoID = c.VideoID AND c.MovID = d.MovID AND a.OrderDate >
DateADD(day, -1, GetDate())
ORDER BY a.OrderID"
'Specifies the query to retrieve the details of the sales on a particular date

 Dim SelectCmd3 As New SqlCommand(StrQuery, SqlConnection1)
'Declares SelectCmd3 as an object of the SqlCommand class and associates it with the
SqlConnection1 object

 SqlDataAdapter1.SelectCommand = SelectCmd3
 SqlDataAdapter1.SelectCommand.CommandText = StrQuery
 SqlDataAdapter1.Fill(DsDataSet, "SalesReport")
'Populates the SalesReport table in the DsDataSet dataset with the query results

 For Each RowPicker1 In DsDataSet.Tables("SalesReport").Rows
 Dim StrSalesDetails As String() = {RowPicker1(0), RowPicker1(1),
RowPicker1(2), RowPicker1(3), RowPicker1(4), RowPicker1(5)}
'Retrieves the records from the dataset
 LvwReport.Items.Add(New ListViewItem(StrSalesDetails))
'Displays the records in the list view control
 DblSum = DblSum + RowPicker1(5)
'Calculates the total sale value
 Next

 TxtTotalAmountSale.Text = DblSum
'Displays the total sale value in the Total Amount text box

 End If
 Catch MyException As Exception
 MsgBox("Error Occurred:" & vbLf & MyException.ToString)
 End Try

 'Closing the connection
 SqlConnection1.Close()
'Closes the SqlConnection1 object
 SqlDataAdapter1.Dispose()
 'Releases the resources used by the SqlDataAdapter1 object
End Sub

The MmnuExit_Click Function
The MmnuExit_Click function executes when the administrator selects the Exit menu
from the Reports form. As the name suggests, the MmnuExit_Click function closes the
Reports form.
The code for the MmnuExit_Click function is as follows:

Private Sub MmnuExit_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MmnuExit.Click
 Me.Close()
'Closes the form
End Sub

The Complete Code for the Reports Form
In the previous sections, you looked at the code associated with the events and functions
in the Reports form. Listing 21-1 lists the complete code for the Reports form.

Listing 21-1: The Code for the Reports Form

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Public Class FrmReports

 Inherits System.Windows.Forms.Form

 Dim SqlConnection1 As New SqlConnection(StrConnectionString)

 Dim SqlDataAdapter1 As New SqlDataAdapter()

 Dim DsDataSet As DataSet

 Public Shared IntReportType As Integer

Windows Form Designer generated code

'Contains the code that specifies the size, location, and other properties, such as font

and name, for the controls on the form.

 Private Sub FrmReport_Load(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles MyBase.Load

 Dim DblSum As Double

 Dim RowPicker1 As DataRow

 Dim RowPicker2 As DataRow

 Dim StrQuery As String

 LvwReport.Items.Clear()

 DsDataSet = New DataSet()

 Try

 Dim ColumnHeader1 As New ColumnHeader()

 Dim ColumnHeader2 As New ColumnHeader()

 Dim ColumnHeader3 As New ColumnHeader()

 Dim ColumnHeader4 As New ColumnHeader()

 Dim ColumnHeader5 As New ColumnHeader()

 Dim ColumnHeader6 As New ColumnHeader()

 Dim ColumnHeader7 As New ColumnHeader()

 Dim ColumnHeader8 As New ColumnHeader()

 Dim ColumnHeader9 As New ColumnHeader()

 Dim ColumnHeader10 As New ColumnHeader()

 If (IntReportType = 2) Then

 Text = "Customer Details Report"

 TxtTotalAmountSale.Enabled = False

 LblTotalAmountSale.Visible = False

 LvwReport.Columns.AddRange(New

System.Windows.Forms.ColumnHeader() {ColumnHeader1, ColumnHeader2,
ColumnHeader3, ColumnHeader4,

ColumnHeader5, ColumnHeader6, ColumnHeader7, ColumnHeader8, ColumnHeader9,
ColumnHeader10})

 ColumnHeader1.Text = "Customer ID"

 ColumnHeader2.Text = "First Name"

 ColumnHeader3.Text = "Last Name"

 ColumnHeader4.Text = "Address"

 ColumnHeader5.Text = "City"

 ColumnHeader6.Text = "State"

 ColumnHeader7.Text = "Zip"

 ColumnHeader8.Text = "Phone"

 ColumnHeader9.Text = "Email"

 ColumnHeader10.Text = "Date of Birth"

 StrQuery = "SELECT CustID, FirstName, LastName,

Address, City, State, Zip, Phone, Email, DOB FROM Customer a WHERE ((SELECT
COUNT(*) FROM Orders

WHERE a.CustID = Orders.CustID) >= 5)"

 Dim SelectCmd0 As New SqlCommand(StrQuery,
SqlConnection1)

 DsDataSet = New DataSet()

 SqlDataAdapter1.SelectCommand = SelectCmd0

 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "CustomerReport")

 For Each RowPicker1 In
DsDataSet.Tables("CustomerReport").Rows

 Dim StrCustomerDetails As String() =

{RowPicker1("CustID"), RowPicker1("FirstName"), RowPicker1("LastName"),
RowPicker1("Address"), RowPicker1("City"),

RowPicker1("State"), RowPicker1("Zip"), RowPicker1("Phone"), RowPicker1("Email"),
RowPicker1("DOB")}

 LvwReport.Items.Add(New
ListViewItem(StrCustomerDetails))

 Next

 ElseIf (IntReportType = 1) Then

 Text = "Movies In Demand Report"

 TxtTotalAmountSale.Enabled = False

 LblTotalAmountSale.Visible = False

 LvwReport.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()

{ColumnHeader1, ColumnHeader2, ColumnHeader3, ColumnHeader4, ColumnHeader5,
ColumnHeader6})

 ColumnHeader1.Text = "Movie ID"

 ColumnHeader2.Text = "Movie Title"

 ColumnHeader3.Text = "Director"

 ColumnHeader4.Text = "Producer"

 ColumnHeader5.Text = "Category"

 ColumnHeader6.Text = "Release Year"

 StrQuery = "SELECT a.MovID, a.MovTitle, b.FirstName, c. Name,

a.Category, a.ReleaseYear FROM Movie a, Director b, Producer c WHERE MovID IN
(SELECT movid FROM Video WHERE

videoid IN (SELECT b.VideoID FROM Orders a, OrderDetail b WHERE
a.OrderID=b.OrderID AND a.OrderDate >

DateADD(day, -7, GetDate()) GROUP BY b.VideoID)) AND a.DirID = b.DirID AND
a.ProdID = c.ProdID"

 Dim SelectCmd1 As New SqlCommand(StrQuery,
SqlConnection1)

 SqlDataAdapter1.SelectCommand = SelectCmd1

 SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlConnection1.Open()

 SqlDataAdapter1.Fill(DsDataSet, "MoviesInDemandReport")

 For Each RowPicker1 In
DsDataSet.Tables("MoviesInDemandReport").Rows

 Dim StrCategory As String

 If RowPicker1.IsNull(4) Then

 StrCategory = ""

 Else

 StrCategory = RowPicker1(4)

 End If

 Dim IntRelYear As Integer

 If RowPicker1.IsNull(5) Then

 IntRelYear = 0

 Else

 IntRelYear = RowPicker1(5)

 End If

 Dim StrSalesDetails As String() = {RowPicker1(0),

RowPicker1(1), RowPicker1(2), RowPicker1(3), StrCategory, IntRelYear}

 LvwReport.Items.Add(New ListViewItem(StrSalesDetails))

 Next

 Else

 Text = "Daily Sales Report"

 TxtTotalAmountSale.Visible = True

 LblTotalAmountSale.Visible = True

 LvwReport.Columns.AddRange(New
System.Windows.Forms.ColumnHeader()

{ColumnHeader1, ColumnHeader2, ColumnHeader3, ColumnHeader4, ColumnHeader5,
ColumnHeader6})

 ColumnHeader1.Text = "Order ID"

 ColumnHeader2.Text = "Order Date"

 ColumnHeader3.Text = "Movie ID"

 ColumnHeader4.Text = "Movie Title"

 ColumnHeader5.Text = "Quantity Ordered"

 ColumnHeader6.Text = "Order Value"

 StrQuery = "SELECT DISTINCT a.OrderID, a.OrderDate,
d.MovID,

d.MovTitle, a.TotalQtyOrdered, a.OrderValue FROM Orders a, OrderDetail b, Video c,
Movie d WHERE a.OrderID =

b.OrderID AND b.VideoID = c.VideoID AND c.MovID = d.MovID AND a.OrderDate >
DateADD(day, -1, GetDate())

ORDER BY a.OrderID"

 Dim SelectCmd3 As New SqlCommand(StrQuery,
SqlConnection1)

 SqlDataAdapter1.SelectCommand = SelectCmd3

SqlDataAdapter1.SelectCommand.CommandText = StrQuery

 SqlDataAdapter1.Fill(DsDataSet, "SalesReport")

 For Each RowPicker1 In DsDataSet.Tables("SalesReport").Rows

 Dim StrSalesDetails As String() = {RowPicker1(0),

RowPicker1(1), RowPicker1(2), RowPicker1(3), RowPicker1(4), RowPicker1(5)}

 LvwReport.Items.Add(New ListViewItem(StrSalesDetails))

 DblSum = DblSum + RowPicker1(5) 'Calculating the

total Sale Value

 Next

 TxtTotalAmountSale.Text = DblSum

 End If

 Catch MyException As Exception

 MsgBox("Error Occurred:" & vbLf & MyException.ToString)

 End Try

 SqlConnection1.Close()

 SqlDataAdapter1.Dispose()

 End Sub

 Private Sub MmnuExit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MmnuExit.Click

 Me.Close()

 End Sub

End Class

Summary
In this chapter, you learned to add functionality to the Reports form. This chapter also
described the function you need to create to add functionality to the Reports form. This
chapter also provided the complete code for the Reports form.

Part IV: Professional Project 3—Creating Web
Applications
Chapter List

Chapter 22: Project Case Study—Creating a Web Application for the MyMovies Video
Kiosk
Chapter 23: Getting Started with ASP.NET
Chapter 24: More on ASP.NET
Chapter 25: Web Services
Chapter 26: Designing the Customer Interface
Chapter 27: Adding Functionality to the Customer Interface
Chapter 28: Designing the Admin Interface
Chapter 29: Adding Functionality to the Admin Interface

Project 3 Overview
In Part III of this book, you learned to create a Windows application for a video company.
Now the same company requires a Web application that can be accessed by the
customers. In other words, the company requires a Web site named MyMovies.com that
can be accessed by any customer and at any time. In this project, you will create the
MyMovies Web application that provides the same functionality as the MyMovies
Windows application created in Part III.

Similar to the MyMovies Windows application, the MyMovies Web application is
designed for the customers and administrators of the video stores. In addition, this
application provides the same features as the Windows application, such as allowing
customers to search for movies and purchase them. Customers can also search the
database for movies based on various criteria. The administrator can use the MyMovies
Web application to maintain and update the various tables in the database and to
generate reports.

The MyMovies Web application is an application developed by using Visual Basic.NET
and ASP.NET. Similar to the Windows application, this application also stores all the
client- and movie-specific details in a Microsoft SQL 2000 database. The key concepts
used to create the MyMovies Web application are as follows:

 Visual Basic.NET
 Web services
 Working with Web forms
 Creating Web applications using ASP.NET

In the project, you will learn the basic concepts of ASP.NET and create the MyMovies
Web application.

Chapter 22: Project Case Study—Creating a Web
Application for the MyMovies Video Kiosk
In Part III of the book, you learned how to create a VB.NET Windows application for the
MyMovies company. Starting with this chapter, you will learn to create Web applications
in Visual Basic.NET. Before actually creating a project, however, you first need to look at
the existing Windows application that MyMovies has started using at its stores. This
chapter describes the MyMovies video kiosk Windows application and discusses why
there is a need to switch to a Web application.

MyMovies Video Kiosk: Windows Application
As discussed in Chapter 9, “Project Case Study—Creating a Video Kiosk,” MyMovies is
a video company based in New Jersey. The company sells movie videos and also
provides information about movies. The company owns a chain of stores in various cities
across the United States.

The company changed its old system of paper catalogs and installed a Windows
application for customers at its stores. This application is a big hit with all the customers
visiting the video stores. The company conducted a customer survey and found that the
customers want a system they can use to browse through catalogs and place orders
sitting in their homes. This means that there is a demand for a Web application that can
be accessed from anywhere and at any time.

MyMovies Web Application: The Solution
As mentioned in the preceding section, the solution is to create a Web application that
can provide the same functionality as the Windows application. In other words,
customers should be able to use an application that will be running on a Web server. In
addition, this application should provide the same features as the Windows application,
such as enabling customers to log on and search for a movie of their choice and buy it

as well. Customers should also be able to view details about a specific movie, actor, or
director. This information can be stored in a Microsoft SQL 2000 database. Therefore,
what is required is a Web application that can provide a simple and interactive interface.
Because you are already familiar with a typical project cycle for developing an
application (as discussed in Chapter 9), this chapter will just discuss the functionality
required for this application.

Requirements Analysis

The company formed a team to study various video Web applications and named the
team “VideoWeb.” The VideoWeb team analyzed the various existing video Web
applications and came up with the following recommendations for the MyMovies video
Web application.

The Web application should:
 Be easy to use in terms of navigation and provide enough tips
 Be simple, fast, and interactive
 Enable a customer to log in before placing an order for a video
 Enable a customer to view his or her order details
 Provide a feature to search for a particular movie based on a criteria,

such as a movie, director, or actor’s name
 Provide enough information about a movie to attract a customer to buy it
 Enable an administrator to maintain the various tables in the database

and also generate reports

After analyzing these requirements, the VideoWeb team decided to make the following
two Web-page interfaces for the video kiosk application:

 A customer interface
 An admin interface

Customers will use the customer interface to browse the movie database for the required
information. They also will be able to search for specific information using the various
criteria and will be able to purchase videos. The system administrators of MyMovies will
use the admin interface to maintain the database and keep it updated.

The customer interface Web page will address the following requirements:
 It will provide an easy method for browsing the movie information.
 It will offer an option to search based on various criteria.
 It will provide a registration form that accepts information about a

customer, such as his or her name, address, and e-mail address.
 It will enable a customer to view his or her order details.

The admin interface Web page will address the following requirements:
 It will provide a simple and easy method for maintaining and updating the

various tables in the movie database.
 It will generate reports showing collated data such as daily sales, movies

in demand, and details of regular customers.:

In short, what is required is a Web site with the name “MyMovies.com” that can be
accessed by any customer and at any time. Access to the admin interface, however,
should be restricted to the administrators at MyMovies.

High-Level Design
As discussed in Chapter 9, in the high-level design phase, the team decides on the
functionality of the system. In addition, the various data input and output formats are
finalized, and the operating requirements are identified.
Figure 22-1 displays the Web page for the customer interface. Because this is the first
Web page of the Web application, it will be referred to as the home page. This page
provides options for registered customers as well as new customers.

Figure 22-1: The home page for the customer interface

A registered customer needs to enter his or her customer ID in the Login box on the left
side of the Web page and then click on the Login button. This will display a welcome
message to the registered customers, as shown in Figure 22-2.

Figure 22-2: A welcome message for registered customers

When a customer clicks the Search hyperlink on the left side of the Web page, a new
Web page appears, as shown in Figure 22-3. This page enables customers to search for
movies of their choice and then select movies they want to buy.

Figure 22-3: The search Web page

Note that this screen provides a Search Text text box in which customers can enter
the text for which they want to search, and they also can select a category from the
Browse By drop-down list. Clicking the Search button displays the results in the middle
of the Web page, as shown in Figure 22-4. This Web page also provides a Show All
Records button that displays all the movies available in the store. Also note the credit
card details that appear in the Web page for a registered customer.

Figure 22-4: The search results in the Web page

Clicking on the Add to Cart link next to each movie record adds the video to the
shopping cart, as shown in Figure 22-5.

Figure 22-5: The shopping cart displaying the selected videos

Customers can click on the Place Order button to place the order, and the data gets
updated in the database.
Let’s now understand how a customer who has not registered will use this application.
Let’s go back to the home page of the customer interface (refer back to Figure 22-1). An
unregistered customer can view the various videos available in the store but will not be
able to place an order. To view videos, customers need to click on the Search hyperlink
on the left side of the Web page. This displays the same Web page that a registered
customer will see, and it enables an unregistered customer to search for a video (refer
back to Figure 22-3). The only difference is the message an unregistered customer will
get after clicking on the Add to Cart link. This message is shown in Figure 22-6.

Figure 22-6: The message that an unregistered customer gets after clicking the Add to Cart
link

The home page of the customer interface enables a new customer to log in. For this,
there is a New Visitor? Register Here! link in the left panel of the home page.
Clicking this link displays the Customer Registration page, as shown in Figure 22-7.

Figure 22-7: The Customer Registration page

The Customer Registration page also appears if the customer clicks the Register button
shown in the home page of the customer interface (refer back to Figure 22-1).
In addition to the aforementioned pages, there is another Web page that displays the
account details for a registered customer using the Web service. Figure 22-8 displays
this page.

Figure 22-8: A registered customer’s account details page

For the admin interface, there will be a home page like the one shown in Figure 22-9.

Figure 22-9: The admin interface home page

This page provides various links in the left panel that can be used by the administrator to
maintain various tables and to view reports. Figure 22-10 displays the page that appears
when the Videos link is clicked.

Figure 22-10: The Videos page

Note the Add New Video link on the page and the links to update and delete records.
Figure 22-11, on page 537, displays the Web page that appears when the View
Reports link is clicked.

Figure 22-11: The View Report page

This page provides three buttons to view different reports. Figure 22-12, on page 537,
displays the Movies in Demand report.

Figure 22-12: The Movies In Demand report page

The database schema for this application is the same as the one discussed in Chapter 9.
For more information, refer to Chapter 9.

Summary
In this chapter, you learned that the MyMovies video company requires a Web
application that can be accessed from anywhere and at any time. Then you looked at the
various requirements for this solution and were introduced to the various screens
required for the application.
In the next chapter, you will learn basic concepts of ASP.NET, which is used to create
Web applications. In subsequent chapters, you will learn how to develop this Web
application.

Chapter 23: Getting Started with ASP.NET

Overview
Before you actually go about creating the MyMovies video kiosk Web application, let’s
first understand the basics of ASP.NET. This will help you understand the creation of
Web applications in a better way.

The .NET framework includes tools that ease the creation of Web services. ASP.NET is
the latest offering from Microsoft toward the creation of a new paradigm for server-side
scripting. This chapter will cover the basics of ASP.NET, which provides a complete
framework for the development of Web applications.

This chapter introduces you to ASP.NET, the platform requirements for ASP.NET
applications, and the ASP.NET architecture. In addition, the chapter introduces Web
forms of ASP.NET applications, a new addition to ASP.NET.

Introducing ASP.NET
ASP.NET differs in some ways from earlier versions of ASP. ASP.NET has new features
such as better language support, a new set of controls, XML-based components, and
more secure user authentication. ASP.NET also provides increased performance by
executing ASP code.

Usually a software product undergoes many evolutionary phases. In each release
version of the software product, the software vendor fixes the bugs from previous
versions and adds new features. ASP 1.0 was released in 1996. Since then, two more
versions of ASP (2.0 and 3.0) have been released. In various versions of ASP, new
features have been added. However, the basic methodology used for creating
applications has not changed.

ASP.NET provides a unique approach toward Web application development, so one
might say that ASP.NET has started a new revolution in the world of Web application
development. ASP.NET is based on the Microsoft .NET framework. The .NET framework
is based on the common language runtime (CLR). Therefore, it imparts all of the CLR
benefits to ASP.NET applications. These CLR benefits include automatic memory
management, support for multiple languages, secure user authentication, ease in
configuration, and ease in deployment.

ASP.NET provides these benefits:
 Support for various programming languages. ASP.NET provides better

programming-language support than ASP. It uses the new ADO.NET.
Earlier versions of ASP support only scripting languages such as VBScript
and JScript. Using these scripting languages, you can write applications
used to perform server-side processing, but this has two major drawbacks.
First, scripting languages are interpreted and not compiled. Therefore, the
errors can only be checked at runtime. This affects the performance of Web
applications. Second, scripting languages are not strongly typed. The
scripting languages do not have a built-in set of predefined data types. This
requires developers to cast the existing objects of the language to their
expected data type. Thus, these objects can be validated only at runtime.
This validation leads to a low performance of Web applications. ASP.NET
continues to support scripting languages, but it supports complete Visual
Basic for server-side programming. ASP.NET also provides support for C#
(pronounced C sharp) and C++. This benefit helps you select a language
according to your level of expertise and ease.

 Cross-language development. ASP.NET provides flexibility to extend objects
created in one language to another language. For example, if you have
created an object in C++, ASP.NET enables you to extend this object in
Visual Basic.NET.

 Content and application logic separation. The earlier versions of ASP have the
content to be presented to users (for example, HTML code) and

programming logic (for example, ASP scripts) integrated. This creates
several restrictions. The problem increases many folds if these Web pages
are to be frequently updated. In addition, due to the integration of the code
and the UI, the use of different design tools is restricted.

ASP.NET, however, relieves you from all your worries regarding integration of
content with application logic. ASP.NET helps you separate the content from the
application logic. Therefore, the designer can design the UI while the
programmer builds the programming logic for the UI for the same Web page.
The required updates to the Web page can be done without any confusion. In
addition, the designer can use standard design tools to create the UI. This is
because the content is separated from the application logic used at the backend.

 Secure user authentication. ASP.NET provides form-based user
authentication. It also supports cookie management and automatic
redirecting of unauthorized users to your login page. It provides user
accounts and roles to each user, and the roles enable you to access
different codes and executables stored on a Web server.

 New server processing architecture. Earlier versions of ASP render the
content of a Web page in the order in which it is written. Therefore, the
programmer has to keep the position of the code rendering on the Web
page in mind. In ASP, you need to write code for all actions occur on your
Web page. In fact, you even need to write code for displaying HTML output.

ASP.NET has introduced new server-based controls. These controls are
declared and programmed on the server side and are event driven by the client.
This frees the programmers from considering the rendering position while
designing programming logic, thereby enabling programmers to concentrate on
programming logic only. ASP.NET control objects can be controlled by using
scripting languages. ASP.NET provides a set of object-oriented controls (such
as list boxes, validation controls, data grid controls, and data) and everything
you expect from a dataset control. In addition, all ASP.NET objects can expose
events that can easily be processed by ASP.NET code. Therefore, this makes
the coding easy and well organized.

 Improved debugging and tracing. The key elements of an application
development cycle are debugging and tracing. ASP.NET uses the .NET
framework, which contains Visual Studio. Therefore, you can use the built-
in Visual Studio.NET debugging tools for tracing your Web pages. ASP did
not provide debugging support.

 More control over application configuration. You don’t have to touch the
registry to modify configuration settings. Plain text files are used for the
configuration of ASP.NET. You can also upload or change the configuration
files while the application is running. Therefore, you need not restart the
server. Also, this does not modify the registry.

 Easier application deployment. ASP.NET provides ease in deployment by
ensuring that you need not restart the server to deploy or replace compiled
code. ASP.NET simply redirects all new requests to the new code. You just
need to copy the directory to Internet Information Server (IIS) to deploy an
ASP.NET application.

 Improved caching features. ASP.NET includes improved caching features
than those present in earlier versions of ASP. ASP.NET provides following
caches:

o Page-level caching. This enables you to cache a complete
page.

o Fragment caching. This enables you to cache portions of a
page.

o The Cache API. This exposes the cache engine to
programmers to cache their own objects.

The use of these caching features in ASP.NET results in
increased speed and performance of your Web pages.

Most of the codes written in earlier versions of ASP will not run under ASP.NET. To
overcome this problem, ASP.NET uses the new file extension .ASPX. Applications with
this extension will run side by side with standard ASP applications on the same server.

ASP.NET Programming Models
The .NET framework software development kit (SDK) is used to develop Web
applications, which run on the .NET framework SDK on a platform with IIS. To correlate
the different subsystems involved in creating, building, testing, and deploying ASP.NET
applications, you need to understand the ASP.NET architecture, which is shown in
Figure 23-1.

Figure 23-1: The ASP.NET architecture

ASP.NET consists of two programming models that you can use to create your Web
applications:

 Web forms. This programming model enables you to create form-based
Web pages. This is a powerful feature provided by ASP.NET that
enables you to create dynamic Web pages for Web applications. To
create Web forms, you can use server controls to create UI components.
Then you can program them at the server side.

 Web services. This programming model enables you to remotely perform
some functionality at the server side. In ASP.NET, Web services play an
important role in integrating applications across different platforms. This
is because Web services are not bound to a specific technology. In
addition, Web services help in the exchange of data in a client-server or
a server-server architecture. Web services use standards such as HTTP
and XML messaging to enable data exchange.

To create your Web applications, you can use either of these programming models or a
combination of the two. Both of these models use the CLR benefits of the .NET
framework. Therefore, these models enable you to develop secure, scalable, and high-
performance applications.

ASP.NET Platform Requirements
ASP.NET is a part of the .NET framework SDK, which can be downloaded from
http://msdn.Microsoft.com/downloads. Files required for creating, building, and
testing .NET applications are included in the .NET framework SDK. You need to install
Internet Explorer 5.5 or later on your computer to use the .NET framework SDK. The
following Windows platforms support the .NET framework SDK:

 Windows XP Professional
 Windows 2000

 Windows NT 4.0 with Service Pack 6a
 Windows 98

Tip ASP.NET applications can be created on Windows 98 and Windows
Me platforms, but you must have a Web server installed on your
computer to run them. You need to install IIS for platforms such as
Windows 98, Windows Me, and Windows XP Professional. IIS is
installed automatically when Windows 2000 Server or Windows NT
4.0 (with Service Pack 6a) is installed.

The .NET framework SDK provides you with tools to develop and test your ASP.NET
applications. However, while using the .NET framework SDK, you can develop ASP.NET
applications by using text editors and command-line compilers only. Moreover, you need
to manually copy your files to IIS for deploying your applications.

You can install Visual Studio.NET to enable you to develop applications faster, easier,
and more conveniently. Visual Studio.NET provides many handy tools that make
application development an enchanting experience. The following are some of the tools
that Visual Studio.NET provides:

 Smart code editors that have features such as statement completion and
syntax checking.

 Visual designers that save your time and effort by enabling you to drag
and drop controls while writing code for controls. Therefore, you need not
type code to add each control to your page.

 Built-in compilers and debuggers that do not require compilation of
applications to be done using the command prompt.

Creating Web Forms
ASP.NET includes a technology called Web forms that enables you to create dynamic
Web pages faster. Using Web forms, you can create form-based Web pages. Web
pages created using Web forms are called Web forms pages and look like the Web
pages created in earlier versions of ASP. However, the overall experience of users with
Web forms pages is much different and better as a result of the use of the CLR and other
.NET features to create these Web forms. You need to be familiar with the features of
Web forms before you actually go and create them in ASP.NET. The following lists
introduce you to the features of Web forms.

Web forms:
 Use the .NET framework that runs on a Web server to create dynamic Web

forms pages.
 Use the features of the CLR such as type safety and inheritance.
 Enable you to use a rich set of controls to design a user interface. In addition,

you can extend the Web forms.

Web forms pages are:
 Designed and programmed by using the Rapid Application Development

(RAD) tools that Visual Studio.NET includes. The RAD tools help in
developing rich user interfaces quickly.

 Not dependent on the client in which they’re displayed.
 Compatible with any Web browser or mobile device.

Web Forms Components

The most important feature of ASP.NET is that it separates the content from the
application logic. You can implement this feature by using Web forms. In Web forms,
there are two components:

 User interface. This component presents content to the users. It consists
of a file that contains static HTML code or XML code and server controls.
This file is stored with the .ASPX extension and is called the page file.

 Programming logic. This component is used to take care of user
interactions with Web forms pages. Any of the .NET programming
languages, such as Visual Basic .NET or C#, can be used to write the
logic for Web forms page.

You can write the programming logic for the Web page in the .ASPX file. This logic does
not mix with the HTML code as it used to in earlier versions of ASP. This model of writing
programming logic is called the code-inline model.
Another model of writing programming logic for a Web page is the code-behind model.
For this model, you write the page logic in a file called the code-behind file. The choice
between the two models depends on the programmer’s preference. Programmers who
use the usual methodology of application development with ASP prefer the code-inline
method. However, once these programmers start using the code-behind method, they’ll
find the method more convenient.

Tip A Web forms page is a combination of a page file and a code-
behind file.

Designing Web Forms

In this section, you will design a simple ASP.NET Web forms application to understand
how an application is created in ASP.NET. You need to perform the following steps:

1. Start Visual Studio.NET and choose File, New, Project to open the
New Project dialog box.

2. Next you need to select the project type. To do so, select a project
type in the Project Types pane. The choices are Visual Basic Projects,
Visual C# Projects, or Visual C++ Projects. For this example, select
Visual Basic Projects.

3. You are creating an ASP.NET Web application. Therefore, select
ASP.NET Web Application in the Templates pane.

4. Next you need to specify a name for your project and the name of the
computer on which IIS is installed. To specify these, type the name of
the computer in the Location box followed by the name of your project.
The name of the project should be descriptive. For this example, enter
the following in the Location box:

http://<name of the computer >/MyFirstApplication
5. Click on OK to complete the procedure of creating the application.

Figure 23-2 displays how the Visual Studio.NET window will look after you have
performed the preceding steps.

Figure 23-2: The Visual Studio.NET window

Note that Figure 23-2 displays a default Web form called WebForm1. Next you need to
add controls and buttons to the Web form you have created. You can rename a Web
form. To do so, right-click on the Web form in the Solution Explorer and choose Rename
from the context menu.
The ASP.NET Web application template also generates different files in addition to a
Web form. Table 23-1 lists the name of the files generated and the content in these files.
Table 23-1: Files and Their Content

File Name Contains

Web.config Application
configuration
information

Global.asax Application-
level event
handlers

Licenses.lics License
information

MyFirstApplication.vsdisco Informational
links to
ASP.NET
Web
services to
be used in
your
application

AsemblyInfo.vb Information,
such as
versioning
and
dependencie
s, for your
assembly

Styles.css Default

Table 23-1: Files and Their Content

File Name Contains
HTML style
settings

In addition to the files listed in Table 23-1, the ASP.NET Web application template adds
the references to namespaces, which are contained in the References folder. A folder
called bin is also created. This folder contains the .DLL files used in an application. The
bin folder is not visible in the Solution Explorer. To view the bin folder, you need to click
the Show All Files icon in the Solution Explorer window.
The page file, named as WebForm1.aspx, of the Web form you created is displayed in
the Solution Explorer window (refer back to Figure 23-2) in the Design view. Therefore,
you can place controls directly on the form by dragging and dropping controls from the
Toolbox. By default, the page file is displayed in the grid layout. This makes it easy for
you to accurately position the controls on the page. You can also use the flow layout for
designing your page. This layout enables you to directly add text to your page. You can
change the layout in which your page is displayed by selecting the page in the Design
view and pressing the F4 key. This activates the Properties window for the page. In this
window, you can select FlowLayout in the pageLayout property.

While you design the form in the Design view, the HTML code for the page is
automatically generated. To view the HTML code, you have to use the HTML view.
Programmers who find it convenient to work with HTML can edit the HTML code in the
HTML view. In fact, you can write the programming logic for the page in the HTML view.
To change the view from Design to HTML or vice versa, click the Design or HTML tab at
the bottom of the page file.

A code-behind file also exists, in addition to the page file, for your Web form application.
This file is not currently displayed in the Solutions Explorer window. You can view this file
by clicking the Show All File icon in the Solution Explorer window. In addition, you can
also view the code-behind file by pressing the F7 key when the page file is open.

Now that you have designed the look of your Web forms page, you need to add the
functionality to it. You can do so by using the HTML view of the page file or the code-
behind file. First, however, you need to understand the automatically generated code in
these files before you can modify these files.

If you use the HTML view for the page, it displays the following code:
<%@ Page Language="vb" AutoEventWireup="false" codebehind="WebForm1.aspx.vb"
Inherits="MyFirstApplication.WebForm1"%>
In the preceding code, the @ Page directive specifies the page attributes and how they
will affect the creation of your page. The Language attribute specifies the supported
.NET language for your page. The AutoEventWireup attribute specifies whether the
page events are automatically wired. If you assign a false value, it indicates that a
developer should enable the page events. Next the codebehind attribute is used. This
attribute specifies the name of the code-behind file for your page. The preceding code
also contains the Inherits attribute. This attribute is used to specify the name of the
code-behind class that a page inherits.
In the <Head> element of the HTML code, you can write the programming logic for your
page. You have to use the <Script> tag to add the programming logic. Consider the
following code:
<Script runat="server" language="vb">
 'Code statements
</Script>
This code uses the <Script> tag to add the programming logic. The code statement
runat="server" is used to specify that the code will run at the server side. The next
statement in the code, language="vb", specifies that Visual Basic.NET is used for

adding the programming logic. The language specified in this attribute should be
supported by the .NET framework.
Next, the controls or text are added to the <Body> element. These are added in the <%
%> block. The code is also generated for the code-behind file. The code snippet
generated in the WebForm1.aspx.vb file is displayed:
Public Class WebForm1
 Inherits System.Web.UI.Page
The first line of the code specifies that class named WebForm1 is inherited from the
Page class. The Page class is a part of the System.Web.UI namespace.
This code also contains two methods, InitializeComponent and Page_Init.

 InitializeComponent contains the code to initialize the page
components such as controls.

 Page_Init is the event handler for the Init event of the page. This
method calls the InitializeComponent method.

Next, the Page_Load method is used to handle the Load event of your page. You can
also add event handlers for the controls you have used on your page.
Now you will create a simple application that displays a welcome message. To begin the
procedure for the creation of the application, open the Properties window for the
WebForm1 page. To set the background color, set the bgColor property to #ffcccc.
Next open the code-behind file for your application. In this example, open the
WebForm1.aspx.vb file. This file will be used to modify the existing code. You need to
write the following code in the Page_Load method:

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles
MyBase.Load
 Dim UserName As String
 UserName = Request.QueryString("Name")
 Response.Write("<Center>" + "Welcome" + " " + UserName + "" +
"</Center>")
 Response.Write("<Center>" + "This is your first Web application!!!" +
"</Center>")
End Sub
To run the application, press Ctrl+F5. The preceding code displays a message to the
user when the user supplies his or her name. Figure 23-3 displays the output that
appears when a user has entered the following URL:
http://<name of the computer>/MyFirstApplication/WebForm1.aspx? Name=Robert

Figure 23-3: The output in Internet Explorer

Many times, an application contains many different Web forms. When you develop an
application, it will be very tedious to develop the entire application to check the
functionality of a specific page. In this situation, you can browse the specific page without
developing the entire application. To browse a specific page, right-click the .ASPX file
and select View in Browser.

IIS Application Root Directory
In Visual Studio.NET, when you are creating an ASP.NET application, you need to
specify the name of the project and the location. You can specify the location as
http://localhost or http://<name of the computer>.
The location contains the name of the computer and no reference to the directory path.
This makes it difficult to locate the application at a later stage. You need not worry,
however, when you are developing an ASP.NET application project because an
application root directory with the project name is created in the default Web site of the
IIS server. This application directory is called the IIS application root. This directory maps
to the physical location of the directory on the server, which is available at the path
<drive name>:\inetpub\wwwroot\<name of the project>. All the files generated and
developed in the .NET framework are included in the IIS application root directory.
If you want to trace an application named MyFirstApplication that you created
using ASP.NET, you can trace the IIS application root directory for it. You can trace the
IIS application root directory by opening the IIS Microsoft Management Console (MMC)
by choosing Start, Programs, Administrative Tools, Internet Services Manager. Figure
23-4 shows the MyFirstApplication directory selected in the IIS MMC.
As you can see in Figure 23-4, three types of folders exist in the Default Web Site
directory:

 Explorer-style folders. These folders exist as physical directories in IIS.
Examples include vti_pvt and vti_txt.

 Explorer-style folders with HTML circles. These folders represent virtual
directories. An example is vti_bin.

 Web application folders. These folders appear as package icons. If you
create a virtual directory, the directory is automatically treated as a Web
application folder. For example, if you create an ASP.NET application
named MyApplication, a Web application folder named
MyApplication is automatically created in IIS.

Figure 23-4: The IIS MMC displaying an application root directory

If you are creating your ASP.NET application in Visual Studio.NET, the application root
directory is created automatically for you. If you are creating your ASP.NET application

using a text editor such as TextPad, however, you have to create the application root
directory. You can do this in one of the following ways:

 Create a virtual directory
 Mark a folder as an application

The next two sections will show you how to create the application root directory using
these ways.

Creating a Virtual Directory
Let’s say you’ve created a Web forms page named MyPage.aspx in C:/MyWeb. You
need to publish this page to deploy it on a Web site. This can be done by creating a Web
virtual directory. These virtual directories are not located at the physical structure of the
root directory of the Web server. In fact, the actual directory can be created at a
completely different physical location, or it could be on a remote computer. Therefore,
different virtual directories can point to the same set of files. If you create your ASP.NET
applications in directories different from the root directory of the Web server, the virtual
directories are a handy feature. If you create a virtual directory and point it to your
application stored in a directory other than the root directory of the Web server, the
virtual directory becomes your application root directory. To create virtual directories in
the IIS MMC, you need to follow these steps:

1. Open the IIS MMC from the Internet Service Manager and right-click
on Default Web Site.

2. Choose New, Virtual Directory from the context menu. This will initiate
the Virtual Directory Creation Wizard. You need to follow the
onscreen prompts to finish creating the virtual directory. (These are
described in steps 3 through 7.)

3. Click Next on the Welcome screen to view the next screen. You’re
prompted to enter an alias for the virtual directory.

4. Type a name for your virtual directory; let’s say you enter MyWeb.
The name that you enter for your virtual directory appears in the IIS
MMC. Click Next.

5. The next screen asks you to enter the name of the content directory
you want to publish on the Web site. In the Directory box, type the
name of the directory that contains your ASP.NET Web forms page
and other related files. Click Next.

6. The next screen asks you to set the access permissions for the virtual
directory. Select the access permissions. You can only assign
permissions such as Read and Run scripts (such as ASP). Click
Next and the final screen appears.

7. Click Finish to complete the process.
Figure 23-5 displays the MyWeb application root.

Figure 23-5: The MyWeb application root displays the WebForm1.aspx file

Tip If the IIS MMC is already launched, select the Default Web Site and
click the Refresh button on the Toolbar.

Marking a Folder as an Application
The next method used to creating an application root is to mark a folder containing your
ASP.NET application files as an application. To do this, you need to create a folder that
you want to mark as an application in c:\inetpub\wwwroot. You create the folder and
name MyFolder. If you launch the IIS MMC, you’ll see MyFolder displayed under the
Default Web Site.
You have created a folder. To mark this folder as an application, you need to convert it to
an application. To do so, right-click MyFolder and choose Properties from the context
menu. The Properties dialog box will appear, as shown in Figure 23-6.

Figure 23-6: The Properties dialog box for MyFolder

The Properties dialog box displays the local path and permissions for the selected folder.
To convert this folder to an application, click the Create button under Application
Settings. This makes available the boxes that were unavailable before the Create button
was clicked. Next click on OK to complete the process. You’ll see that the folder icon for
MyFolder has changed to a package icon, indicating that it is now converted to an
application.

The next section discusses the various controls you can use to design your ASP.NET
Web applications.

ASP.NET Server Controls
You can design well-structured user interfaces for your Web forms pages by using
ASP.NET. This technology provides you with a rich set of server controls for creating
interactive and dynamic Web forms pages. These controls adopt a server-side
programming model in which users at the client side interact with server controls to
generate several events, which are handled at the server side. An example is the events
that occur when a client browser requests a page. This page is compiled into an object
called Page. The Page object has server controls compiled as objects within the Page
object. Whenever the page is requested, the server controls are compiled and executed
on the server that hosts the page. This method in ASP.NET is more dynamic than the
normal HTML controls. This is because the HTML controls do not have any interaction
with the server after they are rendered on the page, whereas server controls allow
access to the properties, methods, and events at the server side.

Types of Server Controls

The .NET framework supports HTML server controls and Web server controls. The
following list defines these controls:

 HTML server controls. The HTML server controls are the HTML elements
you can use in a server-side code. These server controls are part of the
System.Web.UI.HtmlControls namespace and are derived from the
HtmlControl base class.

 Web server controls. The ASP.NET Web forms server controls are part
of the System.Web.UI.WebControls namespace. These controls are
also called Web controls. They are derived from the WebControl base
class. In addition to the basic controls that the ASP.NET Web forms
server controls include, the following Web controls are also included:

 List controls. These controls are used to create lists. You can bind these
lists to a data source. For example, these controls can be used to create
ListBox and DropDownList controls.

 Validation controls. These controls are used to check and validate the
values entered in other controls used on a page. For example,
RequiredFieldValidator and CustomValidator are validation controls.

 Rich controls. These are special controls used to create task-specific
output. For example, these controls can be used to create Calendar and
AdRotator controls.

 User controls. You can create controls as Web forms pages and also
embed these controls in other Web forms pages.

Table 23-2 lists the various HTML server controls and their corresponding tags.
Table 23-2: HTML Server Controls and Their Corresponding HTML Tags

HTML Server Control HTML Tag

HtmlForm <form>

HtmlInputText <input
type =
"text">
and
<input
type =
"passwor
d">

HtmlInputButton <input
type =
"button"

Table 23-2: HTML Server Controls and Their Corresponding HTML Tags

HTML Server Control HTML Tag
>

HtmlInputCheckBox <input
type =
"check">

HtmlInputRadioButton <input
type =
"radio">

HtmlInputImage <input
type =
"image">

HtmlAnchor <a>

HtmlButton <button>

HtmlTable <table>

HtmlTableRow <tr>

HtmlTableCell <td>

Differences Between HTML Server Controls and Web Controls

When creating Web applications, you need to choose between HTML server controls
and Web controls. The choice depends on your requirements and the functionality
required in each server control. This decision can be made if you understand the
functionality of both types of server controls. The following list compares the two controls
on certain factors:

 Mapping to HTML tags. HTML server controls map directly to HTML
tags. The HTML tags are converted to server controls by using the
runat="server" attribute. This makes it easier to migrate from ASP to
ASP.NET. Web controls do not map directly to HTML tags. Therefore,
you need to include controls from a third party.

 Object model. For HTML server controls, an HTML-centric object model
is used in which a control has a set of attributes. These attributes use
string name/value pairs that are not strongly typed. For Web controls, a
Visual Basic–like programming model is used in which each Web control
has a set of standard properties.

 Target browser. For HTML server controls, the generated HTML is not
changed depending on the target browser. Therefore, you need to
ensure that the controls are rendered in both up-level and down-level
browsers. For Web controls, the rendered output adjusts automatically
depending on the target browser. This ensures that the controls are
rendered in both up-level and down-level browsers.

Adding Web Controls to Forms
When creating Web forms, you can add server controls either at design time or at
runtime. To add server controls at design time, you can use either Toolbox or the HTML
view of the .ASPX file. The server controls can also be added programmatically at
runtime. This can be done using the <Script> tag in the .ASPX file or in the code-
behind file. The following sections describe the ways in which you can add server
controls to your Web forms.

Using the Toolbox
The Toolbox includes a wide set of controls that are grouped under different categories
for convenient access. You can access the Toolbox from the extreme left of the Visual

Studio.NET window. If it is not available there, you need to launch it by selecting View,
Toolbox. The following are the different categories in the Toolbox:

 Web Forms. This category contains all Web controls, including
validation controls and rich Web controls. This category is very
frequently used when designing Web forms pages.

 HTML. This category consists of all the HTML server controls.
 Data. This category contains data objects, which are used to

implement data access and manipulation functionality.
 Component. This category contains a set of components that can be

used to add time-based functionality to your forms. This Toolbox
category has standard available components, and you can add other
components.

 Clipboard Ring. This category stores text items. Any text that you cut
or copy becomes a part of this category. You can use this category to
more multiple code snippets from one part of the Code Editor to
another.

 General. This category initially displays only a Pointer tool. You can
add controls to this category such as button and custom controls.

You can create Web forms server controls by either dragging or drawing controls from
the Toolbox to the Web form. This adds the control with its default size. Different controls
have different default sizes. To add a control to your form, you can even double-click the
control and specify the location coordinates in the form. Adding controls to the form by
using the Toolbox generates an ASP.NET code for the controls in the HTML view of the
.ASPX file.

Using the HTML View of the .ASPX File
You can also add server controls by specifying the ASP.NET code for the controls
directly in the HTML view of the .ASPX file of your Web form. For example, you can add
a text box by using the following ASP.NET code:
<asp:TextBox id = "MyTextBox" runat = "server" Text = "Greetings"></asp:TextBox>

You can view the control’s rendered output in the Design view.

Using the Code-Behind File
ASP.NET enables you to add server controls even at runtime. You can do so by creating
an instance of the Control class that inherits the WebControl base class. Suppose
you want to create a text box at runtime. You can use the following Visual Basic code:
Dim Text_Box As New TextBox()
Controls.Add(Text_Box)
In the preceding code, the control is added to the form by using the Add method of the
Controls class.

Setting Properties of Web Controls
Server controls have common properties called base properties that are inherited from
the WebControl base class. Apart from the base properties, each control has its own
set of properties. You can set a control’s properties at design time or runtime. To set the
properties at design time, you can use the Properties window or the ASP.NET code to
set a control’s properties. To view the Properties window, right-click on the control for
which you want to set the properties and, from the context menu, select Properties. In
addition, you can display the Properties window of the control by selecting Properties
Window from the View menu or by pressing the F4 key. Figure 23-7 displays the
Properties window for a text box.

Figure 23-7: The Properties window for a text box

ASP.NET enables you to set the properties of Web controls by directly editing the
ASP.NET code in the HTML view. Suppose you want to set the Enabled property of a
text box in the .ASPX file. For that, you would use the following code:
<asp:TextBox Id = "Text_Box" runat = "server" Enabled = False></asp:TextBox>

Sometimes you might need to set properties of controls at runtime. The following syntax
is used to set a control’s property programmatically:
ControlID.PropertyName = Value
Let’s say you want to display a control only when a certain condition is met. You would
need to set the Visible property of the control to True programmatically. The following
code illustrates this example:
Text_Box.Enabled = True
In this code snippet, the Enabled property is the property of the control. The
ControlID is represented by Text_Box. This code snippet is used to set the value of
the Enabled property to True for the control with the ID Text_Box.

Handling Events of Web Controls
In ASP.NET, the controls inherit a set of events from the WebControl class. Each
control also has its own set of events that you can handle by using either the code-
behind file or the .ASPX file. Let’s look at this with more detail. A button has its own click
event. You can handle this event in either the code-behind file or the .ASPX file. To open
the code-behind file, you can either use the Solution Explorer window or press F7. Now
you need to write the handler for a control’s event. To do so, select the name of the
control from the Class Name list. Next select the event from the Method Name list.
Consider this example: The ID of the button is AcceptButton, select AcceptButton
from the Class Name list and Click from the Method Name list. This automatically
generates the following code:
Private Sub AcceptButton_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AcceptButton.Click
 'Code statements
End Sub
In this code, the procedure AcceptButton_Click is the event handler for the Click
event of the button with the ID AcceptButton. This procedure accepts two arguments.
The first argument contains an object called an event sender. The second argument
contains the data for the event. The Handles keyword is used to associate the Click
event with the event handler (that is, AcceptButton_Click). Next you can modify the

code in the event handler to add the desired tasks. You test the code by accessing the
form from a Web browser.
You can also create event handlers for server controls by using the .ASPX file. Consider
the preceding example of a button with the ID AcceptButton. The creation and
association of the event handler with the Click event is done in two steps:

1. Edit the code for the control in the .ASPX file. This is used to specify
the event handler for the Click event.

<asp:Button Id = "AcceptButton" runat = "server" OnClick =
"AcceptButton_Click"></asp:Button>

In this code snippet, OnCick = "AcceptButton_Click" is the event that
should be called when the Click event of the button is generated.

2. Next you need to write the AcceptButton_Click event handler in
the .ASPX file.

Some Commonly Used Web Controls
All Web controls inherit from the WebControl class. Therefore, all controls have a set of
common properties, methods, and events. In addition, all controls have their own specific
properties, methods, and events. Table 23-3 looks at the commonly used properties,
methods, and events for some Web controls.

Tip All the code is written within the <Script> tag. The following code
shows you where to add an event handler:

<script language="vb" runat="server">
 Sub AcceptButton_Click(sender as Object, e as EventArgs)
 Code comes here
 End Sub
</script>

Table 23-3: Properties, Methods, and Events of the WebControl Class

Property/Method/Event Description
AccessKey property This is used to get

or set the keyboard
shortcut to access
the control.

BackColor property This is used to get
or set the
background color
of the control.

BorderColor property This is used to get
or set the border
color of the control.

BorderStyle property This is used to set
the border style of
the control as
double, solid, or
dotted.

Controls property This is used to
return an object of
the
ControlCollect
ion class.

DataBind method This is used to bind
data from a data
source to a server
control and all its

Table 23-3: Properties, Methods, and Events of the WebControl Class

Property/Method/Event Description
child controls.

DataBinding event This is generated
when the control is
being bound to a
data source.

Enabled property This accepts a
Boolean value
indicating whether
the control is
enabled.

EnableViewState property This accepts a
Boolean value
indicating whether
the control
maintains its view
state.

Font property This is used to get
or set the font
information, such
as font name and
size, of the control.

ForeColor property This is used to get
or set the
foreground color of
the control.

Height property This is used to get
or set the height of
the control.

ID property This is used to get
or set the identifier
of the control.

TabIndex property This is used to get
or set the tab index
of the control.

ToolTip property This is used to get
or set the pop-up
text displayed upon
moving the mouse
pointer over the
control.

Visible property This accepts a
Boolean value. A
True value
indicates that the
control is rendered
as UI on the page;
a False value
indicates that the
control isn’t
rendered on the
page.

Table 23-3: Properties, Methods, and Events of the WebControl Class

Property/Method/Event Description
Width property This is used to get

or set the width of
the control.

Validation Controls
Many Web pages require user input to be validated before this input is fed into a
database. In ASP.NET, this validation is done using validation controls, which are one of
the new features that have been introduced in ASP.NET. They are very useful because
you don’t have to write validation code. Suppose you want to validate the user input in a
text box. You can add a validation control to your page and associate it with the control
you want to validate. This section covers more details about validation and how it is used
in Web forms.

What Are Validation Controls?
ASP.NET provides six validation controls. All validation controls are inherited from the
BaseValidator class. You can use this class to implement the other validation
controls because this is an abstract class that forms the core of validation. The following
are the types of ASP.NET validation controls:

 RequiredFieldValidator is used to validate a control to check
whether it is empty or not.

 CompareValidator is used to compare values in different controls to
check whether the two values match.

 RangeValidator is used to check whether the value in a control is in
the specified text or numeric range.

 RegularExpressionValidator is used to check whether the value in
a control matches a specified regular expression.

 CustomValidator is used to perform validation on a control by using
user-defined functions.

 ValidationSummary is used to display all the validation error
messages grouped together.

Let’s now discuss how validation works. It is actually a four-step process, as follows:
1. You add a validation control. Next you need to associate it with

another control that requires validation. Specifying the
ControlToValidate property of the validation control does this.

2. A page with different controls and validations attached to the controls
is displayed to a user. Now the user enters values in different controls
and submits the completed form. Values entered by the user are
passed to the appropriate validation controls. This means that the
validation control attached to the respective control validates the value
entered for this control.

3. Validation controls validate the values passed to the controls.
4. After the validation is done, the value for the IsValid property of

each validation control attached to the control is set to either True or
False. If the value is True, it indicates that the validation succeeded.
A False value indicates that the validation failed. After all the
validations have succeeded, the page data is processed at the server.

Using Validation Controls
To use validation controls, you need to create an ASP.NET Web form project. Lets
create a project named SampleValidation. You also need to design a basic form that
contains several controls to accept user input. Let’s design a form named CheckForm.
This form accepts the necessary information from a customer who wants to buy a CD

from a video portal. You can specify IDs for different controls on the form. You can use
Table 23-4 as a reference.

Tip A failure of a single validation makes the value of the IsValid
property False. If this occurs, the page data is not processed at the
server, and the page is sent back to the client browser with the
validation errors.
This indicates that the validation controls perform validation checks
at the server side. You can also use validation controls to perform
validation checks using client scripts. These are called client-side
validations. This type of validation is possible only if the client
browser supports Dynamic Hypertext Markup Language (DHTML).

In client-side validation, the form is not processed at the server side.
The error messages are displayed to a user as soon as the user
moves out of the control that contains the error. Client-side
validation reduces cycle time and improves performance.

Table 23-4: Sample Form Control IDs

Control Text ID

Button Accept AcceptButton

Label Message MessageLabel

Text box Confirm
password

ConfirmBox

Text box Customer
ID

CustIDBox

Text box Number of
CDs

NumberOfCDsBox

Text box Password PasswordBox

Text box Telephone
number

TelephoneNumberBox

Text box Username UserNameBox

Let’s now look at how to use various controls.

RequiredFieldValidator
This control is used to check that the control being validated contains a value. You use
this control to validate whether a user has entered the required information in a text box.
You can add the RequiredFieldValidator control from the Web forms tab of the Toolbox.
Table 23-5 displays the values set for properties of this validation control.
Table 23-5: Setting Properties for the RequiredFieldValidator Control

Property Value
ID UserNameRequiredFieldValidator
ControlToValidate UserNameBox
ErrorMessage Enter your user name.
Display Dynamic

You can add the RequiredFieldValidator control and set its properties. The
corresponding ASP.NET code for the control is automatically generated. You can see
this code in the HTML view of the .ASPX file. After setting the properties of the
RequiredFieldValidator control, you need to write the following code for the Click event
of the Accept button:
Private Sub AcceptButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles
AcceptButton.Click

 If Page.IsValid = True Then
 'Specify a message to be displayed on the label
 MessageLabel.Text = "Welcome " + UserNameBox.Text
 'Make the label visible
 MessageLabel.Visible = True
 End If
End Sub
You have done the coding for the RequiredFieldValidator control. When you execute the
application, you’ll see that the control isn’t rendered on the page. However, if you click
the Accept button without entering any details in the UserNameBox text box, an error
message displays.

CompareValidator
Let’s see how the CompareValidator control is used. This control compares the value
entered in a control with the value in another control or a specific value. You can
compare these values by using any operator available with the control, such as Equal,
NotEqual, GreaterThan, and LessThan. ASP.NET enables you to compare values of
different types such as String, Integer, Double, Date, and Currency. Table 23-6
displays some of the common properties of the CompareValidator control.
Table 23-6: Some Properties of the CompareValidator Control

Property Description
ControlToValidate This is used

to get or set
the ID of the
control with
the value
you want to
validate.

ControlToCompare This is used
to get or set
the ID of the
control with
the value
you want to
compare.

Display This is used
to get or set
one of the
values. You
can set
Static,
Dynamic, or
None. The
default
value is
Static.

ErrorMessage This is used
to set the
text for the
error
message.

Operator This is used
for

Table 23-6: Some Properties of the CompareValidator Control

Property Description
comparison
s. The value
for this
property can
be Equal,
NotEqual,
LessThan,
or
GreaterTh
an. The
default
value is
Equal.

Type This
specifies the
data type of
the value
you want to
compare.
This
property can
have the
value
String,
Integer,
Currency,
Date, or
Double.
The default
value is
String.

ValueToCompare This is used
to get or set
a specific
value that
you want to
compare.

Let’s implement the CompareValidator control in the CheckForm form. In this form, you
need to compare the value entered in the Password text box and the ConfirmBox text
box. To do so, you need to add the CompareValidator control to the form.

You can even write an equivalent ASP.NET code to add the control. The following is the
equivalent code to add the control:
<asp:CompareValidator
id = "PasswordValidator" runat = "server"
ControlToCompare = "Password_Box"
ControlToValidate = "Confirm_Box"
ErrorMessage = "Please retype the password."
Display = "Dynamic">
</asp:CompareValidator>
You also need to edit the code for the Click event of the Accept button.

Private Sub AcceptButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AcceptButton.Click
 If Page.IsValid = True Then
 'Specify a message to be displayed on the label
 MessageLabel.Text = "Welcome " + UserNameBox.Text + ", You are
 authorized to use the services provided by the video kiosk."
 'Make the label visible
 MessageLabel.Visible = True
 End If
End Sub
When you enter different passwords in the Password and ConfirmBox text boxes and
click the Accept button, an error message displays.

RangeValidator
You can implement the RangeValidator control to check whether a value falls within a
specified range of values. You can specify the range by setting maximum and minimum
values. These can be constant values from other controls. The RangeValidator control
has multiple properties including ControlToValidate, ErrorMessage, and
Display. Let’s look at some of the other properties:

 The MaximumValue property is used to set the upper limit value of the
validation range.

 The MinimumValue property is used to set the lower limit value of the
validation range.

 Type is used to set the data type for the values that are compared.
You can set one of the following data types: String, Integer,
Double, Date, or Currency.

In the CheckForm form, you can use the RangeValidator control to validate the
NumberOfCDsBox text box that accepts the value for the number of CDs to be bought.
The kiosk doesn’t issue more than four CDs to a user. You have to specify the range
between 1 and 4.
You can add the RangeValidator control by using the Toolbox. Table 23-7 displays the
values for the different properties of the control.
Table 23-7: Properties Set for the RangeValidator Control

Property Value
ID BooksRangeValidator
ControlToValidate NumberOfCDsBox
MaximumValue 4
MinimumValue 1
Type Integer
ErrorMessage The number of CDs

must be between 1
and 4.

Display Dynamic

When you execute the application, enter the number of CDs outside the range of 1 and
4. Now click the Accept button. This displays an error message.

RegularExpressionValidator
You can use the RegularExpressionValidator control to validate a value entered in a
control against some specific expression. This specific expression validation is used to

validate certain data such as telephone numbers, ZIP codes, social security numbers,
and e-mail addresses.
The RegularExpressionValidator control uses the ControlToValidate,
ErrorMessage, and Display properties. It also uses a property called
ValidationExpression. This property is used to validate user input data against
some pattern of a specific expression.
Let’s use this validation in the CheckForm form. You can implement this validation for
the TelephoneNumber text box. You need to validate this number against a fixed
pattern of U.S. telephone numbers. In addition, the different parts of the telephone
number must be separated by hyphens.
You can add the RegularExpressionValidator control by using the Toolbox. The
properties set for the control are displayed in Table 23-8.
Table 23-8: Properties Set for the RegularExpressionValidator Control

Property Value
ID TelephoneRegularExpressionValidator
ControlToValidate TelephoneNumberBox
ValidationExpression [0-9]{3}-[0-9]{3}\s[0-9]{4}
ErrorMessage Please retype the telephone number.
Display Dynamic

You need to understand the value [0-9]{3}-[0-9]{3}\s[0-9]{4} for the
ValidationExpression property. The first part [0-9] represents any digit between 0
and 9. {3} indicates that three digits are required for the first part. Next, a hyphen is
placed. This indicates that a hyphen is required. In the middle part, \s indicates that a
space is required. This means that the next three digits are followed by a space. The
final part [0-9]{4} indicates a four-digit number in which each number is in the range
of 0 to 9.

Now you execute the application. Enter a telephone number that does not match the
specified pattern and click the Accept button. This displays an error message.

CustomValidator
This control enables you to validate a value entered in a control by using a user-defined
function. Consider this example: You validate a control to ensure that the control accepts
only odd numbers. This is only possible by writing a code for detecting an odd number.
Therefore, you have to use the CustomValidator control. This control enables you to use
validation functions at the client side as well as the server side. The CustomValidator
control has a property called Client- ValidationFunction. This property is used
to get or set the client script function that is called automatically to validate the control.
To write the validation code, you can use any scripting language such as JavaScript or
VBScript.

For server-side validation, the CustomValidator control raises the ServerValidate event.
You must write code in the event handler for this control. You can do this by using either
the code-behind file or the HTML view of the .ASPX file.
Let’s implement the CustomValidator control in the CheckForm form. You can use this
validation control to validate the Member Number text box. You can add the
CustomValidator control to the CheckForm form. Table 23-9 displays the values set for
the properties used in the CustomValidator control.
Table 23-9: Properties Set for the CustomValidator Control

Property Value
ID NumberCustomValidator
ControlToValidate CustIDBox
ClientValidationFunction CustIsValidFun
ErrorMessage This is an invalid

Table 23-9: Properties Set for the CustomValidator Control

Property Value
customer ID, please
retype.

Display Dynamic
The value for the ClientValidationFunction property is set to CustIsValidFun.
This is the name of the client script function. This function is invoked when the control
with ID CustIDBox is validated. You can write this function using VBScript. Let’s add the
following validation code in the .ASPX file of the CheckForm form:

<script language="vbscript">
 Sub CustIsValidFun (source,arguments)
 if(arguments.Value)="KBL77777" Then
 arguments.IsValid=true
 Else
 arguments.IsValid=false
 End If
 End Sub
</script>
The CustIsValidFun function accepts two parameters, source and argument. The
source parameter gets the control ID from the ControlToValidate property of the
CustomValidator control. The arguments parameter contains the actual information
about the value being entered in the control. Therefore, in the following function, the
value entered in the control with the ID CustIDBox is matched against a value. If the
two values match, the IsValid property is set to True. If the value of the function is
returned as True, the validation succeeds.
When you execute the application, the page is displayed in the browser. If you enter an
incorrect value in the CustIDBox text box, an error message displays.

ValidationSummary
You can use the ValidationSummary control to display all the validation errors in the
page. This control enables you to display the summary of errors in a list, a bulleted list,
or paragraph format. In addition, it provides you with an option to display the summary of
errors inline or as a pop-up message box.
Table 23-10 lists some of the common properties of the ValidationSummary control.
Table 23-10: Properties of the ValidationSummary Control

Property Description
DisplayMode This is used to

get or set the
display mode of
the validation
summary. This
property accepts
one of three
values: List,
BulletList, or
SingleParagra
ph.

HeaderText This is used to
get or set the text
to be displayed at

Table 23-10: Properties of the ValidationSummary Control

Property Description
the top of the
validation
summary.

ShowSummary This is used to
get or set a
Boolean value
that indicates
whether the
validation
summary is
displayed inline.
The default value
is True.

ShowSummaryBox This is used to
get or set a
Boolean value
that indicates
whether the
validation
summary is
displayed as a
pop-up message
box. The default
value is False.

You can add the ValidationSummary control to the CheckForm form by using the
Toolbox. The ASP.NET code for the ValidationSummary control is as follows:
<asp:ValidationSummary
id="ValidationSummary1" runat="server"
HeaderText="The following errors were encountered">
</asp:ValidationSummary>
You can display the validation summary as a pop-up message box by setting the value
of the ShowSummaryBox property to True.

When you execute the application, the form displays. If you enter invalid data in any of
the controls of the form and click the Accept button, the page displays an inline validation
summary.

Using Multiple Validation Controls

You know how to use different validation controls in isolation. In some applications,
however, you need a control for multiple conditions. Consider this example: You want the
value of a control to be within a specific range. In addition, you also require that the value
of the control pass a custom validation test. To test multiple conditions for a control’s
value, you need to associate multiple validation controls to a single control.
In most cases, you use the RequiredFieldValidator control in combination with other
validation controls. Let’s go back to the CheckForm form example. If a user does not
enter any value in the two password boxes and clicks on the Accept button, the
comparison validation test does not fail. This is because there is no value in the two
password boxes. You have to add a validation control to avoid such a situation.
Therefore, you need to use the RequiredFieldValidator control in conjunction with the
CompareValidator control.
It is quite easy to use multiple validation controls for the same control. You simply have
to add all the validation controls you require for a control to the form. Next you have to

set the ControlToValidate property of all the validation controls as the ID of the
control you want to be validated.
Table 23-11 displays the values you need to associate for the CheckForm form. These
values are used to add multiple validations to the form.
Table 23-11: Properties Set for the Second RequireFieldValidator Control

Property Value
ID PasswordRequiredFieldValidator
ControlToValidate ConfirmBox
ErrorMessage Enter your password
Display Dynamic

If you don’t enter the value for the two password fields and submit the form, a message
Enter your password will display.

Summary
This chapter covered the basics of ASP.NET and the platform requirements for
ASP.NET applications. It also covered the details about the ASP.NET architecture and
introduced you to Web forms ASP.NET applications. This chapter also covered the
different types of server controls and validation controls that you can use in your page.
ASP.NET provides structured framework for the complete development of Web
applications.

Chapter 24: More on ASP.NET
In the preceding chapter, you were introduced to ASP.NET. You learned how to develop
a Web application using the various server controls. In this chapter, you will learn to
configure and secure ASP.NET applications.

You define the configuration for an application to define its behavior. With the explosive
growth of the Internet and its far-reaching access, you need to improve the performance
of your Web application. You can improve application performance by using caching,
which will be covered in this chapter. In addition to being fast, a Web site needs to be
secure. This is because a nonsecure site will not hold any value to a user. Therefore,
you need to give a lot of consideration to the security aspects of your Web application. In
this chapter, you will also learn about the various security mechanisms available with
ASP.NET.

Configuring ASP.NET Applications
The various details you provide when you create an application are called its
configuration information. Consider this example: When a new application such as
Microsoft Outlook is installed, you provide information about the user and the mail server
to be used. Similarly, the configuration information of a Web application includes details
such as session timeout, security options, and error handling. In this section, you will
learn about the basics of configuring ASP.NET applications.

The properties and behavior of ASP.NET applications are determined by the settings
defined inside the configuration files. These files are XML based. Therefore, you can
access and set the configuration settings without writing any scripts. There are two types
of configuration files:

 machine.config. This is the machine configuration file that gets installed on the
server when Visual Studio.NET is installed. The machine.config file
contains the default configuration for all Web applications hosted on the
server. There can be only one machine.config file on the server. This file is
located in the %runtime install path%/config directory.

 Web.config. Some files are automatically created when you create an
ASP.NET application project. One of these files is the Web.config file,

which is created in the root directory of the application. This file contains
settings specific to an individual application. You can override the default
settings by changing the settings in the Web.config file. You can have
multiple Web.config files, one for each application on the server.

Let’s now take a look at some of the advantages of configuring applications in ASP.NET.
First, the files configured in ASP.NET are XML based, thus making them easy to read
and write. In addition, the changes made to the configuration files take effect
immediately. Second, the configuration settings are applied in a hierarchical manner.
Therefore, you can have different settings for different applications and different settings
for different parts of the same application. Finally, the ASP.NET configuration system is
extensible. This implies that you can create custom configuration handlers.
Let’s ask a simple question. Would you like to visit a site that contains excellent
information and provides effective services but is extremely slow? The answer is a
simple “No.” The solution to this problem is a mechanism called caching. In the following
section, you will learn about caching in ASP.NET.

Caching in ASP.NET

A Web application that is slow can result in users’ dissatisfaction and can prove to be a
complete failure. An effective solution is caching. Caching improves performance by
storing frequently accessed data in memory. Therefore, frequently accessed pages are
retrieved from the cache directly instead of reloading the page from the Web server.
Data, especially static data, can quickly be displayed using caching. Caching is also
beneficial with nonstatic data. You can specify the validity period of data in the expiration
policy of the requested page. The client request is serviced using the cache for the
specified duration in the expiration policy. After the expiration date, the request from the
client is redirected to the Internet.

ASP.NET caches frequently accessed pages in memory or on local hard disks. As a
result, a request from an application on the Web server is processed only once and is
cached for future use. Once the request is cached, any further requests for the same
page are processed from the cache instead of from the Web server. This saves time and
improves performance.

The Web application can cache frequently accessed data at the client side or at the
server side. The cached information can be stored in any of the following locations:

 Client. You can have your application cache the frequently accessed
data in temporary files on the client computer or on the hard disk. The
subsequent request for the cached data is serviced directly from the
memory or from the hard disk of the client. Most Web browsers perform
client-side caching. However, the drawback of storing cached data on the
client is that it cannot be shared among multiple users.

 Dedicated server. A proxy server, such as Microsoft Proxy Server, can
be used for caching. Although most Web browsers take care of client-
side caching, you need to specify a dedicated server to share the cached
information among multiple users. A proxy server can act as an
intermediary between the Internet and a user workstation. When there is
a request from the client, the proxy server checks the cache for the
requested page. If the page is available within the cache, it is sent to the
client. If not, the proxy server redirects the request to the Internet.

 Reverse proxy. The proxy server solves the problem of sharing data
among many users. However, having a single proxy server to handle
client requests increases the load on it. To prevent this from happening,
you need to balance the load on one proxy server. Consider this
example: A proxy server named PS1 handles requests for a Web
application. You can reduce the load on PS1 by placing another proxy
server named PS2 ahead of PS1. All client requests for PS1 are routed
through PS2. This is called reverse proxy.

ASP.NET provides three types of caching that can be used by Web applications:
 Output caching. This is used to cache a dynamic response to a client

request. Output caching is enabled by default. For the response to be
cached, however, it must have a valid expiration policy. For example, a
Web page that is accessed from a database has to be re-created for
each request. This increases the load on the network traffic and on the
server. With output caching enabled, however, the page needs to be
retrieved only after its expiration date. You can set the expiration policy
by using the directives at the page level. The directives use certain
attributes to determine the behavior of the output cache. These directives
include duration, location, and VaryByParam. Consider the
following example:

 <%@ OutputCache duration="60" VaryByParam="Name" %>
The duration attribute specifies the expiration time for a Web page. In the preceding
code, the value of the duration attribute is specified as 60, so the cached information
is retained for 60 seconds. After the specified time, the cache expires, and any
subsequent request is directed to the Web server.
The location attribute specifies the location of the cached information. This attribute
can take the values client, downstream, server, any, and none. The value
client indicates that the output cache is located on the client. The value
downstream indicates that the output cache is located on the server (other than the
origin server) where the request is processed. Specifying the value as server means
that output cache is located on the Web server. The value any specifies that output
cache could be located on either the client or the Web server. You can use the value
none to indicate that output caching has not been enabled for the page.
The VaryByParam attribute specifies a list of strings separated by semicolons. These
strings are used to vary the output cache. The strings represent the query strings sent
with the client request. For example, in the preceding code, the data is cached based
on the name of the user that’s passed as a query string variable to the page URL.

 Fragment caching. There are times when you want to cache the entire
page but only part of the page needs to be placed in memory. In such
situations, you can use fragment caching. Fragment caching helps you
cache specific portions of the page but not the entire page. For this
purpose, you can identify data that is important and needs to be cached,
or you can cache different regions of a page.

 Data caching. ASP.NET provides the cache mechanism to store
frequently accessed data in memory. This is done using memory
variables on the server side. ASP.NET provides a cache engine that can
be used by the pages to store and retrieve data across the client
requests. This cache is specific to a page, and the life of the cache is
equivalent to the life of the page. This means that once the page is
restarted, the cache is re-created. Programmers can easily use the
cache to store and retrieve the stored data.

Visual Studio.NET provides the Cache class to implement the cache for a Web
application. This class is included in the System.Web.Caching namespace. This class
stores all the cached items and also provides properties, such as Count and Item, that
you can use to access the cached items. This class also provides methods to add and
remove items from the cache.

You can also use ASP.NET cache to maintain a page’s data based on the changes
made to the page during its lifetime. For this purpose, ASP.NET supports three types of
dependencies that enable you to validate specific data within the cache depending on
the changes made to the page. You can also use these dependencies to invalidate
specific data.

The three types of dependencies are as follows:
 File-based dependency
 Key-based dependency
 Time-based dependency

File-based dependency is used to invalidate a specific item in the cache based on the
changes made to a file on the disk. In key-based dependency, the cache item is
invalidated based on another cache item. This dependency is useful in situations in
which one set of data depends on another. For example, the commission of a
salesperson depends on the sales made. Time-based dependency terminates the cache
data at a specific time. There are two options on which you can base a time-based
dependency. The first option is called absolute expiration. This option represents the
time when the cache item is removed. The second option is called sliding. Using this
option, you can reset the cache expiration time with each request.

In the preceding section, you were introduced to the concept of caching. Caching is
important to improve the performance of your Web pages. In the following section, you
will be introduced to another important concept—application security. The security of
data on the Internet is the most important concern of both Web developers and users.
Adequate authentication is an essential ingredient for the success of a Web application.

ASP.NET Application Security Mechanisms
Applications on the Internet need to be secure for users to access and use the
information on them. The security aspect of Web development requires maximum
attention from a Web developer. The security of an application ensures not only that it is
protected from hackers but also that the information accessible to users is restricted.

As you are aware, an ASP.NET application is deployed on the Internet Information
Server (IIS). Therefore, the security mechanisms available on the IIS are also applicable
to the ASP.NET Web application. In addition, ASP.NET provides its own security
mechanism that helps you further secure your Web application.

Let’s take a look at the security mechanisms available with IIS. The IIS Server 5.0
provides four built-in types of security mechanisms, as follows:

 Anonymous authentication. This is the default authentication mechanism used
by IIS. In this authentication, the user does not provide a username or a
password. In fact, the user is authenticated using a default logon name and
password.

 Basic authentication. In this authentication mechanism, a user is required to
specify a logon name and password. This mechanism is not very safe,
however, because the user’s details are sent over the Internet in an
unencrypted form.

 Digest authentication. Digest authentication is similar to basic authentication.
The only difference is that digest authentication sends the user’s details
over the Internet in an encrypted form. Therefore, it is more secure than
basic authentication.

 Integrated Windows authentication. This authentication requires the user to
have a valid account with the Windows 2000 domain. The integrated
Windows authentication mechanism is useful when the number of users
accessing the application is relatively low.

In addition to the security measures provided by IIS, three other security mechanisms
are provided by ASP.NET: Forms authentication, passport authentication, and Windows
authentication. Your choice of the ASP.NET authentication depends on the IIS
authentication used. If you have chosen to use any other IIS authentication mechanism
other than anonymous, you will most likely use the Windows authentication provided by
ASP.NET. Otherwise, you can use either forms or passport authentication.

Here is some more information about ASP.NET authentication mechanisms:
 Forms authentication. In this scheme of authentication, a simple HTML form

on the client side is used to collect user credentials. The HTML form
submits the user credentials to the application for authentication. If the user
is authenticated, the application issues a cookie to the user. Forms
authentication is also called cookie-based authentication. If the requested

resource does not contain the cookie, the application redirects the user to
the logon page. The user credentials are stored by the application in many
ways, such as in a SQL database. The advantage of this authentication
mechanism is that it can be used for both authentication and
personalization. In addition, forms authentication does not require the
corresponding Windows account. However, it is possible to replay the
request during the lifetime of the cookie unless authentication such as
Secure Socket Layer is used.

To implement the forms authentication, you need to create your own logon page
and redirect URL for users who are not authorized. In addition, you must create
your own scheme for account authentication.

 Passport authentication. This is a centralized authentication service provided
by Microsoft. Passport authentication offers a single logon and profile
services for member sites. You can subscribe to this site by signing a
contract with Microsoft through its Web site
www.microsoft.com/myservices. When you use passport authentication,
you spend less on hardware infrastructure and require fewer people to run
your Web application. In addition, you can cater to a larger audience using
passport authentication. The steps that take place in passport
authentication are as follows:
 A user requests a protected resource. The request does not

contain the passport ticket, so the server returns the user to the
Passport Logon Service along with the encrypted parameters about
the request.

 The user then issues the request to the logon server with the
supplied query string.

 The Passport logon server then presents the user with the logon
form. The user completes the form and sends it back to the server.

 The server then redirects the user to the required request, along
with the authentication ticket encrypted within the request.

The main advantage of passport authentication is that it requires single sign-in
across multiple domains. In addition, it is compatible with all browsers. However,
passport authentication depends on external sources for the authentication
process.

To use passport authentication, you must download the Passport development
kit (SDK) and use the documentation provided to implement passport
authentication.

 Windows authentication. Windows authentication depends on the IIS to
provide authenticated users. After a user is authenticated by the IIS using
any of its authentication mechanisms, it passes a security token to
ASP.NET. This token is used by ASP.NET to authenticate the user. One
advantage of Windows authentication is that you need not write any custom
authentication code. However, this means that you need to manage
individual Windows user accounts. To implement Windows authentication,
you must change the Web application’s configuration file.

Summary
In this chapter, you learned about different concepts of ASP.NET and about configuring
ASP.NET applications. By configuring applications, you can define the behavior of the
application. You learned about improving the performance of your Web application. You
learned that by caching recently requested information, you can improve the response
time of the application for users. At the end of the chapter, you learned about different
security mechanisms that can be applied to ASP.NET applications. The security
mechanisms include anonymous, basic, digest, and integrated Windows authentication.
You also learned about ASP.NET security mechanisms such as forms authentication,
passport authentication, and Windows authentication.

Chapter 25: Web Services
Overview
The Internet (or the Web, as it is commonly called) has evolved tremendously and has
revolutionalized the way business happens these days. Almost everyone has used the
Internet at least once in one way or another. In other words, the Internet has become an
integral part of our lives, and it is commonly used in both households and business
offices. The ever-changing business scenario has become more and more dependent on
the Web for any data transactions or for communication between applications. As a
result, the focus of software development is shifting from desktop applications to
applications that can access data through the Internet. These applications are mainly
distributed applications—scalable applications in which data is shared across
applications.

Take the case of a distributed application, which consists of a client application that
interacts with a middleware application that contains the business logic for the entire
business solution that you’ve created. This intermediate application in turn interacts with
the underlying databases that store the data for the application. Therefore, as you can
see, a business solution on the whole comprises a number of applications and
databases. These applications and databases may be present on a single computer, but
in large-scale business operations, they generally are distributed across different
computers connected over a network. In such cases, these applications may be created
by using different programming languages and, in the worst scenario, on different
platforms. However, to build a complete business solution, it is essential that you
integrate these applications. This integration is made simpler with the use of Web
services.

In this chapter, you first will be introduced to the basics of Web services. Then you’ll
learn about the architecture and working of a Web service. This chapter also introduces
the technologies used in a Web service, such as eXtensible Markup Language (XML),
Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL),
and Universal Description Discovery and Integration (UDDI). Finally, you will learn to
create a simple Web service in Visual Studio.NET.

Introduction to Web Services
As previously discussed, a Web service is used to integrate different applications that
access data through the Internet. To do this, methods in a Web service are called over
the Internet, and can then be accessed by applications developed on different platforms.
In other words, a Web service is a reusable component (such as a method) that can be
used by any Web application running on the Internet. In addition, a Web service can be
used by a Windows application. These applications are called Web service client
applications.
Before .NET came into the picture for developing Web services, DLL files or components
were used to create distributed applications. To communicate with a client application,
however, these components use protocols such as the Remote Procedure Call (RPC),
Distributed Component Object Model (DCOM), Remote Method Invocation (RMI), or
Internet Inter-ORB Protocol (IIOP). Therefore, communication between a client
application and a component depends on various factors such as hardware platform,
programming languages, vendor implementations, and data-encryption schemes. This
means that transferring data between two applications requires a similar infrastructure at
the two application sites. However, this scenario cannot be obtained while working with
Internet applications. An Internet application can be accessed by various client
applications. Therefore, it is essential to build components that can be used to create
distributed applications that can be accessed from various platforms. To do this, you can
use Web services. Web services enable you to create platform-independent distributed
applications. The capability is mainly due to the support of a Web service for Internet
standards such as HTTP and XML. (For more information on XML, see Chapter 30,
“Getting Started with XML.”)

In addition to integrating applications built on different platforms, a Web service enables
you to integrate business solutions for one or more organizations. This means you can
create a Web service specific to your organization, or you can customize a Web service
created by another organization to your specific requirements. You can also create a
Web service that can be used by a single application or that can be called on the Internet
to be used by multiple applications. To call a Web service from the Internet, the Web
service client needs to know the location of the Web service as well as the input and
output information required for accessing the Web service.
A Web service that you create can be a simple one-method service. For example,
consider a situation in which you want to know the current time in a particular state. You
can create a method in a Web service that returns the current time in the state you
choose. You can pass the state for which you want to know the current time as a
parameter to the method. A method created in a Web service is called a Web method.
You will learn about Web methods in detail later in this chapter.
In addition to performing simple tasks by using a Web service method, you can create
Web methods that perform complex tasks. In such cases, a Web service may consist of
several Web methods performing complex tasks. For example, consider a situation in
which you need to validate the username and password entered by a user to log on to a
site. This is a very common scenario because almost all Web sites require a method to
validate the username and password. Therefore, in such a case, you can create a Web
service that performs data validations. In addition, the Web service you create can be
used to validate data for various Web sites. You can then customize the Web service
according the requirements based on your database schema. In this case, the Web site
that uses the Web service to perform data validations is called a Web service client
application, and the application that hosts the Web service is called a Web service
provider application.

The data validation scenario discussed involves various applications and an underlying
database. For example, the Web site that needs to perform data validation is a Web
application that interacts with a database. The database can be created using SQL,
Access, Oracle, or any other relational database management system (RDBMS). In
addition, for the Web application to perform validations based on the data in the
database, the Web application uses another application. In this case, the other
application required to perform validations is a Web service. Therefore, as you can see,
multiple applications are involved in a complete business solution. To integrate these
applications, a Web service can be used. Let’s now see how a Web service can provide
integration of multiple applications.
A Web service uses XML and any other Internet standard (such as HTTP) to create an
infrastructure that helps you integrate applications built on multiple platforms. Due to the
support of Web services for XML, these Web services are often referred to as XML Web
services.

An XML Web service uses Simple Object Access Protocol (SOAP) messaging to
communicate and transfer data across applications. SOAP messaging allows a great
deal of abstraction between a Web service client and a Web service provider.

This means that using the XML messaging technique enables you to create a client and
a service provider independent of each other.

By now, you must have an idea of the need for a Web service. Let’s now discuss the
architecture of a Web service.

Web Services Architecture

As previously mentioned, a Web service can be an intermediate application that allows a
Web service client application to access data from an underlying database. To do this,
the Web service architecture internally consists of four layers, as follows:

 The data layer. The data layer is the first layer in the Web service
architecture. This layer contains the data that the Web client application
needs to access.

 The data access layer. The layer above the data layer is the data access
layer. This layer contains the business logic or code that allows the Web
client application to access the data in the data layer. In addition to
storing data, the data access layer is used to secure the data present in
the data layer.

 The business layer. The third layer in the Web service architecture is the
business layer. This layer contains the code required for implementing
the Web service. The business layer, in turn, is divided into the business
logic and business façade layers. The business logic layer contains all
the services provided in a Web service, but the business façade layer
acts as an interface of the Web service.

 The listener layer. As the name suggests, the listener layer receives the
requests sent by users for a Web service. In addition to receiving the
message, the listener layer also parses the received messages and
dispatches the request to the appropriate method in the business facade
layer.

The Web service architecture is explained in Figure 25-1.

Figure 25-1: The Web Service Architecture

The next section looks at how the Web service works based on the Web service
architecture.

How Web Services Work
Let’s understand how a Web service works. First, the client application sends a request
for a service. The request is made to the Web service in the form of an XML message
using a transfer protocol such as HTTP. This scenario is somewhat similar to a method
call statement that you use to call a particular method. The request for the service is
passed to the listener layer, which forwards the request to the Web service provider
application. The request is then processed by the Web service provider application.
Processing the request includes the data access layer retrieving the data requested by
the client application. This data is then passed to the listener layer, which forwards it to
the client application. Figure 25-2 shows the working of a Web service.

Figure 25-2: The working of a Web service

Take a look at the working of a Web service in detail. When a client application sends a
request for a service, you may need to pass arguments. To pass arguments over the
network, the arguments are packaged as a SOAP message and are passed to the Web
method by using a network protocol. You will learn about SOAP in detail later in this
chapter.

Then the Web service decodes the SOAP message to retrieve the arguments passed to
the Web method. Once the arguments are passed to the Web method, the method is
executed, and the return value is passed to the Web client application.

The following steps explain how a request for a Web service from a user is received and
processed:

1. The client application sends a request for a Web service.
2. The listener layer receives the request.
3. The listener layer, after receiving the message, calls for the business

facade layer.
4. The business facade layer sends the request to the data access layer.
5. The data access layer applies the business logic.
6. After applying the business logic, the data access layer sends the

message back to the business facade layer.
7. The business facade layer sends the message to the listener layer.
8. The listener layer sends the data to the Web services client. Having

learned about the working of a Web service, let’s now look at the
technologies used by a Web service.

Technologies Used in Web Services
You can create Web services using any language provided by the .NET framework, such
as Visual C#.NET, Visual Basic.NET, and Visual C++.NET. For an application to be able
to access a Web service, however, the client application needs to meet certain
requirements. These requirements include a standard format for describing Web
services, a standard format for representing data transfer, and a standard for sending
methods (and the results returned by the methods) across the network. In addition, to be

able to access a Web service, the Web client application needs to identify a method for
locating the Web service and passing inputs to the Web methods.

As a solution to these requirements, technologies such as XML, WSDL, and SOAP have
been developed. These technologies are discussed in the following sections.

XML in a Web Service

XML is a markup language used to describe data in a particular format. This data can be
accessed by any application built on any platform. XML enables you to transfer data in a
format that is independent of the platform. Therefore, XML is a widely-used technology
that transfers data across Internet applications. XML documents store data in the form of
text. This makes the XML document easily understood by applications built on different
platforms. Moreover, content stored in an XML document is easily transferred over the
network.

Now that you’ve had an overview of XML in general, let’s see how a Web service uses
XML. When a Web service client application calls a Web service, the client application
passes arguments to the Web method. The Web service processes the Web methods
and returns a result to the client application. Since the client application can be built
using any platform, the data returned by the Web service is in the form of XML.

WSDL in a Web Service

The Web Services Description Language (WSDL) is a markup language that defines a
Web service. WSDL is an XML file that contains information about a Web service. This
information includes the Web services called by a Web site, the methods included in
each of the Web services, and the parameters you need to pass to the Web methods. In
addition, WSDL includes information about the results returned when a request is
processed by a Web service. For example, WSDL defines the type of values returned by
a Web method. Therefore, WSDL is a vocabulary defined for the creation of a Web
service that the developer may need to use when creating a Web service.

In addition to storing information about the Web methods, WSDL stores information
about the format used by a user to access a Web service and specifies the location at
which the Web service is available. Therefore, WSDL describes the entire mechanism
involved in the transfer of data from a Web service client to the Web service and vice
versa.

For example, a Web service client application needs to call a Web method that validates
the username and password entered by the user. The Web method is created in a Web
service. To call this Web method, the Web service client sends a request to the Web
service. The request sent to the Web method is specified by WSDL. The request sent to
the Web service is in the form of XML messages. In this case, WSDL stores the format in
which the request is sent.

In addition, when a Web method is called, you need to pass the username and password
as parameters. The information about the type and format of the parameters is stored in
a WSDL file. When the request is processed and the result is returned, WSDL stores the
format and other information about the results returned.

SOAP in a Web Service

To transfer data from a Web service client to a Web service and vice versa, the SOAP
transfer protocol is used. SOAP is a protocol based on XML that is used by a client
application to access a Web service. In addition to XML, SOAP uses HTTP for the
transfer of data. When a client sends a request, the request is in the form of a SOAP
message. The SOAP message also includes the parameters and the method call
statement. Based on the information in the SOAP message, the appropriate Web
method is called.

As previously discussed, SOAP is a standard protocol used for communication between
a Web service client and a Web service. However, SOAP does not define syntax to be
followed when transferring data. Instead, SOAP provides a mechanism for packaging
data to be transferred across a network. In addition, SOAP is a transfer protocol based
on simple Internet standards. The transfer of data using SOAP takes place in the form of
a SOAP package. A SOAP package includes an envelope that encapsulates the data to
be exchanged.

In addition to these technologies, Web services use Universal Description Discovery and
Integration (UDDI) to identify the Web services provided by various Web service
providers. The following section discusses UDDI in detail.

UDDI in a Web Service

When you develop a Web service, you need to register the Web service in a UDDI
directory. This implies that UDDI provides a mechanism for Web service providers to
register their Web services. When a Web service is registered with a UDDI directory, an
entry for the Web service is created. A UDDI directory maintains an XML file for each
Web service registered with the UDDI directory. This XML file contains a pointer to the
Web service registered in the directory. In addition, the UDDI directory also contains
pointers to the WSDL document for a Web service. To do this, the Web service provider
first needs to describe the Web service in a WSDL document. After a WSDL document is
created, the Web service can be registered with the UDDI directory. This makes the Web
service easily accessible to the Web service clients because the client applications can
discover and identify a Web service from a UDDI directory.

Consider the earlier example of the Web service used to perform user validation. Once
you have created the Web service and described it in a WSDL document, you can
register the Web service with the UDDI directory. Then any user that wants to use the
Web method can search on the UDDI directory for the required method. The UDDI
directory returns the list of Web services registered with the UDDI directory. The user
can then select the required Web method from the list of available Web services.

A UDDI directory contains white pages, yellow pages, and green pages. The white
pages contain information about the organization that provides the Web service. This
information includes the name, address, and other contact numbers of the Web service
provider company. The yellow pages in a UDDI directory contain information about the
companies based on geographical taxonomies. The green pages provide the service
interface for the client applications that access the Web service.

The following section discusses how Web services fit into the .NET framework.

Web Services in the .NET Framework
The .NET framework provides a complete framework for developing Web services. This
means that in the .NET framework, you can not only create Web services but also
deploy, use, and maintain them. The .NET framework provides tools and technologies
you can use to develop a Web service. The next section discuses how to create a Web
service in Visual Studio.NET.

Similar to creating a Windows application and a Web application, Visual Studio.NET
provides you with a template to create a Web service. The template for creating a Web
service is provided in the New Project dialog box. To access the Web service template,
perform the following steps:

1. Create a new project using the File, New option. In the displayed list,
select the Project option. The New Project dialog box displays.

2. In the right pane of the New Project dialog box, select the ASP.NET Web
Service project template option. In the Location text box, type the
address of the Web server on which you will develop the Web service.

In this case, the development server is the local computer. You can also specify the
name of the Web service, SampleWebService, in the Location text box.

Tip The Web server you specify as the development server must have
the .NET framework and IIS 5.0 or later installed on it. If you have
IIS 5.0 installed on your local computer, you can specify the path in
the Location text box of the local computer.

A Web service with the name MyWebService is created. MyWebService contains the
files and references required for the Web service. A description of these files is given in
Table 25-1.
Table 25-1: Files in a Web Service

File Description

AssemblyInfo.cs Contains the
metadata of
the assembly
for the project.

Service1.asmx.cs Contains the
code for the
class declared
in the Web
service.

Service1.asmx Is the entry
point of the
Web service
and contains
information
about the
processing
directive of the
Web service.
The processing
directive
identifies the
class in which
the code for
the Web
service is
implemented.

Global.asax.cs Contains the
code for
handling the
events
generated in
the application.

Global.asax Contains
information
about handling
the events
generated in
the application.

Web.config Contains
information
about the
configuration
settings of
ASP.NET

Table 25-1: Files in a Web Service

File Description
resources.

SampleWebService.csproj.webinfo Contains
information
about the
location of the
project on the
development
server.

SampleWebService.vsdisco Contains the
description of
the Web
service that is
required by the
client
application to
access the
Web service.
The file
contains
descriptions of
the methods
and interfaces
used in the
Web service to
enable
programmers
to
communicate
with these
resources.

SampleWebService.sln Contains the
metadata of
the solution. If
your local
server is your
development
server, the
MyWebService
.sln file exists
on the local
server.

SampleWebService.csproj Contains
information
about the list of
files related to
a project.

When you create a Web service, the Component Designer view for Service1.asmx is
displayed. The Service1.asmx.cs file contains the code for the Web service. You will
learn about the default code generated by Visual Studio.NET later in this chapter.

In the .NET framework, you can create complex Web services that an application can
use to access data over the Internet. You will learn about creating complex Web services

later in this project. In this chapter, however, let’s create a simple Web service that will
help you have a better understanding of how to create a Web service.

Creating a Simple Web Service in the .NET Framework
This section will show you how to create a simple Web service in the .NET framework.
This Web service will contain a default HelloWorld Web method.

The following tasks will be involved when creating the Web service:
 Create a blank Web service project.
 Create the appropriate Web methods in the Web service.
 Compile and test the Web service.

Let’s name this Web service as MyFirstWebService. You can create a Web service
by using the ASP.NET Web Service template in the New Project dialog box. In the
Location text box of the New Project dialog box, specify the name of the Web service as
MyFirstWebService.
When you click on the OK button in the New Project dialog box, Visual Studio.NET
creates a virtual directory with the name of your Web service. If a Web service with the
specified name already exists, Visual Studio.NET prompts you to specify another name
for your Web service. Figure 25-3 shows the screen that appears when you create a
Web service.

Figure 25-3: The first screen that appears when you create a Web service

Note that the Web service does not have any user interface or a form. The default file
displayed when Visual Studio.NET creates a Web service is Service1.asmx. Table 25-1
already explained the default files generated by Visual Studio.NET.

After creating the Web service, you need to add the Web methods to the Web service.
The code behind the Web service is written in the Service1.asmx.vb file. To access the
Service1.asmx.vb file, press the F7 key or double-click the Service1.asmx file.
As you can see in the Service1.asmx.vb file, Visual Studio.NET generates a default code
for your Web service. Figure 25-4 displays the screen you will see upon clicking the link
for the Code view in the Design view of the Service1.asmx.vb file.

Figure 25-4: The default code for a Web service

Note that you get a default Web method named HelloWorld that you can use. Make
the following changes to the code:
<WebService(Namespace:="http://localhost/MyFirstService")> _
Public Class Service1
 Inherits System.Web.Services.WebService
<WebMethod(Description:="Wow… This is my first Web service…")> Public Function
HelloWorld() As String
 HelloWorld = "Hello World"
End Function

Note The Service1.asmx file uses two files named Service1.asmx.vb
and Service1.asmx.resx. The Service1.asmx.vb file contains the
Visual Basic.NET code, and the Service1.asmx.resx file contains
resources related to the Web service. These files are not visible by
default. To view these files, click the Show All Files button in the
Solution Explorer. Now click the plus symbol next to the
Service1.asmx file. The Service1.asmx.vb file appears as a child
node. To view the Service1.asmx.res file, click the plus symbol
next to the Service1.asmx.vb file.

Now that your Web service is ready, let’s test it to make sure it is running fine.
To test a Web service application, you do not need to explicitly create a client that uses
the Web service. You can test the Web service and its methods by executing the Web
service from Visual Studio.NET. Figure 25-5 depicts the Web page displayed when Web
service is executed for testing.

Figure 25-5: The Web service interface in the browser

This Web page lists all the methods provided by the Web service along with their
descriptions. The Address bar in Internet Explorer shows the address of the location
where your Web service has been deployed. To test the HelloWorld method, click
HelloWorld. This form also displays the description of the HelloWorld method that
you specified in the WebMethod attribute of the HelloWorld method. This Web page
also displays the SOAP request and response snippets for the Web method.
Figure 25-6 depicts the Web page displayed when you click the HelloWorld Web
method link.

Figure 25-6: The form displayed when you click the HelloWorld Web method link

This completes the process of creating a simple Web service.

Summary
In this chapter, you learned about distributed applications, and the concept of Web
services was introduced. Next you learned about the architecture of a Web service.
Based on this architecture, you learned about the working of a Web service. You also
learned about the role of XML, WSDL, SOAP, and UDDI in a Web service. Based on this
knowledge, you learned to create a simple Web service using Visual Studio.NET.

Chapter 26: Designing the Customer Interface

Overview
In Chapter 22, “Project Case Study—Creating a Web Application for the MyMovies Video
Kiosk,” you learned about the video kiosk Web application. For the rest of this project,
you will learn to create the video kiosk Web application. As discussed in Chapter 22, the
video kiosk Web application is divided into two interfaces: the customer interface and the
admin interface.

In this chapter, you will learn to design the customer interface of the video kiosk Web
application. You will learn about the Web forms you need for this interface. In addition,
you will learn about the controls for each form of the application and the properties you
need to set.

Typically, an ASP.NET application contains one or more Web forms. A Web form is used
to create programmable Web pages. Web forms enable you to create form-based Web
pages.
As discussed in the Chapter 22, the customer interface of the video kiosk Web
application consists of the following Web pages:

 The home page
 The Search page
 The Account Details page
 The Customer Registration page

The following sections describe each of these pages in detail. To start with, take a look
at how to design the home page of the customer interface.

The Home Page
As the name suggests, the home page is the first Web page a customer will see. The
home page is the central location from which customers can browse for movies, place
orders for movies, and register themselves. Figure 26-1 shows the home page.

Figure 26-1: The interface of the home page

To create the home page, you need to add controls to the Web form. Before adding
controls, you need to specify some properties for the Web form. The properties you need
to assign to the home Web form are listed in Table 26-1.
Table 26-1: Properties of the Home Web Form

Form Property Value

Home form pageLayout GridLayout

Home form bgColor #dda0dd

As shown in Figure 26-1, the home Web form contains different Web controls for
registered customers and new customers. If customers are registered users, they can
log in using their assigned customer ID, view the details of their accounts, search the

site, and ultimately log out. Only a registered customer is allowed to place orders.
Customers can enter their customer identification numbers in the Customer ID text box
and can click on the Login button to log in. After a registered customer has logged in,
he or she can click on the Search hyperlink to display the Search page. The Search
page enables a customer to search for movies. If a customer is not a registered user, the
customer can click on either the New Visitor? Register Here! hyperlink or the
Search hyperlink. If the customer clicks on the New Visitor? Register Here!
hyperlink, the Customer Registration page displays. A customer can use this page to
register and obtain a customer identification number. Alternatively, a customer can click
on the Search hyperlink to search for movies without registering. Therefore, the
customer interface allows a customer to browse for movies regardless of whether the
customer is a registered user or not. You will learn more about the Customer
Registration and search Web forms later in this chapter.
Most of the Web controls on this page are contained in a panel to align them. Table 26-2
lists the properties of the panel.
Table 26-2: Properties Assigned to the Panel

Control Property Value

Panel 1 ID Panel1

Panel 1 Height 385px

Panel 1 HorizontalAlign Center

Panel 1 Width 132px

Panel 1 BackColor MediumOrchid

The home Web form contains two labels. The first label displays the caption for the text
box that takes the customer ID to log in, and the second label display a Welcome
message when the customer has successfully logged in. Table 26-3 lists the properties
of these labels.
Table 26-3: Properties Assigned to the Labels

Control Property Value

Label 1 ID Label1

Label 1 Text Enter
Customer
Id to
Login

Label 1 BackColor #FFCOFF

Label 1 Font Tahoma,
Smaller

Label 1 Width 126px

Label 2 ID Label2

Label 2 Text Welcome to
MyMovies.c
om . You
are Logged
in Now

Label 2 Font Tahoma,
Larger

Label 2 ForeColor DarkViolet

Label 2 Visible False

In addition to the labels, the Panel1 panel contains a text box and a button. The ID
property of the text box is set to TxtCustomerID, and the Width property is set to

113px. The Text property of the button is set to Login, the ID property is set to
CmdLogin, and the Width property is set to 76px.
The home Web form also displays four hyperlinks. The NavigateUrl property of each
Hyperlink control contains the name of the page that should open when the hyperlink is
clicked. Table 26-4 describes the properties for the hyperlinks on the home Web form.
Table 26-4: Properties Assigned to the Hyperlinks

Control Property Value

Hyperlink 1 ID HyperLink1

Hyperlink 1 Text Search

Hyperlink 1 BackColor #FFCOFF

Hyperlink 1 Font Tahoma, Smaller

Hyperlink 1 ForeColor Black

Hyperlink 1 Width 128px

Hyperlink 1 NavigateUrl search.aspx

Hyperlink 2 ID HyperLink2

Hyperlink 2 Text New Visitor
?Register Here !

Hyperlink 2 BackColor #FFCOFF

Hyperlink 2 Font Tahoma, Smaller

Hyperlink 2 ForeColor Black

Hyperlink 2 Width 122px

Hyperlink 2 NavigateUrl Registration.aspx

Hyperlink 3 ID HyperLink3

Hyperlink 3 Text MyAccount

Hyperlink 3 BackColor #FFCOFF

Hyperlink 3 Font Tahoma, Smaller

Hyperlink 3 ForeColor Black

Hyperlink 3 Width 128px

Hyperlink 3 NavigateUrl MyAccount.aspx

Hyperlink 4 ID HyperLink4

Hyperlink 4 Text Log Out

Hyperlink 4 BackColor #FFCOFF

Hyperlink 4 Font Tahoma, Smaller

Hyperlink 4 ForeColor Black

Hyperlink 4 Width 128px

Hyperlink 4 NavigateUrl #

The home Web form also contains three Image controls. The first Image control displays
the caption for the home page, the second displays the banner, and the third displays
another caption in the panel. Table 26-5 lists the properties of the Image controls.
Table 26-5: Properties Assigned to the Image Controls

Control Property Value

Image 1 ID Image1

Image 1 ImageUrl Center1.jpg

Image 1 Height 221px

Image 1 Width 298px

Image 2 ID Image2

Image 2 ImageUrl Fee.jpg

Image 3 ID Image3

Image 3 ImageUrl Bar.jpg

Image 3 Height 69px

Image 3 Width 690px

Finally, the home page also contains two Validation controls. The first Validation control
checks for a blank customer ID, and the second checks for an incorrect value for the
customer ID. Table 26-6 lists the properties of Validation controls.
Table 26-6: Properties Assigned to the Validation Controls

Control Property Value

RequiredFieldValidator
1

ID RequiredField
Validator1

RequiredFieldValidator
1

Error message Customer Id
Cannot be blank

RequiredFieldValidator
1

Font Tahoma,Larger

RequiredFieldValidator
1

ForeColor DarkViolet

RequiredFieldValidator
1

ControlToValidate TxtCustomerID

RequiredFieldValidator
1

Width 290px

CustomValidator 1 ID CustomValidator1

CustomValidator 1 Error message Customer Id
Entered is
Incorrect

CustomValidator 1 Font Tahoma,Larger

CustomValidator 1 ForeColor DarkViolet

CustomValidator 1 ControlToValidate TxtCustomerID

CustomValidator 1 Width 323px

As the name suggests, customers can use the Log Out hyperlink to log out. When a
customer enters a valid customer identification number in the Customer ID text box
and clicks on the Login button, a welcome message displays. When a customer clicks
on the Search hyperlink, the Search page displays. The Search page also displays
when a new customer clicks on the Search hyperlink. The next section describes the
Search page.

The Search Page
As the name suggests, the Search page of the customer interface enables customers to
search for movies. Figure 26-2 shows the Search page.

Figure 26-2: The Search page

To start with, take a look at the properties of the Search Web form. The pageLayout
property of the Search Web form has been changed to GridLayout, and the bgColor
property has been changed to #ffcoff.
The Search page also consists of the panel created for the home page. The difference is
that the LblCustomerID label and the TxtCustomerID are removed. Also, a few
properties of the image in the banner have been changed, and a hyperlink that links to
the home page has been added to the panel. Table 26-7 lists the properties of the image
in the banner.
Table 26-7: Properties Assigned to the Image

Control Property Value

Image 1 ID Image1

Image 1 ImageUrl myMovie_Logo
copy.jpg

Image 1 BackColor DarkViolet

Image 1 Height 65px

Image 1 Width 130px

As shown in Figure 26-2, the Search Web form contains nine labels. Table 26-8 lists the
properties of the labels.
Table 26-8: Properties Assigned to the Labels

Control Property Value

Label 1 ID LblSearchText

Label 1 Text Search Text:

Label 1 Font Tahoma,Smaller

Label 2 ID LblBrowseBy

Label 2 Text Browse By:

Table 26-8: Properties Assigned to the Labels

Control Property Value

Label 2 Font Tahoma,Smaller

Label 3 ID LblSelectMovies

Label 3 Text Select the
Movies to Add
to Your Cart

Label 3 BackColor #FFCOFF

Label 3 Font Tahoma,Smaller

Label 3 Height 38px

Label 3 Width 461px

Label 4 ID LblMsg

Label 4 Text Your Shopping
Cart currently
Contains the
following
Videos

Label 4 BackColor #FFCOFF

Label 4 Font Tahoma,Smaller

Label 4 Width 340px

Label 5 ID LblCCNum

Label 5 Text Credit Card
Number

Label 5 Font Tahoma,Smaller

Label 5 Width 136px

Label 6 ID LblCCNo

Label 6 Font Tahoma,Smaller

Label 6 Width 124px

Label 7 ID Label1

Label 7 Text Valid Upto

Label 7 Font Tahoma,Smaller

Label 7 Width 124px

Label 8 ID LblValidUpto

Label 8 Font Tahoma,Smaller

Label 8 Width 122px

Label 9 ID Label2

Label 9 Font Tahoma,Smaller

Label 9 ForeColor Red

Label 9 Visible False

Table 26-8: Properties Assigned to the Labels

Control Property Value

Label 9 Width 284px

The Search Web form also contains a text box and a combo box. Table 26-9 lists the
properties of the text box and combo box.
Table 26-9: Properties Assigned to the Text Box and the Combo Box

Control Property Value

Text box Name txtSearch

Combo box Name lstSearch

Combo box Width 155px

In addition to these properties, you need to specify the Items property for the combo
box. When you select the Items property, an ellipsis button appears next to the
(Collection) value, as shown in Figure 26-3. You need to click on the ellipsis button
to add items to the Browse By combo box.

Figure 26-3: The Items property of the combo box

When you click on the ellipsis button, the ListItem Collection Editor dialog box displays
(see Figure 26-4). You can add items to the combo box by using this dialog box.

Figure 26-4: The ListItem Collection Editor dialog box

Using the ListItem Collection Editor dialog box, you can specify the items for the combo
box. To add an item to the combo box, click on the Add button in the ListItem Collection
Editor dialog box. When you click on the Add button, a ListItem object is added to the
Members pane, as shown in Figure 26-5.

Figure 26-5: A column added to the list view control

Note that the properties for the selected item appear in the right pane in the ListItem
Collection Editor dialog box. To edit the item name, you need to modify the Text
property of the column header, as shown in Figure 26-6.

Figure 26-6: Modify the Text property for the ListItem

Now add the required number of columns and modify the Text property for each
column. The properties you need to specify for the column headers are:

ListItem Value of
Text
Property

ListItem Value of
Text
Property

ListItem 1 Actor

ListItem 2 Director

ListItem 3 Movie

ListItem 4 Producer

Figure 26-7 shows the ListItem Collection Editor dialog box with all the columns.

Figure 26-7: The ListItem Collection Editor dialog box with all the items

After you add the items to the combo box, you need to click on the OK button in the
ListItem Collection Editor dialog box.
In addition to the combo box and the text box, the Search Web form also contains two
DataGrid controls. Table 26-10 lists the properties assigned to the DataGrid controls on
the Search Web form.
Table 26-10: Properties Assigned to the DataGrid Controls

Control Property Value

DataGrid 1 ID DataGrid1

DataGrid 1 Height 122px

DataGrid 1 Width 542px

DataGrid 1 Height 122px

DataGrid 1 AllowPaging True

DataGrid 1 BackColor #FFCCFF (Under
AlternatingItemSty
le)

DataGrid 1 Wrap False (Under
AlternatingItemSty
le)

Table 26-10: Properties Assigned to the DataGrid Controls

Control Property Value

DataGrid 1 Wrap False (Under
EditItemStyle)

DataGrid 1 Wrap False (Under
EditItemStyle)

DataGrid 1 BackColor Lavender (Under
ItemStyle)

DataGrid 1 Font Tahoma,Smaller
(Under ItemStyle)

DataGrid 1 ForeColor Black (Under
ItemStyle)

DataGrid 1 HorizontalAlign Left (Under
ItemStyle)

DataGrid 1 Wrap False (Under
ItemStyle)

DataGrid 1 NextPageText Next (Under
PagerStyle)

DataGrid 1 PrevPageText Previous (Under
PagerStyle)

DataGrid 1 BackColor #990033 (Under
SelectedItemStyle)

DataGrid 1 ForeColor White (Under
SelectedItemStyle)

DataGrid 1 Wrap False (Under
SelectedItemStyle)

DataGrid 2 ID DataGrid3

DataGrid 2 AutoGenerateColumns False

DataGrid 2 Width 541px

DataGrid 2 Height 61px

DataGrid 2 PageSize 5

DataGrid 2 Font Tahoma,Smaller
(Under
AlternatingItemSty
le)

DataGrid 2 Wrap False (Under
AlternatingItemSty
le)

DataGrid 2 BackColor DarkViolet (Under
HeaderStyle)

DataGrid 2 Font Tahoma,Smaller
(Under HeaderStyle)

DataGrid 2 ForeColor White (Under
HeaderStyle)

DataGrid 2 BackColor Lavender (Under
ItemStyle)

DataGrid 2 Font Tahoma,Smaller
(Under ItemStyle)

Table 26-10: Properties Assigned to the DataGrid Controls

Control Property Value

DataGrid 2 HorizontalAlign Left (Under
ItemStyle)

DataGrid 2 Wrap False (Under
ItemStyle)

DataGrid 2 NextPageText Next (Under
PagerStyle)

DataGrid 2 PrevPageText Previous (Under
PagerStyle)

DataGrid 2 BackColor #990033 (Under
SelectedItemStyle)

In addition to the properties in Table 26-10, you also need to specify the Columns
property of the DataGrid control that shows the search results. When you select the
Columns property, an ellipsis button appears next to the (Collection) value, as
shown in Figure 26-8. You need to click on the ellipsis button to add column headers to
DataGrid1.

Figure 26-8: The Columns property of the DataGrid control

When you click on the ellipsis button, the DataGrid Properties dialog box displays (see
Figure 26-9). You can add columns to the DataGrid control by using this dialog box.

Figure 26-9: The DataGrid Properties dialog box

Using the DataGrid Properties dialog box, you can specify the items for the combo box.
To add a column to the DataGrid control, click on the Add button in the DataGrid
Properties dialog box. To add a column that contains a hyperlink, select Hyperlink
Column in the Available columns pane and click on the Add button. A Hyperlink Column
entry is added to the Selected columns pane, as shown in Figure 26-10.

Figure 26-10: A column added to the DataGrid control

Note that the properties for the selected column appear in the DataGrid Properties dialog
box. To edit the column name, you need to modify the Text property of the column
header, as shown in Figure 26-11.

Figure 26-11: Modifying the Text property for the Hyperlink Column

Click on the OK button to close the dialog box. Similarly, you need to specify the column
text and headers for DataGrid3, which contains the details of the shopping cart. To do
so, select DataGrid3 and open the DataGrid Properties dialog box. The first two
columns you add should contain the Edit and Delete hyperlinks. Such a column can
be added by using the Button Column node. To add a column that contains the Edit
hyperlink, select Edit, Update, Cancel from the Button Column node in the Available
columns pane and click on the Add button. A Button Column is added to the Selected
columns pane, as shown in Figure 26-12.

Figure 26-12: Adding a column to the DataGrid control

Note that the properties for the selected column appear in the DataGrid Properties dialog
box. Similarly, you need to add a Delete column to the Selected columns pane. After this
you need to add a bound column to the grid. A bound column is used to add data
columns from a data source. To add a bound column, select Bound Column from the

Available columns pane and click on the Add button. To edit the column name, you need
to modify the Header text and Data Field properties of the column, as shown in
Figure 26-13.

Figure 26-13: Modifying the Header text and Data Field properties of the Bound Column

Now add the required number of columns and modify the Header text and Data
Field properties for each column. The following are the properties you need to specify
for the columns:

Bound Column Value of
Header
text
Property

Value of
Data
Field
Property

Bound Column 1 MovieId MovId

Bound Column 2 Movie Movie

Bound Column 3 VideoId VideoId

Bound Column 4 Format Format

Bound Column 5 Price Price

Bound Column 6 Quantity Quantity

Figure 26-14 shows the DataGrid Properties dialog box with all the columns.

Figure 26-14: The DataGrid Properties dialog box for DataGrid3

After you add the items to the grid, you need to click on the OK button in the DataGrid
Properties dialog box.
The Search Web form also contains three buttons. Table 26-11 lists the properties
assigned to the buttons on the Search Web form.
Table 26-11: Properties Assigned to the Buttons

Control Property Value

Button 1 ID CmdSearch

Button 1 Text Search

Button 1 Height 22px

Button 1 Width 115px

Button 2 ID CmdShowAllRecords

Button 2 Text Show All Records

Button 2 Width 115px

Button 3 ID CmdPlaceOrder

Button 3 Text Place Order

Button 3 Width 119px

Customers can use the Search button to browse the movies database. To search for a
movie, a customer needs to perform the following steps:

1. Type the text to be searched in the Search Text text box. This text
could be the name of an actor, director, producer, or movie.

2. Select a category from the Browse By combo box. The selection in this
combo box determines the table to be searched. For example, if a
customer selects the Actor option in the Browse By combo box, the text
that the customer types in the Search Text text box is searched in the
Actor table in the database.

3. Click on the Search button.
When a customer clicks on the Search button, the results are displayed in the list view
control. These results are based on the selection and the text entered in the text box. For
example, if a customer enters Harrison in the text box, selects Actor from the

Browse By combo box, and clicks on the Search button, the Search page appears as
shown in Figure 26-15.

Figure 26-15: The Search page with results

Alternatively, a customer can also display all movie records by clicking on the Show All
Records button.
Only five records are displayed at a time as the search results. To view the next five
records, a customer can click on the Next hyperlink. After the DataGrid control displays
the search results, a customer can click on the Add to Cart hyperlink to add a video
to his or her shopping cart. To search for a movie, a customer needs to perform the
following steps:

1. Click on the Add to Cart hyperlink next to the desired video. The
videos in the shopping cart are displayed in DataGrid2.

2. To change the quantity of a particular video, click on Edit next to the
desired video in DataGrid3 and change the quantity.

3. Click on the Update hyperlink.
After adding one or more videos to the cart, a customer can click on the Place Order
button to purchase a movie.

The Account Details Page
The Account Details page enables customers to view the placed orders for movies.
Figure 26-16 shows the Account Details page.

Figure 26-16: The Account Details page

The Account Details Web form contains a label and a text box. Table 26-12 lists the
properties of the label and the text box.
Table 26-12: Properties Assigned to the Label and the Text Box

Control Property Value

Label 1 ID Label1

Label 1 Text Your Customer
Id:

Label 1 Font Tahoma,Smaller

Label 1 Height 1px

Label 1 Width 126px

Text box 1 ID txtCustID

Text box 1 Font Tahoma,
Smaller

Text box 1 Height 21px

Text box 1 Width 129px

The Account Details Web form also contains a RequiredValidator control and a
CustomValidator control. Table 26-13 lists the properties of the Validation controls.
Table 26-13: Properties Assigned to the Validation Controls

Control Property Value

RequiredFieldValidator
1

ID RequiredFieldValidator1

RequiredFieldValidator
1

Error message Customer Id
Cannot be blank

RequiredFieldValidator
1

Font Tahoma,Larger

RequiredFieldValidator
1

ForeColor DarkViolet

RequiredFieldValidator
1

ControlToValidate txtCustID

RequiredFieldValidator
1

Width 290px

CustomValidator 1 ID CustomValidator1

CustomValidator 1 Error message Customer Id
Entered is
Incorrect

CustomValidator 1 Font Tahoma,Larger

CustomValidator 1 ForeColor DarkViolet

CustomValidator 1 ControlToValidate txtCustID

CustomValidator 1 Width 323px

In addition to these controls, the Account Details Web form also contains two DataGrid
controls. Table 26-14 lists the properties assigned to the DataGrid controls on the
Account Details Web form.
Table 26-14: Properties Assigned to the DataGrid Controls

Control Property Value

DataGrid 1 ID dgAccountDetails

Table 26-14: Properties Assigned to the DataGrid Controls

Control Property Value

DataGrid 1 Height 13px

DataGrid 1 Width 760px

DataGrid 1 Height 122px

DataGrid 1 DataKeyField OrderID

DataGrid 1 BackColor #FFCCFF (Under
AlternatingItemSty
le)

DataGrid 1 Font Tahoma, Smaller
(Under
AlternatingItemSty
le)

DataGrid 1 Wrap False (Under
AlternatingItemSty
le)

DataGrid 1 BackColor DarkViolet (Under
HeaderStyle)

DataGrid 1 Font Tahoma, Smaller
(Under HeaderStyle)

DataGrid 1 ForeColor White (Under
HeaderStyle)

DataGrid 1 BackColor Lavender (Under
ItemStyle)

DataGrid 1 Font Tahoma,Smaller
(Under ItemStyle)

DataGrid 1 ForeColor Black (Under
ItemStyle)

DataGrid 1 HorizontalAlign Left (Under
ItemStyle)

DataGrid 1 Wrap False (Under
ItemStyle)

DataGrid 1 NextPageText Next (Under
PagerStyle)

DataGrid 1 PrevPageText Previous (Under
PagerStyle)

DataGrid 1 BackColor #990033 (Under
SelectedItemStyle)

DataGrid 1 ForeColor White (Under
SelectedItemStyle)

DataGrid 1 Wrap False (Under
SelectedItemStyle)

DataGrid 2 ID DataGrid2

DataGrid 2 AutoGenerateColumns False

DataGrid 2 Width 541px

DataGrid 2 Height 61px

DataGrid 2 PageSize 5

Table 26-14: Properties Assigned to the DataGrid Controls

Control Property Value

DataGrid 2 Font Tahoma,Smaller
(Under
AlternatingItemSty
le)

DataGrid 2 Wrap False (Under
AlternatingItemSty
le)

DataGrid 2 BackColor DarkViolet (Under
HeaderStyle)

DataGrid 2 Font Tahoma,Smaller
(Under HeaderStyle)

DataGrid 2 ForeColor White (Under
HeaderStyle)

DataGrid 2 BackColor Lavender (Under
ItemStyle)

DataGrid 2 Font Tahoma,Smaller
(Under ItemStyle)

DataGrid 2 HorizontalAlign Left (Under
ItemStyle)

DataGrid 2 Wrap False (Under
ItemStyle)

DataGrid 2 NextPageText Next (Under
PagerStyle)

DataGrid 2 PrevPageText Previous (Under
PagerStyle)

DataGrid 2 BackColor #990033 (Under
SelectedItemStyle)

The first column of the dgAccountDetails grid is a button column. You can use the
DataGrid Properties dialog box to add the Select button column and to set its Text
property to Details. A customer can go back to the home page by clicking on the Home
Page hyperlink. Table 26-15 describes the properties for the hyperlinks on the Account
Details Web form.
Table 26-15: Properties Assigned to the Hyperlink

Control Property Value

Hyperlink 1 ID HyperLink1

Hyperlink 1 Text Home Page

Hyperlink 1 Font Tahoma, X-
Smaller

Hyperlink 1 Height 15px

Hyperlink 1 Width 170px

Hyperlink 1 NavigateUrl Default.aspx

The next section describes the Customer Registration page.

The Customer Registration Page
As the name suggests, the Customer Registration Web form enables a customer to
register. Figure 26-17 shows the Customer Registration Web form.

Figure 26-17: The Customer Registration Web form

The Customer Registration page displays when a customer clicks on the New
Visitor? Register Here! hyperlink on the home page or the Search page. To start
with, take a look at the properties of the Customer Registration Web form. The
pageLayout property of the form has been set to GridLayout, and the bgColor
property has been changed to #ffcoff. As shown in Figure 26-17, the Customer
Registration Web form contains multiple text boxes and labels. Table 26-16 lists the
properties assigned to the labels.
Table 26-16: Properties Assigned to the Labels

Control Property Value

Label 1 ID LblFName

Label 1 Text First Name

Label 1 Font Tahoma,
Smaller

Label 2 ID LblLName

Label 2 Text Last Name

Label 2 Font Tahoma,
Smaller

Label 3 ID LblAddress

Label 3 Text Address

Label 3 Font Tahoma,
Smaller

Label 4 ID LblCity

Label 4 Text City

Label 4 Font Tahoma,
Smaller

Label 5 ID LblState

Label 5 Text State

Label 5 Font Tahoma,
Smaller

Table 26-16: Properties Assigned to the Labels

Control Property Value

Label 6 ID LblZip

Label 6 Text Zip:

Label 6 Font Tahoma,
Smaller

Label 7 ID LblPhone

Label 7 Text Phone:

Label 7 Font Tahoma,
Smaller

Label 8 ID LblEmail

Label 8 Text Email

Label 8 Font Tahoma,
Smaller

Label 9 ID LblCCNum

Label 9 Text Credit
Card
Number

Label 9 Font Tahoma,
Smaller

Label 10 ID LblCCExp

Label 10 Text Valid
Upto:

Label 10 Font Tahoma,
Smaller

Label 11 ID LblDOB

Label 11 Text DOB:

Label 11 Font Tahoma,
Smaller

Label 12 ID lblError

Label 12 Text Errors
Occurred

Label 12 Font Tahoma,
Smaller

Label 12 Visible False

Label 12 Width 361px

Table 26-17 lists the properties assigned to the text boxes in the Customer Registration
Web form.
Table 26-17: Properties Assigned to the Text Boxes

Control Property Value

Text box 1 ID txtFname

Text box 1 TabIndex 1

Text box 2 ID txtLname

Text box 2 TabIndex 2

Table 26-17: Properties Assigned to the Text Boxes

Control Property Value

Text box 3 Name txtAdd

Text box 3 TabIndex 3

Text box 4 Name txtCity

Text box 4 TabIndex 4

Text box 5 Name txtState

Text box 5 TabIndex 5

Text box 6 Name txtZip

Text box 6 TabIndex 6

Text box 7 Name txtDOB

Text box 7 TabIndex 7

Text box 8 Name txtPhone

Text box 8 TabIndex 8

Text box 9 Name txtEmail

Text box 9 TabIndex 9

Text box 10 Name txtCCNo

Text box 10 TabIndex 10

Text box 11 Name txtExpDate

Text box 11 TabIndex 11

The Customer Registration Web form also contains the Submit Customer Details
button to submit the details entered by the customer. Table 26-18 lists the properties of
the buttons on the Customer Registration Web form.
Table 26-18: Properties Assigned to Buttons

Control Property Value

Button 1 ID CmdCustDetails

Button 1 Text Submit
Customer
Details

Button 1 Height 25px

Button 1 Width 175px

Button 1 Font Tahoma,
Smaller

Customers can use the Submit Customer Details button to update the database
with the information entered in the Customer Registration Web form. If the values
entered in the text boxes are not valid or if the required fields are left blank, a message
box appears showing the summary of all the errors that occurred. This is accomplished
by using a ValidationSummary control. The properties for the ValidationSummary control
are listed in Table 26-19.
Table 26-19: Properties Assigned to the ValidationSummary Control

Control Property Value

Table 26-19: Properties Assigned to the ValidationSummary Control

Control Property Value

ValidationSummary
1

ID ValidationSummary1

ValidationSummary
1

ForeColor Red

ValidationSummary
1

ShowMessageBox True

ValidationSummary
1

ShowSummary False

ValidationSummary
1

Width 188px

Summary
In this chapter, you learned to create the Web forms for the customer interface of the
video kiosk Web application. You learned to create the home, Search, Customer
Registration, and Account Details Web forms. This chapter also described the properties
you need to assign to the various controls on the Web forms. The next chapter will
discuss the functionality you need to add to the customer interface.

Chapter 27: Adding Functionality to the Customer
Interface
Overview
In the preceding chapter, you learned how to design the customer interface of the
MyMovies video kiosk Web application. In this chapter, you will learn about the
functionality involved in the customer interface. To start with, let’s look at the customer
interface, as shown in Figure 27-1.

Figure 27-1: The customer interface

There are two ways to approach this interface: one for a registered customer and
another for an unregistered customer. Let’s begin exploring the functionality of the
interface for an unregistered user.

Coding for the Customer Registration Page
If you are an unregistered user, you need to click on the New Visitor? Register
Here! link in the left panel of the Web application. When you click on this link, you are
directed to the Customer Registration page, which is shown in Figure 27-2.

Figure 27-2: The Customer Registration page

An unregistered user has to fill in his or her personal details as specified in the form.
When entering information, invalid information in any specified control is marked with a
red asterisk. This red asterisk denotes the presence of the
RequiredFieldValidator, RegularExpressionValidator, or
CompareValidator class, which in turn validates the input to the specified control to
which it is linked. If the user has not entered valid data in all of the controls, he or she is
not allowed to enter his or her details in the underlying data source. After the user has
entered the details in the form, the ValidationSummary class marks the summary of
invalid information. Therefore, users are not allowed to enter invalid details in the
underlying database.
There are two functions you need to code to add functionality to the Customer
Registration page, Page_Load and CmdCustDetails_Click. The following sections
explain these two functions in detail.

The Page_Load Function
The Page_Load function executes when the registration form loads. The code for this
function is as follows:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 CompareValidator2.ValueToCompare = Today
End Sub
This function sets the ValueToCompare property of the CompareValidator control to the
current date. This date is compared with the date entered in the Credit Card Expiry
Date text box.

The CmdCustDetails_Click Function
When a user has entered all valid information and clicks on the Submit Customer Details
button on the form, the CmdCustDetails_Click function is called. The code for this
function is as follows:
Private Sub CmdCustDetails_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles CmdCustDetails.Click
 Dim strConnectionString As String = Application("strConnect")

 Dim sqlString As String
 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim CustID As String
 Try
 lblError.Visible = False
 MyConnection.Open()
 Dim cmdCust As SqlCommand
 cmdCust = New SqlCommand("Select
 IsNull(Max(convert(int,substring(CustID,2,4))),0)+1 as CustID
 from Customer", MyConnection)
 Dim myReader As SqlDataReader =
 cmdCust.ExecuteReader(CommandBehavior.SingleRow)
 While myReader.Read()
 CustID = myReader.GetInt32(0).ToString
 End While
 CustID = "A000" + CStr(CustID)

 MyConnection.Close()
 Dim myCommand As SqlCommand
 Dim insertCmd As String
 ' Check that four of the input values are not empty. If any of them
 ' is empty, show a message to the user and rebind the DataGrid.
 insertCmd = "insert into Customer values (@CustID,

@LastName,@FirstName,@Address,@City,@State,@Zip,@Phone,@Email,@DOB,"
 & "@CreditCardNum,@CreditCardValidUpto);"
 ' Initialize the SqlCommand with the new SQL string.
 MyConnection.Open()
 myCommand = New SqlCommand(insertCmd, MyConnection)
 myCommand.Parameters.Add(New SqlParameter("@CustID",
 SqlDbType.VarChar, 11))
 myCommand.Parameters.Add(New SqlParameter("@LastName",
 SqlDbType.VarChar, 50))
 myCommand.Parameters.Add(New SqlParameter("@FirstName",
 SqlDbType.VarChar, 50))
 myCommand.Parameters.Add(New SqlParameter("@Address",
 SqlDbType.VarChar, 25))
 myCommand.Parameters.Add(New SqlParameter("@City",
 SqlDbType.VarChar, 25))
 myCommand.Parameters.Add(New SqlParameter("@State",
 SqlDbType.VarChar, 15))
 myCommand.Parameters.Add(New SqlParameter("@Zip", SqlDbType.VarChar,
 7))

 myCommand.Parameters.Add(New SqlParameter("@Phone",
 SqlDbType.VarChar, 10))
 myCommand.Parameters.Add(New SqlParameter("@Email",
 SqlDbType.VarChar, 50))
 myCommand.Parameters.Add(New SqlParameter("@DOB",
 SqlDbType.DateTime, 8))
 myCommand.Parameters.Add(New SqlParameter("@CreditCardNum",
 SqlDbType.VarChar, 16))
 myCommand.Parameters.Add(New SqlParameter("@CreditCardValidUpto",
 SqlDbType.DateTime, 8))

 myCommand.Parameters("@CustID").Value = CustID
 myCommand.Parameters("@FirstName").Value = txtFname.Text
 myCommand.Parameters("@LastName").Value = txtLName.Text
 myCommand.Parameters("@Address").Value = txtAdd.Text
 myCommand.Parameters("@City").Value = txtCity.Text
 myCommand.Parameters("@State").Value = txtState.Text
 myCommand.Parameters("@Zip").Value = txtZip.Text
 myCommand.Parameters("@Phone").Value = txtPhone.Text
 myCommand.Parameters("@Email").Value = txtEMail.Text
 myCommand.Parameters("@CreditCardNum").Value = txtCCNo.Text
 myCommand.Parameters("@DOB").Value = txtDOB.Text
 myCommand.Parameters("@CreditCardValidUpto").Value = txtExpDate.Text

 myCommand.ExecuteNonQuery()
 MyConnection.Close()
 lblError.Visible = True
 lblError.Text = "Customer Created Successfully. Customer Id is " +
 CustID
 Catch
 lblError.Visible = True
 Exit Sub
 End Try
End Sub

This function performs the following tasks:
 The Visible property of the lblError label is set to False. The

function establishes a new SQL connection with the underlying database.
This is done through the following statements:

Dim strConnectionString As String = Application("strConnect")
Dim MyConnection As New SqlConnection(strConnectionString)
MyConnection.Open()

 The preceding statements define a connection string and establish a new
SQL connection using the connection string. The connection is opened
by the Open method of the SqlConnection class.

 The function also extracts the maximum value of the CustID field from
the Customer table and increments it by 1. This is done because a new
customer is being added to the Customer table.

cmdCust = New SqlCommand("Select IsNull(Max(convert(int,substring
(CustID,2,4))),0)+1 as CustID from Customer", MyConnection)

 The following code snippet creates a new value for the CustID field:

Dim myReader As SqlDataReader =
cmdCust.ExecuteReader(CommandBehavior.SingleRow)
While myReader.Read()
CustID = myReader.GetInt32(0).ToString
End While
CustID = "A000" + CStr(CustID)

 Next, a SqlCommand object is used to insert the new record in the
Customer table. It takes the values for the various fields through the
controls specified in the registration form, except for the CustID value,
which is calculated in the preceding code. The code snippet for this
purpose is as follows:

 Dim myCommand As SqlCommand
 Dim insertCmd As String
 ' Check that four of the input values are not empty. If any of them
 ' is empty, show a message to the user and rebind the DataGrid.
 insertCmd = "insert into Customer values (@CustID,

@LastName,@FirstName,@Address,@City,@State,@Zip,@Phone,@Email,@DOB,"
 & "@CreditCardNum,@CreditCardValidUpto);"
 ' Initialize the SqlCommand with the new SQL string.
 MyConnection.Open()
 myCommand = New SqlCommand(insertCmd, MyConnection)
 myCommand.Parameters.Add(New SqlParameter("@CustID",
 SqlDbType.VarChar, 11))
 myCommand.Parameters.Add(New SqlParameter("@LastName",
 SqlDbType.VarChar, 50))
 myCommand.Parameters.Add(New SqlParameter("@FirstName",
 SqlDbType.VarChar, 50))
 myCommand.Parameters.Add(New SqlParameter("@Address",
 SqlDbType.VarChar, 25))
 myCommand.Parameters.Add(New SqlParameter("@City",
 SqlDbType.VarChar, 25))
 myCommand.Parameters.Add(New SqlParameter("@State",
 SqlDbType.VarChar, 15))
 myCommand.Parameters.Add(New SqlParameter("@Zip",
SqlDbType.VarChar, 7))
 myCommand.Parameters.Add(New SqlParameter("@Phone",
 SqlDbType.VarChar, 10))
 myCommand.Parameters.Add(New SqlParameter("@Email",

 SqlDbType.VarChar, 50))
 myCommand.Parameters.Add(New SqlParameter("@DOB",
 SqlDbType.DateTime, 8))
 myCommand.Parameters.Add(New SqlParameter("@CreditCardNum",
 SqlDbType.VarChar, 16))
 myCommand.Parameters.Add(New SqlParameter("@CreditCardValidUpto",
 SqlDbType.DateTime, 8))

 myCommand.Parameters("@CustID").Value = CustID
 myCommand.Parameters("@FirstName").Value = txtFname.Text
 myCommand.Parameters("@LastName").Value = txtLName.Text
 myCommand.Parameters("@Address").Value = txtAdd.Text
 myCommand.Parameters("@City").Value = txtCity.Text
 myCommand.Parameters("@State").Value = txtState.Text
 myCommand.Parameters("@Zip").Value = txtZip.Text
 myCommand.Parameters("@Phone").Value = txtPhone.Text
 myCommand.Parameters("@Email").Value = txtEMail.Text
 myCommand.Parameters("@CreditCardNum").Value = txtCCNo.Text
 myCommand.Parameters("@DOB").Value = txtDOB.Text
 myCommand.Parameters("@CreditCardValidUpto").Value =
txtExpDate.Text
 myCommand.ExecuteNonQuery()
 MyConnection.Close()

 Finally, the customer ID for the user is displayed on the screen. The
customer uses this ID to log in to the site for further operations.

This section covered an unregistered user registering and obtaining a customer ID,
which he or she can use to log in to the site. The next section discusses how a customer
logs in and shops for movies of his or her choice.

Coding for the Customer Login Interface
For registered customers, there is a text box in the left panel of the customer interface
where they can enter their login ID. (The login ID is the same as the customer ID.) The
customer login interface is shown in Figure 27-3.

Figure 27-3: The customer login interface

In previous chapters, you have already seen the design of the customer login interface
for the MyMovies video kiosk Web application. The interface has a text box and the
Login button. In addition, there are the following controls:

 The RequiredFieldValidator control associated with the text box ensures that
the customer does not leave the text box blank. It displays the message
Customer ID Cannot Be Blank if left blank.

 The CustomValidator control checks whether the customer ID entered is valid.
If the customer ID does not match, the message Customer ID Entered
Is Incorrect is displayed.

 If the customer ID is valid, this interface displays the message: Welcome to
MyMovies.com. You are Logged in Now.

The CustomValidator controls provide you with customized validation logic. They perform
validation on the server and provide client-side validation. At this point, however, only
server-side validation will be discussed. For creating a server-side validation function,
you need a handler for the ServerValidate event. The string value that needs to be
validated is accessed by the ServerValidateEventArgs object’s Value property. It
is passed to the event handler as a parameter. The validation result is stored in the
ServerValidateEventArgs object’s IsValid property. The CustomValidator
controls check the IsValid property. If it is false, it displays the text set in its Text
property.
The next section will discuss the functionality of the third case, in which the customer ID
entered is valid. The CustomValidator1_ServerValidate function of the Index
class validates the specified customer ID against the Customer table.

The CustomValidator1_ServerValidate Function
The code for the CustomValidator1_ServerValidate function is as follows:

Private Sub CustomValidator1_ServerValidate(ByVal source As System.Object, ByVal
args As System.Web.UI.WebControls.ServerValidateEventArgs) Handles
CustomValidator1.ServerValidate
 Dim sConnectionString As String
 Dim sqlString As String

 Dim MyConnection As SqlConnection
 Dim MyDataAdapter As SqlDataAdapter
 Dim DS As New DataSet()

 sConnectionString = Application("strConnect")
 sqlString = "Select * from Customer where CustID='" + args.Value + "'"
 'Open the connection

 MyConnection = New SqlConnection(sConnectionString)
 MyDataAdapter = New SqlDataAdapter(sqlString, MyConnection)

 MyDataAdapter.Fill(DS, "Customer")
 If DS.Tables("Customer").DefaultView.Count = 0 Then
 args.IsValid = False
 Session("UserLoggedIn") = "No"
 Else
 args.IsValid = True

 Label2.Visible = True
 Session("UserLoggedIn") = "Yes"
 Session("CustID") = args.Value
 sqlString = "Select * from Customer where CustID='" +
 args.Value + "'"
 Dim myCommand As New SqlCommand(sqlString, MyConnection)
 MyConnection.Open()
 Dim myReader As SqlDataReader
 myReader = myCommand.ExecuteReader()
 ' Always call Read before accessing data.
 While myReader.Read()
 Session("CCNum") = myReader.GetString(10).Trim
 Session("ValidUpTo") = myReader.GetDateTime(11)
 End While
 End If
End Sub
Before explaining the preceding code, it is necessary for you to understand the
difference between Application and Session objects. The Application object
stores data that can be accessed from anywhere in the Web application. The Session
object stores data that is accessible by the user session that creates the specified object.
For example, in the preceding code, there will be a separate Session object for every
user. See the following code statements:
sConnectionString = Application("strConnect")
Session("UserLoggedIn") = "Yes"
Session("CustID") = args.Value
Session("CCNum") = myReader.GetString(10).Trim
Session("ValidUpTo") = myReader.GetDateTime(11)
From these statements, you can interpret that the Application object is being used to
establish a connection with the underlying database that can be used by any module of
the Web application. On the other hand, there are separate Session objects that store
data, such as CustID (customer ID), CCNum (credit card number), and ValidUpTo
(expiry date for credit card) fields that have specific values for every user that logs in to
the Web application. Session objects are destroyed when the customer logs out from
the application. Therefore, Session objects are customer specific.
The preceding ServerValidate function code performs the following tasks in the given
application:

 A connection is established with the underlying database.
 An object of data adapter is instantiated.

MyDataAdapter = New SqlDataAdapter(sqlString, MyConnection)
 The data adapter fetches records in the dataset by executing the

sqlString. The SQL command in the sqlString is as follows:

sqlString = "Select * from Customer where CustID='" + args.Value + "'"
 The data adapter’s Fill method is used to populate dataset object (DS).

MyDataAdapter.Fill(DS, "Customer")
 The number of records present in the Customer table of the dataset is

checked. If no records are present with the particular CustID entered by
the user, the value for the UserLoggedIn Session variable is set to No.

The IsValid property of the ServerValidateEventArgs object is
set to False.

If DS.Tables("Customer").DefaultView.Count = 0 Then
 args.IsValid = False
 Session("UserLoggedIn") = "No"

 If the records are greater than 0, the value of the UserLoggedIn
Session variable is set to Yes. The IsValid property of the
ServerValidate-EventArgs object is set to True. Then, in
accordance with the customer ID, the relevant credit card number and its
corresponding validity date are fetched from the database and stored in
the respective session variables.

 Else
 args.IsValid = True
 Label2.Visible = True
 Session("UserLoggedIn") = "Yes"
 Session("CustID") = args.Value
 sqlString = "Select * from Customer where CustID='" + args.Value + "'"
 Dim myCommand As New SqlCommand(sqlString, MyConnection)
 MyConnection.Open()
 Dim myReader As SqlDataReader
 myReader = myCommand.ExecuteReader()
 ' Always call Read before accessing data.
 While myReader.Read()
 Session("CCNum") = myReader.GetString(10).Trim
 Session("ValidUpTo") = myReader.GetDateTime(11)
 End While
End If

After the customer has logged in to the Web application, he or she can search for movies
of his or her choice and place orders accordingly. When the customer clicks on the
Search hyperlink in the left pane, he or she is directed to the Search.aspx page. The
functionality of the Search page is discussed in the next section.

Coding for the Search Page
Figure 27-4 displays the Search page.

Figure 27-4: The Search page

The Search page contains the following functions:
 Page_Load
 DataGrid1_PageIndexChanged
 CmdShowAllRecords_Click
 CmdSearch_Click
 DataGrid1_ItemCommand
 DataGrid3_CancelCommand
 DataGrid3_EditCommand
 DataGrid3_UpdateCommand
 DataGrid3_DeleteCommand
 CmdPlaceOrder_Click

The following sections cover each of these functions in detail.

The Page_Load Function
Both customers and unregistered users can access the Search page. The difference is
that customers can place orders, whereas the unregistered users can only view the
movies available. To shop for movies, you need to log in to the Web application or
register yourself as a customer with the application. The functionality for this logic is
placed in the Page_Load function.
When the Search page loads in the browser, the Page_Load function is called by
default. The code for the function is as follows:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 If Session("UserLoggedIn") <> "Yes" Then
 'Do not allow the user to place an order.
 lblCCNo.Text = ""
 lblValidUpTo.Text = ""
 Else
 lblCCNo.Text = Session("CCNum")
 lblValidUpTo.Text = Session("ValidUpTo")
 End If
 If Session("LoadPage") = "Yes" Then
 Call LoadGrid()
 End If
End Sub
'Code for the LoadGrid function
Private Function LoadGrid()
 Dim strConnectionString = Application("strConnect")

 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim strCmdText As String
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyDataSet As New DataSet()
 Try
 strCmdText = "SELECT Movie.MovID as [Movie id], Movie.MovTitle as
[Movie],Video.Format, Actor.FirstName +' '+Actor.LastName AS Actor, Di" & _
 "rector.FirstName +' '+ Director.LastName AS Director,

Producer.Name AS Producer " & _
 "FROM Actor INNER JOIN ActorMovie ON Actor.ActorID =
ActorMovie.Acto" & _
 "rID INNER JOIN Movie ON ActorMovie.MovID = Movie.MovID
INNER JOIN Director ON Mo" & _
 "vie.DirID = Director.DirID INNER JOIN Producer ON
Movie.ProdID = Producer.ProdID INNER JOIN Video ON Movie.MovID = Video.MovID"

 MyDataAdapter = New SqlDataAdapter(strCmdText, MyConnection)
 MyDataAdapter.Fill(MyDataSet)
 DataGrid1.DataSource = MyDataSet
 DataGrid1.DataBind()
 Session("LoadPage") = "No"
 Catch
 LblSelectMovies.Text = "Errors Occured."
 Exit Function
 End Try
End Function

The preceding code performs the following tasks:
 If the value contained in the session variable UserLoggedIn is not Yes,

it indicates that the user is not logged in. In this case, the labels for credit
card number and validity date are set to blank. This functionality is
explained by the following code:

If Session("UserLoggedIn") <> "Yes" Then
 lblCCNo.Text = ""
 lblValidUpTo.Text = ""

 If the customer logs in, the labels for credit card number and validity date
take their values from the respective Session objects that were created
in the CustomValidator1_ServerValidate function. The code
snippet for this is as follows:

 lblCCNo.Text = Session("CCNum")
 lblValidUpTo.Text = Session("ValidUpTo")

 If the value of the session variable LoadPage is Yes, the function named
LoadGrid() is called. This function fetches all the available records
depending on the filter specified, such as Actor, Movie, Producer, or
Director. All the fetched records are populated in a dataset. This dataset
is then bound to DataGrid1.

If Session("LoadPage") = "Yes" Then
 Call LoadGrid()
End If

The DataGrid1_PageIndexChanged Function
The code for the DataGrid1_PageIndexChanged function is as follows:

Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridPageChangedEventArgs) Handles
DataGrid1.PageIndexChanged

 DataGrid1.CurrentPageIndex = e.NewPageIndex
 DataGrid1.DataBind()
 Call CmdShowAllRecords_Click(source, e)
End Sub
Whenever a user clicks the Next or Previous hyperlinks, the PageIndexChanged
event is triggered. As a result, the CurrentPageIndex property of DataGrid1 is set.

The CmdShowAllRecords _Click Function
This function is called when the customer clicks the Show All Records button. In this
case, no filter is set while retrieving records; all the records in the underlying database
are displayed. The session variable PageLoad is set to Yes. The Page_Load function
that displays all the records is called. Finally, the txtSearch.Text property is set to
blank because the customer needs no filter in his or her search.
Private Sub CmdShowAllRecords _Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Session("LoadPage") = "Yes"
 Call Page_Load(sender, e)
 txtSearch.Text = ""
End Sub

The CmdSearch_Click Function
When the customer selects the search criteria from the drop-down list box and clicks the
Search button, this function is called. The customer has the option of viewing records
based on any actor, video, movie, or director choice. When the customer clicks the
Search button, the records are displayed in the data grid below. The code for the
CmdSearch_Click function is as follows:

Private Sub CmdSearch_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdSearch.Click
 Dim strConnectionString = Application("strConnect")
 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim strCmdText As String
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyDataSet As New DataSet()
 Dim strCriteria As String
 Dim strType As String
 strType = lstSearch.SelectedItem.Text

 Select Case strType
 Case "Actor"
 strCriteria = " Where Actor.FirstName+Actor.LastName Like'%" +
 txtSearch.Text + "%'"
 Case "Director"
 strCriteria = " Where Director.FirstName+Director.LastName
 Like'%" + txtSearch.Text + "%'"
 Case "Producer"
 strCriteria = " Where Producer.Name Like'%" + txtSearch.Text +
 "%'"

 Case "Movie"
 strCriteria = " Where Movie.MovTitle Like'%" + txtSearch.Text +
 "%'"
 End Select

 strCmdText = "SELECT Distinct Movie.MovID, Movie.MovTitle,Video.Format,
 Actor.FirstName +' '+Actor.LastName AS Actor, Di" & _
 "rector.FirstName +' '+ Director.LastName AS Director,
Producer.Name AS Producer" & _
 " FROM Actor INNER JOIN ActorMovie ON Actor.ActorID =

ActorMovie.Acto" & _
 "rID INNER JOIN Movie ON ActorMovie.MovID = Movie.MovID INNER JOIN
Director ON Mo" & _
 "vie.DirID = Director.DirID INNER JOIN Producer ON Movie.ProdID
= Producer.ProdID INNER JOIN Video ON Movie.MovID = Video.MovID" & _
 "" + strCriteria

 MyDataAdapter = New SqlDataAdapter(strCmdText, MyConnection)
 MyDataAdapter.Fill(MyDataSet)
 DataGrid1.DataSource = MyDataSet
 DataGrid1.DataBind()
End Sub

The preceding function performs the following tasks:
 The text of the selected item in the lstSearch list box is captured in a

string variable called strType. Depending on the value in strType, the
where clause of the Select statement is decided and stored in the str-
Criteria variable. The value that the customer enters in the
txtSearch text box is appended to the where clause in the
strCriteria variable.

 The strCmdText variable contains the Select statement and the JOIN
queries that retrieve records from the related tables in the database. A
DataAdapter object is created and uses the query in the strCmdText
variable to populate the dataset.

 The dataset that is formed contains the filtered records from the tables in
the database acts as a data source for the data grid. The records are
displayed in the DataGrid1 object.

The DataGrid1_ItemCommand Function
The DataGrid1 object’s ItemCommand event is raised when the Add To Cart
hyperlink is clicked in the DataGrid1 control. The code for the same is as follows:

Private Sub DataGrid1_ItemCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.ItemCommand
 Dim strCmd As String
 If Session("UserLoggedIn") <> "Yes" Then
 'Do Not Allow the User to Place an Order.

 'DataGrid1.Columns(0).Visible = False
 strCmd = e.CommandName.ToString
 If strCmd = "Page" Then
 Exit Sub
 Else
 Dim strLabelText As String
 strLabelText = LblSelectMovies.Text()
 LblSelectMovies.Text = "You Need to Login before adding an Item to
your cart. If you have not Registered, then register yourself to Place and Order"
 End If
 Else

 strCmd = e.CommandName.ToString
 If strCmd = "Page" Then
 Exit Sub
 End If
 'Dim key As String = DataGrid1.DataKeys(e.Item.ItemIndex).ToString
 Dim key As String = e.Item.Cells(1).Text()
 Dim movie As String
 Dim videoId As String
 Dim format As String = e.Item.Cells(3).Text()
 Dim Price As Integer
 Dim strConnectionString = Application("strConnect")

 Dim mySelectQuery As String = "SELECT Movie.MovID, Movie.MovTitle,
Video.VideoID,Video.Format, Video.Price FROM Movie INNER JOIN Video ON
Movie.MovID = dbo.Video.MovID where Movie.MovID='" & key & "' and
Video.Format='" + format + "'"
 Dim myConnection As New SqlConnection(strConnectionString)
 Dim myCommand As New SqlCommand(mySelectQuery, myConnection)
 myConnection.Open()
 Dim myReader As SqlDataReader
 myReader = myCommand.ExecuteReader()
 ' Always call Read before accessing data.
 While myReader.Read()
 'Console.WriteLine((myReader.GetInt32(0) & ", " &
myReader.GetString(1)))
 movie = myReader.GetString(1)
 videoId = myReader.GetString(2)
 format = myReader.GetString(3)
 Price = myReader.GetDecimal(4)
 End While
 ' Always call Close when done reading.

 myReader.Close()
 ' Close the connection when done with it.
 myConnection.Close()
 Dim dr As DataRow
 If Session("ShoppingCart") Is Nothing Then
 'Cart.Columns.Add(New DataColumn("Quantity", GetType(String)))
 Cart.Columns.Add(New DataColumn("MovID", GetType(String)))
 Cart.Columns.Add(New DataColumn("Movie", GetType(String)))
 Cart.Columns.Add(New DataColumn("VideoID",
 GetType(String)))
 Cart.Columns.Add(New DataColumn("Format", GetType(String)))
 Cart.Columns.Add(New DataColumn("Price", GetType(String)))
 Cart.Columns.Add(New DataColumn("Quantity", GetType(String)))
 Session("ShoppingCart") = Cart
 Else
 Cart = CType(Session("ShoppingCart"), DataTable)
 End If
 Dim i As Integer
 'For i = 1 To 9
 dr = Cart.NewRow()
 dr(0) = key
 dr(1) = movie
 dr(2) = videoId
 dr(3) = format
 dr(4) = Price
 dr(5) = 1
 Cart.Rows.Add(dr)
 CartView = New DataView(Cart)
 CartView.Sort = "MovID"
 Session("ShoppingCart") = Cart
 Cart = CType(Session("ShoppingCart"), DataTable)
 CartView = New DataView(Cart)
 BindGrid()
 End If
 End Sub
 Sub BindGrid()
 DataGrid3.DataSource = CartView
 DataGrid3.DataBind()
 End Sub
In the preceding code, if the value of the UserLoggedIn session variable is not Yes, it
indicates that the customer has not logged in and is just browsing the movie records in
the application. In this case, when the customer clicks on the Add To Cart hyperlink in
the DataGrid1 control, this message displays: You Need to Login before
adding an Item to your cart. If you have not Registered, then

register yourself to Place an Order. This is the text contained in
LblSelectMovies.Text property of the Search page.
If the customer has logged in and clicks on the Add to Cart hyperlink, the particular
record for which the button was clicked is retrieved. The columns MovieId, Movie,
VideoID, Format, Price, and Quantity are picked up from the underlying tables of
the database through a SQL query and are displayed in the DataGrid3 control.
The BindGrid method binds the controls of the DataGrid3 object to the data source
specified by the DataSource property. CartView is a data view created on the Cart
table. The data source for the DataGrid3 controls is the CartView, which is sorted on
the MovID field.
The DataSet(Cart) used to populate DataGrid3 is also stored in the session
variable ShoppingCart. This implies that it can be further used in that session.
The customer can edit or delete the item present in the DataGrid3 control. The
functions called when this is done are explained in the following sections.

The DataGrid3_CancelCommand Function
This function is called when the Cancel button is clicked in the DataGrid3 control.

Private Sub DataGrid3_CancelCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid3.CancelCommand
 Label6.Text = ""
 Label6.Visible = False
 DataGrid3.EditItemIndex = –1
 BindGrid()
End Sub
When the customer clicks on the Edit button in the DataGrid3 control, it is replaced by
the Update and Cancel buttons. When the customer clicks on the Cancel button, the
preceding function is called. The text in the Label6 control is not visible, and the
EditItemIndex property of DataGrid3 is set to -1.
To edit the DataGrid control, you can use the DataGrid.EditItemIndex property.
This property is used to get or set the index of an item located in the DataGrid control.
This property is used when EditCommandColumnObject is a part of DataGrid control.

After you set this property, the DataGrid control will allow you to edit the corresponding
item. For example, if you set the property as 2, the item that possesses the index
number 2 will be available for editing. However, this will not be the case if the value of
the property is set to –1. In such a situation, none of the items located in the DataGrid
control will be available for editing. Moreover, if the value of this property is set as any
number less than –1, you might encounter an exception.

The DataGrid3_EditCommand Function
The DataGrid3_EditCommand function is called when the
DataGrid3.EditCommand event occurs. This event occurs when the Edit button is
clicked for an item in the DataGrid3 control. The code for the function is as follows:

Private Sub DataGrid3_EditCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid3.EditCommand
 DataGrid3.EditItemIndex = e.Item.ItemIndex
 BindGrid()
End Sub
The parameter passed to the function is an object of the
DataGridCommandEventArgs type. This parameter contains all information for the

event. The index of the item that calls this function is stored in the EditItemIndex
property of the DataGrid3 control. Finally, the BindGrid function is called.

The DataGrid3_UpdateCommand Function
The DataGrid3_UpdateCommand function is called when the UpdateCommand event
occurs. This event occurs when the Update button is clicked for an item in the
DataGrid3 control. The code for the function is as follows:

Private Sub DataGrid3_UpdateCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid3.UpdateCommand
 ' For bound columns, the edited value is stored in a TextBox.
 ' The TextBox is the 0th element in the column's cell.

 Dim MovID As String = e.Item.Cells(2).Text
 Dim movie As String = e.Item.Cells(3).Text
 Dim videoId As String = e.Item.Cells(4).Text
 Dim Format As String = e.Item.Cells(5).Text
 'Dim txtPrice As TextBox = CType(e.Item.Cells(6).Controls(0), TextBox)
 Dim txtQty As TextBox = CType(e.Item.Cells(7).Controls(0), TextBox)

 Dim Price As String = e.Item.Cells(6).Text
 Dim Qty As String = txtQty.Text
 'Dim Qty As String = e.Item.Cells(7).Text
 'Qty = e.Item.Cells(7).Text
 Dim myvar As Boolean
 myvar = IsNumeric(txtQty.Text)
 If myvar = False Then
 Label6.Visible = True
 Label6.Text = "Quantity should be a positive Numeric value"
 Exit Sub
 ElseIf Qty <= 0 Then
 Label6.Visible = True
 Label6.Text = "Quantity should be a positive Numeric value"
 Exit Sub
 Else
 Label6.Visible = False
 End If
 Dim dr As DataRow

 ' With a database, use an update command to update the data. Because
 ' the data source in this example is an in-memory DataTable, delete the
 ' old row and replace it with a new one.
 Dim item1 As String = e.Item.Cells(2).Text
 Cart = Session("ShoppingCart")

 CartView = New DataView(Cart)
 CartView.RowFilter = "MovID='" & item1 & "'"
 If CartView.Count > 0 Then
 CartView.Delete(0)
 End If
 CartView.RowFilter = ""
 ' Add new entry.
 dr = Cart.NewRow()
 dr("MovID") = MovID
 dr("Movie") = movie
 dr("VideoID") = videoID
 dr("Format") = Format
 dr("Price") = Price
 dr("Quantity") = Qty
 Cart.Rows.Add(dr)

 DataGrid3.EditItemIndex = -1
 BindGrid()

End Sub
In the preceding code, the values in the cells of the selected record are stored into
respective string variables. The customer can update the quantity of a specified record.
The updated quantity is validated. The dataset from the session variable
ShoppingCart is fetched into another dataset, Cart. The updated row in this dataset is
detected using Movie ID and is removed from the dataset.

Next, the updated row that contains the updated quantity is added to the dataset. This
dataset is put back into the session variable.

The DataGrid3_DeleteCommand Function
The DataGrid3_DeleteCommand function is called when the DataGrid3.-
DeleteCommand event occurs. This event occurs when the Delete button is clicked for
an item in the DataGrid3 control. The code for the function is as follows:

Private Sub DataGrid3_DeleteCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid3.DeleteCommand
 Dim dr As DataRow

 Dim item1 As String = e.Item.Cells(2).Text
 Cart = Session("ShoppingCart")
 CartView = New DataView(Cart)
 CartView.RowFilter = "MovID='" & item1 & "'"
 If CartView.Count > 0 Then
 CartView.Delete(0)
 End If
 CartView.RowFilter = ""

 BindGrid()
 End Sub

The CmdPlaceOrder_Click Function
The CmdPlaceOrder_Click function is called when the customer has placed all the
desired items in the cart and then clicks on the Place Order button. The code for the
function is as follows:
Private Sub CmdPlaceOrder _Click(ByVal sender As Object, ByVal e As
System.EventArgs)
Handles CmdPlaceOrder.Click
 Dim intCount As Integer
 Dim intTotalQty As Integer
 Dim OrderValue As Integer
 intCount = CartView.Count
 If intCount = 0 Then
 Label2.Visible = True
 Label2.Text = "Select some Videos before placing an Order"
 Exit Sub
 Else
 Label6.Visible = False
 Dim intQty As Integer

 OrderValue = 0
 Dim intPrice As Integer
 intTotalQty = 0
 Dim j As Integer
 For j = 0 To intCount - 1
 intPrice = CartView.Table.Rows(j)(4)
 intQty = CartView.Table.Rows(j)(5)
 intTotalQty = intTotalQty + CartView.Table.Rows(j)(5)
 OrderValue = OrderValue + (intQty * intPrice)
 Next j

 End If
 Dim strConnectionString = Application("strConnect")
 Dim MyConnection As New SqlConnection(strConnectionString)
 MyConnection.Open()

 Dim mySelectQuery As String = "Select
IsNull(Max(convert(int,substring(OrderID,2,4))),0)+1 as orderId from Orders"
 Dim myCommand As New SqlCommand(mySelectQuery, MyConnection)

 Dim myReader As SqlDataReader
 Dim OrderID As String

 myReader = myCommand.ExecuteReader()
 ' Always call Read before accessing data.

 While myReader.Read()
 OrderID = "O000" + CStr(myReader.GetInt32(0))
 End While
 ' always call Close when done reading.
 myReader.Close()
 ' Close the connection when done with it.
 MyConnection.Close()

 Dim cmdInsert As SqlCommand
 Dim strCustID As String
 strCustID = Session("CustID")
 Dim strInsert As String
 MyConnection.Open()

 strInsert = "Insert Into Orders Values('" + OrderID + "','" + Now +
"','" + strCustID + "'," + CStr(intTotalQty) + "," + CStr(OrderValue) + ")"
 cmdInsert = New SqlCommand(strInsert, MyConnection)
 cmdInsert.ExecuteNonQuery()

 cmdInsert = Nothing
 MyConnection.Close()

 Dim strVideoID As String
 Dim strQuantity As String
 MyConnection.Open()
 Dim i As Integer
 For i = 0 To intCount - 1
 strVideoID = CartView.Table.Rows(i)(2)
 strQuantity = CartView.Table.Rows(i)(5)
 strInsert = "Insert Into
OrderDetails(OrderID,VideoID,Qty) Values('" + OrderID + "','" +
strVideoID + "','" + strQuantity + "')"
 cmdInsert = New SqlCommand(strInsert, MyConnection)
 cmdInsert.ExecuteNonQuery()
 cmdInsert = Nothing

 Next i
 MyConnection.Close()
 End Sub

The preceding code performs the following tasks:
 If the customer has not added any items to the cart, it can be checked by

the Count property of the CartView object. If it is 0, the Label2.Text
property is set to Select some Videos before placing an
Order.

 The price and quantity of all the items ordered is retrieved from the
CartView object and placed into two integer variables. The total
quantity and order value are calculated and captured into numeric
variables.

 A connection with the underlying database is maintained. The maximum
value of OrderID is retrieved from the Orders table and is incremented
by 1 to form the new order ID for the order placed. This order ID is
captured in a string variable.

 Next, a new record with the order ID, total quantity, and order value is
inserted in the Orders table by using the SqlCommand object.

 The value in the VideoID and Quantity fields is retrieved from the
CardView object and is stored into string variables. Finally, a new
record is inserted in the OrderDetails table with the new OrderID,
VideoID, and Quantity. The record is inserted by using the
SqlCommand object. This is true for all orders placed.

After the customer has performed search operations and placed orders to the
application, he or she can check his or her respective account. When the customer clicks
on the My Account hyperlink in the left panel, he or she is directed to the
MyAccount.aspx page. The functionality of the Account Details page is discussed in the
next section.

Coding for the Account Details Page
The Account Details page looks like Figure 27-5.

Figure 27-5: The Account Details page

The customer has to enter his or her customer ID and then click on the Click Here to Get
Your Account Details button. The account details are displayed in the grid. The Account
Details page contains the following functions.

 btnGetData_Click
 dgAccountDetails_ItemCommand
 CustomValidator1_ServerValidate:

Each of these functions is explained in the following sections.

The btnGetData_Click Function
The btnGetData_Click function is called when the Click Here to Get Your Account
Details button is clicked. The code for the function is as follows:

Private Sub btnGetData_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnGetData.Click
 Dim MyDataSet As DataSet
 Dim accountWeb As New localhost.MyMoviesAccDet()
 Try
 MyDataSet = accountWeb.GetMyAccount(txtCustID.Text)
 dgAccountDetails.DataSource = MyDataSet
 dgAccountDetails.DataBind()
 Catch
 Exit Sub
 End Try
 End Sub
This function uses a Web service for fetching customer details into this form. The
accountWeb variable is an object of the MyMoviesAccDet Web service. The GetMy-
Account method of the Web service is called by passing the text from the txtCustID
text box as a parameter. To understand the functionality of the preceding function, let’s
see the code and functionality of the Web service involved.

The Functionality of the Web Service
As discussed in Chapter 25, “Web Services,” Visual Studio.NET provides you with an
ASP.NET Web service project template that enables you to create Web services in
Visual Basic or C#. When you use this built-in template, your final application consists of
a set of predefined files that you can use to code the Web service, depending on your
requirements. To create a Web service by using an ASP.NET Web service template, you
need to perform the following steps:

1. Click File, New, Project. The New Project dialog box appears on the
screen.

2. Select either the Visual Basic Projects or Visual C# Projects folder
from the dialog box. The available templates appear in the box.

3. Click on the ASP.NET Web Service icon. A Web service with the
default name of WebService1 is created for you. Visual Studio
creates the files needed to support a Web service. These files are
visible in the Solution Explorer.

After the Web project has been created, you need to code the Web service methods. For
clients to access these methods, you can use the WebMethod attribute that is placed
before the declaration of the method. The code for the MyMovies- AccDet.asmx file is as
follows:
Public Class MyMoviesAccDet Inherits System.Web.Services.WebService
<WebMethod()> Public Function GetMyAccount(ByVal CustomerID As String) As
DataSet
 Dim MyConnStr As String
 Dim MySql As String
 Dim MyConn As SqlConnection
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyDataSet As New DataSet()
 'set the connection string
 MyConnStr = Application("strConnect")
 'set the select statement
 MySql = "SELECT Orders.OrderID, Orders.OrderDate AS [Order Date],
Orders.TotalQtyOrdered as [Total Quantity Ordered], Orders.OrderValue as [Order

Value] FROM Orders WHERE orders.CustID = '" + CustomerID + "'"
 'open the connection
 MyConn = New SqlConnection(MyConnStr)
 MyDataAdapter = New SqlDataAdapter(MySql, MyConn)
 MyDataAdapter.Fill(MyDataSet)
 Return MyDataSet

 End Function
 <WebMethod()> Public Function GetMyAccountDetails(ByVal OrderID As String) As
DataSet
 Dim MyConnStr As String
 Dim MySql As String
 Dim MyConn As SqlConnection
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyDataSet As New DataSet()
 'set the connection string
 MyConnStr = Application("strConnect")
 'set the select statement
 MySql = "SELECT Movie.MovTitle as [Movie Title], OrderDetails.VideoID,
OrderDetails.Qty, Video.Format, Video.Price, Movie.MovID AS [Movie ID] FROM
OrderDetails INNER JOIN Video ON OrderDetails.VideoID = Video.VideoID INNER
JOIN
Movie ON Video.MovID = Movie.MovID WHERE OrderDetails.OrderID = '" + OrderID +
"'"
 'open the connection
 MyConn = New SqlConnection(MyConnStr)
 MyDataAdapter = New SqlDataAdapter(MySql, MyConn)
 MyDataAdapter.Fill(MyDataSet)
 Return MyDataSet
 End Function
End Class
The Web service contains two Web methods: GetMyAccount and GetMyAccount-
Details. Let’s discuss the functionality of these methods in detail.
The GetMyAccount method is called when the btnGetData_Click function is
executed. It takes the customer ID as a parameter, which is captured through the Text
property of the txtCustID text box. A connection with the underlying database is
started. A SQL Select query fetches the OrderID, OrderDate, TotalQty- Ordered,
and OrderValue fields from the Orders table where the CustID field matches with the
CustomerID parameter passed to the function. The DataAdapter object uses its Fill
method to populate the dataset, which is then returned back to the calling method
(btnGetData_Click).
The GetMyAccountDetails method takes as a parameter the OrderID passed to it
by the calling method. A connection with the underlying database is started. A SQL
Select and JOIN query fetches the respective fields from the OrderDetails, Video,
and Movie tables where the OrderID field matches with the OrderID parameter
passed to the function. The DataAdapter object uses its Fill method to populate the
dataset, which is then returned back to the calling method.

The dgAccountDetails_ItemCommand Function
This function is called when the customer clicks the Details button of the
dgAccountDetails grid. This function handles the ItemCommand event raised by the
DataGrid object. The function receives a parameter of type
DataGridCommandEventArgs containing data related to this event. The code for the
function is as follows:
Private Sub dgAccountDetails_ItemCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
dgAccountDetails.ItemCommand
 Dim key As String = dgAccountDetails.DataKeys(e.Item.ItemIndex).ToString
 Dim MyDataSet As DataSet
 Dim accountDetWeb As New localhost.MyMoviesAccDet()

 MyDataSet = accountDetWeb.GetMyAccountDetails(key)
 DataGrid1.DataSource = MyDataSet
 DataGrid1.DataBind()
 End Sub
The preceding code captures the index of the item that acts as the command source in
the DataGrid control. The DataKeys method of the DataGrid control captures the key
field in the data source specified by the DataSource property. Therefore, the OrderID
is captured in the string variable defined by the name key. This OrderID is passed to
the Web service method, GetMyAccountDetails. The method returns a dataset that
acts as the data source for the controls in the Data Grid object. Therefore, the records
in the dataset, returned by the Web service method, are displayed in the grid.

The CustomValidator1_ServerValidate Function
The CustomValidator1_ServerValidate function validates the customer ID. The
code for the function is as follows:
Private Sub CustomValidator1_ServerValidate(ByVal source As System.Object,
ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs) Handles
CustomValidator1.ServerValidate
 Dim sConnectionString As String
 Dim sqlString As String

 Dim MyConnection As SqlConnection
 Dim MyDataAdapter As SqlDataAdapter
 Dim DS As New DataSet()

 sConnectionString = Application("strConnect")
 sqlString = "Select * from Customer where CustID='" + args.Value + "'"
 'Opening the connection

 MyConnection = New SqlConnection(sConnectionString)
 MyDataAdapter = New SqlDataAdapter(sqlString, MyConnection)

 MyDataAdapter.Fill(DS, "Customer")
 If DS.Tables("Customer").DefaultView.Count = 0 Then

 CustomValidator1.ErrorMessage = "This Customer Id Does not Exist"
 args.IsValid = False

 Else
 args.IsValid = True
 End If

 End Sub
The customer ID entered by the user is validated using a CustomValidator control. A
connection with the underlying database is established. The DataAdapter object,
defined in the preceding code, populates the dataset with records from the Customer
table that have the same CustID as the one stored in the args.Value property. If the
Customer table in the dataset contains 0 records, the Custom- Validator1 control
displays the message This Customer Id Does not Exist. Therefore, this function
validates the application for a correct Customer ID entered.
After the customer has completed his or her operations in the Web application, he or she
can log out by clicking the Log out hyperlink in the left panel of the Web application.
The welcome message disappears from the home page, and the Session objects
created for the particular customer are destroyed.

Summary
In this chapter, you learned about the functionality of the customer interface of the
MyMovies video kiosk Web application. You learned about the various functions, both
user defined and built-in, that impart functionality to the application.

Chapter 28: Designing the Admin Interface
Overview
In Chapter 26, “Designing the Customer Interface,” you learned how to create the
customer interface of the video kiosk Web application. In this chapter, you will learn to
create the admin interface, including the pages associated with it and the properties and
controls associated with each page.

The admin interface of the video kiosk application consists of the following pages:
 The AdminHomePage page
 The Movies page
 The Video page
 The Actors page
 The Director page
 The Producer page
 The Customer page
 The ShowReports page

The following sections discuss each of these pages in detail.

The AdminHomePage Page
The AdminHomePage page is the first page of the admin interface. This page is the
central location from which an administrator can modify the tables at the backend. In
addition, the page also enables the administrator to view reports. Figure 28-1 shows the
user interface of the home page.

Figure 28-1: The interface of the AdminHomePage page

Figure 28-2 shows AdminHomePage in the Design view.

Figure 28-2: The Design view of the AdminHomePage Web form

The properties of the AdminHomePage Web form are listed in Table 28-1.
Table 28-1: Properties Assigned to the AdminHomePage Web Form

Web Form Property Value

AdminHomePage bgColor #dda0dd

AdminHomePage pageLayout GridLayout

The AdminHomePage Web form contains an Image control. This Image control displays
the banner on the page. Table 28-2 lists the properties of the Image control.
Table 28-2: Properties Assigned to the Image Control

Control Property Value

Image 1 ID Image3

Image 1 ImageUrl Bar.jpg

Image 1 Height 69px

Image 1 Width 710px

As shown in Figure 28-2, the AdminHomePage Web form contains hyperlinks that an
administrator can use to move to the Movies, Actor, Director, Producer, Customer,
Video, and ShowReports pages. These hyperlinks are placed on a panel. The properties
of the panel are listed in Table 28-3.

Table 28-3: Properties Assigned to the Panel

Control Property Value

Panel 1 ID Panel1

Panel 1 Height 410px

Panel 1 HorizontalAlign Center

Panel 1 Width 145px

Panel 1 BackColor MediumOrchid

The panel contains a label with the text Work with Masters. Table 28-4 lists the
properties of this label.
Table 28-4: Properties Assigned to the Label

Control Property Value

Label 1 ID lblMasters

Label 1 Font Tahoma,
Smaller

Label 1 Text Work with
Masters

Label 1 Height 23px

Label 1 Width 125px

It is under this label that all hyperlinks are placed. The NavigateUrl property of each
Hyperlink control contains the name of the page that should open when the hyperlink is
clicked. Table 28-5 lists the properties of these hyperlinks.
Table 28-5: Properties Assigned to the Hyperlinks

Control Property Value

Hyperlink 1 ID HyperLink1

Hyperlink 1 BackColor #FFC0FF

Hyperlink 1 Font Tahoma, Smaller

Hyperlink 1 ForeColor Black

Hyperlink 1 NavigateUrl Movies.aspx

Hyperlink 1 Text Movies

Hyperlink 1 Height 8px

Hyperlink 1 Width 128px

Hyperlink 2 ID HyperLink2

Hyperlink 2 BackColor #FFC0FF

Hyperlink 2 Font Tahoma, Smaller

Hyperlink 2 ForeColor Black

Hyperlink 2 Text Actors

Hyperlink 2 NavigateUrl actors.aspx

Hyperlink 3 ID HyperLink3

Hyperlink 3 BackColor #FFC0FF

Table 28-5: Properties Assigned to the Hyperlinks

Control Property Value

Hyperlink 3 Font Tahoma, Smaller

Hyperlink 3 ForeColor Black

Hyperlink 3 Text Producers

Hyperlink 3 NavigateUrl Producer.aspx

Hyperlink 4 ID HyperLink4

Hyperlink 4 BackColor #FFC0FF

Hyperlink 4 Font Tahoma, Smaller

Hyperlink 4 ForeColor Black

Hyperlink 4 Height 3px

Hyperlink 4 Text Videos

Hyperlink 4 NavigateUrl video.aspx

Hyperlink 5 ID HyperLink5

Hyperlink 5 BackColor #FFC0FF

Hyperlink 5 Font Tahoma, Smaller

Hyperlink 5 ForeColor Black

Hyperlink 5 Text Directors

Hyperlink 5 NavigateUrl Director.aspx

Hyperlink 7 ID HyperLink7

Hyperlink 7 BackColor #FFC0FF

Hyperlink 7 Font Tahoma, Smaller

Hyperlink 7 ForeColor Black

Hyperlink 7 Text Customers

Hyperlink 7 NavigateUrl customer.aspx

Hyperlink 8 ID HyperLink8

Hyperlink 8 BackColor #FFC0FF

Hyperlink 8 Font Tahoma, Smaller

Hyperlink 8 ForeColor Black

Hyperlink 8 Text View Reports

Hyperlink 8 NavigateUrl ShowReports.aspx

When an administrator clicks on a hyperlink, the page associated with the hyperlink
opens.

The Movies Page
When an administrator clicks on the Movies hyperlink, the Movies page opens. Figure
28-3 displays the Design view of the Movies Web form.

Figure 28-3: The Design view of the Movies Web form

As you can see, the Web form contains a SqlDataAdapter, a SqlConnection, and a
DataSet object. You create a SqlAdapter object by performing the following steps:

1. Select and drag the SqlDataAdapter control from the Data tab of the
Toolbox to the Web form. When you do so, an instance of the
SqlDataAdapter class is added to the Web form, and the first screen
of the Data Adapter Configuration Wizard appears (see Figure 28-4).

Figure 28-4: The first screen of the Data Adapter Configuration Wizard
2. Click on the Next button and then click on the Next button again.
3. Select the Use SQL statements option in the third screen of the Data

Adapter Configuration Wizard and then click on the Next button.
4. Click on the Query Builder button to use the Query Builder. The Add

Table dialog box appears, as shown in Figure 28-5. Select the Movie
table and click on the Add button to display the columns of the selected
table. Click on the Close button to close the Add Table dialog box.

Figure 28-5: The Add Table dialog box
5. In the Query Builder, check all the columns of the Movie table. Click on

the OK button to close the Query Builder and return to the wizard. The
query you designed appears on the screen.

6. Click on the Next button to open the last screen of the wizard, which
provides a list of the tasks that the wizard has performed.

7. Click on the Finish button in the last screen to complete the process of
configuring the data adapter. When you click on the Finish button, the
selected settings are applied to the data adapter, and an instance of the
connection object and the data adapter object appear on the Web form.

The Generate DataSet hyperlink in the properties window of the DataAdapter object
has been used to generate the dataset.
The page contains a DataGrid control. This DataGrid control displays the details of five
movies at a time. You use the Next and Previous links in the DataGrid control to view
the next or previous set of records. The control also enables you to edit and delete the
movie records. Table 28-6 lists the properties of the DataGrid control.
Table 28-6: Properties Assigned to the DataGrid Control

Control Property Value

DataGrid 1 ID DataGrid1

DataGrid 1 AllowPaging True

DataGrid 1 AllowSorting True

DataGrid 1 DataKeyField MovID

DataGrid 1 DataMember Movie

DataGrid 1 DataSource DsMovies1

DataGrid 1 Font Tahoma,
Small

DataGrid 1 Height 174px

DataGrid 1 PageSize 5

DataGrid 1 ShowFooter True

DataGrid 1 Width 658px

As you can see, on the left side of the page, there is a panel that contains hyperlinks to
various pages. The Movies page has a hyperlink, Add New Movies. The properties of
this hyperlink are listed in Table 28-7.
Table 28-7: Properties Assigned to the Hyperlink

Control Property Value

Hyperlink 9 ID HyperLink9

Hyperlink 9 BackColor #FFC0FF

Hyperlink 9 Font Tahoma, Smaller

Hyperlink 9 ForeColor Black

Hyperlink 9 NavigateUrl AddNewMovies.aspx

Hyperlink 9 Text Add New Movies

Hyperlink 9 Height 8px

Hyperlink 9 Width 128px

When you click on the Add New Movies hyperlink, the AddNewMovies page opens.
Figure 28-6 displays the user interface of the AddNewMovies page.
The AddNewMovies page is used to accept details of a new movie from the
administrator and add the record to the database when the Add New Record button is
clicked. As you can see in Figure 28-6, the Web form contains a SqlDataAdapter
object, a SqlConnection object, two datasets, and various labels, text boxes, and
combo boxes. Table 28-8 lists the properties of the labels in the AddNewMovies Web
form.

Figure 28-6: The Design view of the AddNewMovies Web form

Table 28-8: Properties Assigned to Labels

Control Property Value

Label 1 ID Label1

Label 1 BackColor #FFC0FF

Label 1 Font Tahoma,
Smaller

Label 1 ForeColor Black

Label 1 Text Description

Label 2 ID Label2

Label 2 BackColor #FFC0FF

Label 2 Font Tahoma,
Smaller

Label 2 ForeColor Black

Table 28-8: Properties Assigned to Labels

Control Property Value

Label 2 Text Movie Title

Label 2 Width 71px

Label 3 ID Label3

Label 3 BackColor #FFC0FF

Label 3 Font Tahoma,
Smaller

Label 3 ForeColor Black

Label 3 Text Director

Label 3 Width 54px

Label 4 ID Label4

Label 4 BackColor #FFC0FF

Label 4 Font Tahoma,
Smaller

Label 4 ForeColor Black

Label 4 Text Producer

Label 4 Width 59px

Label 5 ID Label5

Label 5 BackColor #FFC0FF

Label 5 Font Tahoma,
Smaller

Label 5 ForeColor Black

Label 5 Text Duration

Label 6 ID Label6

Label 6 BackColor #FFC0FF

Label 6 Font Tahoma,
Smaller

Label 6 ForeColor Black

Label 6 Text Category

Label 7 ID Label7

Label 7 BackColor #FFC0FF

Label 7 Font Tahoma,
Smaller

Label 7 ForeColor Black

Label 7 Text Realese
Year

Label 7 Width 90px

Label 8 ID Label8

Label 8 Height 37px

Table 28-8: Properties Assigned to Labels

Control Property Value

Label 8 Font Tahoma,
Smaller

Label 8 ForeColor Black

Label 8 Text Error
Occurred.
Please
verify your
entries.

Label 8 Width 90px

The page contains text boxes and combo boxes to accept the new movie details from
the administrator. The properties of the text boxes in the Web form are listed in Table 28-
9.
Table 28-9: Properties Assigned to Text Boxes

Control Property Value

Text box 1 ID txtMovie

Text box 2 ID txtDuration

Text box 3 ID txtDesc

Text box 3 Height 51px

Text box 3 Rows 4

Text box 3 Width 268px

Text box 4 ID txtCat

Text box 5 ID txtRelYear

To ensure that the txtMovie box is not left blank, a RequiredFieldValidator control is
used. The properties of the RequiredFieldValidator control are listed in Table 28-10.
Table 28-10: Properties Assigned to RequiredFieldValidator Control

Control Property Value

RequiredFieldValidator1 ID RequiredField
Validator1

RequiredFieldValidator1 ControlToValidate txtMovie

RequiredFieldValidator1 ErrorMessage Movie Title
Cannot be
Blank

RequiredFieldValidator1 ForeColor Red

RequiredFieldValidator1 Text *

The AddNewMovies Web form has two combo boxes. The properties of these combo
boxes are listed in Table 28-11.
Table 28-11: Properties Assigned to Combo Boxes

Control Property Value

cmbDirector ID cmbDirector

cmbDirector DataMember Director

cmbDirector DataSource DsDirector_New21

Table 28-11: Properties Assigned to Combo Boxes

Control Property Value

cmbDirector DataValueField DirID

cmbDirector Width 153px

cmbProducer ID cmbProducer

cmbProducer Width 151px

The AddNewMovie Web form has a ValidationSummary control that is used to display
the errors on the page in a message box. The properties of the ValidationSummary
control are listed in Table 28-12.
Table 28-12: Properties Assigned to the ValidationSummary Control

Control Property Value

ValidationSummary
1

ID ValidationSummary1

ValidationSummary
1

ShowMessageBox True

ValidationSummary
1

ShowSummary False

ValidationSummary
1

Width 81px

After the administrator enters the details of a movie and clicks on the Add New Record
button, the movie is added to the database if the details specified by the administrator
are valid. Table 28-13 lists the properties of the button.
Table 28-13: Properties Assigned to the Button

Control Property Value

Button 1 ID Button1

Button 1 Text Add New
Record

The Video Page
When an administrator clicks on the Videos hyperlink in the AdminHomePage page, the
Video page opens. The Design view of this page is shown in Figure 28-7, shown on
page 688.

Figure 28-7: The Design view of the Video Web form

The Video page, in addition to containing the hyperlinks to the master tables, contains a
DataGrid control that displays the video records five at a time. The DataGrid control
enables you to edit and delete the records. In addition, you can also view the previous or
next set of video records. Table 28-14 lists the properties of the DataGrid control.
Table 28-14: Properties Assigned to the DataGrid Control

Control Property Value

DataGrid 1 ID DataGrid1

DataGrid 1 AllowPaging True

DataGrid 1 AllowSorting True

DataGrid 1 AutoGenerateColumns False

DataGrid 1 DataKeyField VideoID

DataGrid 1 DataMember Video

DataGrid 1 DataSource DsVideo2

DataGrid 1 Font Tahoma,
Small

DataGrid 1 Height 174px

DataGrid 1 PageSize 5

DataGrid 1 ShowFooter True

DataGrid 1 Width 658px

The Video Web form contains a SqlDataAdapter object, a SqlConnection object,
and a DataSet object. When creating the SqlDataAdapter object, the Video table has
to be specified in the DataAdapter Configuration Wizard.
The Web form contains two labels, lblMasters and lblError. The lblMasters
label displays the Work with Masters text and is placed above the hyperlinks, as
shown in Figure 28-7. The lblError label is used to display an error message if an
error occurs. The properties of the labels are listed in Table 28-15.
Table 28-15: Properties Assigned to Labels

Control Property Value

Label 1 ID lblMasters

Label 1 Font Tahoma,
Smaller

Label 1 Height 23px

Label 1 Text Work with
Masters

Label 1 Width 125px

Label 2 ID lblError

Label 2 BackColor #FFC0FF

Label 2 Font Tahoma,
Smaller

Label 2 ForeColor Black

Label 2 Width 244px

The Video page has a hyperlink, Add New Video. The properties of this hyperlink are
listed in Table 28-16.
Table 28-16: Properties Assigned to the Hyperlink

Control Property Value

Hyperlink 9 ID HyperLink9

Hyperlink 9 BackColor #FFC0FF

Hyperlink 9 Font Tahoma, Smaller

Hyperlink 9 ForeColor Black

Hyperlink 9 NavigateUrl AddNewVideo.aspx

Hyperlink 9 Text Add New Video

Hyperlink 9 Height 8px

Hyperlink 9 Width 128px

When you click on the Add New Video hyperlink, the AddNewVideo page opens.
Figure 28-8 displays the Design view of the AddNewVideo Web form.

Figure 28-8: The Design view of the AddNewVideo Web form

The Web form is used to accept details from the administrator and to add the record to
the database when the Add New Video button is clicked. As shown in Figure 28-8, the
page contains labels, text boxes, and a combo box. Table 28-17 lists the properties of
the labels in the AddNewVideo Web form.
Table 28-17: Properties Assigned to Labels

Control Property Value

Label 1 ID lblMasters

Label 1 Font Tahoma,
Smaller

Label 1 Height 23px

Label 1 Text Work with
Masters

Label 1 Width 125px

Label 2 ID lblError

Label 2 BackColor #FFC0FF

Label 2 Font Tahoma,
Smaller

Label 2 ForeColor Black

Label 2 Width 244px

Label 3 ID Label3

Label 3 BackColor #FFC0FF

Label 3 Font Tahoma,
Smaller

Label 3 ForeColor Black

Label 3 Text Movie

Label 3 Width 54px

Label 4 ID Label4

Label 4 BackColor #FFC0FF

Label 4 Font Tahoma,
Smaller

Label 4 ForeColor Black

Label 4 Text Format

Label 4 Width 59px

Label 5 ID Label5

Label 5 BackColor #FFC0FF

Label 5 Font Tahoma,
Smaller

Label 5 ForeColor Black

Label 5 Text Price

The Web form also contains a combo box that contains a list of movies. The properties
of the combo box are listed in Table 28-18.
Table 28-18: Properties Assigned to the Combo Box

Control Property Value

Combo box 1 ID cmbMovie

Combo box 1 DataValueField DirID

Combo box 1 Width 264px

There also are two text boxes on the Web form. These text boxes accept the format and
price of the video. The properties of these text boxes are listed in Table 28-19.
Table 28-19: Properties Assigned to Text Boxes

Control Property Value

Text box 1 ID txtFormat

Text box 2 ID txtPrice

To ensure that the value entered in the txtPrice box is numeric, a CompareValidator
control has been used. The properties of the CompareValidator control are listed in
Table 28-20.
Table 28-20: Properties Assigned to the CompareValidator Control

Control Property Value

CompareValidator
1

ID CompareValidator1

CompareValidator
1

ControlToValidate txtPrice

CompareValidator
1

ErrorMessage Price should be
Numeric

CompareValidator
1

Operator DataTypeCheck

CompareValidator
1

Type Currency

CompareValidator
1

ValueToCompare 1

CompareValidator
1

Width 158px

After the administrator enters the details of a video and clicks on the Add New Video
button, the video is added to the database if the details specified by the administrator are
valid. Table 28-21 lists the properties of the button.
Table 28-21: Properties Assigned to the Button

Control Property Value

Button 1 ID Button1

Button 1 Text Add New
Video

The Actors Page
When an administrator clicks on the Actors hyperlink in the AdminHomePage page, the
Actors page opens. The Design view of the Actors Web form is shown in Figure 28-9.

Figure 28-9: The Design view of the Actors Web form

The Actors Web form contains a SqlDataAdapter object, a SqlConnection object,
and a dataset. When creating the SqlDataAdapter object, the Actor table has to be
specified in the DataAdapter Configuration Wizard.
The Actors page, in addition to containing the hyperlinks to the master tables, contains a
DataGrid control that displays the actor records five at a time. The DataGrid control
enables you to edit and delete the records. In addition, you can also view the previous or
next set of actor records. Table 28-22 lists the properties of the DataGrid control.
Table 28-22: Properties Assigned to the DataGrid Control

Control Property Value

DataGrid 1 ID DataGrid1

DataGrid 1 AllowPaging True

DataGrid 1 AllowSorting True

DataGrid 1 AutoGenerateColumns False

DataGrid 1 Font Tahoma,
Small

DataGrid 1 Height 174px

DataGrid 1 PageSize 5

DataGrid 1 ShowFooter True

DataGrid 1 Width 658px

The Web form contains two labels, lblMasters and lblError. The lblMasters
label displays the Work with Masters text and is placed above the hyperlink (refer
back to Figure 28-6). The lblError label is used to display an error message if an error
occurs. The properties of the labels are listed in Table 28-23.
Table 28-23: Properties Assigned to the Labels

Control Property Value

Label 1 ID lblMasters

Label 1 Font Tahoma,
Smaller

Table 28-23: Properties Assigned to the Labels

Control Property Value

Label 1 Height 23px

Label 1 Text Work with
Masters

Label 1 Width 125px

Label 2 ID lblError

Label 2 BackColor #FFC0FF

Label 2 Font Tahoma,
Smaller

Label 2 ForeColor Black

Label 2 Width 244px

The Actors page has a hyperlink, Add New Actor. The properties of this hyperlink are
listed in Table 28-24.
Table 28-24: Properties Assigned to the Hyperlink

Control Property Value

Hyperlink ID HyperLink9

Hyperlink BackColor #FFC0FF

Hyperlink Font Tahoma, Smaller

Hyperlink ForeColor Black

Hyperlink NavigateUrl AddNewActor.aspx

Hyperlink Text Add New Actor

Hyperlink Height 8px

Hyperlink Width 128px

When you click on the Add New Actor hyperlink, the AddNewActor page opens.
Figure 28-10 displays the Design view of the AddNewActor Web form.

Figure 28-10: The Design view of the AddNewActor Web form

The Web form is used to accept details from the administrator and to add the record to
the database when the Add New Actor button is clicked. As you can see, the page
contains labels and text boxes. Table 28-25 lists the properties of the labels in the
AddNewActor Web form.

Table 28-25: Properties Assigned to the Labels

Control Property Value

Label 1 ID lblError

Label 1 BackColor #FFC0FF

Label 1 Font Tahoma,
Smaller

Label 1 ForeColor Black

Label 1 Width 244px

Label 2 ID LblFName

Label 2 BackColor #FFC0FF

Label 2 Font Tahoma,
Smaller

Label 2 ForeColor Black

Label 2 Text First Name

Label 3 ID LblLName

Label 3 BackColor #FFC0FF

Label 3 Font Tahoma,
Smaller

Label 3 ForeColor Black

Label 3 Text Last Name

Label 4 ID LblDOB

Label 4 BackColor #FFC0FF

Label 4 Font Tahoma,
Smaller

Label 4 ForeColor Black

Label 4 Text Date Of Birth

Label 5 ID LblBackGround

Label 5 BackColor #FFC0FF

Label 5 Font Tahoma,
Smaller

Label 5 ForeColor Black

Label 5 Text Background

There also are four text boxes on the Web form. These text boxes accept the details of
an actor. The properties of these text boxes are listed in Table 28-26.
Table 28-26: Properties Assigned to Text Boxes

Control Property Value

Text box 1 ID txtFname

Text box 1 TabIndex 1

Text box 2 ID txtLname

Text box 2 TabIndex 2

Table 28-26: Properties Assigned to Text Boxes

Control Property Value

Text box 3 ID txtDOB

Text box 3 TabIndex 3

Text box 4 ID txtBGround

Text box 4 Height 51px

Text box 4 Rows 4

Text box 4 TabIndex 4

Text box 4 Width 268px

To ensure that the First Name, Last Name, and Date of Birth fields are not left blank, the
RequiredFieldValidator controls are used. The properties of the RequiredFieldValidator
controls are listed in Table 28-27.
Table 28-27: Properties Assigned to the RequiredFieldValidator Controls

Control Property Value

RequiredFieldValidator
1

ID RequiredField
Validator1

RequiredFieldValidator
1

ControlToValidate txtFname

RequiredFieldValidator
1

ErrorMessage First Name
Cannot be
Blank

RequiredFieldValidator
1

ForeColor Red

RequiredFieldValidator
1

Text *

RequiredFieldValidator
2

ID RequiredField
Validator2

RequiredFieldValidator
2

ControlToValidate txtDOB

RequiredFieldValidator
2

ErrorMessage Date of Birth
cannot be
Blank

RequiredFieldValidator
2

ForeColor Red

RequiredFieldValidator
2

Text *

RequiredFieldValidator
3

ID RequiredField
Validator3

RequiredFieldValidator
3

ControlToValidate txtLname

RequiredFieldValidator
3

ErrorMessage Last Name
Cannot be
Blank

RequiredFieldValidator
3

ForeColor Red

Table 28-27: Properties Assigned to the RequiredFieldValidator Controls

Control Property Value

RequiredFieldValidator
3

Text *

The AddNewActor Web form has a ValidationSummary control that is used to display the
errors on the page in a message box. The properties of the ValidationSummary control
are listed in Table 28-28.
Table 28-28: Properties Assigned to the ValidationSummary Control

Control Property Value

ValidationSummary
1

ID ValidationSummary1

ValidationSummary
1

ShowMessageBox True

ValidationSummary
1

ShowSummary False

ValidationSummary
1

Width 81px

After the administrator enters the details of an actor and clicks on the Add New Record
button, the record is added to the database if the details specified by the administrator
are valid. Table 28-29 lists the properties of the button.
Table 28-29: Properties Assigned to the Button

Control Property Value

Button 1 ID CmdAddNewRecord

Button 1 Text Add New Record

The Director Page
The Director page opens when a user clicks on the Directors hyperlink. The Design
view of the Director Web form is shown in Figure 28-11.

Figure 28-11: The Design view of the Director Web form

The Director Web form contains a SqlDataAdapter object, a SqlConnection object,
and a dataset. When creating the SqlDataAdapter object, the Director table has to be
specified in the DataAdapter Configuration Wizard.
The Director page, in addition to containing the hyperlinks to the master tables, contains
a DataGrid control that displays the director records five at a time. The DataGrid control
enables you to edit and delete the records. In addition, you can also view the previous or
next set of records. Table 28-30 lists the properties of the DataGrid control.
Table 28-30: Properties Assigned to the DataGrid Control

Control Property Value

DataGrid 1 ID DataGrid1

DataGrid 1 AllowPaging True

DataGrid 1 AllowSorting True

DataGrid 1 AutoGenerateColumns False

DataGrid 1 DataKeyField DirID

DataGrid 1 DataMember Director

DataGrid 1 DataSource DsDirector_New1

DataGrid 1 Font Tahoma, Small

DataGrid 1 Height 174px

DataGrid 1 PageSize 5

DataGrid 1 ShowFooter True

DataGrid 1 Width 658px

The Web form contains two labels, lblMasters and lblError. The lblMasters
label displays the Work with Masters text and is placed above the hyperlinks (refer
back to Figure 28-7). The lblError label is used to display an error message if an error
occurs. The properties of the labels are listed in Table 28-31.
Table 28-31: Properties Assigned to the Labels

Control Property Value

Label 1 ID lblMasters

Label 1 Font Tahoma,
Smaller

Label 1 Height 23px

Label 1 Text Work with
Masters

Label 1 Width 125px

Label 2 ID lblError

Label 2 BackColor #FFC0FF

Label 2 Font Tahoma,
Smaller

Label 2 ForeColor Black

Label 2 Width 316px

The Director page has a hyperlink, Add New Director. The properties of this hyperlink
are listed in Table 28-32.
Table 28-32: Properties Assigned to the Hyperlink

Control Property Value

Hyperlink ID HyperLink9

Hyperlink BackColor #FFC0FF

Hyperlink Font Tahoma, Smaller

Hyperlink ForeColor Black

Hyperlink NavigateUrl AddNewDirector.aspx

Hyperlink Text Add New Director

Hyperlink Height 8px

Hyperlink Width 128px

When you click on the Add New Director hyperlink, the AddNewDirector page opens.
Figure 28-12 displays the Design view of the AddNewDirector page.

Figure 28-12: The Design view of the AddNewDirector Web form

The Web form is used to accept details from the administrator and to add the record to
the database when the Add New Director button is clicked. As you can see, the page
contains labels and text boxes. Table 28-33 lists the properties of the labels in the
AddNewDirector page.
Table 28-33: Properties Assigned to the Labels

Control Property Value

Label 1 ID LblBackGround

Label 1 BackColor #FFC0FF

Label 1 Font Tahoma,
Smaller

Label 1 ForeColor Black

Label 1 Text Background

Label 2 ID LblFName

Label 2 BackColor #FFC0FF

Label 2 Font Tahoma,
Smaller

Label 2 ForeColor Black

Label 2 Text First Name

Table 28-33: Properties Assigned to the Labels

Control Property Value

Label 2 Width 71px

Label 3 ID LblLName

Label 3 BackColor #FFC0FF

Label 3 Font Tahoma,
Smaller

Label 3 ForeColor Black

Label 3 Text Last Name

Label 3 Width 77px

Label 4 ID LblDOB

Label 4 BackColor #FFC0FF

Label 4 Font Tahoma,
Smaller

Label 4 ForeColor Black

Label 4 Text Date Of Birth

Label 5 ID lblError

Label 5 BackColor #FFC0FF

Label 5 Font Tahoma,
Smaller

Label 5 ForeColor Black

Label 5 Visible False

Label 5 Width 237px

There are also four text boxes on the Web form that accept the details of a director. The
properties of these text boxes are listed in Table 28-34.
Table 28-34: Properties Assigned to the Text Boxes

Control Property Value

Text box 1 ID txtFName

Text box 2 ID txtLname

Text box 3 ID txtDOB

Text box 4 ID txtBGround

Text box 4 Height 51px

Text box 4 Rows 4

Text box 4 Width 268px

To ensure that the First Name, Last Name, and Date of Birth fields are not left blank,
RequiredFieldValidator controls are used. The properties of the RequiredFieldValidator
controls are listed in Table 28-35.
Table 28-35: Properties Assigned to the RequiredFieldValidator Controls

Control Property Value

RequiredFieldValidator ID RequiredField

Table 28-35: Properties Assigned to the RequiredFieldValidator Controls

Control Property Value
1 Validator1

RequiredFieldValidator
1

ControlToValidate txtFName

RequiredFieldValidator
1

ErrorMessage First Name
cannot be
Blank

RequiredFieldValidator
1

ForeColor Red

RequiredFieldValidator
1

Text *

RequiredFieldValidator
2

ID RequiredFieldV
alidator2

RequiredFieldValidator
2

ControlToValidate txtLName

RequiredFieldValidator
2

ErrorMessage Last name
Cannot be
Blank

RequiredFieldValidator
2

ForeColor Red

RequiredFieldValidator
2

Text *

RequiredFieldValidator
3

ID RequiredField
Validator3

RequiredFieldValidator
3

ControlToValidate txtDOB

RequiredFieldValidator
3

ErrorMessage Date of Birth
Cannot be
Blank

RequiredFieldValidator
3

ForeColor Red

RequiredFieldValidator
3

Text *

The AddNewDirector Web form has a ValidationSummary control that is used to display
the errors on the page in a message box. The properties of the ValidationSummary
control are listed in Table 28-36.
Table 28-36: Properties Assigned to the ValidationSummary Control

Control Property Value

ValidationSummary
1

ID ValidationSummary1

ValidationSummary
1

ShowMessageBox True

ValidationSummary
1

ShowSummary False

After the administrator enters the details of a director and clicks on the Add New Director
button, the record is added to the database if the details specified by the administrator
are valid. Table 28-37 lists the properties of the button.
Table 28-37: Properties Assigned to the Button

Control Property Value

Button 1 ID CmdAddNewDir

Button 1 Text Add New
Director

Button 1 Width 131px

The Producer Page
The Producer page opens when a user clicks on the Producers hyperlink. The Design
view of the Producer Web form is shown in Figure 28-13.

Figure 28-13: The Design view of the Producer Web form

The Producer Web form contains a SqlDataAdapter object, a SqlConnection
object, and a dataset. When creating the SqlDataAdapter object, the Producer table
has to be specified in the DataAdapter Configuration Wizard.
The Producer page, in addition to containing the hyperlinks to the master tables,
contains a DataGrid control that displays the producer records five at a time. The
DataGrid control enables you to edit and delete the records. In addition, you can also
view the previous or next set of records. Table 28-38 lists the properties of the DataGrid
control.
Table 28-38: Properties Assigned to the DataGrid Control

Control Property Value

DataGrid 1 ID DataGrid1

DataGrid 1 AllowPaging True

DataGrid 1 AllowSorting True

DataGrid 1 AutoGenerateColumns False

DataGrid 1 DataKeyField ProdID

Table 28-38: Properties Assigned to the DataGrid Control

Control Property Value

DataGrid 1 DataMember Producer

DataGrid 1 DataSource DsProducer1

DataGrid 1 Font Tahoma,
Small

DataGrid 1 Height 174px

DataGrid 1 PageSize 5

DataGrid 1 ShowFooter True

DataGrid 1 Width 658px

The Web form contains a label, lblMasters. The lblMasters label displays the Work
with Masters text and is placed above the hyperlinks (refer to Figure 28-9).
The Producer page has a hyperlink, Add New Producer. The properties of this
hyperlink are listed in Table 28-39.
Table 28-39: Properties Assigned to the Hyperlink

Control Property Value

Hyperlink ID HyperLink9

Hyperlink BackColor #FFC0FF

Hyperlink Font Tahoma, Smaller

Hyperlink ForeColor Black

Hyperlink NavigateUrl AddNewProducer.aspx

Hyperlink Text Add New Producer

Hyperlink Height 8px

Hyperlink Width 128px

When you click on the Add New Producer hyperlink, the AddNewProducer page opens.
Figure 28-14 displays the Design view of the AddNewProducer page.

Figure 28-14: The Design view of the AddNewProducer Web form

The Web form is used to accept details from the administrator and to add the record to
the database when the Add New Producer button is clicked. Figure 28-13 shows the
AddNewProducer page in the Design view. As you can see, the page contains labels

and text boxes. Table 28-40 lists the properties of the labels in the AddNewProducer
page.
Table 28-40: Properties Assigned to the Labels

Control Property Value

Label 1 ID Label1

Label 1 Font Tahoma,
Smaller

Label 1 Text Producer

Label 1 Width 63px

Label 2 ID lblError

Label 2 Font Tahoma,
Smaller

Label 2 Width 171px

There is a text box on the Web form that accepts the name of the producer. The ID
property of this text box is txtName. To ensure that the Producer field is not left blank,
the RequiredFieldValidator control is used. The properties of the RequiredFieldValidator
control are listed in Table 28-41.
Table 28-41: Properties Assigned to the RequiredFieldValidator Control

Control Property Value

RequiredFieldValidator
1

ID RequiredField
Validator1

RequiredFieldValidator
1

ControlToValidate txtName

RequiredFieldValidator
1

ErrorMessage Producer Name
cannot be
Blank

The AddNewProducer Web form has a ValidationSummary control that is used to display
the errors on the page in a message box. The properties of the ValidationSummary
control are listed in Table 28-42.
Table 28-42: Properties Assigned to the ValidationSummary Control

Control Property Value

ValidationSummary
1

ID ValidationSummary1

ValidationSummary
1

ShowMessageBox True

ValidationSummary
1

ShowSummary False

After the administrator enters the details of a producer and clicks on the Add New
Record button, the record is added to the database if the details specified by the
administrator are valid. Table 28-43 lists the properties of the button.
Table 28-43: Properties Assigned to the Button

Control Property Value

Button 1 ID CmdAddNewProducer

Button 1 Text Add New Record

The Customer Page
The Customer page opens when a user clicks on the Customers hyperlink. The Design
view of the Customer Web form is shown in Figure 28-15.

Figure 28-15: The Design view of the Customer Web form

The Customer Web form contains a SqlDataAdapter object, a SqlConnection
object, and a dataset. When creating the SqlDataAdapter object, the Customer table
has to be specified in the DataAdapter Configuration Wizard.
The Customer page, in addition to containing the hyperlinks to the master tables,
contains a DataGrid control that displays the customer records five at a time. The
DataGrid control enables you to edit and delete the records. In addition, you can also
view the previous or next set of records. Table 28-44 lists the properties of the DataGrid
control.
Table 28-44: Properties Assigned to the DataGrid Control

Control Property Value

DataGrid 1 ID DataGrid1

DataGrid 1 AllowPaging True

DataGrid 1 AllowSorting True

DataGrid 1 AutoGenerateColumns False

DataGrid 1 DataKeyField CustID

DataGrid 1 DataMember Customer

DataGrid 1 DataSource DsCustomer2

DataGrid 1 Font Tahoma,
Small

DataGrid 1 Height 174px

DataGrid 1 PageSize 5

DataGrid 1 ShowFooter True

DataGrid 1 Width 658px

The Web form contains two labels, lblMasters and lblError. The lblMasters
label displays the Work with Masters text and is placed above the hyperlinks. The
lblError label is used to display an error message if an error occurs. The properties of
the labels are listed in Table 28-45.
Table 28-45: Properties Assigned to the Labels

Control Property Value

Table 28-45: Properties Assigned to the Labels

Control Property Value

Label 1 ID lblMasters

Label 1 Font Tahoma,
Smaller

Label 1 Height 23px

Label 1 Text Work with
Masters

Label 1 Width 125px

Label 2 ID lblError

Label 2 BackColor #FFC0FF

Label 2 Font Tahoma,
Smaller

Label 2 ForeColor Black

Label 2 Width 316px

The Customer page has a hyperlink, Add New Customer. The properties of this
hyperlink are listed in Table 28-46.
Table 28-46: Properties Assigned to the Hyperlink

Control Property Value

Hyperlink 9 ID HyperLink9

Hyperlink 9 BackColor #FFC0FF

Hyperlink 9 Font Tahoma,
Smaller

Hyperlink 9 ForeColor Black

Hyperlink 9 NavigateUrl AddNew
Customer.a
spx

Hyperlink 9 Text Add New
Customer

Hyperlink 9 Height 8px

Hyperlink 9 Width 128px

When you click on the Add New Customer hyperlink, the AddNewCustomer page
opens. Figure 28-16 displays the Design view of the AddNewCustomer Web form.

Figure 28-16: The Design view of the AddNewCustomer page

The Web form is used to accept details from the administrator and to add the record to
the database when the Submit Customer Details button is clicked. The details of this
Web form were discussed in Chapter 26.

The ShowReports Page
The ShowReports page opens when a user clicks on the View Reports hyperlink. The
user interface of the ShowReports page is shown in Figure 28-17.

Figure 28-17: The user interface of the ShowReports page

The Design view of the page is shown in Figure 28-18.

Figure 28-18: The Design view of the ShowReports page

As you can see, the page contains three buttons and a DataGrid control. When you click
on a button, the relevant details appear in the DataGrid. The properties of the DataGrid
are listed in Table 28-47.
Table 28-47: Properties Assigned to the DataGrid Control

Control Property Value

DataGrid 1 ID dgAccountDetails

DataGrid 1 Height 13px

DataGrid 1 Width 760px

Table 28-48 lists the properties of the buttons in the ShowReports page.
Table 28-48: Properties Assigned to the Button

Control Property Value

Button 1 ID CmdSalesReport

Button 1 Font Tahoma, Smaller

Button 1 Height 24px

Button 1 Text Sales Report

Button 1 Width 122px

Button 2 ID CmdMoviesInDemand

Button 2 Font Tahoma, Smaller

Button 2 Height 24px

Button 2 Text Movies in Demand

Button 2 Width 127px

Button 3 ID CmdFrequent
CustDetails

Button 3 Font Tahoma, Smaller

Button 3 Height 24px

Button 3 Text Frequent Customer
Details

Button 3 Width 192px

Summary
In this chapter, you learned about the Web pages that make up the admin interface. You
also learned about the properties that are required to be set for the controls on each
Web page.

Chapter 29: Adding Functionality to the Admin
Interface
Overview
The preceding chapter introduced you to the design of the admin interface of the
MyMovies video kiosk Web application. As discussed in that chapter, the Web
application consists of several Web pages. In this chapter, you will write the code to add
functionality to these pages.
As discussed in the preceding chapter, the AdminHomePage page consists of the
hyperlinks Movies, Videos, Actors, Directors, Producers, Customers, and
View Reports (as shown in Figure 29-1.)

Figure 29-1: The interface of the AdminHomePage page

When the user clicks any of the hyperlinks, the application loads the corresponding
page. When you create hyperlinks on the AdminHomePage, Visual Basic.NET adds the
following code for the form by default:
Public Class AdminHomePage
 Inherits System.Web.UI.Page
 Protected WithEvents HyperLink1 As System.Web.UI.WebControls.HyperLink
 Protected WithEvents Panel3 As System.Web.UI.WebControls.Panel
 Protected WithEvents HyperLink4 As System.Web.UI.WebControls.HyperLink
 Protected WithEvents HyperLink2 As System.Web.UI.WebControls.HyperLink
 Protected WithEvents HyperLink5 As System.Web.UI.WebControls.HyperLink
 Protected WithEvents HyperLink3 As System.Web.UI.WebControls.HyperLink
 Protected WithEvents HyperLink7 As System.Web.UI.WebControls.HyperLink
 Protected WithEvents HyperLink8 As System.Web.UI.WebControls.HyperLink
 Protected WithEvents lblMasters As System.Web.UI.WebControls.Label
 Protected WithEvents Image3 As System.Web.UI.WebControls.Image
End Class

The preceding code indicates that the mentioned controls exist on the form. Because
you already know how to create the hyperlinks for the various pages, let’s now write the
code for the pages. Let’s begin by writing the code for the page associated with the
Movies hyperlink.

The Code for the Movies Hyperlink
In the preceding chapter, you created the SqlConnection string object and configured
the SqlDataAdapter and the dataset. Now you need to write the code to populate
the DataGrid object when the page is loaded. In addition, you need to bind the dataset
with the DataGrid control. Write the following code for the tasks that need to be
performed when the Movies page is loaded in the browser:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Handles MyBase.Load
 'Put user code to initialize the page here
 SqlDataAdapter1.Fill(DsMovies1)
 If Not IsPostBack Then
 DataGrid1.DataBind()
 End If
End Sub
The preceding code uses the SqlDataAdapter1.Fill method to fill the dataset
DsMovies1. Then the IsPost property is used to check whether the page is being
loaded for the first time or was loaded after a client request (such as to move to the next
or previous pages). If the page was not loaded earlier, the application will bind the
DataGrid control to the data source you specified while configuring the data connection.
After you have populated the dataset, you need to write the code to insert, modify, or
delete records stored in the data table. In addition, you need to write the code for when
the user cancels the update of a particular record. You also will write the code to move to
the next or previous pages. You’ll write the code to insert a new record a little later in this
chapter. The next section discusses the code for modifying a record.

The Code for the Edit Hyperlink
When modifying a record, you can choose to either update the change or cancel it.
When the form loads in the browser, the form will contain an option to edit the record.
Recall that, when designing the form, you set the DataGrid’s property to first display the
Edit hyperlink. Then, when the Edit hyperlink is clicked, the links for Update and
Cancel display. Hence, let’s first write the code for the Edit hyperlink.
When a user clicks on the Edit hyperlink, the data grid automatically displays the
Update and Cancel hyperlinks for the record. However, before that happens, the code
needs to trap the index value of the record that the user wants to edit. To accomplish
this, you need to write the following code.
Private Sub DataGrid1_EditCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.EditCommand
 DataGrid1.EditItemIndex = e.Item.ItemIndex
 DataGrid1.DataBind()
End Sub
The preceding code uses the e.Item.ItemIndex property to get the index value of the
record that the user wants to edit. As previously mentioned, when the user clicks the
Edit hyperlink, the links for Update and Cancel become visible. You’ll now write the
code for updating a record.

The Code for the Update Hyperlink
The function to update the DataGrid control accepts two parameters—the source and the
event that the application raises when the Update hyperlink is clicked. To update a
record, you need to write the following code:
Private Sub DataGrid1_UpdateCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.UpdateCommand
 Dim key As String = DataGrid1.DataKeys(e.Item.ItemIndex).ToString
 Dim tb As TextBox
 Dim strMovTitle, strDirId, strProdId, strDuration, strDesc, strCat,
 strRelYear As String
 'Gets the value from the text box control in the third column
 tb = CType(e.Item.Cells(3).Controls(0), TextBox)
 strMovTitle = tb.Text
 'Gets the value from the text box control in the fourth column
 tb = CType(e.Item.Cells(4).Controls(0), TextBox)
 strDirId = tb.Text

 ' Gets the value from the text box control in the fifth column
 tb = CType(e.Item.Cells(5).Controls(0), TextBox)
 strProdId = tb.Text

 ' Gets the value from the text box control in the sixth column
 tb = CType(e.Item.Cells(6).Controls(0), TextBox)
 strDuration = tb.Text

 ' Gets the value from the text box control in the seventh column
 tb = CType(e.Item.Cells(7).Controls(0), TextBox)
 strDesc = tb.Text

 'Gets the value from the text box control in the eighth column
 tb = CType(e.Item.Cells(8).Controls(0), TextBox)
 strCat = tb.Text

 ' Gets the value from the text box in the ninth column
 tb = CType(e.Item.Cells(9).Controls(0), TextBox)
 strRelYear = tb.Text

 Dim r As dsMovies.MovieRow
 r = DsMovies1.Movie.FindByMovID(key)

 r.MovTitle = strMovTitle
 r.DirID = strDirId
 r.ProdID = strProdId

 r.Duration = strDuration
 r.Description = strDesc
 r.Category = strCat
 r.ReleaseYear = strRelYear

 SqlDataAdapter1.Update(DsMovies1)
 DataGrid1.EditItemIndex = -1

 ' Refresh the grid
 DataGrid1.DataBind()
 End Sub
The preceding code defines two variables key and tb of type String and TextBox,
respectively. The variable key will store the index value of the record you are updating.
The code also defines the variables strMovTitle, strDirId, strProdId,
strDuration, strDesc, strCat, and strRelYear of the String data type. Next,
the CType function converts the data stored in the cells of the data grid to TextBox
type. Next, the values of the strMovTitle, strDirId, strProdId, strDuration,
strDesc, strCat, and strRelYear variable are assigned to the different fields of the
datarow. After storing the values that you want to update in the strMovTitle,
strDirId, strProdId, strDuration, strDesc, strCat, and strRelYear
variables, you need to search the record in the dataset and then update the table with
the same. To do so, a variable r has been defined of the type datarow (MovieRow of the
dataset dsMovies). After defining the variable, the code has been specified to find the
MovieID stored in the variable key using the FindByMovID method. Next, it has been
specified to store the values in the strMovTitle, strDirId, strProdId,
strDuration, strDesc, strCat, and strRelYear variables in the MovTitle,
DirID, ProdID, Duration, Description, Category, and ReleaseYear fields of
the data table. Finally, the method SqlDataAdapter1.Update(DsMovies1) updates
the values in the dataset.
After you have saved the new values in the data table, you need to refresh the data grid
and set the EditItemIndex property to –1. The EditItemIndex property stores the
index value of the record being edited. Therefore, after you have edited and updated the
changes, you need to set the EditItemIndex to its default value –1. Finally, the code
to refresh the data grid has been added by binding it to the dataset.
In addition to updating a record, the user can also choose to cancel editing the record. In
the following section, you will write the code for the Cancel hyperlink.

The Code for the Cancel Hyperlink

To cancel editing the record, you need to write the following code:
Private Sub DataGrid1_CancelCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.CancelCommand
 DataGrid1.EditItemIndex = –1
 DataGrid1.DataBind()
End Sub
The preceding code simply resets the EditItemIndex property of the DataGrid1 to –
1 and refreshes the data grid. Recall that, at design time, you specified that if the user
clicks the Cancel hyperlink, the page will close the window that shows the Update and
Cancel options and will display only the link for editing the record.

The Code for Deleting a Record
In the previous section, you wrote the code to modify a record. You will first store the
index value for the record that needs to be deleted in a variable and then search for the
record with the same index value in the data table. You will then delete the record by
using the Delete method of the datarow (here it is MovieRow). Then you’ll update the
dataset by using SqlDataAdapter1.Update(DsMovies1, "Movie"). Finally, you’ll
refresh the data grid. Let’s now write the code to delete a record.
Private Sub DataGrid1_DeleteCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.DeleteCommand
 Dim key As String = DataGrid1.DataKeys(e.Item.ItemIndex).ToString
 Dim r As dsMovies.MovieRow
 r = DsMovies1.Movie.FindByMovID(key)
 r.Delete()
 SqlDataAdapter1.Update(DsMovies1, "Movie")
 DataGrid1.DataBind()
End Sub

Next you need to specify the code for navigating the pages in a data grid.

Navigating the Pages of a Data Grid
Recall that, at design time, you specified that the data grid should display five records on
a page. In addition, you attached the Previous and Next hyperlinks to the dataset.
Now you need to specify that, when the user clicks the Next or Previous hyperlinks,
the data grid will display the next or previous page. To specify this functionality, you need
to trap the PageIndexChanged event for the DataGrid control. This event is raised
when one of selections for navigating a page is clicked. Let’s now write the code for
navigating the pages of a data grid.
Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridPageChangedEventArgs) Handles
DataGrid1.PageIndexChanged
 DataGrid1.CurrentPageIndex = e.NewPageIndex
 DataGrid1.DataBind()
End Sub

The preceding code traps the index value of the page to which the user wants to
navigate and displays the page with the same index value.

The Code for Inserting a Record
When the user clicks the Add New Movies hyperlink, the application loads the
AddNewMovies page (see Figure 29-2.)

Figure 29-2: The interface of the AddNewMovies page

When the page is loaded in the browser, you need to ensure that the combo lists for the
Director and Producer fields are already populated. To populate the combo lists, you
need to write the code in the Page_Load event for the form. Because you need to
populate two combo boxes, you need to use two different datasets. This is an
opportunity for you to learn how to create a typed dataset and a programmatically
created dataset. Recall that you created a typed dataset while designing the form. To
programmatically create the other dataset, write the following code:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs)Handles MyBase.Load
 'Put user code to initialize the page here
 Dim strConnectionString = Application("strConnect")
 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim strCmdText As String
 Dim MyDataAdapter As SqlDataAdapter
MyDataAdapter = New SqlDataAdapter("Select ProdId,Name from Producer",
MyConnection)
 Dim MyDataSet As New DataSet()
 MyDataAdapter.Fill(MyDataSet)
 cmbProducer.DataSource = MyDataSet
 cmbProducer.DataMember = MyDataSet.Tables(0).ToString
 cmbProducer.DataTextField = "Name"
 cmbProducer.DataValueField = "ProdId"
 cmbProducer.DataBind()
 SqlDataAdapter1.Fill(DsDirector_New21)
 cmbDirector.DataBind()
End Sub
The preceding code creates a connection object called MyConnection and a
SqlDataAdapter object called MyDataAdapter. Then, using the SqlDataAdapter,
the code retrieves the ProdId and Name fields from the Producer table. Then the
SqlDataAdapter has been used to fill the dataset MyDataSet. After the dataset has
been populated, it has been used to fill the combo box cmbDirector. The method
cmbProducer.DataBind() is used to bind the dataset with the combo box control.

Now that you have populated the combo boxes, you’ll learn how to write the code to add
the new record when the Add New Record button is clicked.

The Code for the Add New Record Button
When the user clicks the Add New Record button, you need to ensure that the record is
added to the data table. Note that the Movie ID needs to be in a predefined format. To
meet the aforementioned requirements, write the following code for the Add New Record
button.
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Dim strConnectionString As String = Application("strConnect")
 Dim sqlString As String
 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim MovieId As String

 Try
 Label8.Visible = False
 MyConnection.Open()
 Dim cmdMovie As SqlCommand
 cmdMovie = New SqlCommand("Select
 IsNull(Max(convert(int,substring(MovID,2,4))),0)+1 as MovieId from
Movie", MyConnection)
 Dim myReader As SqlDataReader =
 cmdMovie.ExecuteReader(CommandBehavior.SingleRow)
 While myReader.Read()
 MovieId = myReader.GetInt32(0).ToString
 End While
 MovieId = "M00" + CStr(MovieId)
 MyConnection.Close()
 Dim myCommand As SqlCommand
 Dim insertCmd As String
 insertCmd = "insert into Movie values (@MovieId, @MovTitle,
 @DirId,@ProdId," _
 & "@Duration,@Description,@Category,@ReleaseYear);"
 ' Initialize the SqlCommand with the new SQL string.
 MyConnection.Open()
 myCommand = New SqlCommand(insertCmd, MyConnection)
 ' Create new parameters for the SqlCommand object and
 ' initialize them to the input-form field values.
 myCommand.Parameters.Add(New SqlParameter("@MovieId", _
 SqlDbType.VarChar, 11))
 myCommand.Parameters("@MovieId").Value = MovieId
 myCommand.Parameters.Add(New SqlParameter("@MovTitle", _
 SqlDbType.VarChar, 40))
 myCommand.Parameters("@MovTitle").Value = txtMovie.Text

 myCommand.Parameters.Add(New SqlParameter("@DirId", _
 SqlDbType.VarChar, 20))
 myCommand.Parameters("@DirId").Value =
 cmbDirector.SelectedItem.Value
 myCommand.Parameters.Add(New SqlParameter("@ProdId", _
 SqlDbType.VarChar, 20))
 myCommand.Parameters("@ProdId").Value =
 cmbProducer.SelectedItem.Value
 myCommand.Parameters.Add(New SqlParameter("@Duration", _
 SqlDbType.Int, 4))
 myCommand.Parameters("@Duration").Value = txtDuration.Text
 myCommand.Parameters.Add(New SqlParameter("@Description", _
 SqlDbType.VarChar, 40))
 myCommand.Parameters("@Description").Value = txtDesc.Text
 myCommand.Parameters.Add(New SqlParameter("@Category", _
 SqlDbType.VarChar, 40))
 myCommand.Parameters("@Category").Value = txtCat.Text
 myCommand.Parameters.Add(New SqlParameter("@ReleaseYear", _
 SqlDbType.Int, 4))
 myCommand.Parameters("@ReleaseYear").Value = txtRelYear.Text
 'Test whether the new row can be added and display the appropriate
 ' message 'box to the user.
 myCommand.ExecuteNonQuery()
 myCommand.Connection.Close()
 Catch eException As System.Exception
 ' Error occured
 Label8.Visible = True
 Label8.Text = eException.Source.ToString
 Exit Sub
 End Try
 End Sub
End Class
The preceding code first creates a connection object. Then, using a SQL query, the code
retrieves the maximum MovieID value. Then the code has been specified for
autogeneration of the movie ID. Using the SQL query, the maximum movie_id is picked
from the Movie table in the database, and the value is incremented by 1. Then the
movie ID is stored in the required format in the string variable MovieID. Next, a
command object and the parameters for the fields are created. Then the values that you
need to enter for the parameters are specified. The parameters in the method
myCommand.Parameters.Add associate the named paramter variables with the fields
in the data table. Finally, the code is specified to execute the query and, on successful
execution of the query, close the connection. If the query is not executed, the application
will raise an exception.

You have now completed creating the forms for the first hyperlink. The programming
logic for the other forms is the same.

The Code for the Videos Hyperlink
As previously mentioned, the logic for the Videos hyperlink is almost the same as the
Movies hyperlink. When the user clicks the Videos hyperlink, the application loads the
Video.aspx page (see Figure 29-3.)

Figure 29-3: The interface of the Video page

When the Video.aspx page is loaded in the browser, the code needs to populate the
dataset. The code also needs to check whether the page is being loaded for the first time
or is being loaded after a client request. If the page is loaded for the first time, the
application needs to bind the DataGrid control to the data source. Let’s now write the
code for the Page_Load event of the form:

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 SqlDataAdapter1.Fill(DsVideo2)
 If Not IsPostBack Then
 DataGrid1.DataBind()
 End If
End Sub

Next you will take a look at the code for the hyperlink for editing records.

The Code for Editing a Video Record
As in the case of the Movies page, the code for the Edit hyperlink needs to store the
index value for the record that the user wants to edit. To do so, write the following code:
Private Sub DataGrid1_EditCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.EditCommand
 DataGrid1.EditItemIndex = e.Item.ItemIndex
 DataGrid1.DataBind()
End Sub
Now that you have written the code for the Edit hyperlink, you need to specify the
actions that need to take place when the user modifies the values in the cells and clicks
on the Update hyperlink.

The Code for Updating a Video Record
The code for the Update hyperlink needs to store the values changed by the user in the
data table. To update the data table, the code first needs to point to the record that the
user has chosen to edit. The code then needs to assign the values stored in strMovID,
strFormat, and strPrice in the different fields of the datarow. After this is done, the
code needs to refresh the data grid and set the EditItemIndex property to –1. To
perform this functionality, the code is as follows:
Private Sub DataGrid1_UpdateCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.UpdateCommand
 Try
 Dim key As String = DataGrid1.DataKeys(e.Item.ItemIndex).ToString
 Dim tb As TextBox

 Dim strMovId, strFormat, strPrice As String
 ' Gets the value from the text box control in the third column
 tb = CType(e.Item.Cells(3).Controls(0), TextBox)
 strMovId = tb.Text

 ' Gets the value from the text box control in the fourth column
 tb = CType(e.Item.Cells(4).Controls(0), TextBox)
 strFormat = tb.Text

 ' Gets the value from the text box control in the fifth column
 tb = CType(e.Item.Cells(5).Controls(0), TextBox)
 strPrice = tb.Text

 Dim r As dsVideo.VideoRow
 r = DsVideo2.Video.FindByVideoID(key)
 r.MovID = strMovId
 r.Format = strFormat
 r.Price = strPrice

 SqlDataAdapter1.Update(DsVideo2)
 DataGrid1.EditItemIndex = -1

 ' Refresh the grid
 DataGrid1.DataBind()
 Catch eException As System.Exception
 'Error occured
 lblError.Visible = True
 lblError.Text = eException.Source.ToString
 Exit Sub
 End Try

 End Sub
Next you will take a look at the code you need to specify for the Cancel hyperlink.

The Code for the Cancel Hyperlink
Users can choose not to save the changes they have made in the form. To do so, the
user can click the Cancel hyperlink. Upon clicking Cancel, any changes that the user
has made to the form page are not saved in the data table. The following code performs
this functionality:
Private Sub DataGrid1_CancelCommand(ByVal source As Object, ByVal e As
 System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
 DataGrid1.CancelCommand
 DataGrid1.EditItemIndex = -1
 DataGrid1.DataBind()
End Sub

To complete this form page, you need to specify the functionality for moving to the next
or previous page set of records.

The Code to Navigate the Pages
To navigate the pages of a data grid, you need to update the value of the
CurrentPageIndex property of the data grid. The following code traps the
PageIndexChanged event and navigates to the required page:

Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridPageChangedEventArgs) Handles
DataGrid1.PageIndexChanged
 DataGrid1.CurrentPageIndex = e.NewPageIndex
 DataGrid1.DataBind()
 End Sub

To complete the functionality for this form, you need to write the code for the Add New
Video button.

The Code for the Add New Video Button
When the user clicks on the Add New Video button, the AddNewVideo.aspx page will be
displayed in the browser window, as shown in Figure 29-4.

Figure 29-4: The interface of the AddNewVideo page

As in the case of the Add New Movie button, when the user clicks on the Add New Video
button, the new values need to be stored in the data table at the backend. Write the
following code in the Page_Load event of the AddNewVideo page:

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 Dim strConnectionString = Application("strConnect")

 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim strCmdText As String
 Dim MyDataAdapter As SqlDataAdapter

 MyDataAdapter = New SqlDataAdapter("Select MovId,MovTitle from Movie",
 MyConnection)

 Dim MyDataSet As New DataSet()
 MyDataAdapter.Fill(MyDataSet)
 cmbMovie.DataSource = MyDataSet
 cmbMovie.DataMember = MyDataSet.Tables(0).ToString
 cmbMovie.DataTextField = "MovTitle"
 cmbMovie.DataValueField = "MovId"
 cmbMovie.DataBind()

End Sub
The preceding code contains the statements to connect to the database using a
connection string in the Page_Load event. In addition, it contains the code for populating
the combo box cmbMovie.
The following is the code you need to specify in the Click event of the Add New Video
button:
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Dim strConnectionString As String = Application("strConnect")
 Dim sqlString As String
 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim VideoId As String

 Try
 lblError.Visible = False
 MyConnection.Open()
 Dim cmdVideo As SqlCommand
 cmdVideo = New SqlCommand("Select
 IsNull(Max(convert(int,substring(VideoID,2,4))),0)+1 as VideoId from
 Video", MyConnection)
 Dim myReader As SqlDataReader =

 cmdVideo.ExecuteReader(CommandBehavior.SingleRow)
 While myReader.Read()
 VideoId = myReader.GetInt32(0).ToString
 End While
 VideoId = "V00" + CStr(VideoId)
 MyConnection.Close()
 Dim myCommand As SqlCommand
 Dim insertCmd As String
 ' Check that four of the input values are not empty. If any of them
 ' is empty, show a message to the user and rebind the DataGrid.
 insertCmd = "insert into Video values (@VideoId,
 @MovId,@Format,@Price);"
 ' Initialize the SqlCommand with the new SQL string.
 MyConnection.Open()
 myCommand = New SqlCommand(insertCmd, MyConnection)
 ' Create new parameters for the SqlCommand object and
 ' initialize them to the input-form field values.
 myCommand.Parameters.Add(New SqlParameter("@VideoId", _
 SqlDbType.VarChar, 11))
 myCommand.Parameters("@VideoId").Value = VideoId
 myCommand.Parameters.Add(New SqlParameter("@MovId", _
 SqlDbType.VarChar, 40))
 myCommand.Parameters("@MovId").Value = cmbMovie.SelectedItem.Value
 myCommand.Parameters.Add(New SqlParameter("@Format", _
 SqlDbType.VarChar, 40))
 myCommand.Parameters("@Format").Value = txtFormat.Text
 myCommand.Parameters.Add(New SqlParameter("@Price", _
 SqlDbType.Money, 8))
 myCommand.Parameters("@Price").Value = txtPrice.Text
 ' Test whether the new row can be added and display the
 ' appropriate message box to the user.
 'myCommand.Connection.Open()
 myCommand.ExecuteNonQuery()
 myCommand.Connection.Close()
 lblError.Visible = True
 lblError.Text = "Video Added Successfully"
 Catch eException As System.Exception
 'Error occured
 lblError.Visible = True
 lblError.Text = eException.Source.ToString
 Exit Sub
 End Try
End Sub

The preceding code uses a SQL query to retrieve the maximum VideoID value. The
maximum video ID is picked from the Video table in the database, and the value is
incremented by 1. Then the video ID is stored in the required format in the string variable
VideoID. Next, a command object and the parameters for the fields are created. Then
the values for the parameters are specified. The parameters in the method
myCommand.Parameters.Add associate the named parameter variables with the fields
in the data table. Finally, the code is specified to execute the query and, on successful
execution of the query, close the connection. If the query is not executed, the application
will raise an exception.
The Video page is now ready. The code for the other pages, with the exception of the
code for the Show Reports page, is similar to the two pages you have created.
Because the functionality is the same, the code will not be explained in detail.
Let’s now write the code for the page associated with the Actors hyperlink.

The Code for the Actors Hyperlink
As in the preceding two cases, when the user clicks the Actors hyperlink, the
corresponding page is loaded in the browser. On the page, the use can opt to insert,
modify, or delete a record. The user can also navigate the pages. When the user clicks
on the Edit hyperlink, the hyperlinks for Update and Cancel become available. The
page that loads when the user clicks the Actors hyperlink is shown in Figure 29-5.

Figure 29-5: The interface of the Actors page

The code for the Actors page is as follows:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Me.SqlConnection1.ConnectionString = Application("strConnect")
 SqlDataAdapter1.Fill(DsActors1)
 DataGrid1.DataSource = DsActors1
 If Not IsPostBack Then
 DataGrid1.DataBind()
 End If

End Sub

 Private Sub DataGrid1_EditCommand(ByVal source As Object, ByVal e As
 System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
 DataGrid1.EditCommand
 DataGrid1.EditItemIndex = e.Item.ItemIndex
 DataGrid1.DataBind()
End Sub

Private Sub DataGrid1_CancelCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.CancelCommand
 DataGrid1.EditItemIndex = -1
 DataGrid1.DataBind()
End Sub

 Private Sub DataGrid1_UpdateCommand(ByVal source As Object, ByVal e As
 System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
 DataGrid1.UpdateCommand
 Try
 Dim key As String = e.Item.Cells(2).Text
 Dim tb As TextBox
 Dim strFirstName, strLastName, dtmDOB, strBackGround As String

 ' Gets the value from the text box control in the third column
 tb = CType(e.Item.Cells(3).Controls(0), TextBox)
 strFirstName = tb.Text

 ' Gets the value from the text box control in the fourth column
 tb = CType(e.Item.Cells(4).Controls(0), TextBox)
 strLastName = tb.Text

 ' Gets the value from the text box control in the fifth column
 tb = CType(e.Item.Cells(5).Controls(0), TextBox)
 'dtmDOB = IIf(tb.Text = "", System.DBNull.Value.Value, tb.Text)
 dtmDOB = tb.Text

 ' Gets the value from the text box control in the sixth column
 tb = CType(e.Item.Cells(6).Controls(0), TextBox)
 strBackGround = tb.Text

 Dim r As dsActors.ActorRow
 r = DsActors1.Actor.FindByActorID(key)

 r.FirstName = strFirstName
 r.LastName = strLastName
 r.DOB = dtmDOB
 r.Background = strBackGround

 SqlDataAdapter1.Update(DsActors1)
 DataGrid1.EditItemIndex = -1

 ' Refresh the grid
 DataGrid1.DataBind()
 Catch eException As System.Exception
 'Error occured
 lblError.Visible = True
 lblError.Text = eException.Source.ToString
 Exit Sub
 End Try
End Sub
Private Sub DataGrid1_DeleteCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
 DataGrid1.DeleteCommand
 Try
 Dim key As String = e.Item.Cells(2).Text
 Dim r As dsActors.ActorRow
 r = DsActors1.Actor.FindByActorID(key)
 r.Delete()
 SqlDataAdapter1.Update(DsActors1, "Actor")
 DataGrid1.DataBind()
 Catch eException As System.Exception
 'Error occured
 lblError.Visible = True
 lblError.Text = eException.Source.ToString
 Exit Sub
 End Try
 End Sub

 Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, ByVal e As
 System.Web.UI.WebControls.DataGridPageChangedEventArgs) Handles
 DataGrid1.PageIndexChanged
 DataGrid1.CurrentPageIndex = e.NewPageIndex
 DataGrid1.DataBind()
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 SqlDataAdapter1.Update(DsActors1, "Actor")
 DataGrid1.DataBind()
 End Sub
End Class
The preceding code defines the functionality to modify, edit, cancel, delete, and navigate
records. However, you still need to add the code for inserting a record. When inserting a
new record, the code needs to update the record in the data table. Before the record is
updated, however, don’t forget to add the validation to check that all mandatory fields are
filled. The user interface for the form to add a new actor is shown in Figure 29-6.

Figure 29-6: The interface of the AddNewActor page

The code for adding a new record for an actor is as follows:
Private Sub CmdAddNewRecord_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdAddNewRecord.Click
 Try
 Dim strConnectionString As String = Application("strConnect")
 Dim sqlString As String
 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim ActorId As String
 MyConnection.Open()
 Dim cmdActor As SqlCommand
 cmdActor = New SqlCommand("Select
 IsNull(Max(convert(int,substring(ActorID,2,4))),0)+1 as ActorId
 from Actor", MyConnection)
 Dim myReader As SqlDataReader =
 cmdActor.ExecuteReader(CommandBehavior.SingleRow)
 While myReader.Read()
 ActorId = myReader.GetInt32(0).ToString
 End While
 ActorId = "A00" + CStr(ActorId)
 MyConnection.Close()
 Dim myCommand As SqlCommand

 Dim insertCmd As String
 ' Check that four of the input values are not empty. If any of them
 ' is empty, show a message to the user and rebind the DataGrid.
 insertCmd = "insert into Actor values (@ActorId, @FName, @LName," _
 & "@DOB, @Background);"
 ' Initialize the SqlCommand with the new SQL string.
 MyConnection.Open()
 myCommand = New SqlCommand(insertCmd, MyConnection)
 ' Create new parameters for the SqlCommand object and
 ' initialize them to the input-form field values.
 myCommand.Parameters.Add(New SqlParameter("@ActorId", _
 SqlDbType.VarChar, 11))
 myCommand.Parameters("@ActorId").Value = ActorId
 myCommand.Parameters.Add(New SqlParameter("@FName", _
 SqlDbType.VarChar, 40))
 myCommand.Parameters("@FName").Value = txtFname.Text
 myCommand.Parameters.Add(New SqlParameter("@LName", _
 SqlDbType.VarChar, 20))
 myCommand.Parameters("@LName").Value = txtLname.Text
 myCommand.Parameters.Add(New SqlParameter("@DOB", _
 SqlDbType.DateTime, 12))
 myCommand.Parameters("@DOB").Value = txtDOB.Text
 myCommand.Parameters.Add(New SqlParameter("@BackGround", _
 SqlDbType.VarChar, 40))
 myCommand.Parameters("@BackGround").Value = txtBGround.Text
 ' Test whether the new row can be added and display the
 ' appropriate message box to the user.
 myCommand.ExecuteNonQuery()
 myCommand.Connection.Close()
 lblError.Visible = True
 lblError.Text = "Actor added Successfully"
 Catch eException As System.Exception
 'Error occured
 lblError.Visible = True
 lblError.Text = eException.Source.ToString
 Exit Sub
 End Try
End Sub

The Code for the Directors Hyperlink
When the user clicks the Directors hyperlink, the Director.aspx page is loaded in the
browser, as shown in Figure 29-7.

Figure 29-7: The interface of the Director page

The following is the code for editing, updating, canceling, deleting, and navigating
records:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 SqlDataAdapter1.Fill(DsDirector_New1)
 If Not IsPostBack Then
 DataGrid1.DataBind()
 End If
End Sub
Private Sub DataGrid1_DeleteCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.DeleteCommand
 Try
 Dim key As String = DataGrid1.DataKeys(e.Item.ItemIndex).ToString
 Dim r As dsDirector_New.DirectorRow
 r = DsDirector_New1.Director.FindByDirID(key)
 r.Delete()
 SqlDataAdapter1.Update(DsDirector_New1, "Director")
 DataGrid1.DataBind()
 Catch eException As System.Exception
 ' Error occured
 lblError.Visible = True
 lblError.Text = eException.Source.ToString
 Exit Sub
End Try

End Sub
Private Sub DataGrid1_EditCommand(ByVal source As Object, ByVal e As
Sstem.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.EditCommand
 DataGrid1.EditItemIndex = e.Item.ItemIndex
 DataGrid1.DataBind()
End Sub
Private Sub DataGrid1_CancelCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
 DataGrid1.CancelCommand

 DataGrid1.EditItemIndex = -1
 DataGrid1.DataBind()
 'Call cmdLoad_Click(source, e)
End Sub
Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridPageChangedEventArgs) Handles
DataGrid1.PageIndexChanged
 DataGrid1.CurrentPageIndex = e.NewPageIndex
 DataGrid1.DataBind()
End Sub
Private Sub DataGrid1_UpdateCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.UpdateCommand
 Dim key As String = DataGrid1.DataKeys(e.Item.ItemIndex).ToString
 Dim tb As TextBox
 'Update for Actors
 '—————————————————————————————————
 Dim strDirId, strFname, strLname, strDOB, strBGround As String

 ' Gets the value from the text box control in the third column

 tb = CType(e.Item.Cells(3).Controls(0), TextBox)
 strFname = tb.Text

 ' Gets the value from the text box control in the fourth column
 tb = CType(e.Item.Cells(4).Controls(0), TextBox)
 strLname = tb.Text

 ' Gets the value from the text box control in the fifth column
 tb = CType(e.Item.Cells(5).Controls(0), TextBox)
 strDOB = IIf(tb.Text = "", System.DBNull.Value, tb.Text)

 ' Gets the value from the text box control in the sixth column
 tb = CType(e.Item.Cells(6).Controls(0), TextBox)
 strBGround = tb.Text

 Dim r As dsDirector_New.DirectorRow
 r = DsDirector_New1.Director.FindByDirID(key)
 r.FirstName = strFname
 r.LastName = strLname
 r.DOB = strDOB
 r.Background = strBGround

 SqlDataAdapter1.Update(DsDirector_New1)
 DataGrid1.EditItemIndex = -1

 ' Refresh the grid
 DataGrid1.DataBind()
End Sub
When the user clicks on the Add New Director button, the page shown in Figure 29-8 is
loaded in the browser.

Figure 29-8: The interface of the AddNewDirector page

The code for the adding a new record for a director is as follows:
Private Sub CmdAddNewDir_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdAddNewDir.Click
 Dim strConnectionString As String = Application("strConnect")
 Dim sqlString As String
 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim DirId As String

 Try
 lblError.Visible = False

 MyConnection.Open()
 Dim cmdDirector As SqlCommand
 cmdDirector = New SqlCommand("Select
 IsNull(Max(convert(int,substring(DirID,2,4))),0)+1 as DirId from Director",
 MyConnection)
 Dim myReader As SqlDataReader =
 cmdDirector.ExecuteReader(CommandBehavior.SingleRow)
 While myReader.Read()
 DirId = myReader.GetInt32(0).ToString
 End While
 DirId = "D00" + CStr(DirId)
 MyConnection.Close()
 Dim myCommand As SqlCommand
 Dim insertCmd As String
 ' Check that four of the input values are not empty. If any of them
 ' is empty, show a message to the user and rebind the DataGrid.
 insertCmd = "insert into Director values (@DirId,
 @FirstName,@LastName,@DOB,@BackGround);"
 ' Initialize the SqlCommand with the new SQL string.
 MyConnection.Open()
 myCommand = New SqlCommand(insertCmd, MyConnection)
 ' Create new parameters for the SqlCommand object and
 ' initialize them to the input-form field values.
 myCommand.Parameters.Add(New SqlParameter("@DirId", _
 SqlDbType.VarChar, 11))
 myCommand.Parameters("@DirId").Value = DirId
 myCommand.Parameters.Add(New SqlParameter("@FirstName", _
 SqlDbType.VarChar, 40))
 myCommand.Parameters("@FirstName").Value = txtFName.Text
 myCommand.Parameters.Add(New SqlParameter("@LastName", _
 SqlDbType.VarChar, 40))
 myCommand.Parameters("@LastName").Value = txtLName.Text
 myCommand.Parameters.Add(New SqlParameter("@DOB", _
 SqlDbType.DateTime, 8))
 myCommand.Parameters("@DOB").Value = txtDOB.Text
 myCommand.Parameters.Add(New SqlParameter("@BackGround", _
 SqlDbType.VarChar, 255))
 myCommand.Parameters("@BackGround").Value = txtBGround.Text

 ' Test whether the new row can be added and display the
 ' appropriate message box to the user.
 myCommand.ExecuteNonQuery()
 myCommand.Connection.Close()

 lblError.Visible = True
 lblError.Text = "Director Added Successfully"
 Catch eException As System.Exception
 ' Error occured
 lblError.Visible = True
 lblError.Text = eException.Source.ToString
 Exit Sub
 End Try
End Sub

The Code for the Producers Hyperlink
When the user clicks the Producers hyperlink, the Producer.aspx page (shown in
Figure 29-9) is loaded in the browser.

Figure 29-9: The interface of the Producer page

The code for the page is as follows:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 SqlDataAdapter1.Fill(DsProducer1)
 If Not IsPostBack Then
 DataGrid1.DataBind()
 End If
End Sub
Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridPageChangedEventArgs) Handles
DataGrid1.PageIndexChanged
 DataGrid1.CurrentPageIndex = e.NewPageIndex
 DataGrid1.DataBind()
End Sub
Private Sub DataGrid1_DeleteCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.DeleteCommand

 Dim key As String = DataGrid1.DataKeys(e.Item.ItemIndex).ToString
 Dim r As dsProducer.ProducerRow
 r = DsProducer1.Producer.FindByProdID(key)
 r.Delete()
 SqlDataAdapter1.Update(DsProducer1, "Producer")
 DataGrid1.DataBind()
End Sub
Private Sub DataGrid1_EditCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.EditCommand
 DataGrid1.EditItemIndex = e.Item.ItemIndex
 DataGrid1.DataBind()
End Sub
Private Sub DataGrid1_CancelCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.CancelCommand
 DataGrid1.EditItemIndex = -1
 DataGrid1.DataBind()
 'Call cmdLoad_Click(source, e)
End Sub

Private Sub DataGrid1_UpdateCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.UpdateCommand
 Dim key As String = DataGrid1.DataKeys(e.Item.ItemIndex).ToString
 Dim tb As TextBox
 'Update for Actors
 Dim strName As String
 ' Gets the value from the text box control in the third column
 tb = CType(e.Item.Cells(3).Controls(0), TextBox)
 strName = tb.Text

 Dim r As dsProducer.ProducerRow
 r = DsProducer1.Producer.FindByProdID(key)
 r.ProdID = key
 r.Name = strName

 SqlDataAdapter1.Update(DsProducer1)
 DataGrid1.EditItemIndex = -1
 ' Refresh the grid
 DataGrid1.DataBind()
End Sub

When the user clicks on the Add New Producer hyperlink, the AddNewProducer.aspx
page is loaded in the browser, as shown in Figure 29-10.

Figure 29-10: The interface of the AddNewProducer page

The following code adds the record for a new producer:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
End Sub

Private Sub CmdAddNewProducer_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdAddNewProducer.Click
 Dim strConnectionString As String = Application("strConnect")
 Dim sqlString As String
 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim ProdId As String

 Try
 lblError.Visible = False
 MyConnection.Open()
 Dim cmdProducer As SqlCommand
 cmdProducer = New SqlCommand("Select
 IsNull(Max(convert(int,substring(ProdID,2,4))),0)+1 as ProducerId
 from Producer", MyConnection)
 Dim myReader As SqlDataReader =
 cmdProducer.ExecuteReader(CommandBehavior.SingleRow)
 While myReader.Read()
 ProdId = myReader.GetInt32(0).ToString
 End While
 ProdId = "P00" + CStr(ProdId)
 MyConnection.Close()
 Dim myCommand As SqlCommand

 Dim insertCmd As String
 ' Check that four of the input values are not empty. If any of them
 'is empty, show a message to the user and rebind the DataGrid.
 insertCmd = "insert into Producer values (@ProdId, @Name);"
 'Initialize the SqlCommand with the new SQL string.
 MyConnection.Open()
 myCommand = New SqlCommand(insertCmd, MyConnection)
 ' Create new parameters for the SqlCommand object and
 ' initialize them to the input-form field values.
 myCommand.Parameters.Add(New SqlParameter("@ProdId", _
 SqlDbType.VarChar, 11))
 myCommand.Parameters("@ProdId").Value = ProdId
 myCommand.Parameters.Add(New SqlParameter("@Name", _
 SqlDbType.VarChar, 40))
 myCommand.Parameters("@Name").Value = txtName.Text
 ' Test whether the new row can be added and display the
 ' appropriate message box to the user.
 myCommand.ExecuteNonQuery()
 myCommand.Connection.Close()
 lblError.Visible = True
 lblError.Text = "Producer Added Successfully"
 Catch eException As System.Exception
 ' Error occured
 lblError.Visible = True
 lblError.Text = eException.Source.ToString
 Exit Sub
 End Try
End Sub

Next you will take a look at how to write the code for the Customers hyperlink.

The Code for the Customers Hyperlink
When the user clicks on the Customers hyperlink, the Customer.aspx page is loaded in
the browser, as shown in Figure 29-11.

Figure 29-11: The interface of the Customer page

The code for adding the functionality for the page is as follows:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 SqlDataAdapter1.Fill(DsCustomer2)
 If Not IsPostBack Then
 DataGrid1.DataBind()
 End If
End Sub
Private Sub DataGrid1_DeleteCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.DeleteCommand
 Dim key As String = DataGrid1.DataKeys(e.Item.ItemIndex).ToString
 Dim r As dsCustomer.CustomerRow
 r = DsCustomer2.Customer.FindByCustID(key)
 r.Delete()
 SqlDataAdapter1.Update(DsCustomer2, "Customer")
 DataGrid1.DataBind()
End Sub

Private Sub DataGrid1_CancelCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.CancelCommand
 DataGrid1.EditItemIndex = -1
 DataGrid1.DataBind()
 End Sub

Private Sub DataGrid1_EditCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.EditCommand

 DataGrid1.EditItemIndex = e.Item.ItemIndex
 DataGrid1.DataBind()
End Sub

Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridPageChangedEventArgs) Handles
DataGrid1.PageIndexChanged
 DataGrid1.CurrentPageIndex = e.NewPageIndex
 DataGrid1.DataBind()
End Sub

Private Sub DataGrid1_UpdateCommand(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridCommandEventArgs) Handles
DataGrid1.UpdateCommand
 Dim key As String = DataGrid1.DataKeys(e.Item.ItemIndex).ToString
 Dim tb As TextBox
 'Update for Actors
 Dim strFname, strLName, strAddress, strCity, strState, StrZip,
strPhone, strEmail, strDOB, strCCNum, strVal As String
 ' Gets the value from the text box control in the third column
 tb = CType(e.Item.Cells(3).Controls(0), TextBox)
 strFname = tb.Text

 ' Gets the value from the text box control in the fourth column
 tb = CType(e.Item.Cells(4).Controls(0), TextBox)
 strLName = tb.Text

 ' Gets the value from the text box control in the fifth column
 tb = CType(e.Item.Cells(5).Controls(0), TextBox)
 strAddress = tb.Text

 tb = CType(e.Item.Cells(6).Controls(0), TextBox)
 strCity = tb.Text

 tb = CType(e.Item.Cells(7).Controls(0), TextBox)
 strState = tb.Text

 tb = CType(e.Item.Cells(8).Controls(0), TextBox)
 StrZip = tb.Text

 tb = CType(e.Item.Cells(9).Controls(0), TextBox)
 strPhone = tb.Text

 tb = CType(e.Item.Cells(10).Controls(0), TextBox)
 strEmail = tb.Text

 tb = CType(e.Item.Cells(11).Controls(0), TextBox)
 strDOB = tb.Text

 tb = CType(e.Item.Cells(12).Controls(0), TextBox)
 strCCNum = tb.Text

 tb = CType(e.Item.Cells(13).Controls(0), TextBox)
 strVal = tb.Text

 Dim r As dsCustomer.CustomerRow
 r = DsCustomer2.Customer.FindByCustID(key)
 r.CustID = key
 r.FirstName = strFname
 r.LastName = strLName
 r.Address = strAddress
 r.City = strCity
 r.State = strState
 r.Zip = strZIP
 r.Phone = strPhone
 r.EMail = strEmail
 r.DOB = strDOB
 r.CreditCardNum = strCCNum
 r.CreditCardValidUpto = strVal
 SqlDataAdapter1.Update(DsCustomer2)
 DataGrid1.EditItemIndex = -1
 ' Refresh the grid
 DataGrid1.DataBind()
End Sub
When the user clicks on the Add New Customer button, the page
AddNewCustomer.aspx is loaded in the browser, as shown in Figure 29-12 on page 754.

Figure 29-12: The interface of the AddNewCustomer page

The code for adding the functionality for the AddNewCustomer page is as follows:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 CompareValidator2.ValueToCompare = Today
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
 Dim strConnectionString As String = Application("strConnect")
 Dim sqlString As String
 Dim MyConnection As New SqlConnection(strConnectionString)
 Dim CustId As String
 Try
 lblError.Visible = False
 MyConnection.Open()
 Dim cmdCust As SqlCommand
 cmdCust = New SqlCommand("Select
 IsNull(Max(convert(int,substring(CustID,2,4))),0)+1 as CustId from
 Customer", MyConnection)
 Dim myReader As SqlDataReader =
 cmdCust.ExecuteReader(CommandBehavior.SingleRow)
 While myReader.Read()
 CustId = myReader.GetInt32(0).ToString
 End While
 CustId = "A000" + CStr(CustId)

 MyConnection.Close()

 Dim myCommand As SqlCommand

 Dim insertCmd As String
 ' Check that four of the input values are not empty. If any of them
 ' is empty, show a message to the user and rebind the DataGrid.
 insertCmd = "insert into Customer values (@CustId,

 @LastName,@FirstName,@Address,@City,@State,@Zip,@Phone,
 @Email,@DOB," _
 & "@CreditCardNum,@CreditCardValidUpto);"
 ' Initialize the SqlCommand with the new SQL string.
 MyConnection.Open()
 myCommand = New SqlCommand(insertCmd, MyConnection)
 myCommand.Parameters.Add(New SqlParameter("@CustId",
 SqlDbType.VarChar,
 11))
 myCommand.Parameters.Add(New SqlParameter("@LastName",
 SqlDbType.VarChar, 50))
 myCommand.Parameters.Add(New SqlParameter("@FirstName",
 SqlDbType.VarChar, 50))
 myCommand.Parameters.Add(New SqlParameter("@Address",
 SqlDbType.VarChar,
 25))
 myCommand.Parameters.Add(New SqlParameter("@City",
 SqlDbType.VarChar, 25))
 myCommand.Parameters.Add(New SqlParameter("@State",
 SqlDbType.VarChar, 15))
 myCommand.Parameters.Add(New SqlParameter("@Zip", SqlDbType.VarChar,
 7))
 myCommand.Parameters.Add(New SqlParameter("@Phone",
 SqlDbType.VarChar, 10))
 myCommand.Parameters.Add(New SqlParameter("@Email",
 SqlDbType.VarChar, 50))
 myCommand.Parameters.Add(New SqlParameter("@DOB",
 SqlDbType.DateTime, 8))
 myCommand.Parameters.Add(New SqlParameter("@CreditCardNum",
 SqlDbType.VarChar, 16))
 myCommand.Parameters.Add(New SqlParameter("@CreditCardValidUpto",
 SqlDbType.DateTime, 8))

 myCommand.Parameters("@CustId").Value = CustId
 myCommand.Parameters("@FirstName").Value = txtFname.Text
 myCommand.Parameters("@LastName").Value = txtLName.Text
 myCommand.Parameters("@Address").Value = txtAdd.Text
 myCommand.Parameters("@City").Value = txtCity.Text

 myCommand.Parameters("@State").Value = txtState.Text
 myCommand.Parameters("@Zip").Value = txtZip.Text
 myCommand.Parameters("@Phone").Value = txtPhone.Text
 myCommand.Parameters("@Email").Value = txtEMail.Text
 myCommand.Parameters("@CreditCardNum").Value = txtCCNo.Text
 myCommand.Parameters("@DOB").Value = txtDOB.Text
 myCommand.Parameters("@CreditCardValidUpto").Value = txtExpDate.Text

 myCommand.ExecuteNonQuery()
 MyConnection.Close()
 lblError.Visible = True
 lblError.Text = "Customer Created Successfully. Customer Id is " +
 CustId
 Catch
 lblError.Visible = True
 lblError.Text = "Error Occurred"
 Exit Sub
 End Try
End Sub
In the preceding sections, you wrote the code for the form pages associated with the
Movies, Customers, Videos, Directors, and Producers hyperlinks. To complete
the functionality for the admin interface, you now need to write the code for the page
associated with the View Reports hyperlink.

The Code for the View Reports Hyperlink
When the user clicks on the View Reports hyperlink, the page ShowReports.aspx is
loaded in the browser, as shown in Figure 29-13.

Figure 29-13: The interface of the ShowReports page

Note that page contains three buttons: Sales Report, Movies in Demand, and Frequent
Customer Details. When the user clicks on the buttons, the data for the report associated
with the button is displayed in the data grid. For example, when the user clicks on the
Movies in Demand button, the corresponding report (shown in Figure 29-14) will be
displayed in the data grid.

Figure 29-14: The interface of the ShowReports page showing the Movies in Demand report

Let’s write the code to display the report associated with the Sales Report button. When
the user clicks on the button, the code needs to perform the same check for all the rows
in the data table. As you know, to perform repetitive tasks such as performing the same
check for all the rows in the data table, you need to create a function and then call that
function. Hence, before writing the code for the Sales Report button, you need to define
a function.

The Code for Generating the Sales Report
As previously mentioned, you first need to write the code for the GetSalesReport
function. The same code follows:
Public Function GetSalesReport() As DataSet
 Dim MyConnStr As String
 Dim MySql As String
 Dim MyConn As SqlConnection
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyDataSet As New DataSet()
 'Set the connection string
 MyConnStr = "data source=localhost;initial
 catalog=Movies;persist security info=False;user id=sa;packet size=4096"
 'Set the select statement
 MySql = "SELECT Orders.OrderID, Orders.OrderDate, Movie.MovID,
 Movie.MovTitle,
 OrderDetails.Qty, (OrderDetails.Qty * Video.Price) as OrderValue"
 MySql = MySql + " FROM Orders INNER JOIN OrderDetails ON Orders.OrderID =
 OrderDetails.OrderID INNER JOIN Video ON OrderDetails.VideoID =
Video.VideoID
 INNER JOIN Movie ON Video.MovID = Movie.MovID"
 'open the connection
 MyConn = New SqlConnection(MyConnStr)
 MyDataAdapter = New SqlDataAdapter(MySql, MyConn)
 MyDataAdapter.Fill(MyDataSet)
 Return MyDataSet

 End Function
The preceding code first defines a connection string and then specifies a SQL query to
retrieve the values for OrderID, OrderDate, MovieID, MovTitle, Qty, and
OrderValue from three tables: Orders, OrderDetails, and Movie. After retrieving
the values, the connection is opened and the dataset populated.
Now let’s write the code for the Sales Report button. When the user clicks on the Sales
Report button, the code should call the GetSalesReport function and then bind the
DataGrid control to the dataset MyDataSet. Write the following code in the Click event
of the CmdSalesReport function:

Private Sub CmdSalesReport_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdSalesReport.Click
 Dim MyDataSet As DataSet
 MyDataSet = GetSalesReport()
 dgAccountDetails.DataSource = MyDataSet
 dgAccountDetails.DataBind()
End Sub
The preceding code calls the GetSalesReport function and sets the data source of the
DataGrid control to the dataset returned by this function.

Next you need to write the code for generating the Movies in Demand report.

The Code for Generating the Movies in Demand Report
When the user clicks on the Movies in Demand button, the code needs to retrieve the
records for movies that were ordered in the past seven days. As you did previously, you
will first write a function that checks the data table for movies that were ordered in the
past seven days. The following is the code for the GetMoviesInDemand function:

Public Function GetMoviesInDemand() As DataSet
 Dim MyConnStr As String
 Dim MySql As String
 Dim MyConn As SqlConnection
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyDataSet As New DataSet()
 'Set the connection string
 MyConnStr = "data source=localhost;initial catalog=Movies;persist security
 info=False;user id=sa;packet size=4096"
 'Set the select statement
 MySql = "SELECT a.MovID as [Movie ID], a.MovTitle as [Movie Title],
b.FirstName as [First
 Name], c. Name, a.Category, a.ReleaseYear FROM Movie a, Director b, Producer
c
 WHERE MovID IN (select movid from Video where videoid in (select
 OrderDetails.VideoID from Orders, OrderDetails WHERE OrderDate >
DateADD(day, -7,
 GetDate()) AND Orders.OrderID = OrderDetails.OrderID GROUP BY VideoID))
AND
 a.DirID = b.DirID AND a.ProdID = c.ProdID"
 'Open the connection
 MyConn = New SqlConnection(MyConnStr)

 MyDataAdapter = New SqlDataAdapter(MySql, MyConn)
 MyDataAdapter.Fill(MyDataSet)
 Return MyDataSet
End Function
Now you need to write the code to call the function and populate the dataset when the
user clicks on the Movies in Demand button. To specify this functionality, write the
following code in the Click event of the CmdMoviesInDemand function:

Private Sub CmdMoviesInDemand_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)Handles CmdMoviesInDemand.Click
 Dim MyDataSet As DataSet
 MyDataSet = GetMoviesInDemand()
 dgAccountDetails.DataSource = MyDataSet
 dgAccountDetails.DataBind()
End Sub
The preceding code is similar to the code you wrote for the Sales Report button. It uses
MyDataSet to store the result returned by the GetMoviesInDemand function. Then it
specifies the data source of the DataGrid control as the dataset returned by the function.

Next you will take a look at how to write the code for the Frequent Customer Details
button.

The Code for Generating the Frequent Customer Details Report
The code for generating this report is similar to the code you wrote in the preceding two
sections. Hence, it will not be explained here. The code for the GetCustomerDetails
function and the Click event of the CmdFrequentCustDetails function is as follows:

Public Function GetCustomerDetails() As DataSet
 Dim MyConnStr As String
 Dim MySql As String
 Dim MyConn As SqlConnection
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyDataSet As New DataSet()
 'Set the connection string
 MyConnStr = "data source=localhost;initial catalog=Movies;persist security
 info=False;user id=sa;packet size=4096"
 'Set the select statement
 MySql = "SELECT CustID as [Customer ID], FirstName as [First Name], LastName
as [Last
 Name], Address, City, State, Zip, Phone, Email, DOB FROM Customer a WHERE (
 (SELECT COUNT(*) FROM Orders WHERE a.CustID = Orders.CustID) > 5)"
 'Open the connection
 MyConn = New SqlConnection(MyConnStr)
 MyDataAdapter = New SqlDataAdapter(MySql, MyConn)
 MyDataAdapter.Fill(MyDataSet)
 Return MyDataSet

 End Function

Private Sub CmdFrequentCustDetails _Click(ByVal sender As System.Object, ByVal e
As
System.EventArgs) Handles CmdFrequentCustDetails.Click
 Dim MyDataSet As DataSet
 MyDataSet = GetCustomerDetails()
 dgAccountDetails.DataSource = MyDataSet
 dgAccountDetails.DataBind()
End Sub

To complete this form, you just need to write the code to navigate the pages of the
DataGrid control.

Navigating the Pages of the DataGrid Control
Recall that, while designing the form, you specified that five records should be displayed
on a page. To navigate the different pages of the grid, write the following code in the
PageIndexChanged event for the DataGrid control:

Private Sub dgAccountDetails_PageIndexChanged(ByVal source As Object, ByVal e As
System.Web.UI.WebControls.DataGridPageChangedEventArgs) Handles
dgAccountDetails.PageIndexChanged
 dgAccountDetails.CurrentPageIndex = e.NewPageIndex
 dgAccountDetails.DataBind()
End Sub
The form attached to the View Reports link is now complete. The entire code for the
form is provided here for your reference:
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here

End Sub
Public Function GetSalesReport() As DataSet
 Dim MyConnStr As String
 Dim MySql As String
 Dim MyConn As SqlConnection
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyDataSet As New DataSet()
 'Set the connection string
 MyConnStr = "data source=localhost;initial catalog=Movies;persist security
 info=False;user id=sa;packet size=4096"
 'Set the select statement
 MySql = "SELECT Orders.OrderID, Orders.OrderDate, Movie.MovID,
Movie.MovTitle,
 OrderDetails.Qty, (OrderDetails.Qty * Video.Price) as OrderValue"
 MySql = MySql + " FROM Orders INNER JOIN OrderDetails ON Orders.OrderID =
 OrderDetails.OrderID INNER JOIN Video ON OrderDetails.VideoID =
Video.VideoID
 INNER JOIN Movie ON Video.MovID = Movie.MovID"

 'open the connection
 MyConn = New SqlConnection(MyConnStr)
 MyDataAdapter = New SqlDataAdapter(MySql, MyConn)
 MyDataAdapter.Fill(MyDataSet)
 Return MyDataSet

 End Function

 Private Sub CmdSalesReport _Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Handles CmdSalesReport.Click
 Dim MyDataSet As DataSet
 MyDataSet = GetSalesReport()
 dgAccountDetails.DataSource = MyDataSet
 dgAccountDetails.DataBind()
 End Sub

 Private Sub CmdMoviesInDemand_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Handles CmdMoviesInDemand.Click
 Dim MyDataSet As DataSet
 MyDataSet = GetMoviesInDemand()
 dgAccountDetails.DataSource = MyDataSet
 dgAccountDetails.DataBind()
 End Sub
 Public Function GetMoviesInDemand() As DataSet
 Dim MyConnStr As String
 Dim MySql As String
 Dim MyConn As SqlConnection
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyDataSet As New DataSet()
 'set the connection string
 MyConnStr = "data source=localhost;initial catalog=Movies;persist security
 info=False;user id=sa;packet size=4096"
 'set the select statement
 MySql = "SELECT a.MovID as [Movie ID], a.MovTitle as [Movie Title],
b.FirstName as [First
 Name], c. Name, a.Category, a.ReleaseYear FROM Movie a, Director b, Producer
c
 WHERE MovID IN (select movid from Video where videoid in (select
 OrderDetails.VideoID from Orders, OrderDetails WHERE OrderDate >
DateADD(day, -7,

 GetDate()) AND Orders.OrderID = OrderDetails.OrderID GROUP BY VideoID))
AND
 a.DirID = b.DirID AND a.ProdID = c.ProdID"
 'open the connection
 MyConn = New SqlConnection(MyConnStr)
 MyDataAdapter = New SqlDataAdapter(MySql, MyConn)
 MyDataAdapter.Fill(MyDataSet)
 Return MyDataSet

 End Function
 Public Function GetCustomerDetails() As DataSet
 Dim MyConnStr As String
 Dim MySql As String
 Dim MyConn As SqlConnection
 Dim MyDataAdapter As SqlDataAdapter
 Dim MyDataSet As New DataSet()
 'set the connection string
 MyConnStr = "data source=localhost;initial catalog=Movies;persist security
 info=False;user id=sa;packet size=4096"
 'set the select statement
 MySql = "SELECT CustID as [Customer ID], FirstName as [First Name], LastName
as [Last
 Name], Address, City, State, Zip, Phone, Email, DOB FROM Customer a WHERE (
 (SELECT COUNT(*) FROM Orders WHERE a.CustID = Orders.CustID) > 5)"
 'open the connection
 MyConn = New SqlConnection(MyConnStr)
 MyDataAdapter = New SqlDataAdapter(MySql, MyConn)
 MyDataAdapter.Fill(MyDataSet)
 Return MyDataSet

 End Function

 Private Sub CmdFrequentCustDetails _Click(ByVal sender As System.Object, ByVal
e As System.EventArgs)
 Handles CmdFrequentCustDetails.Click
 Dim MyDataSet As DataSet
 MyDataSet = GetCustomerDetails()
 dgAccountDetails.DataSource = MyDataSet
 dgAccountDetails.DataBind()
 End Sub

 Private Sub dgAccountDetails_PageIndexChanged(ByVal source As Object, ByVal e
As
 System.Web.UI.WebControls.DataGridPageChangedEventArgs) Handles

 dgAccountDetails.PageIndexChanged
 dgAccountDetails.CurrentPageIndex = e.NewPageIndex
 dgAccountDetails.DataBind()
 End Sub
End Class

With this code, you have completed the functionality for the admin interface.

Summary
In this chapter, you learned how to add functionality to the admin interface. You looked at
the code for the various hyperlinks on the AdminHomePage. You also learned about the
code to insert, modify, and delete records from the various tables in the database at the
backend.

Part V: Professional Project 4—Creating a Word-
to-XML Converter Application
Chapter List

Chapter 30: Getting Started with XML
Chapter 31: Project Case Study—Word-to-XML Converter Application
Chapter 32: Coding the Converter Application

Project 4 Overview
The My Movies project is used to considerably reduce the processing time for a sales
order. The application converts a Word file to XML format, which can be accessed by
users from anywhere and on any platform. The application uses several built-in functions
to read and convert XML text. The application first prompts the user for the directory
where the file will be placed. After the user has specified the directory, the application
validates whether the path is valid. If the directory structure is valid, the application
enables the FileSystem Watcher; otherwise, it raises an error message. If the directory is
valid, the application hides the form and displays the notification icon on the status bar. It
then checks whether the user has added the file to the source directory. The application
then checks the format of the file and converts it into an XML file. In addition, it moves
and saves the XML file in the processed directory.

To add the preceding functionality, you’ll use several controls. These controls are as
follows:

 The TabControl
 The ImageList control
 The ErrorProvider control
 The FileSystem Watcher control
 The NotifyIcon control

When creating the application, you'll use the following concepts:
 The .NET framework
 Visual Basic.NET
 XML basics
 Converting Word data to the XML format

Chapter 30: Getting Started with XML

Overview
Earlier in the book, you learned how to create the MyMovies Web application required by
the MyMovies company. The company now requires an application to convert a Word
memo file into an XML document. Before you start creating the application, however, you
need to understand what exactly XML is.

In this chapter, you will learn about XML, which stands for eXtensible Markup Language.
It is defined and standardized by the World Wide Web Consortium (W3C). In this
chapter, you will learn the differences between XML and HTML. You will also learn about
XML-related specifications, including Document Type Definitions (DTDs), namespaces,
Designer, the document object model (DOM), Reader, Writer, schemas, and eXtensible
Stylesheet Language Transformations (XSLT). In addition, you will learn about the basic
rules for a well-formed XML document. XML documents must meet all syntactical
requirements specified by W3C. Therefore, you will also learn to perform XML data
validation using DTD, XML-Data Reduced (XDR), and XML Schema Definition (XSD)
validation services. In addition, you will learn to convert relational data to the XML format
to help Web applications share data with other similar applications. You can also use
XML to display dynamic data. This can be done using data binding, which will also be
explained in this chapter.

In the .NET framework, XML provides a comprehensive and integrated set of classes
and APIs that help you work with XML data and documents. Some of the XML class
groups discussed in this chapter include:

 Writing XML
 Validating XML
 XmlReader, XmlWriter
 XpathNavigator
 XslTransform and XSL Transformations (XSLT)
 XslSchema and the XML Schema Definition language (XSD)

What is XML?
As everyone knows, HTML is a very popular markup language. There are millions or
more Web pages based on HTML. In addition, HTML enjoys a wide range of support,
including browsers, editors, e-mail software, databases, and more. To meet the
demanding needs of the Web, HTML has been extended over the years. In fact, HTML
has grown into a complex language with the inclusion of many new tags.

This alone, however, did not offer appropriate solutions to the growing needs of modern-
day Web applications. For example, electronic-commerce applications required tags for
product references, prices, addresses, and others. This implied that more new tags
needed to be created, which would not do any good to the already-burdened HTML
language. Therefore, XML was introduced to address the shortcomings of HTML.
XML provides a set of rules to present structured data. Examples of structured data
include spreadsheets, financial transactions, and technical drawings. Similar to HTML,
XML also makes use of tags and attributes. In HTML, tags are used to control the display
and appearance of data. In XML, however, tags are used to define the structure of data.
XML is simple, platform-independent, and widely used. In XML, tags are used to
delineate elements of data. The interpretation of data is not done by XML but by the
application itself. For example, the <p> tag in XML need not indicate a paragraph.
Depending on the content, it could mean a price, parameter, or person. You can define
an unlimited number of tags in XML. Unlike in HTML, the rules for defining and using
tags are more stringent in XML. One important point to remember is that XML was not
introduced to replace HTML but to complement it.

First let’s compare and contrast XML with HTML. You also need to know how to write an
XML code and view its output.

XML vs. HTML

XML became a popular markup language because HTML was successful. However,
there are some differences between the two, as follows:

 HTML is designed to display data. XML is designed to describe and
focus on data.

 In HTML, you can only use predefined tags, which are limited in number.
In XML, the author of the document can define an unlimited number of
tags.

 In XML, all tags must have a closing tag. In addition, all attributes in XML
need to be enclosed within either single or double quotes. Requirements
such as these are not essential in HTML. For example, the following
statement in XML is acceptable:

The following statement, however, is only acceptable in HTML:

 The tag names in XML are case sensitive, whereas in HTML they are
not. For example, in XML, the <p> tag and the <P> tag are two different
tags.

 In XML, nested tags whose closing tags overlap are not allowed.
However, nested tags are common in HTML. For example, code such as
the following cannot be used in XML:

 The logo.

To make the difference between HTML and XML clear, look at the output of two sample
codes. First, the following HTML document named Employees.html is created in
Notepad to display employee details in a numbered list:
<HTML>
<HEAD> <TITLE> Employee Details </TITLE> </HEAD>
<BODY>

 Employee ID: EMP1 Employee Name : Mark Greg
 Employee ID: EMP2 Employee Name : Mary Robert

</BODY>
</HTML>
When you open this HTML document in a Web browser, you see the output shown in
Figure 30-1.

Figure 30-1: Output of the HTML code

Next create an XML document named Employees.xml in Notepad to describe the data in
a structured manner as displayed in the preceding HTML document:
<?xml version="1.0"?>
<Employees>
 <Employee>
 <Id> EMP1 </Id>
 <LastName> Mark </LastName>
 <FirstName> Greg </FirstName>
 </Employee>
 <Employee>
 <Id> EMP2 </Id>
 <LastName> Susan</LastName>
 <FirstName> Ward</FirstName>
 </Employee>
</Employees>

Note Remember that XML is case sensitive. Therefore, the
<Employee> tag is not the same as the <employee> tag. Be
careful when you code in XML.

In the preceding code, the first line <?xml version= "1.0"?> is an XML declaration
statement that notifies the browser that the document being processed is an XML
document. When you open this XML document in Internet Explorer, the document
appears as shown in Figure 30-2.

Figure 30-2: Output of the XML code

Notice that the document in Figure 30-2 is displayed in a structured manner in the form
of a tree. Each tag that contains subtags can be expanded or collapsed. All XML
documents are displayed in a similar manner.

By now, the basic functionality of XML and its differences with HTML should be clear.
Because XML is integrated in .NET, later in this chapter you’ll learn how to create an
XML document in the .NET framework using the XML Designer.
In the next section, you will learn about some of the benefits of XML.

Benefits of XML

XML offers many advantages to programmers, including the following:
 Simplicity. Information stored in an XML document is easy to understand.

In addition, computers can easily process the information.
 Extensibility. In XML, there is no restriction on the number of tags to be

used. Therefore, new tags can be created according to specific
requirements.

 Self-explanatory. Information in an XML document is self-descriptive.
This is because the XML document contains metadata in the form of tags
and attributes. For example, <product> is a tag in XML and clearly
describes what it contains.

 Machine-readable content. The tags and attributes in an XML document
provide context information about the document. This can lead to the use
of highly efficient search engines.

 Segregate content from presentation. In XML, the focus is more on the
information itself rather than its presentation. The presentation of an XML
document is decided by using external style sheets. Style sheets contain
styling instructions that help you view the document and apply
appropriate style to it.

 Openness. XML is a W3C standard. Therefore, it finds universal
acceptance within the software industry.

The next section provides an overview of a simple XML document.

Overview of an XML Document

An XML document primarily consists of the following:
 Tags
 Text
 Attributes

Tags define the data elements, and text defines the actual content of the XML document.
The structure of an XML document contains a start tag that defines the name of the data
element, the text to be contained in the data element, and the end tag.

For example:
<Employee> Susan Ward </Employee>
In this example, the tag <Employee> is the start tag or the data element. The name
Susan Ward is the text contained in the element. </Employee> defines the end tag.

You can also use nested tags in XML. Consider an example in which an organization
needs to store details about employees in each of its departments separately. The XML
for this requirement can be written as follows:
<Department>
 <Finance>
 <Employee>
 <Empname> Susan Ward </Empname>
 <Dateofjoining> 03/20/01</Dateofjoining>
 </Employee>
 …
 </Finance>
 <HumanResource>
 <Employee>
 <Empname> Ron Floyd </Empname>
 <Dateofjoining> 03/12/01 </Dateofjoining>
 </Employee>
 …
 </HumanResource>
 </Department>

Attributes of an XML document provide more information about the element and are
used inside the start tag. All values of the attributes must be enclosed within quotes.

An attribute in an XML document can be written as in the following example:
<div class="preface">
In this example, class is the attribute of the div element. The value of the class
attribute is preface.

Basic Rules for a Well-Formed XML Document

In the preceding section, you learned about the constituents of an XML document. In this
section, you will learn about well-formed XML documents. XML documents are well
formed if they follow certain rules. Well-formed XML documents are defined by their use,
not by any specific standards. The rules for a well-formed XML document are as follows:

 Every XML document must have a root element that contains all the
other elements in the document.

 All tags opened in XML must also be closed. Tags must be explicitly
specified because they are not inferred in XML. Consider this example:

<L1> the items purchased
<L2> the first item
This is acceptable in HTML. In XML, however, this is an ambiguous reference because
the <L1> tag is not closed. In XML, you can infer the second tag to be the continuation
of the first or a new tag altogether. Therefore, you need to explicitly close all open tags.
The preceding example can be rewritten in XML as follows:
<L1> the items purchased </L1>
<L2> the first item </L2>

 In XML, empty tags must be closed using a forward slash (/). Empty tags
are those that do not contain any value but might contain attributes. The
values of attributes are specified within the opening and closing angular
brackets of the empty tag. The forward slash must be placed before the
closing angular bracket. For example:

<graphic name="logo.gif"/>
In this example, <graphic> is the empty tag that contains the attribute name. The
value of the attribute is specified as a GIF image.

 In XML, the value of an element’s attribute must be enclosed within
double quotation marks. XML does not allow any value of an attribute to
be specified outside the double quotation marks. Consider the example
<Employee name="susan"/>. In this example, susan is the value for
the attribute name of the <Employee> tag.

 The tags in XML must be nested correctly. This means that all opening
tags must be closed in the reverse order in which they were opened.
Consider an example:

<Employee> Susan <Role>Systems Analyst </Employee></Role>.
In this example, the order of the tags’ closing is not valid because the <Employee> tag
is closed before the <Role> tag. The following is the correct sequence:

<Employee> Susan <Role>Systems Analyst </Role></Employee>.
 The tags in XML must match each other. This implies that both the

opening and closing tags must correspond in every aspect. This is
because XML tags are case sensitive. Any difference between the tags
results in an error. Consider an example:

<L1> the items purchased </l1>

This example would produce an error because the tags are not similar.

Now that you know how to create a well-formed XML document, you will move on to
XML specifications. XML specifications offer more than just a well-formed document. The
following section discusses some of these specifications.

XML Specifications
You are now familiar with the concept of a well-formed XML document, but you also
need to provide the document with a meaningful structure. Similarly, you also need to
maintain some form of consistency with respect to elements in an XML document. These
and many other requirements can be met using certain specifications related to XML.
These specifications include the following:

 Document Type Definitions (DTDs) specify the rules for XML documents.
They make it easier for everyone to understand the structure and logic of
your XML documents.

 XML namespaces are used to avoid conflicting names and to assign a unique
name to each element when you define multiple elements in an XML
document.

 The document object model (DOM) enables navigation and modification in an
XML document, including adding, updating, or deleting the content of
elements. In addition, this also enables you to access XML data
programmatically.

 eXtensible Stylesheet Language Transformations (XSLT) are the style sheets
provided by the W3C to format XML documents.

 XML schemas can be considered a superset of DTDs and are also used to
define the structure of XML documents.

These specifications are discussed in greater detail in the following sections.

Document Type Definitions (DTDs)

A DTD represents a set of rules that defines the structure and logic of XML documents.
The documents that store these rules are called DTD documents and have the extension
DTD.

To better understand the concept of DTD documents, compare them to the creation of
tables in a database. When you create a table in a database system, you specify the
columns, the data types for different columns, the validation rules for data within
columns, and so on. Similarly, you can specify rules that can be used in XML
documents—such as tags and attributes—by using a DTD document. DTD documents
can be considered to be rulebooks for XML documents.

Tip It’s not essential for you to create a DTD document for your XML
documents. However, a DTD document can be important to users
who need to understand the structure of your XML documents or
who need to create an XML document similar to the one you’ve
already created. These users can refer to your DTD document to
understand the structure and logic of your XML documents.

When you create a DTD document for an XML document, the XML document is checked
against the rules specified in the DTD document. If the XML document adheres to all the
DTD rules, the document is considered valid. Otherwise, the XML document fails to
generate the desired output.
To explain how to create a DTD, let’s continue with the same Employee example
discussed previously. Type the following code in Notepad and save the file as
Employees.dtd to create a DTD document that you will use later in this chapter.
<!ELEMENT Employees (Employee)+>
<!ELEMENT Employee (Id, LastName, FirstName)>
<!ELEMENT Id (#PCDATA)>
<!ELEMENT LastName (#PCDATA)>
<!ELEMENT FirstName (#PCDATA)>
The DTD document declares five elements: Employees, Employee, Id, LastName,
and FirstName. Each element declaration statement has three parameters: the
keyword ELEMENT, the name of the element, and the content type of the element.
Therefore, when you consider the preceding code, the first declaration creates an
element called Employees and defines the content type as (Employee)+.

Note The + symbol indicates that the Employees element can contain
multiple Employee elements.

Similarly, the content type for the Employee element is declared in such a way that it
must contain three elements: Id, LastName, and FirstName. The Id, LastName, and
FirstName elements can each contain character data. Character data is represented by
the keyword (#PCDATA).

If you want to use the rules declared in a DTD document, you must include it with the
XML document you create. To include the DTD document in an XML document, use the
following statement:
<!DOCTYPE Employees SYSTEM "Employees.DTD">

Now you will learn how you can include a DTD document in an XML code and also the
effect the DTD has on the XML document. Create an XML document in Notepad named
EmployeeDTD.xml and type the following code:
<?xml version="1.0"?>
<!DOCTYPE Employees SYSTEM "Employees.DTD">
<Employees>
 <Employee>

 <Id> E001 </Id>
 <Name> Susan Ward </Name>
 </Employee>
</Employees>
When you view this XML document in a browser, the browser reports an error because
the XML document isn’t valid. According to the DTD document, the <Employee>
element contains three elements: <Id>, <LastName>, and <FirstName>. However,
the XML document you created doesn’t conform to this rule and therefore doesn’t pass
the validation test.

Note When you view the file in a browser, you might actually see an
XML-based tree structure. This is because MSXML is a DOM-
enabled parser. The error will occur if you use XML DOM objects
and set the validateOnParse flag to true in a script.
Therefore, to access an XML document and to validate it, you
need to use the DOM objects provided by MSXML. The following
is a sample script you can run; enter the name of the XML file you
want to validate.

<html>
<head>
<script>
function validate()
{
var xmldoc = new ActiveXObject("Microsoft.XMLDOM");
xmldoc.async = false;
xmldoc.validateOnParse=true;
xmldoc.load(TxtXMLFileName.value);
var error=xmldoc.parseError;
transformedwindow=window.open('Transformed.htm','_new','location=0,status=1,
toolbar=0,menuBar=0, scrollBars=0,directories=0,resizable=0,width=600,height=600');
 if(error!="")
 {
 transformedwindow.document.write('<HTML><TITLE>DTD
Validator</Title><BODY><P>Error Validating the document</p>
');
 transformedwindow.document.write('Error URL:
' + error.url + '
');
 transformedwindow.document.write('Error Line:
' + error.line + '
');
 transformedwindow.document.write('Error Position:
' + error.linepos +
'
');
 transformedwindow.document.write('Error Reason:
' + error.reason +
'
');
 transformedwindow.document.write('</BODY></HTML>');
 }
 else
 {
 transformedwindow.document.write('<HTML><TITLE>DTD
Validator</Title><BODY>No Error
');
 transformedwindow.document.write('</BODY></HTML>');
 }
}

</script>
<body>
Enter XML Document Name: <input type="text" name="TxtXMLFileName">
<input type="button" onclick="javascript:validate()" value="Load">
</body>
</html>

You’ll learn about XML DOM later in this chapter.

XML Namespaces
As previously mentioned, you can define your own elements to describe the data while
creating XML documents. You can also use elements that you define outside your XML
document, such as in a DTD document. However, defining multiple elements might
create a problem: You might end up defining the same element twice. For example,
when defining the data structure to present employee details, you might define the
<Name> element twice: once to qualify the employee name and a second time to qualify
the department name. This situation is not unlikely when you have a large number of
elements to define. It leads to name collisions, and your XML document cannot be
processed for correct output. To avoid such situations, W3C recommends the use of
XML namespaces. XML namespaces are a collection of unique elements identified by
uniform resource identifiers (URI), and they are declared by using the keyword xmlns.
To continue with the same example, you can use the following statement to declare an
XML namespace for the <Name> element that defines the department name:

xmlns:DepartmentName="http://www.dn.com/dn"
In this statement, DepartmentName is an alias for the <Name> element, and
http://www.dn.com/dn is the URI. Later, when you want to use the <Name> element
to qualify a department name, you must prefix it with the alias DepartmentName, as in
the following statement:
<DepartmentName: Name>

Note When you specify a namespace URI, the browser does not search
the URI or the documents at the specified URL. In fact, the URI
just serves as a unique identifier.

The XML Document Object Model (DOM)

To access and display XML data in your Web applications, you need to use the XML
Web server control and set its specific properties at the design time. There might be
situations when you want to display the XML data based on some conditions. In such
cases, you’ll have to access the XML data programmatically. To do that, you must
employ the XML DOM. The DOM is an in-memory, cached tree representation of an
XML document that enables the navigation and modification of a document including
adding, updating, or deleting content of elements. The DOM represents data as a
hierarchy of object nodes.

Tip The Microsoft .NET framework SDK implements the W3C DOM
(Core) Level 1 (information available at www.w3.org/TR/REC-
DOM-Level-1/level-one-core.html) and the DOM Core (information
available at www.w3.org/TR/DOM-Level-2-Core/core.html).

At the top of the hierarchy lies the XML document. To implement XML DOM, the .NET
framework provides a set of classes that enable you to access the XML data
programmatically included in the System.Xml namespace. Some of the classes in the
System.Xml namespace are as follows:

 XmlDocument represents a complete XML document and provides a
means to view and manipulate the nodes of the entire XML document.
The XmlDocument class is contained in the
System.Xml.XmlDocument namespace.

 XmlDataDocument enables you to store and manipulate XML and
relational data into a data set. This class is derived from the
XmlDocument class.

 XmlDocumentType represents the DTD used by an XML document.
 XmlNode supports methods for performing operations on the document

as a whole, such as loading or saving an XML file.
 XmlTextReader represents a reader that performs a fast, noncached,

forward-only read operation on an XML document.
 XmlTextWriter represents a writer that performs a fast, noncached,

forward-only generation of streams and files that contain XML data.
 XmlElement represents a single element from an XML document.
 XmlAttribute represents a single attribute of an element.

XmlNode and XmlDocument have methods and properties to do the following:
 Access and modify nodes specific to a DOM, such as attribute nodes,

element nodes, entity reference nodes, and so on
 Retrieve entire nodes as well as the information the node contains, such

as the text in an element node
Two other classes are widely used with XML implementations. These are the
XmlReader class and the XmlWriter class.

The XmlReader Class
XmlReader is an abstract base class that provides noncached, forward-only, read-only
access to XML data. The XmlReader reads a stream or an XML document to check
whether the document is well made and generates XmlExceptions if an error is
encountered. The XmlReader implements namespace requirements documented as
recommendations by the W3C.
Because the XmlReader class is an abstract base class, it enables you to customize
your own type of reader or extend the functionality of current implementations of other
derived classes such as XmlTextReader, XmlValidatingReader, and
XmlNodeReader.
The XmlReader has various properties and methods associated with it. It has methods
to do the following:

 Read XML content and extract data from complete XML documents such
as XML text files

 Skip over elements and their content, such as unwanted records
 Determine whether an element has content or is empty
 Determine the depth of the XML element stack
 Read attributes of elements

The XmlReader has properties that return information, such as:
 The name of the current node
 The content of the current node

Implementations of XmlReader enhance the base class functionality to extend support
to various situational requirements. The common implementations of XmlReader can
offer fast access to data without validation or complete data validation. The following list
describes some implementations of XmlReader:

 The XmlTextReader class. Reads data extremely fast. It is a forward-
only reader with methods that return data on content and node types.
Has no DTD or schema support.

 The XmlNodeReader class. Provides a parser over an XML DOM API,
like the XmlNode tree. Takes in an XmlNode as a parameter and returns
all nodes that it finds in the DOM tree. Has no DTD or schema validation
support but can resolve entities defined in a DTD.

 The XmlValidatingReader class. Provides a fully compliant validating or
nonvalidating XML parser with DTD, XSD schema, or XDR schema
support.

 Custom XML readers. Allows developer-defined derivations of the
XmlReader.

The XmlWriter Class
XmlWriter also is an abstract base class, and it defines an interface for creating XML
documents. The XmlWriter provides a forward-only, read-only, noncached way of
generating XML streams, which help you build XML documents that conform to the W3C
and namespace recommendations.
The XmlWriter has methods and properties that enable you to do the following:

 Create well-made XML documents
 Specify whether the XML document should support namespaces
 Write multiple documents to one output stream
 Manage the output, determine the progress of the output, and close the

output
 Report the current namespace prefix
 Write valid and qualified names

However, the XmlWriter does not check for the following:
 Invalid element and attribute names
 Unicode characters that do not match the encoding
 Duplicate attributes

The XmlWriter has one implementation, the XmlTextWriter.

Simple API for XML

One of the main advantages of the DOM is that it is a hierarchical representation of XML
object nodes and enables modification of each node. At times, however, this could act to
your disadvantage, especially if your document is large.
When you use the DOM to manipulate an XML file, the DOM reads the file, breaks it up
into individual objects (such as elements, attributes, and comments), and then creates a
tree structure of the document in memory. The benefit to using the DOM is that you can
reference and manipulate each object, called a node, individually. However, creating a
tree structure for a document, especially a large document, requires significant amounts
of memory.

The Simple API for XML (SAX) is an interface that enables you to write applications to
read data in an XML document. SAX2, the latest version of SAX, provides a simple, fast,
low-overhead alternative to processing through the DOM.
Unlike the DOM, SAX2 is events based. This means that SAX2 generates events as it
finds specific symbols in an XML document. One major advantage of SAX2 is that it
reads a section of an XML document, generates an event, and then moves on to the
next section. This kind of serial processing of documents enables SAX2 to use less
memory than the DOM and therefore is better for processing large documents. SAX2
can create applications that abort processing when a particular piece of information is
found.

You can choose SAX over DOM in the following situations:
 When your documents are extremely large
 When you want to abort processing a document when a specific piece of

information is found
 When you want to retrieve specific bits of information
 When you want to create a document structure with only high-level

objects and not with low-level elements, attributes, and instructions (as in
the DOM)

 When you cannot afford the DOM due to high memory requirements
against low availability

eXtensible Style Sheet Language Transformations

As previously discussed, the basic aim of XML is to describe structured data rather than
focus on the presentation of data. XML documents do not contain any tags that define
the format of the data to be displayed. This fact has its unique advantages and helps
XML documents remain platform independent. However, you can apply any format to the
data and display the same data in multiple formats by using special style sheets.

W3C has specified a style sheet called eXtensible Stylesheet Language Transformations
(XSLT) that is specifically designed for XML documents. The goal of XSLT is to
transform the content of a source XML document into another document that is different
in format or structure, such as transforming an XML document into HTML for displaying it
in Web applications. In the .NET framework, the XslTransform class, found in the
System.Xml.Xsl namespace, is an XSLT processor that implements the functionality
of this specification. To create an XSL style sheet in the .NET framework, use the XSL or
XSLT file in the Add New Item dialog box. For example, the following code defines a
style sheet named Employees.xslt for the Employees.xml document:
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/TR/xhtml1/strict">
<xsl:output method="xml" encoding="iso-8859-1" />
<xsl:template match="/">

 <xsl:for-each select='Employees/Employee'>

 Employee Id :
 <xsl:value-of select='Id' />

 Last Name :
 <xsl:value-of select='LastName' />

 First Name :
 <xsl:value-of select='FirstName' />

 <hr />

 </xsl:for-each>

</xsl:template>
</xsl:stylesheet>

In the preceding code:
 The <xsl:template> element enables you to create a template to

display the data in the required format.
 The <xsl:for-each> element is used to perform a task repeatedly.
 The <xsl:value-of> element is used to retrieve the data from individual

elements.

After you create the XSLT file, include this file with your XML file to apply the format. To
do this step, open the Employees.xml file in the XML view and, after the first line, add the
following line:
<?xml-stylesheet type="text/xsl" href="Employees.xslt"?>
When you browse the Employees.xml file in a browser, the output looks formatted and
appears as shown in Figure 30-3.

Figure 30-3: The Employees.xml file as displayed in the browser after including an XSLT
style sheet

XSLT uses XPath to select parts of an XML document that are to be formatted. XPath
is a query language used to navigate nodes of a XML document tree.
The following is a list of classes commonly used when working with XSLT and XPath:

 XPathNavigator is an API that provides a cursor-style model for
navigating over a data store. For editing the store, you need to use the
XmlDocument class.

 IXPathNavigable is an interface that provides a CreateNavigator method
to an XPathNavigator for the data store.

 XmlDocument enables editing of a document. It implements
IXPathNavigable to enable editing of document scenarios where XSLT is
subsequently required.

 XmlDataDocument is a subclass of the XmlDocument class. It bridges
the relational database and XML worlds by using a DataSet to optimize
storage of structured data within the XML document according to
specified mappings on the DataSet. It implements the IXPathNavigable
class to allow document scenarios where XSLT can be performed over
relational data retrieved from a database.

 XPathDocument provides a performance cache to optimize XslTransform
processing and XPath queries. It implements IXPathNavigable.

 XPathNodeIterator provides navigation over an XPath nodeset. All XPath
selection methods on the XPathNavigator return an XPathNodeIterator.
Multiple XPathNodeIterators can be created over the same store, each
representing a selected set of nodes.

XML Schemas

The XSD language enables you to define the structure and data types for XML
documents. To understand the concept of schemas, let’s again draw a comparison to a
database system. You might know about database schemas that define and validate the
tables, columns, and data types that make up the database. Like database schemas,
XML schemas also define and validate the content and structure of XML documents and
can be used to maintain consistency among various XML documents. XML schema files
have the XSD extension.

Note The schema element definition in an XML document must include
the namespace http://www.w3.org/2001/XMLSchema.

DTDs are also used to define the structure of XML documents. The question that arises
here is this: How are XML schemas different from DTDs? XML schemas are not really
different from DTDs, they just offer greater functionality. XML schemas can be
considered to be supersets of DTDs. XML schemas offer the following advantages over
DTDs:

 DTDs help you specify whether an element can be empty or can contain
character data or other elements. In contrast, XML schemas enable you
to specify whether an element can contain an integer, float, or string
value.

 Unlike DTDs, which have their own syntax, XML schemas use the XML
syntax, so you don’t have to learn a new syntax to create XML schemas.

XML schemas contain attribute and element declarations and type definitions for
elements. Two basic types of elements can be declared: simpleType elements and
complexType elements. These element types can be used to define custom data types
in addition to the built-in data types provided by XSD, such as integer and string.
These two data types can be defined as follows:

 simpleType. A type definition for a value that can be used as the
content (textOnly) of an element or attribute. This data type cannot
contain other elements or attributes.

 complexType. A type definition for elements that contain elements and
attributes. This data type can contain elements and attributes.

The element declarations in a schema define the elements, their contents, and attributes
that can be used, as well as the rules for their appearance in an XML document that
uses the defined schema. An element declaration can contain either a simpleType or
complexType element.
If elements and attributes are defined within the complexType element, the number of
elements can be controlled. You can use the minOccurs and maxOccurs attributes to
define the number of occurrences of an element in an XML document based on the
schema.

The following list describes the elements with XSD:
 all allows the elements in the group to appear (or not appear) in any

order in the containing element.
 any enables any element from the specified namespace(s) to appear in

the containing complexType, sequence, all, or choice element.
 anyAttribute enables any attribute from the specified namespace(s) to

appear in the containing complexType element.
 annotation defines an annotation.
 appinfo specifies information to be used by applications within an

annotation element.
 attribute declares an attribute.
 attributeGroup groups a set of attribute declarations so that they can be

incorporated as a group into complex type definitions.
 choice allows one and only one of the elements contained in the group to

be present within the containing element.
 complexContent contains extensions or restrictions on a complex type

that contains mixed content or elements only.
 complexType defines a complex type, which determines the set of

attributes and the content of an element.
 documentation specifies information to be read or used by users within

the annotation element.
 element declares an element.
 extension contains extensions on complexContent or simpleContent,

which can also extend a complex type.
 field specifies an XML Path Language (XPath) expression that specifies

the value (or one of the values) used to define an identity constraint
(unique, key, and keyref elements).

 group groups a set of element declarations so that they can be
incorporated as a group into complex type definitions.

 import identifies a namespace whose schema components are
referenced by the containing schema.

 include includes the specified schema document in the target
namespace of the containing schema.

 key specifies that an attribute or element value (or set of values) must be
a key within the specified scope.

 keyref specifies that an attribute or element value (or set of values)
corresponds with those of the specified key or unique element.

 list defines a simpleType element as a list of values of a specified data
type.

 notation contains the definition of a notation.
 redefine allows simple and complex types, groups, and attribute groups

that are obtained from external schema files to be redefined in the
current schema.

 restriction (XSD) defines constraints on a simpleType, simpleContent, or
complexContent definition.

 schema contains the definition of a schema.
 selector specifies an XPath expression that selects a set of elements for

an identity constraint (unique, key, and keyref elements).
 sequence requires the elements in the group to appear in the specified

sequence within the containing element.
 simpleContent either contains the extensions or restrictions on a

complexType element with character data or contains a simpleType
element as content and contains no elements.

 simpleType defines a simple type, which determines the constraints on
and information about the values of attributes or elements with text-only
content.

 union defines a simpleType element as a collection of values from
specified simple data types.

 unique specifies that an attribute or element value (or a combination of
attribute or element values) must be unique within the specified scope.

The Schema Object Model (SOM)
The schema object model (SOM) provides a set of classes in the System.Xml.Schema
namespace that is fully compliant with the W3C XML schema recommendation
specifications. These classes enable you to programmatically create a schema in
memory that you can compile and validate.

The SOM provides the following features:
 It loads and saves valid XSD schemas to and from files.
 It provides an easy way to create memory resident schemas using

strongly typed classes.
 It interacts with the XmlSchemaCollection class to cache and retrieve

schemas.
 It interacts with the XmlValidatingReader class (through the

XmlSchemaCollection class) to validate schemas against XML
documents.

 It enables developers to build editors for creating and maintaining
schemas.

The Schema Designer

To understand the concept of XML schemas in the .NET framework, let’s use the XML
Designer to create an XML schema for the Employees.xml document. You’ll work on the
same document you created earlier in this chapter.

The XML Schema Designer provides a set of visual tools for working with XML schemas
and documents. The XML Designer supports the XSD language as defined by the WC3.
It does not support DTDs or other XML schema languages such as XDR.

The XML Schema Designer provides three views you can work with:
 Schema view. Provides a visual representation of the elements,

attributes, and types for creating and modifying XML schemas. In this
view, you can construct schemas and datasets by dropping elements on
the design surface from either the XML Schema tab of the Toolbox or
from Server Explorer.

 Data view. Provides a data grid that can be used to modify XML
documents. In this view, you can modify the actual content of an XML file
as opposed to tags and structures.

 XML view. Provides an editor for editing XML source code and provides
IntelliSense and color coding, including complete Word and List
members.:

To create a schema using the XML Schema Designer, open the project and follow these
steps:

1. Open the Add New Item dialog box by choosing Project and then Add
New Item.

2. Select XML Schema in the Templates pane, enter the name of the file
(Employees.xsd), and click on Open.

The Designer opens in the Schema view. In this view, you can design the
schema visually by using the Toolbox. The Designer also provides the XML
view that you can use to write the XML code to create the XML schema.

3. Switch to the XML view and write the following code to define the
structure of the XML data represented in the Employees.xml
document:
4. <?xml version="1.0" encoding="utf-8" ?>
5. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
6. <xsd:element name="Employees" type="EmployeeInfo" />
7. <xsd:complexType name="EmployeeInfo">
8. <xsd:sequence>
9. <xsd:element name="Employee" type="Details"

minOccurs="0" maxOccurs="unbounded" />
10. </xsd:sequence>
11. </xsd:complexType>
12. <xsd:complexType name="Details">
13. <xsd:sequence>
14. <xsd:element name="Id" type="xsd:string" />
15. <xsd:element name="LastName" type="xsd:string" />
16. <xsd:element name="FirstName" type="xsd:string" />
17. </xsd:sequence>
18. </xsd:complexType>

</xsd:schema>
In the preceding code:

 The XML schema elements are defined in the XML
schema namespace.

 The <xsd:element> element describes the data it
contains.

 The <xsd:complexType> element can contain
additional elements and attributes.

19. Switch to the Schema view. You see the schema, as shown in Figure
30-4.

Figure 30-4: The Schema view of the Employees.xsd file

Validating XML Data
A well-formed XML document must meet all the syntactical requirements specified by the
W3C. It also must conform to constraints defined by its DTD or schema that are used to
define document structure, element relationships, data types, and content constraints.
Therefore, you need to validate the XML document to ensure that it is well formed, has a
DTD or schema attached, and follows the rules specified in them.

Validation of XML documents ensures that elements and attributes are used correctly. It
also ensures that the relationship between them is correct. By validating XML data, you
can ensure that the data types specified in the document are correct.

XML data can be validated using either a DTD or a schema. A DTD, which was
introduced in W3C XML 1.0., defines the validation rules for an XML document. An XML
processor uses the DTD at runtime to validate the XML document.
Schemas are an alternative to DTDs because they solve the limitations presented by
DTDs. For more information on schemas, refer to the “XML Related Specifications”
section earlier in this chapter.
Validation of XML documents is enforced by the XmlValidatingReader class. This
class provides DTD, XDR, and XSD schema validation services implementing the validity
constraints defined by the W3C. The XmlValidatingReader class also enforces XML
validation. Validation is performed in a forward-only manner over a stream of XML. The
XmlValidatingReader also supports the ability to parse XML fragments with
XmlParserContext class.

DTD Validation
DTD validation is implemented using the validity constraints defined in the W3C. As
previously discussed, DTDs use a formal set of rules to describe the structure and
syntax of compliant XML documents. DTDs specify content and values allowed for the
XML document. XML documents are associated with and validated against the DTD
defined in the <!DOCTYPE> declaration, which can be either an inline DTD or a
reference to an external DTD file. For information on inline and external DTDs, you can
refer to the section "XML Specifications" earlier in this chapter.

XDR Validation
XML-Data Reduced (XDR) schema validation is implemented using the validity
constraints defined in the Microsoft XML parser (MSXML) schema specification. XDR
schemas are recognized by the use of the MSXML x-schema:namespace prefix. To
implement the XDR validation, you need to create a file with the XDR extension. This file
should contain the validation rules, which you can use to validate your XML document.

XSD Validation

The XML Schema Definition language (XSD) helps you define the structure and data
types for XML documents. An XML schema defines the elements, attributes, and data
types used in a document, as per the W3C recommendations. An XML schema consists
of a top-level schema element that contains the type definitions and element and
attribute declarations.
The XSD validation is implemented using the validity constraints specified by the W3C.
All XSD schemas must include the namespace: http://w3c.ord/2001/XMLSchema.

In this section, you have learned about XML data validation. Validation is important in
XML because of its flexible syntax for describing the content of a document. Therefore, it
is important to verify that a document adheres to the format you require.

Consider this situation: If your Web application accesses data from a database system
(such as Oracle) and also needs to share data with other applications, you would want to
convert relational data into XML format. By doing this, you can share data across varied
platforms. In the following section, you will learn about integrating XML with relational
data.

XML Integration with Relational Data
Traditionally, relational databases have been used for storing data. However, they have
some limitations. For example, the cost of deploying and maintaining a database is high.
Another limitation is the complexity of deploying applications pertaining to various
operating systems and databases.

You can use XML to solve the problems faced by relational databases because it
provides cost-effective data-storage solutions. Data stored in XML documents can be
used across different platforms. In addition, it can be used with XSLT to transform and
render data to various devices such as browsers and mobile devices.

XML provides two approaches for presenting relational data. The first approach is one-
to-many relationships, which is represented by using separate tables of rows that are
related by common columns. The second approach is nested relationships. This is
represented hierarchically by parent elements that contain nested child elements.

To convert relational data into XML format, you need to follow these steps:
1. Establish a connection with a database server.
2. Retrieve data from the table.
3. Convert relational data into XML format.

In this section, you learned to convert relation data into XML format. However, with the
growing use of XML in Web applications, programmers need to access and manipulate
the content of XML documents. There are certain standard ways to access this content,
such as the W3C DOM API. However, APIs such as these are used for lower-level XML
manipulation. Programmers can develop custom APIs to access the data, but this is a
cumbersome task. One effective solution for this problem is data binding. In the following
section, you will learn about the concept of data binding in XML.

Data Binding with an XML Document
Data binding is the process of mapping the components of a given data format into a
specific representation for a given programming language. This representation depicts
the intended meaning of the data format. Data binding enables programmers to work in
the native code of the language and preserves the meaning of the original data.

An XML document represents a number of different data types such as strings and
integers. These data types are grouped together in a logical hierarchy that represents
some meaning to the domain for which the XML data is intended. In an ideal situation,
interaction with the XML content should be as objects and data structures native to the
programming language used. In addition, the interaction should be in a manner that
closely reflects the meaning of the data. This would make programming with XML more
natural and less tedious and would improve code readability and maintainability. This is
possible through data binding.

Data binding enables you to represent data and structure in the natural format of the
programming language of your choice. It also represents data in a manner that depicts
the intended meaning.

The XML-based applications that are written today do some form of data binding. For
example, when you convert the value of an attribute to an integer or create an object to
represent an element structure, you are performing data binding.

Summary
In this chapter, you learned about XML. You started with the basics and then moved on
to some advanced concepts. You learned about the origin of XML, the difference
between XML and HTML, and the benefits of XML. Then you learned to create an XML
document and were introduced to the rules for creating a well-formed XML document.
This chapter also discussed XML specifications and their integration with .NET. The
various specifications covered included DTDs, DOM, namespaces, XSLT, and schemas.
How to validate XML document was the next topic. At the end of the chapter, you
learned how to convert relational data into XML format and about data binding with an
XML document.

Chapter 31: Project Case Study—Word-to-XML
Converter Application
In previous chapters, you learned how to create a Windows application and also a Web
application. In this lesson, you’ll create another Windows application that will convert a
Word document into XML format and then save it as an XML file. In addition, you’ll use
controls such as TabControl and ImageList in your application.

Project Case Study
MyMovies is a video company based in New York. The company sells DVDs, CDs, and
LCDs of movies. MyMovies is a popular chain that has multiple stores throughout the
United States. In recent months, however, sales at MyMovies have shown a slight drop.
The management at MyMovies is vigilant and has commissioned a faultfinding team to
identify the reasons for the drop in sales.

The faultfinding team first studies the project life cycle at MyMovies. The project life cycle
is as follows:

 When a customer requests a video, the retail outlets issue a memo in a Word
document.

 The retail outlets also send a memo to the sales department at the head
office.

 At the sales department, an operator makes an entry of the record in a
database.

 The sales department then sends a memo to the inventory department to
check the status of the product.

 After checking the status, the inventory department sends a memo back to the
sales department.

 Based on the availability of the product, the sales department dispatches the
product.

Because the entire process is manual, it takes almost three weeks. Due to this long cycle
time, the faultfinding team finds that MyMovies customers are now turning to a new
company that dispatches the movies within a week. The faultfinding team has
recommended that management work on reducing the cycle time for dispatch of
documents.

Based on the faultfinding team’s recommendations, management has decided to
automate the sales process. This task is assigned to a development team consisting of
three members. Michael Fisher is the project manager of the team, while Mary Jones
and Tim Smith are the two application developers.

The development team has decided on the following strategy to automate the sales
process:

 When a customer issues an order, the retail outlets will send a memo to the
sales department at the head office over the intranet.

 The memo will be stored in a specified directory on the main server.
 The format of the memo will then be validated.
 After the format is validated, the entry of the document will be made in an XML

document.

The preceding process is an automated process that reduces the cycle time to a week.
The development team decides to use XML as the format for transferring and storing
data because XML files are platform independent and light in weight.

To carry out the entire process, the development team plans to create a Windows
application and name it as the MyMovies project. The following section discusses the
stages in the life cycle of the MyMovies project.

Project Life Cycle
In previous chapters, you looked at the phases of a development life cycle (DLC).
Therefore, this chapter will not cover the DLC again. Instead, it will discuss the
requirements analysis done by the development team and the design of the application
that was approved by the project manager.

Requirements Analysis

Requirements analysis is one of the most important phases of the development life
cycle. The first step in any DLC is to analyze the customer’s requirements. Then, based
on a clear understanding of the requirements, you need to define the design and
functionality of the DLC. The requirements analysis for the problem faced by MyMovies
is based on the following problem statement, as stated by the management at
MyMovies:
“We need to reduce our cycle time by one-third to get a competitive edge. It is therefore
essential that we devise a simple, automated process that reduces our effort as well as
out cycle time.”

Upon analyzing the problem statement, the development team has defined the following
list of tasks that the application needs to perform:

 The organization needs to ensure that the sales data is entered in a
predefined format.

 The data needs to be stored in a specified directory.
 The application needs to automate the process of generating the XML

file so that it can be easily accessed and processed by the other
divisions.

Solution to the Problem

After analyzing the requirements, the development team has decided to create a
Windows application that performs the following functions:

 The cash memo will be stored in a specified directory on the main server.
 The application will then validate the format of the cash memo.
 If the validation of the cash memo returns false, the application will

generate an error and create an event log.
 If the validation of the cash memo returns true, indicating that the cash

memo is in the correct format, an entry of the cash memo will be added
to an XML document.

High-Level Design
In this phase, the development team creates the design of the Windows application. The
MyMovies form consists of a Windows form. The layout for the form is shown in Figure
31-1.

Figure 31-1: The layout of the MyMovies form

To create the layout of the MyMovies application (as shown in Figure 31-1), you need to
insert a TabControl, two labels, two text boxes, and a check box. For the other tabbed
pages in the application, you need to insert four labels, a text box, a list box, and four
buttons. In previous lessons, you learned how to insert text box, label, and check box
controls. Now you will learn to insert a TabControl and define its properties.

A TabControl
A TabControl is a Windows forms control that you can use to create multiple tabs. You
can add pictures and other controls to the tabs, and you can use the TabControl to
create dialog boxes or forms that contain several options that can be grouped in different
pages. For example, you can use a TabControl to create a dialog box in which the font
options are listed on one control and the page-layout options are listed on the other.
The most important property of a TabControl is TabPages. The tab pages contain
individual tabs, and each tab is a TabPage object. When the tab is clicked, the Click
event for that TabPage object is raised.

To create a TabControl in Visual Studio.NET, drag the control from the Windows Forms
toolbox to the form. Let’s now create a TabControl for the application:

1. Drag a TabControl from the Windows Forms toolbox to the Windows
form.

2. You now need to add pages to the TabControl. Let’s now add tab
pages.

3. In the Properties window, click on the ellipsis button of the TabPages
property.

4. To add a page to the control, click the Add button. A tabbed page with
an index of 0 is added to the Members text box. The properties of
the tabbed page are displayed in the TabPage1 Properties window.

5. In the TabPage1 Properties window, change the Text property of the
tabbed page to Source Options and change Name to
TabSource.

6. When you change the name of the tabbed page to TabSource, the
name of the TabPage1 Properties window changes to TabSource
Properties window.

7. Repeat steps 4 and 5 to add another tabbed page to the form. Name
the new tabbed page TabDestination and change the Text
property to Destination Options.

8. Repeat steps 4 and 5 to add another tabbed page to the form. Name
the new tabbed page TabViewResult and change the Text
property to View Result. You can change the order in which the
tabbed pages display by clicking on either the up- or down-arrow
button.

9. Click on the OK button to close the TabPage Collection Editor dialog
box.

Figure 31-2 shows the TabPage Collection Editor dialog box.

Figure 31-2: The TabPage Collection Editor dialog box

To make your tab pages more interesting and easily identifiable, you can add images to
them. To do this, you need to change the ImageIndex property in the TabPage
Collection Editor. Before you do that, however, you need to add an ImageList to the
form. The next section looks at adding ImageList to the form.

The ImageList Control
The ImageList control stores images that can be used in other controls. Using an
ImageList enables you to write the code for a single catalog of images that you can use
in several controls. For example, you can use an ImageList to add the same icon images
to both a label and Toolbar control.

You can use the ImageList control to add images to several controls. These controls
include the ListView, TreeView, Toolbar, TabControl, button, check box, radio button,
and label controls.

The key property of the ImageList is Images, which is used to associate pictures to the
ImageList control. Two other properties, ColorDepth and ImageSize, also are
frequently used. The ColorDepth property determines the colors that render the image,
and the ImageSize property determines the size of the image.
To add an ImageList to the form, drag an ImageList from the Windows Forms toolbox to
the form. The ImageList is added to the component tray of the form. To this point, the
ImageList does not contain any images. To add images, you need to change the
Images property of the ImageList. When you add images to the ImageList, they are
added to a collection object of the control.

To add images to an ImageList in Visual Studio.NET, perform the following steps:
1. Click on the ellipsis button of the Images property. The Image

Collection Editor dialog box opens.
2. Click on the Add button to add an image to the Members text box.

You can browse for the image to add it to the ImageList. The image
you add is included in the System.Drawing namespace. The
index value of the first image added is 0. As you add more images
to the ImageList , the index value increases. For this form, you need
to add two more images later.

3. Click on the OK button to close the Image Collection Editor dialog
box.

Figure 31-3 shows the Bitmap image added to the Image Collection Editor dialog box.

Figure 31-3: The Image Collection Editor dialog box

To add the image in the ImageList property of the TabControl, perform the following
steps:

1. Click on the drop-down arrow button of the ImageList property of the
TabControl.

2. From the drop-down list, select the ImageList1 option. The Bitmap
image is not currently visible on the tabbed pages. To display the
image on the tabbed pages, you need to modify the properties of
the tabbed pages in the TabPage Collection Editor page.

3. Click on the ellipsis button of the TabPages property of the
TabControl to display the properties of the tabbed pages. The
TabSource tabbed page is selected by default.

4. Click on the drop-down button of the ImageIndex property.
5. From the drop-down list, select 0.

6. Repeat steps 3 and 4 to add images to the TabDestination and
TabViewResult tabbed pages. The images get added to the
tabbed pages.

The next section shows you how to add labels and text boxes to the tabbed pages.

Adding Controls to Tabbed Pages
The TabControl you created contains three tabbed pages: Source Options,
Destination Options, and View Result. Let’s first add controls to the Source
Options page.
The Source Options page consists of a check box, two labels, and two textboxes.
You can add these controls to the TabSource tabbed page by dragging the controls
from the Windows Forms toolbox. The properties you need to set for the controls are
provided in Table 31-1.
Table 31-1: Properties Assigned to the Controls on the TabSource Tabbed Page

Control Property Value

Label 1 ID Label1

Label 1 Text Copy the files
from:

Label 2 ID Label2

Label 2 Text Move the file
to:

Text box 1 Text TxtSource

Text box 2 Text TxtProcessedFile

Check box ID OptGenerateLog

Check box Text Generate event
log if an error
occurs

Now compare your form with Figure 31-4.

Figure 31-4: The TabSource page with the controls

Similarly, you can add controls to the TabDestination page. The TabDestination
page contains a label, a text box, a list box, a group box, and two buttons. The properties
you need to set for the controls on the TabDestination page are provided in Table 31-
2.
Table 31-2: Properties Assigned to the Controls on the TabDestination Tabbed
Page

Control Property Value

Label 1 Name Label2

Label 1 Text Destination
Directory

Text box Text TxtDestination

List box Name LstEvents

Group box Name GroupEventLog

Group box Text Event Log

Button 1 Name BtnRefresh

Button 1 Text Refresh Log

Button 2 Name BtnOK

Button 2 Text OK

Button 3 Name BtnExit

Button 3 Text Exit

Figure 31-5 shows the controls added to the TabDestination page.

Figure 31-5: The TabDestination page with the controls

Let’s now add controls to the last tabbed page—the View Result tabbed page. The
View Result tabbed page consists of a label and a button. Table 31-3 shows the
properties of the controls you need.
Table 31-3: Properties Assigned to the Controls on the TabViewResult Tabbed
Page

Control Property Value

Label 1 Name LblSummary

Label 2 Name LinkLabel1

Label 2 Text View in
Internet
Explorer

Label 2 ActiveLinkColor Red

Label 2 LinkColor 0, 0, 255

Button Name BtnSummary

Button Text View
Summary

Figure 31-6 shows the controls added to the TabViewResult page.

Figure 31-6: The TabViewResult page with the controls

Low-Level Design

After creating the design of a form in the high-level design phase, the development team
next creates a detailed design of software modules. These software modules are then
used to create a detailed structure of the application. In addition to creating software
modules, the team decides the flow and interaction of each module. This includes
creating flowcharts for each module.
Based on the high-level design of the MyMovies form, the development team creates the
flowchart for the form, as shown in Figure 31-7.

Figure 31-7: Flowchart of the MyMovies application

Having decided on the interface and the software module, the development team
proceeds with construction and testing of the Windows application. After the application
is tested and the errors in the application are detected and removed, the application is
deployed at the client site. The next chapter will cover how to write the code and deploy
the MyMovies application.

Summary
In this chapter, you were introduced to the project case study. You analyzed the
requirements of MyMovies and learned to create detailed high-level and low-level
designs for the application. You will learn to create and deploy the application in the next
chapter.

Chapter 32: Coding the Converter Application
The preceding chapter introduced you to the design of the MyMovies project. You also
saw the flowchart that showed you the sequence of events. This chapter deals with
writing the programming logic for the MyMovies project.

Writing the Programming Logic for the Application
Before you write the programming logic for the MyMovies project, let’s see how the
application will work:

1. The first step when the user runs the application is to specify the path of
the Source, Processed, and Destination directories. By default, the
application will show the path as D:\My Movies\Source, D:\My
Movies\Processed, and D:\My Movies\Destination,
respectively. The user can opt to either use the default directory or
change the directory.

2. After the user has specified the directories and clicks the OK button, the
application checks to see if the directory structure is valid.

3. If the directory structure is not valid, the application raises an error
message. The application also gives focus to the invalid directory. If the
directory structure is valid, the application enables the FileSystem
Watcher.

4. The application then hides the form and displays a notification icon on
the status bar.

5. The application then checks whether the user has added the file to the
Source directory.

6. When the user copies the memo file to the Source directory, the
application disables the FileSystem Watcher until processing is on. In
addition, the notification icon changes to a processing icon.

7. The application then checks the format of the memo file, and if the format
is correct, the application processes the memo file. The file extracts data
from the memo file and then saves the information in an XML document
called Summary.xml. The Summary.xml file is stored in the destination
directory specified by the user.

8. Alternatively, if the format is incorrect or if the path specified for the
source, destination, or processed files is incorrect, the application
generates an error in the Event Viewer.

9. After creating the Summary.xml document, the application changes the
notification icon again and enables the FileSystem Watcher so that it can
check the directory for any new file.

10. Finally, the application displays the result on the ViewResult tab. The
user can also choose to view the application in Internet Explorer by
clicking the View in Internet Explorer hyperlink.

Now that you are familiar with how the application works, let’s begin coding the
application.

Coding the Application
The first step is to write the code for the task that will be performed when the user runs
the application. This task is written in the form’s Load event. Let’s do this now.

Coding the Form’s Load Event
When the user runs the application, you need to ensure that the default path for the
source, destination, and processed directories is displayed in the TxtSource,
TxtDestination, and TxtProcessedFile text boxes, respectively. Recall that in the
preceding lesson, you added the mentioned text box to the form. In addition, you need to
ensure that the OptGenerateLog check box is selected by default. To add the default
values for the application, you need to write the following code:
Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 TxtSource.Text = "D:\My Movies\Source\"
 TxtProcessedFile.Text = " D:\My Movies\Processed\"
 TxtDestination.Text = " D:\My Movies\Destination\"
 OptGenerateLog.Checked = True
End Sub

When the application is run, the default values are added to the MyMovies form. Figures
32-1 and 32-2 show the default values for the Source, Destination, and Processed
directories.

Figure 32-1: The TabSource page at runtime

Figure 32-2: The TabDestination page at runtime

The user can either choose the default path or specify a new path. After specifying the
path for the source, destination, and processed directories, the user needs to click the
OK button. The application will then validate the path of the directories. Now let’s write
the code for the OK button.

Coding the OK Button
When a user clicks on the OK button, the application validates the path of the source,
destination, and processed directories. If the directory paths are incorrect, the application
generates an error message. You can display the error message in a message box or by
using the ErrorProvider control. The advantage of using the ErrorProvider control over
displaying the error message in a message box is that in a message box, once the
message is dismissed, the error message is no longer available. Alternatively, the
ErrorProvider control displays the error icon next to the control in which the error occurs.
In addition, when the user positions the mouse pointer over the error icon, a ToolTip
showing the error string appears.

To use the ErrorProvider control, however, you need to add the control to the form. Let’s
do this now.

The ErrorProvider Control
The ErrorProvider control is used to validate the data entered by a user. The
ErrorProvider displays an error message in a nonobstructive way if the data entered by
the user is not in the specified format.
To insert an ErrorProvider control into the form, drag the ErrorProvider control to the
Windows form. Next you need to specify the icon that will be displayed when an error
occurs. By default, Visual Studio.NET displays the icon shown in Figure 32-3.

Figure 32-3: The Windows form showing the error message icon

You can change the icon, however, by changing the Icon property of the ErrorProvider
control. In addition to displaying the icon, the ErrorProvider control also displays an error
message when the user points toward the error message icon. To display the error
message, you use the SetError method. The SetError method accepts two
parameters: the name of the control with which the error message is attached and the
string that will be displayed when the user points the mouse toward the error message
icon. Let’s now add an ErrorProvider control to the form.

1. Drag the ErrorProvider control from the Windows Forms toolbox to the
form.

2. Change the Name property of the ErrorProvider control to
ErrMessage.

You now need to specify an error message and associate it with the controls
that need to be validated. You’ll specify the error message and associate it
with the TxtSource, TxtDestination, and TxtProcessedFile text
boxes.

3. Now you need to add the following code to the Click event of the OK
button to display the specified error message if the directory
structure is not correct:
4. Private Sub BtnOK_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles BtnOK.Click
5.
6. If (Directory.Exists(TxtSource.Text) = False) Then
7. ErrMessage.SetError(TxtSource, "Invalid source

directory")
8. TxtSource.Focus()
9. TabControl1.SelectedTab = TabSource
10. Return
11. Else
12. ErrMessage.SetError(TxtSource, "")

13. End If
14.
15. If (Directory.Exists(TxtDestination.Text) = False)

Then
16. ErrMessage.SetError(TxtDestination, "Invalid

destination directory")
17. TxtDestination.Focus()
18. TabControl1.SelectedTab = TabDestination
19. Return
20. Else
21. ErrMessage.SetError(TxtDestination, "")
22. End If
23.
24. If (Directory.Exists(TxtProcessedFile.Text) =

False) Then
25. ErrMessage.SetError(TxtProcessedFile,

"Invalid processed file directory")
26. TxtProcessedFile.Focus()
27. TabControl1.SelectedTab = TabSource
28. Return
29. Else
30. ErrMessage.SetError(TxtProcessedFile, "")
31. End If

End Sub
The preceding code checks to see if the specified directory exists. If the
Directory.Exists command returns false, the code will generate an error message.
The SetError method is used to attach the error message to a control. As previously
mentioned, the SetError method accepts two parameters: the name of the control and
the error string. In the preceding code, the SetError method is used to associate the
text boxes with the error message. The Focus() method is used to set the focus on the
specified control. The command sets the focus of the application on the TxtSource,
TxtDestination, or TxtProcessed text boxes, depending on the text box whose
path is not in the specified format. The command TabControl1.SelectedTab is used
to set the focus of the control on the tab page on which the error occurs. For example, if
the error occurs in the TxtSource control, the TabControl1.SelectedTab
command is set to TabControl1.SelectedTab=TabSource. TabSource is the tab
page on which the TxtSource control is present. The Else clause of the If construct
specifies a null value for the message string. This implies that if the directory paths are
correct, the message string will be empty, and no error message will display.

Enhancing the Form
Let’s make the form a little more interesting. To do so, add the code to change the color
of the text box if the directory path entered by the user is incorrect. To add this
functionality, you need to add the following code in the KeyUp event of the text box in
which you want to change the code. Let’s now add the code for the TxtSource text box.

Private Sub TxtSource_KeyUp(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyEventArgs) Handles
TxtSource.KeyUp
 If (Directory.Exists(TxtSource.Text)) Then

 TxtSource.BackColor = Color.White
 Else
 TxtSource.BackColor = Color.BlanchedAlmond
 End If
End Sub
Now add the code to change the color of the TxtDestination and
TxtProcessedFile text boxes. Don’t forget to specify the name of the text box. Now
that you have written the code for validating the directory path, you need to enable the
FileSystem Watcher and display the notification icon in the status bar.

In addition, you will hide the form until the memo file is being processed. Let’s now add a
FileSystem Watcher component to the form. You use a FileSystem Watcher component
to track any changes made to files or directories of a file system.

The FileSystem Watcher Control
The FileSystem Watcher control, as previously mentioned, is used to track changes
made to a file system and then react to those changes. For example, if a number of
users are working on a file, you can use the FileSystem Watcher to track changes made
to the shared file. In this example, you will use the FileSystem Watcher to detect whether
a file is added to the Source directory. Whenever the FileSystem Watcher detects that a
file is added to the Source directory, it will initiate the processing for the file. Let’s now
add the FileSystem Watcher to the form. To add and configure the FileSystem Watcher,
perform the following steps:

1. Drag a FileSystem Watcher component from the Components
toolbox.

2. Change the Name property of the FileSystem Watcher to
FileWatcher and the Filter property to *.doc.

By setting the filter property to *.doc, you can limit the FileSystem Watcher
to look for only Word documents. I have done this because, for this
application, you know that the memo file will always be in Word format. Now
you need to enable the FileSystem Watcher.

3. To enable the FileSystem Watcher component, add the following
statement to the Click event of the OK button. Note that you need
to add the code below the code
ErrMessage.SetError(TxtProcessedFile, "") that you
added in the previous section.

FileWatcher .EnableRaisingEvents=True
Now that you have enabled the FileSystem Watcher, you need to specify the
component that the FileSystem Watcher needs to monitor.

4. To specify the path of the directory that the FileSystem Watcher
needs to monitor, add the following statement to the Click event of
the OK button.

FileWatcher .Path=TxtSource.Text
The preceding code associates the FileSystem Watcher to the TxtSource
control. You will now add a NotifyIcon Control to the form.

The NotifyIcon Control
The NotifyIcon control is used to indicate that a process is running in the background. In
this example, the NotifyIcon control is used to display a different icon, which shows that
the application is processing the memo file. The icon will be displayed on the status bar.
Two key properties you need to set while using the NotifyIcon control are Icons and
Visible. The Icons property specifies the icon that appears in the status bar. The
Visible property determines whether the icon will be visible at a particular time or not.

In addition to these two properties, you need to add the icon files to the bin folder of your
application. Let’s now perform the steps to add the NotifyIcon control to your form:

1. Drag the NotifyIcon control from the Windows Forms toolbox to the
form.

2. Change the Name property of the NotifyIcon control to IconNotify.
3. To create an instance of the icon file in the bin folder, add the

following code in the Declaration section:
4. Private m_ready As New System.Drawing.Icon("Ready.ICO")
5. Private m_Error As New System.Drawing.Icon("Error.ICO")

Private m_Info As New System.Drawing.Icon("Info.ICO")
In the preceding code, New System.Drawing.Icon is the default
namespace for the icon files.

6. To display the notification icon, add the following code to the Click
event of the OK button. Add it below the code you added in the
previous section.

7. IcoNotify.Icon=m_Ready
IcoNotify.Visible=True

Until the process is on, the user does not need to see the application.
Therefore, you can hide the application from the Taskbar.

8. To hide the application, add the following code to the Click event of
the OK button.

9. Me.ShowInTaskbar = False
Me.Hide()

The entire code for the OK button is as follows:
Private Sub BtnOK_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BtnOK.Click
 If (Directory.Exists(TxtSource.Text) = False) Then
 ErrMessage.SetError(TxtSource, "Invalid source directory")
 TxtSource.Focus()
 TabControl1.SelectedTab = TabSource
 Return
 Else
 ErrMessage.SetError(TxtSource, "")
 End If

 If (Directory.Exists(TxtDestination.Text) = False) Then
 ErrMessage.SetError(TxtDestination, "Invalid destination directory")
 TxtDestination.Focus()
 TabControl1.SelectedTab = TabDestination
 Return
 Else
 ErrMessage.SetError(TxtDestination, "")
 End If

 If (Directory.Exists(TxtProcessedFile.Text) = False) Then
 ErrMessage.SetError(TxtProcessedFile, "Invalid processed file directory")

 TxtProcessedFile.Focus()
 TabControl1.SelectedTab = TabSource
 Return
 Else
 ErrMessage.SetError(TxtProcessedFile, "")
 FileWatcher .Path = TxtSource.Text
 FileWatcher .EnableRaisingEvents = True
 IcoNotify.Icon = m_ready
 IcoNotify.Visible = True
 Me.ShowInTaskbar = False
 Me.Hide()
 End If
 End Sub

After writing the code for validating the directory structure and displaying the notification
icon, let’s move a step further and write the code for converting the text stored in the
Word document to an XML file. In addition, you’ll trap any errors generated while
processing the Word documents in the Windows Event Viewer.
To convert the text to XML, you need to check when a new file is copied to the Source
folder and then start the processing. To see if a new file has been added to the Source
directory, you need to write the code in the Created event of the FileSystem Watcher
class.

The Created Event
As previously mentioned, the FileSystem Watcher is used to track the changes made in
a directory or file. When a change takes place in the directory or file, the FileSystem
Watcher generates various events such as Created, Deleted, or Renamed. For this
application, the Created event is used. The Created event will track when a new file
is added to a directory specified in the FullPath property of the event. The FullPath
property stores the path of the file or directory in which the change takes place. In the
Created event property, you will write the code to extract data from the Word document
and then write the same data in an XML file. In addition, you need to write the code to
disable the FileSystem Watcher when the file is being processed. To perform these
tasks, write the following code in the Created event of the FileSystem Watcher:

Private Sub FileWatcher_Created(ByVal sender As Object, ByVal e As
System.IO.FileSystemEventArgs) Handles
FileWatcher .Created
FileWatcher .EnableRaisingEvents = False
 IconNotify.Icon = m_Info
 IconNotify.Text = "Processed: " + e.Name
 'e.Name contains the name of the affected file
End Sub
In the preceding code, the FileWatcher.EnableRaisingEvents property is set to
False. This disables the FileSystem Watcher until it is explicitly enabled again. To
enable the FileSystem Watcher, you need to set the FileWatcher.EnableRaising-
Events property to True. The Icon property of the NotifyIcon control is set as m_Info.
Recall that in the preceding section, you assigned the path of the Info image file to the
variable m_info. The code IconNotify.Text = "Processed: " + e.Name will
display the ToolTip as Processed, along with the name of the affected file after the file
is processed.

Extracting Data from a Word Document
Your application is now ready for processing. To access the Word document stored in
the Source directory, you need to create an instance of Microsoft Word by using the
Word.ApplicationClass class. After you have created an instance of the Word
application, you can create an instance of the document by using the
Word.DocumentClass class. To create instances of the Word application as well as
the Word document, write the following code in the Created event of the
FileSystemWatcher component:

Dim wdApp As New Word.ApplicationClass()
Dim wdDoc As New Word.DocumentClass()
After creating an instance of the Word document, you need to open the document file. To
so this, use the Open() method of the Document class. The following code specifies the
path of the document you need to open:
Dim FileName As Object = e.FullPath
The preceding code opens the Word document and stores its content in the instance of
the WordDocumentClass. However, you do not require all of the information. For this
example, you just need the quantity and memo number. Figure 32-4 shows the sample
cash memo document you will use to convert to an XML document.

Figure 32-4: A sample cash memo document

Let’s now write the code to retrieve the data stored in the cash memo document. As
previously mentioned, you will retrieve specific data: The value for the memo number
and the quantity fields. To retrieve the required information, add the following code to the
Created event:

Try
 wdDoc = wdApp.Documents.Open(FileName)
 'creates an instance of the WordRange to store the content of the Word docs
Dim WdRange As Word.Range
 WdRange = wdDoc.Paragraphs.Item(2).Range

 Dim MemoNum, Quantity As String
 Dim ParaCount As String
 MemoNum = WdRange.Text

 MemoNum = MemoNum.Substring(15, 5)
 ParaCount = wdDoc.Paragraphs.Count
 ParaCount = ParaCount - 2
 WdRange = wdDoc.Paragraphs.Item(ParaCount).Range
 WdRange.MoveEnd("1", "-1")
 Quantity = WdRange.Text
 Quantity = Quantity.Substring(23)
The preceding code creates an object of the type Word.Range. The object WdRange
stores the content of the Word document. Then the Item property of the Paragraphs
collection is used to retrieve the data from a specified paragraph. As you can see in
Figure 32-4, the Cash Memo No. is the second paragraph in the cash memo document.
Therefore, you need to retrieve the content of the second paragraph of the cash memo
document by using the Range property. The content that is retrieved is then stored in
WdRange.
The Text property of the WdRange object stores the text of the paragraph in a String-
type variable strMemo. Until now, the strMemo variable has stored the entire content of
the second paragraph. However, to retrieve the value of the Cash Memo No. field, use
the Substring() method. The Substring() method takes two parameters: the
starting position from which the text is to be retrieved and the number of characters to be
retrieved.
Similarly, you can store the text of the Quantity field in another String-type variable,
StrQuantity. The Quantity field is the second-to-last paragraph in the cash memo
document. Therefore, you need to declare an Integer variable, IntParacount, that
stores the number of paragraphs in a document. Use the Count property of the
Paragraphs collection to count the number of paragraphs in the document.

Converting Data to XML Format
You will now write the data stored in the Word document to XML format. The first step
when writing data in XML format is to create an instance of the XMLTextWriter class.
To create an instance of this class, you need to write the following code in the Created
event of the WatchDir control:
Dim XmlWrite As XmlTextWriter
Now you can use XMLTextWriter to write data to the XML document. Before you do
that, however, you need to specify the path where the XML file will be stored. To specify
the destination of the XML file, you need to specify the following code:
XmlWrite = New XmlTextWriter(TxtDestination.Text + "Summary.xml", Nothing)
XmlWrite.Formatting = Formatting.Indented
The preceding code specifies the path of the XML file as the path stored in the
TxtDestination text box. Summary.xml specifies the name of the XML file. The
keyword Nothing specifies that the default encoding style is being used for the XML
file. Formatting.Indented specifies the indentation setting for the elements in the
XML file.

Next you need to write to the XML file. Let’s now write the code to add data to the XML
file.
XmlWrite.WriteComment("Summary of sales at My Movies")
 XmlWrite.WriteStartElement("Sales")
 XmlWrite.WriteStartElement("Date")
 XmlWrite.WriteAttributeString("Date", Convert.ToString(DateTime.Today))
 XmlWrite.WriteElementString("Memo", MemoNum)
 XmlWrite.WriteElementString("Quantity", Quantity)
 XmlWrite.WriteEndElement()

 XmlWrite.WriteEndElement()
In the preceding code, the WriteStartElement method is used to specify the start
elements as Sales and Date. You will now write the code to handle any errors that
might occur when running the application. The errors generated when running the
application are tracked in the Event Log. Let’s now look at handling exceptions using the
Event Log.

Displaying the Error Message in the Event Log
You can track the performance of the software and hardware events running in the
system by using the Event Viewer. The Event Viewer is a tool that helps administrators
track errors in a system. You can access the Event Viewer by choosing Administrative
Tools in the Control Panel. Then double-click the Event Viewer to open the Event Viewer
window. The Event Viewer window lists all the tasks performed by different applications
on your system. You can read or write to the Event Viewer by using the Event Log
component. To include the EventLog component, drag it from the Components toolbox to
the form. Change the Name property of the control to eventLog.
To add an error entry in the eventLog component, you need to catch any exception
generated by the application. You write exceptions to the Event Viewer by using the
WriteEntry() method. Before you do that, however, you need to create an instance of
the event log.
Let’s now write the code to write an error log to the Event Viewer. In addition, you will
also specify the code to change the icon if an error occurs. Write the code in the
Created event:

Dim evlog As New EventLog()
 evlog.Log = "Application"
 evlog.MachineName = "."

Catch Exc As Exception
 IcoNotify.Icon = m_Error
 IcoNotify.Text = "Error in " + e.Name

 If (OptGenerateLog.Checked = True) Then
 evlog.WriteEntry(e.Name + ": " + Exc.Message)
In the preceding code, the Error.ico notification icon is displayed, and a ToolTip
displaying the error message is added to the notification icon. The code then checks to
see whether the OptGenerateLog check box is selected. If the user selected the check
box, the error entry is written to the Event Viewer. However, the user may choose to
uncheck the check box. This would prevent the error entry from being written to the
Event Viewer.
After writing the data to an XML document, you need to close the object of the
XmlTextWriter class by using the Close() method. In addition, you need to exit the
Microsoft Word application. You can do this by using the Quit() method. You also need
to enable the FileSystem Watcher component to enable it to monitor the Source
directory.
 Finally
 wdApp.Quit()
 watchDir.EnableRaisingEvents = True
 End Try
After the file is processed, you can move the file that the directory specified in the
TxtProcessedFile text box. To do this, add the following code to the Created event:

tryagain:
 Try

 File.Move(e.FullPath, TxtProcessedFile.Text + e.Name)
 Catch

 GoTo tryagain
 End Try
The File.Move() method call statement is enclosed in the Try block. This is because
the application moves the processed file to the processed directory only after the file has
been processed. The Move() method is used to move the processed file to the directory
specified in the TxtProcessedFile text box. The path of the Source directory and
Destination directory are passed as parameters to the Move() method.

The events generated are visible in the Microsoft Windows Event Viewer. However, you
will now add the code for displaying the entries generated in the Event Viewer in a list
box.

Displaying Event Entries in a List Box
In the preceding lesson, you created a list box to display the event entries from the Event
Viewer. Let’s now add code to the Refresh Log button. When a user clicks on the
Refresh Log button, the event entries from the Event Viewer are picked and displayed
in the LstEvents list box. To do so, add the following code to the Click event of the
Refresh Log button.

Private Sub BtnRefresh_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles BtnRefresh.Click
 LstEvents.Items.Clear()
 Dim evlog As New EventLog()
 evlog.Log = "Application"
 evlog.MachineName = "."
 evlog.Source = "MyApp"
 Dim LogEntry As EventLogEntry
 For Each LogEntry In evlog.Entries
 If (LogEntry.Source = "MyApp") Then
 LstEvents.Items.Add(LogEntry.Message)
 End If
 Next
End Sub
The preceding code uses the Clear() method to clear the content of the LstEvents
list box. It then sets the Log property of the EventLog class to the Application Log
node of the Event Viewer. Specifying the MachineName property of the EventLog class
to dot (.) indicates that the event log is created in the Event Viewer of the user’s
machine.
Next, the For…Each loop is used to write all the event entries to the LstEvents list box.
The Add() method of the ListBox class adds an entry as an item to the LstEvents
list box.

In addition to creating a list box to view the event entries for the application, you can
display the contents of the Summary.xml document in a label.

Displaying Data from the Summary.xml Document in a Label
To display the data from the Summary.xml document in a label, you need to read data
from the XML document. To do this, create an instance of the StreamReader class,
StrRead. The StreamReader class is a class in the System.IO namespace and
implements the System.IO.TextReader class. The TextReader class represents a

reader used to read the characters in a byte stream. To create an instance of the
StreamReader class, use the following statement:

Dim StrRead As StreamReader
After creating the instance, you can use it to read the contents of the Summary.xml
document in the directory specified in the TxtDestination text box. To read the data
from the Summary.xml document, use the following statement:
StrRead = New StreamReader(TxtDestination.Text + "Summary.xml")
To read the data in the Summary.xml document, use the ReadToEnd() method of the
StreamReader class. To display the text in the label , type the following statements in
the Click event of the BtnSummary button.

Private Sub BtnSummary_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BtnSummary.Click
 Dim StrRead As StreamReader
 Try
 StrRead = New StreamReader(TxtDestination.Text + "Summary.xml")
 LblSummary.Text = StrRead.ReadToEnd
 StrRead.Close()
End Sub
After displaying the data in the label, you need to close the object of the StreamReader
class. You can close the StrRead object by using the Close() method of the
StreamReader class. The Close() method closes the object and releases any
resources associated with the StrRead object.
Figure 32-5, on page 836, shows the label displaying the data from the Summary.xml
document.

Figure 32-5: The label displaying the data from the Summary.xml document

When reading data from an XML document, if the application generates an exception,
you can display the exception in a message box, as shown in the following statement:
Catch Exc As Exception
 MessageBox.Show("An error was returned: " + Exc.Message + "Please check
the destination folder for
 summary")
 End Try

Coding the Exit Button
Add the following code to the Click event of the Exit button. This code will enable the
application to terminate when the user clicks on the Exit button.
Private Sub BtnExit_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles BtnExit.Click
 Application.Exit()
End Sub
Listing 32-1 provides the complete code for the MyMovies.vb file.

Listing 32-1: MyMovies.vb

Imports System

Imports System.IO

Imports System.Collections

Imports System.Drawing

Imports System.ComponentModel

Imports System.Windows.Forms

Imports System.Data

Imports System.Diagnostics

Imports System.Xml

Public Class Form1

 Inherits System.Windows.Forms.Form

 Private m_ready As New System.Drawing.Icon("Ready.ICO")

 Private m_Error As New System.Drawing.Icon("Error.ICO")

 Friend WithEvents IcoNotify As System.Windows.Forms.NotifyIcon

 Friend WithEvents BtnOK As System.Windows.Forms.Button

 Friend WithEvents BtnSummary As System.Windows.Forms.Button

 Friend WithEvents LblSummary As System.Windows.Forms.Label

 Friend WithEvents LinkLabel1 As System.Windows.Forms.LinkLabel

 Friend WithEvents TabDestination As System.Windows.Forms.TabPage

 Friend WithEvents TabViewResult As System.Windows.Forms.TabPage

 Friend WithEvents Button1 As System.Windows.Forms.Button

 Friend WithEvents ErrorProvider1 As System.Windows.Forms.ErrorProvider

 Private m_Info As New System.Drawing.Icon("Info.ICO")

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End If

 MyBase.Dispose(disposing)

 End Sub

 Friend WithEvents TabControl1 As System.Windows.Forms.TabControl

 Friend WithEvents TabSource As System.Windows.Forms.TabPage

 Friend WithEvents ImageList1 As System.Windows.Forms.ImageList

 Friend WithEvents Label1 As System.Windows.Forms.Label

 Friend WithEvents Label3 As System.Windows.Forms.Label

 Friend WithEvents TxtSource As System.Windows.Forms.TextBox

 Friend WithEvents TxtProcessedFile As System.Windows.Forms.TextBox

 Friend WithEvents Label2 As System.Windows.Forms.Label

 Friend WithEvents TxtDestination As System.Windows.Forms.TextBox

 Friend WithEvents grpEventLog As System.Windows.Forms.GroupBox

 Friend WithEvents BtnRefresh As System.Windows.Forms.Button

 Friend WithEvents LstEvents As System.Windows.Forms.ListBox

 Friend WithEvents OptGenerateLog As System.Windows.Forms.CheckBox

 Friend WithEvents ErrMessage As System.Windows.Forms.ErrorProvider

 Friend WithEvents BtnExit As System.Windows.Forms.Button

 Friend WithEvents watchDir As System.IO.FileSystemWatcher

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 Me.components = New System.ComponentModel.Container()

 Dim resources As System.Resources.ResourceManager = New
System.Resources.ResourceManager(GetType(Form1))

 Me.TabControl1 = New System.Windows.Forms.TabControl()

 Me.TabSource = New System.Windows.Forms.TabPage()

 Me.OptGenerateLog = New System.Windows.Forms.CheckBox()

 Me.TxtProcessedFile = New System.Windows.Forms.TextBox()

 Me.TxtSource = New System.Windows.Forms.TextBox()

 Me.Label3 = New System.Windows.Forms.Label()

 Me.Label1 = New System.Windows.Forms.Label()

 Me.TabDestination = New System.Windows.Forms.TabPage()

 Me.BtnExit = New System.Windows.Forms.Button()

 Me.BtnOK = New System.Windows.Forms.Button()

 Me.LstEvents = New System.Windows.Forms.ListBox()

 Me.grpEventLog = New System.Windows.Forms.GroupBox()

 Me.BtnRefresh = New System.Windows.Forms.Button()

 Me.TxtDestination = New System.Windows.Forms.TextBox()

 Me.Label2 = New System.Windows.Forms.Label()

 Me.TabViewResult = New System.Windows.Forms.TabPage()

 Me.LinkLabel1 = New System.Windows.Forms.LinkLabel()

 Me.LblSummary = New System.Windows.Forms.Label()

 Me.BtnSummary = New System.Windows.Forms.Button()

 Me.ImageList1 = New System.Windows.Forms.ImageList(Me.components)

 Me.ErrMessage = New System.Windows.Forms.ErrorProvider()

 Me.watchDir = New System.IO.FileSystemWatcher()

 Me.IcoNotify = New System.Windows.Forms.NotifyIcon(Me.components)

 Me.Button1 = New System.Windows.Forms.Button()

 Me.ErrorProvider1 = New System.Windows.Forms.ErrorProvider()

 Me.TabControl1.SuspendLayout()

 Me.TabSource.SuspendLayout()

 Me.TabDestination.SuspendLayout()

 Me.grpEventLog.SuspendLayout()

 Me.TabViewResult.SuspendLayout()

 CType(Me.watchDir, System.ComponentModel.ISupportInitialize).BeginInit()

 Me.SuspendLayout()

 '

 'TabControl1

 '

 Me.TabControl1.Controls.AddRange(New System.Windows.Forms.Control()
{Me.TabSource,

Me.TabDestination, Me.TabViewResult})

 Me.TabControl1.ImageList = Me.ImageList1

 Me.TabControl1.Location = New System.Drawing.Point(40, 24)

 Me.TabControl1.Name = "TabControl1"

 Me.TabControl1.SelectedIndex = 0

 Me.TabControl1.Size = New System.Drawing.Size(392, 280)

 Me.TabControl1.TabIndex = 0

 '

 'TabSource

 '

 Me.TabSource.Controls.AddRange(New System.Windows.Forms.Control()
{Me.OptGenerateLog,

Me.TxtProcessedFile, Me.TxtSource, Me.Label3, Me.Label1})

 Me.TabSource.ImageIndex = 0

 Me.TabSource.Location = New System.Drawing.Point(4, 23)

 Me.TabSource.Name = "TabSource"

 Me.TabSource.Size = New System.Drawing.Size(384, 253)

 Me.TabSource.TabIndex = 0

 Me.TabSource.Text = "Source Options"

 '

 'OptGenerateLog

 '

 Me.OptGenerateLog.Location = New System.Drawing.Point(16, 168)

 Me.OptGenerateLog.Name = "OptGenerateLog"

 Me.OptGenerateLog.Size = New System.Drawing.Size(304, 24)

 Me.OptGenerateLog.TabIndex = 4

 Me.OptGenerateLog.Text = "Generate event log if an error occurs"

 '

 'TxtProcessedFile

 '

 Me.TxtProcessedFile.Location = New System.Drawing.Point(16, 128)

 Me.TxtProcessedFile.Name = "TxtProcessedFile"

 Me.TxtProcessedFile.Size = New System.Drawing.Size(304, 20)

 Me.TxtProcessedFile.TabIndex = 3

 Me.TxtProcessedFile.Text = ""

 '

 'TxtSource

 '

 Me.TxtSource.Location = New System.Drawing.Point(144, 40)

 Me.TxtSource.Name = "TxtSource"

 Me.TxtSource.Size = New System.Drawing.Size(168, 20)

 Me.TxtSource.TabIndex = 2

 Me.TxtSource.Text = ""

 '

 'Label3

 '

 Me.Label3.Location = New System.Drawing.Point(24, 96)

 Me.Label3.Name = "Label3"

 Me.Label3.Size = New System.Drawing.Size(184, 16)

 Me.Label3.TabIndex = 1

 Me.Label3.Text = "Move the processed source file to:"

 '

 'Label1

 '

 Me.Label1.Location = New System.Drawing.Point(16, 40)

 Me.Label1.Name = "Label1"

 Me.Label1.Size = New System.Drawing.Size(104, 16)

 Me.Label1.TabIndex = 0

 Me.Label1.Text = "Copy the files from:"

 '

 'TabDestination

 '

 Me.TabDestination.Controls.AddRange(New System.Windows.Forms.Control()

{Me.BtnExit, Me.BtnOK, Me.LstEvents, Me.grpEventLog, Me.TxtDestination, Me.Label2})

 Me.TabDestination.ImageIndex = 1

 Me.TabDestination.Location = New System.Drawing.Point(4, 23)

 Me.TabDestination.Name = "TabDestination"

 Me.TabDestination.Size = New System.Drawing.Size(384, 253)

 Me.TabDestination.TabIndex = 1

 Me.TabDestination.Text = "Destination Options"

 '

 'BtnExit

 '

 Me.BtnExit.Location = New System.Drawing.Point(208, 200)

 Me.BtnExit.Name = "BtnExit"

 Me.BtnExit.Size = New System.Drawing.Size(64, 32)

 Me.BtnExit.TabIndex = 8

 Me.BtnExit.Text = "Exit"

 '

 'BtnOK

 '

 Me.BtnOK.Location = New System.Drawing.Point(88, 200)

 Me.BtnOK.Name = "BtnOK"

 Me.BtnOK.Size = New System.Drawing.Size(64, 32)

 Me.BtnOK.TabIndex = 7

 Me.BtnOK.Text = "OK"

 '

 'LstEvents

 '

 Me.LstEvents.Location = New System.Drawing.Point(24, 80)

 Me.LstEvents.Name = "LstEvents"

 Me.LstEvents.Size = New System.Drawing.Size(312, 30)

 Me.LstEvents.TabIndex = 6

 '

 'grpEventLog

 '

 Me.grpEventLog.Controls.AddRange(New System.Windows.Forms.Control()
{Me.BtnRefresh})

 Me.grpEventLog.Location = New System.Drawing.Point(8, 56)

 Me.grpEventLog.Name = "grpEventLog"

 Me.grpEventLog.Size = New System.Drawing.Size(352, 120)

 Me.grpEventLog.TabIndex = 3

 Me.grpEventLog.TabStop = False

 Me.grpEventLog.Text = "Event Log"

 '

 'BtnRefresh

 '

 Me.BtnRefresh.Location = New System.Drawing.Point(240, 88)

 Me.BtnRefresh.Name = "BtnRefresh"

 Me.BtnRefresh.Size = New System.Drawing.Size(96, 24)

 Me.BtnRefresh.TabIndex = 4

 Me.BtnRefresh.Text = "Refresh Log"

 '

 'TxtDestination

 '

 Me.TxtDestination.Location = New System.Drawing.Point(168, 16)

 Me.TxtDestination.Name = "TxtDestination"

 Me.TxtDestination.Size = New System.Drawing.Size(168, 20)

 Me.TxtDestination.TabIndex = 1

 Me.TxtDestination.Text = "TextBox1"

 '

 'Label2

 '

 Me.Label2.Location = New System.Drawing.Point(16, 16)

 Me.Label2.Name = "Label2"

 Me.Label2.Size = New System.Drawing.Size(120, 16)

 Me.Label2.TabIndex = 0

 Me.Label2.Text = "Destination Directory"

 '

 'TabViewResult

 '

 Me.TabViewResult.Controls.AddRange(New System.Windows.Forms.Control()

{Me.Button1, Me.LinkLabel1, Me.LblSummary, Me.BtnSummary})

 Me.TabViewResult.ImageIndex = 2

 Me.TabViewResult.Location = New System.Drawing.Point(4, 23)

 Me.TabViewResult.Name = "TabViewResult"

 Me.TabViewResult.Size = New System.Drawing.Size(384, 253)

 Me.TabViewResult.TabIndex = 2

 Me.TabViewResult.Text = "View Result"

 '

 'LinkLabel1

 '

 Me.LinkLabel1.Location = New System.Drawing.Point(224, 16)

 Me.LinkLabel1.Name = "LinkLabel1"

 Me.LinkLabel1.Size = New System.Drawing.Size(136, 23)

 Me.LinkLabel1.TabIndex = 3

 Me.LinkLabel1.TabStop = True

 Me.LinkLabel1.Text = "View in Internet Explorer"

 '

 'LblSummary

 '

 Me.LblSummary.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle

 Me.LblSummary.Location = New System.Drawing.Point(32, 40)

 Me.LblSummary.Name = "LblSummary"

 Me.LblSummary.Size = New System.Drawing.Size(296, 184)

 Me.LblSummary.TabIndex = 2

 Me.LblSummary.TextAlign = System.Drawing.ContentAlignment.TopCenter

 '

 'BtnSummary

 '

 Me.BtnSummary.Location = New System.Drawing.Point(112, 280)

 Me.BtnSummary.Name = "BtnSummary"

 Me.BtnSummary.Size = New System.Drawing.Size(120, 32)

 Me.BtnSummary.TabIndex = 1

 Me.BtnSummary.Text = "View Summary"

 '

 'ImageList1

 '

 Me.ImageList1.ColorDepth = System.Windows.Forms.ColorDepth.Depth8Bit

 Me.ImageList1.ImageSize = New System.Drawing.Size(16, 16)

 Me.ImageList1.ImageStream =
CType(resources.GetObject("ImageList1.ImageStream"),

System.Windows.Forms.ImageListStreamer)

 Me.ImageList1.TransparentColor = System.Drawing.Color.Transparent

 '

 'watchDir

 '

 Me.watchDir.EnableRaisingEvents = True

 Me.watchDir.Filter = "*.doc"

 Me.watchDir.SynchronizingObject = Me

 '

 'IcoNotify

 '

 Me.IcoNotify.Text = "NotifyIcon1"

 Me.IcoNotify.Visible = True

 '

 'Button1

 '

 Me.Button1.Location = New System.Drawing.Point(144, 240)

 Me.Button1.Name = "Button1"

 Me.Button1.TabIndex = 4

 Me.Button1.Text = "BtnSummary"

 '

 'ErrorProvider1

 '

 Me.ErrorProvider1.DataMember = Nothing

 '

 'Form1

 '

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

 Me.ClientSize = New System.Drawing.Size(448, 325)

 Me.Controls.AddRange(New System.Windows.Forms.Control() {Me.TabControl1})

 Me.Name = "Form1"

 Me.Text = "Form1"

 Me.TabControl1.ResumeLayout(False)

 Me.TabSource.ResumeLayout(False)

 Me.TabDestination.ResumeLayout(False)

 Me.grpEventLog.ResumeLayout(False)

 Me.TabViewResult.ResumeLayout(False)

 CType(Me.watchDir, System.ComponentModel.ISupportInitialize).EndInit()

 Me.ResumeLayout(False)

 End Sub

#End Region

 Private Sub TabControl1_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e

As System.EventArgs) Handles TabControl1.SelectedIndexChanged

 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs)

Handles MyBase.Load

 TxtSource.Text = "D:\MarkUp Movies\Source\"

 TxtProcessedFile.Text = "D:\MarkUp Movies\Processed\"

 TxtDestination.Text = "D:\MarkUp Movies\Destination\"

 OptGenerateLog.Checked = True

 End Sub

 Private Sub BtnOK_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)

Handles BtnOK.Click

 If (Directory.Exists(TxtSource.Text) = False) Then

 ErrMessage.SetError(TxtSource, "Invalid source directory")

 TxtSource.Focus()

 TabControl1.SelectedTab = TabSource

 Return

 Else

 ErrMessage.SetError(TxtSource, "")

 End If

 If (Directory.Exists(TxtDestination.Text) = False) Then

 ErrMessage.SetError(TxtDestination, "Invalid destination directory")

 TxtDestination.Focus()

 TabControl1.SelectedTab = TabDestination

 Return

 Else

 ErrMessage.SetError(TxtDestination, "")

 End If

 If (Directory.Exists(TxtProcessedFile.Text) = False) Then

 ErrMessage.SetError(TxtProcessedFile, "Invalid processed file directory")

 TxtProcessedFile.Focus()

 TabControl1.SelectedTab = TabSource

 Return

 Else

 ErrMessage.SetError(TxtProcessedFile, "")

 watchDir.Path = TxtSource.Text

 watchDir.EnableRaisingEvents = True

 IcoNotify.Icon = m_ready

 IcoNotify.Visible = True

 Me.ShowInTaskbar = False

 Me.Hide()

 End If

 End Sub

 Private Sub TxtSource_KeyUp(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyEventArgs)

 Handles TxtSource.KeyUp

 If (Directory.Exists(TxtSource.Text)) Then

 TxtSource.BackColor = Color.White

 Else

 TxtSource.BackColor = Color.BlanchedAlmond

 End If

 End Sub

 Private Sub TxtDestination_KeyUp(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyEventArgs)

 Handles TxtDestination.KeyUp

 If (Directory.Exists(TxtSource.Text)) Then

 TxtDestination.BackColor = Color.White

 Else

 TxtDestination.BackColor = Color.BlanchedAlmond

 End If

 End Sub

 Private Sub TxtProcessedFile_KeyUp(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyEventArgs) Handles TxtProcessedFile.KeyUp

 If (Directory.Exists(TxtSource.Text)) Then

 TxtProcessedFile.BackColor = Color.White

 Else

 TxtProcessedFile.BackColor = Color.BlanchedAlmond

 End If

 End Sub

 Private Sub IcoNotify_DoubleClick(ByVal sender As Object, ByVal e As

System.EventArgs) Handles IcoNotify.DoubleClick

 IcoNotify.Visible = False

 Me.ShowInTaskbar = True

 Me.Show()

 End Sub

 Private Sub BtnExit_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles BtnExit.Click

 Application.Exit()

 End Sub

 Private Sub watchDir_Created(ByVal sender As Object, ByVal e As

System.IO.FileSystemEventArgs) Handles watchDir.Created

 Dim evlog As New EventLog()

 evlog.Log = "Application"

 evlog.MachineName = "."

 evlog.Source = "MyApp"

 watchDir.EnableRaisingEvents = False

 IcoNotify.Icon = m_Info

 IcoNotify.Text = "Processed: " + e.Name

 Dim wdApp As New Word.ApplicationClass()

 Dim wdDoc As New Word.DocumentClass()

 Dim FileName As Object = e.FullPath

 Dim XmlWrite As XmlTextWriter

 Try

 wdDoc = wdApp.Documents.Open(FileName)

'creates an instance of the WordRange to store the content of the Word docs

 Dim WdRange As Word.Range

 WdRange = wdDoc.Paragraphs.Item(2).Range

 Dim MemoNum, Quantity As String

 Dim ParaCount As String

 MemoNum = WdRange.Text

 MemoNum = MemoNum.Substring(15, 5)

 ParaCount = wdDoc.Paragraphs.Count

 ParaCount = ParaCount - 2

 WdRange = wdDoc.Paragraphs.Item(ParaCount).Range

 WdRange.MoveEnd("1", "-1")

 Quantity = WdRange.Text

 Quantity = Quantity.Substring(23)

 XmlWrite = New XmlTextWriter(TxtDestination.Text + "Summary.xml", Nothing)

 XmlWrite.Formatting = Formatting.Indented

 XmlWrite.WriteComment("Summary of sales at My Movies")

 XmlWrite.WriteStartElement("Sales")

 XmlWrite.WriteStartElement("Date")

 XmlWrite.WriteAttributeString("Date", Convert.ToString(DateTime.Today))

 XmlWrite.WriteElementString("Memo", MemoNum)

 XmlWrite.WriteElementString("Quantity", Quantity)

 XmlWrite.WriteEndElement()

 XmlWrite.WriteEndElement()

 XmlWrite.Flush()

 XmlWrite.Close()

 IcoNotify.Icon = m_ready

 LinkLabel1.Tag = TxtDestination.Text + "Summary.xml"

 Catch Exc As Exception

 IcoNotify.Icon = m_Error

 IcoNotify.Text = "Error in " + e.Name

 If (OptGenerateLog.Checked = True) Then

 evlog.WriteEntry(e.Name + ": " + Exc.Message)

 End If

 Finally

 wdApp.Quit()

 watchDir.EnableRaisingEvents = True

 End Try

tryagain:

 Try

 File.Move(e.FullPath, TxtProcessedFile.Text + e.Name)

 Catch

 GoTo tryagain

 End Try

 End Sub

 Private Sub BtnViewSummary_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs)

 End Sub

 Private Sub BtnRefresh_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles BtnRefresh.Click

 LstEvents.Items.Clear()

 Dim evlog As New EventLog()

 evlog.Log = "Application"

 evlog.MachineName = "."

 evlog.Source = "MyApp"

 Dim LogEntry As EventLogEntry

 For Each LogEntry In evlog.Entries

 If (LogEntry.Source = "MyApp") Then

 LstEvents.Items.Add(LogEntry.Message)

 End If

 Next

 End Sub

 Private Sub TabSource_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles TabSource.Click

 End Sub

 Private Sub BtnSummary_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles BtnSummary.Click

 Dim StrRead As StreamReader

 Try

 StrRead = New StreamReader(TxtDestination.Text + "Summary.xml")

 LblSummary.Text = StrRead.ReadToEnd

 StrRead.Close()

 Catch Exc As Exception

 MessageBox.Show("An error was returned: " + Exc.Message + "Please

check the destination folder for summary")

 End Try

 End Sub

 Private Sub TxtProcessedFile_TextChanged(ByVal sender As System.Object, ByVal e

As System.EventArgs)

 Handles TxtProcessedFile.TextChanged

 End Sub

 Private Sub LblSummary_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles

 LblSummary.Click

 End Sub

 Private Sub LinkLabel1_LinkClicked(ByVal sender As System.Object, ByVal e As

 System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles
LinkLabel1.LinkClicked

 If LinkLabel1.Tag = Nothing Then

 MessageBox.Show(" No File Found in Destination Directory ")

 Exit Sub

 End If

 Try

 System.Diagnostics.Process.Start(LinkLabel1.Tag)

 Catch exp As Exception

 MsgBox(exp.Message.ToString)

 End Try

 End Sub

 Private Sub watchDir_Changed(ByVal sender As System.Object, ByVal e As

System.IO.FileSystemEventArgs) Handles watchDir.Changed

 End Sub

 Private Sub IcoNotify_MouseDown(ByVal sender As System.Object, ByVal e As

System.Windows.Forms.MouseEventArgs) Handles IcoNotify.MouseDown

 End Sub

End Class

Summary
In this chapter, you learned to add the code for the Windows application. In addition, you
learned to use controls such as ErrorProvider, FileSystemWatcher, and NotifyIcon. You
also learned to convert data stored in a Word document to the XML format.

Part VI: Professional Project 5—Mobile Web
Applications
Chapter List

Chapter 33: Project Case Study—MobileQuiz Application
Chapter 34: Coding the MobileQuiz Application

Project 5 Overview
Mobile Web applications enable users on the move to access data on their handheld
devices. This project will introduce you to creating a mobile Web application. You’ll
create a quiz that the employees of Markup Toys, a fictitious company, can access from
anywhere in the world. The company hopes that the application will provide an
interesting recreation for employees away from home. The application will first accept the
user’s name and store the name in a session variable. Then the application will display a
set of five questions that the users can attempt to answer. Finally, after the user has
attempted the questions, the application will display the user’s name and score. In
addition, it will also display the name of the employee who has scored the highest score
so far. To display the name of the user who has scored the highest score, the application
will interact with a SQL 2000 database.

The key concepts you will use to create the application are as follows:
 The .NET framework
 Visual Basic.NET

 The Wireless Application Protocol
 Mobile Web forms
 Connecting to a database

This project will explain how to create a mobile Web application. You will begin by
learning about the project case study, then about designing the forms, and then about
adding the code for the application.

Chapter 33: Project Case Study—MobileQuiz
Application
Overview
This chapter takes up the example of a fictitious company by the name Markup Toys.
Let’s assume that Markup Toys is a leading toy manufacturing company in the United
States. The company maintains high quality standards, and this has led to its rapid
growth. The company at present has a team of 300 dedicated employees. The company
head office is in New York, and its retail outlets are located across the United States.

The company has now decided to expand its operations to the Middle East and
Southeast Asia. The expansion plans have led to frequent traveling by a number of
company employees. Top management officials realize that the job is stressful. In its
continuous endeavor to make the job less stressful for its employees, management has
decided to create an application to provide a source of entertainment for employees.
Because many of the company’s employees are on the move, management wants the
application to be accessible on a mobile phone. Management has approved a small quiz
that poses a set of five interesting questions. Management wants the questions to cover
varied topics. For this, the data for the application needs to be updated daily. Employees
can access the quiz from anywhere in the world on their handheld devices. The
application will pose five new questions to users every day. In addition, the application
will also display the user’s score, the highest score of the day, and the name of the
person with the highest score. These pieces of information will be stored in and retrieved
from a database.

After analyzing the various available technologies, management has decided to develop
the application using Visual Basic.NET. This is because the .NET framework makes it
easy to develop applications for the distributed Web environment, and it supports cross-
platform execution. Moreover, the .NET framework makes data available anytime,
anywhere, and on any device. In addition, because the data in the database needs to be
updated daily, easy connectivity is needed between the backend and front end. Visual
Basic.NET offers this easy connectivity.

For the development of this application, a three-member team has been formed. The
team is called the MobileApplicationTeam and consists of the following members:

 Patie Jason, the project manager of the development team
 Helina Smithson
 Joel Hallary
 you

All the members of the MobileApplicationTeam are experienced programmers who have
developed applications using Visual Basic.NET and Microsoft SQL 2000. You are a part
of the development team and are responsible for developing the mobile Web application.

To start the development of the application, the members of the MobileApplicationTeam
have determined the development life cycle of the mobile Web application project. This
life cycle is discussed in the following section.

Project Life Cycle of Markup Toys
Every project has a development life cycle. In most cases, the life cycle of a project
consists of three phases:

 Project initiation
 Project execution
 Project deployment

Since you are familiar with these phases (refer to Chapter 9, “Project Case Study—
Creating a Video Kiosk”), this section will just discuss the various stages of the project
execution phase and how they pertain to this chapter’s sample company.

Requirements Analysis

In this stage of the example, the MobileApplicationTeam gathers information from
management officials regarding the requirements for the mobile Web application. To do
so, the team interviews these officials to understand their areas of interest and to chalk
out the type of questions the officials would like to attempt. In addition, the
MobileApplicationTeam looks into existing applications on the company Web site to
ascertain what features these applications were not offering. Then the team analyzes its
findings and arrives at a consensus regarding the requirements for the mobile Web
application. As per the results of the requirements analysis stage, the mobile Web
application should enable a user to do the following:

 Attempt the questions
 Display new questions every day
 Display the score of the user
 Display the highest score attained by the user in a quiz
 Display the name of the employee who has attained the highest score

High-Level Design

In this stage of the example, the MobileApplicationTeam designs an application that
accepts the user’s name and then asks the user to attempt the questions. After the user
attempts all the questions and clicks the Submit button, the application displays the
name and score of the user. In addition, the application also interacts with the backend
and retrieves the highest score and the name of the employee who attained that score.
The design for the application consists of seven forms, starting with a Welcome form.
The subsequent forms display the questions for the quiz. The final form displays the
user’s score and the highest score attained by any user. Figure 33-1 shows the
Welcome screen for the application. Users will be prompted to enter their names. The
name field is a mandatory field.

Figure 33-1: The Welcome form

The next form prompts users with the first question of the quiz. Each form holds a single
question.

The forms for the subsequent questions are shown in the Figures 33-2–33-6.

Figure 33-2: The second form

Figure 33-3: The third form

Figure 33-4: The fourth form

Figure 33-5: The fifth form

Figure 33-6: The sixth form

The last form will display the user’s score. It will also display the name and score of the
user with the highest score.

Figure 33-7: The seventh form

Low-Level Design

In this stage of our example, the MobileApplicationTeam made decisions about database
connectivity and how to access the required information. The team also decided on the
classes and methods to be used for developing the application. The data needed by the
MobileApplicationTeam application is available in a single table database.

Testing

In this stage of the example, the quality assurance (QA) team of the company tested the
functionality of the mobile Web application. The QA team tested the application in
various scenarios such as different mobiles and handheld devices. The QA team listed
all bugs in a report, which was given to the development team. The development team
then fixed the bugs or provided valid reasons for not fixing a bug pointed out by the QA
team.

Acceptance

In this stage, the company carries out testing of the project developed for the client. This
testing is done according to the standards defined by the industry. Successful testing of
the project in this stage signifies the final acceptance of the project before release to the
client.

In the mobile Web application example, the QA team gave its final acceptance after
being completely satisfied by the bug fixes incorporated by the development team. In
addition, because the application was developed for the company’s internal use, the QA
team gave the final signoff.

In addition to deploying the application, the MobileApplicationTeam also provides any
required after-deployment assistance to the users.

The Database Schema
As previously mentioned, the application interacts with a database to retrieve the name
of the user and the highest score attained by the user. The database uses a table called
UserRecord to store the data. The UserRecord table is stored in the master database,
and the structure of this table is shown in Table 33-1.
Table 33-1: The UserRecord Table Structure

Column Name Data Type
UserName varchar(25)
MaxScore int

Summary
In this chapter, you learned about the company Markup Toys. Then you learned about
the company’s need to create an application. The company named the application

mobile Web and formed a three-member development team named
MobileApplicationTeam. Next, you learned about the development life cycle of a project
and how its phases pertained to the MobileApplicationTeam. In the next chapter, you will
learn how to develop the mobile Web application.

Chapter 34: Coding the MobileQuiz Application
Overview
In Chapter 33, “Project Case Study—MobileQuiz Application,” you learned about a
mobile Web application. Now, in this chapter, you will learn how to create the application.
First, however, I’ll introduce you to the need for creating mobile Web applications. I’ll also
discuss the Wireless Application Protocol (WAP), the Mobile Internet Toolkit, and mobile
Web forms.

Today’s business world is very dynamic, and users need to access the Internet from
anywhere and at any time. Mobile technology offers users around the world just that—
the power to access the Internet from anywhere and at any time. However, most users
are wary of accessing the Internet from their mobile phones. This is because:

 Mobile phones are limited by CPU, memory, or battery life.
 Mobile phones require higher bandwidths, which result in higher overhead

costs.
 Web pages developed for the Internet don’t fit the average mobile’s screen.

It is because of these problems that mobile Web applications have not become very
popular. The.NET technology, however, now gives you the power to change this. Using
Visual Studio.NET, you can create mobile Web applications that can be easily accessed
on any mobile phone. What’s more, the information appears just as it appears in your
browser window.

The following sections look at the two basic requirements for creating a mobile Web
application—WAP and the Mobile Internet Toolkit.

An Introduction to WAP
The first requirement for mobile Web applications is a WAP-enabled mobile phone. WAP
is a communication protocol that defines standards to connect wireless applications to
the Internet. In addition to having a WAP-enabled mobile phone, the Web site you are
accessing also should be WAP enabled.

A WAP-enabled device has microbrowser software that sends and receives requests for
accessing a Web site. This section will now lead you a further into WAP and discuss how
WAP-enabled Web sites communicate with the Internet.
To understand this concept, you first need to understand the WAP architecture. This
architecture is similar to the Web architecture in that the client sends a request to the
Web server and the Web server responds to the request of the client. Figure 34-1
illustrates the Web architecture, and Figure 34-2 illustrates the WAP architecture.

Figure 34-1: The Web architecture

Figure 34-2: The WAP architecture

The only difference between the WAP architecture and the Web architecture is the
presence of the WAP gateway. The WAP gateway is software that is placed between a
network that supports WAP and the Internet. The following steps explain how a WAP-
enabled device communicates with the Internet:

1. The client (mobile phone) sets up a connection with the WAP gateway
and requests its content.

2. The WAP gateway converts the request into an Internet-understandable
version. It then forwards the request to the Web server.

3. The Web server then sends the content to the gateway, which then
converts it into WAP format, which is later sent to the mobile phone.

A WAP-enabled Web site is hosted to the client as a WML or WML Script file. WML
scripting languages are used to write WAP content. These scripting languages are used
to send and receive information on mobile phones. A WAP-enabled mobile phone has a
microbrowser that is similar to other Web browsers and that displays the information a
user receives.
The next section discusses the Mobile Internet Toolkit, which is the second requirement
for creating a mobile Web application.

The Mobile Internet Toolkit

The other requirement is to install the Mobile Internet Toolkit on your computer. This is
because, when you install Microsoft Visual Studio.NET, by default, you cannot create
mobile Web applications. To be able to create mobile Web applications, you need to
install the Mobile Internet Toolkit. This toolkit is available for free on the Microsoft Web
site. You can download it from the following link:
http://msdn.microsoft.com/downloads/default.asp?url=/downloads/ sample.asp?

The Mobile Internet Toolkit is based on the .NET framework and provides an easy-to-use
visual interface for creating mobile Web applications. In addition, the Mobile Internet
Toolkit enables you to create mobile Web applications that target a wide variety of
mobile devices. This means you need to create just one mobile Web application for
different wireless applications such as palm-held PCs and mobile phones.

The Mobile Internet Toolkit consists of server-side mobile Web Form controls and a
Mobile Internet Designer that helps you create the user interface for your mobile Web
application.

The following section explains mobile Web forms, the building blocks for a mobile Web
application.

Mobile Web Forms

A mobile Web application consists of a mobile forms page that contains several mobile
controls. A mobile Web forms page is a specialized ASP.NET Web forms page. In
addition, similar to other Web forms pages, a mobile Web forms page has an .ASPX
extension.

You can use the Mobile Internet Toolkit to create mobile Web forms pages and controls
that are device independent. This means that when a supported device requests a
mobile Web forms page, the page automatically identifies the device and displays the
Web page in a format suitable for the specific device type.

To build a mobile Web forms page, you need to place a Form control on the mobile Web
forms page. A Form control is like a container that holds the other controls placed on the
mobile Web forms page. Though you can place several Form controls on a mobile Web
forms page, a Form control cannot contain another Form control within itself.

Next I’ll discuss how to create a mobile Web application.

Creating a Mobile Web Application
If you are a Visual Basic developer, you have experienced how easy it is to create
applications. All you need to create a Visual Basic application is to add a mobile Web
form to the project, drag controls onto the form, set properties, and then double-click the
controls to write the code. Mobile Web forms bring the same simplicity and ease to
creating mobile Web applications.

To create a mobile Web application using mobile Web forms, you simply need to drag
the Forms control to the mobile Web forms page, add content and controls to the mobile
Web form, and then double-click the mobile Web controls to add the code.
As discussed in the previous chapter, the mobile Web application will consist of a series
of questions on which the users will be evaluated. The user’s name and score will be
stored in two session variables that will hold values until the user logs out. The
application will also check to see whether the score attained by the user is higher than
the highest score currently stored in the database. If the session score is higher than the
highest score, the application will update the UserRecord table with the name and
score of the session user.
Now let’s create the mobile Web application. First you will learn how to design the forms
for the application. The main form, as shown in Figure 34-3, will accept the user’s name;
as previously mentioned, it will be stored in a session variable that will be valid until the
user does not log out of the session.

Figure 34-3: The design of the main form for the application

When the user clicks on the Start button, the next form (shown in Figure 34-4) is
displayed. The form contains the first question of the quiz. After the user attempts the
question and clicks on the Next button, the next question is displayed in the next form.

Figure 34-4: The design of the second form for the application

The subsequent forms contain the rest of the questions for the quiz. The last form
(shown in Figure 34-5) displays the user’s score and the highest score attained by a user
in the quiz.

Figure 34-5: The seventh form for the application in the browser window

Though Visual Basic.NET automatically generates a lot of code, you’ll add and modify
the code to customize the application to your requirements. In addition, you’ll also write
the code to connect to the database and retrieve data from it.

Designing the Forms for the MobileQuiz Application
As discussed in Chapter 33, the high-level design for the application involves designing
mobile Web forms. The main form of the mobile Web application enables the user to
accept the username. Refer to Figure 34-3, which displays the design of the main form.

Before designing a mobile Web application, you first need to create it. To create a mobile
Web application, you need to follow these steps:

1. In the Visual Studio.NET window, choose File, New, Project to open the
New Project dialog box, as shown in Figure 34-6.

Figure 34-6: The New Project dialog box
2. In the Project Types pane, choose Visual Basic Projects. You can also

select Visual C# Projects to select an application that uses Visual C#, but
you’ll create this application using Visual Basic Projects.

3. In the Templates pane, select Mobile Web Application.
4. Specify the name and location for the application.
5. Click on OK to create the mobile Web application.

Note that, by default, Form1 is present on the mobile Web page. Recall that a form is like
a container that holds other controls. In this example, when you browse the mobile Web
application, each form will be displayed on a new page. In addition, the display of the
form will automatically adapt based on the device you are using to access the mobile
Web application.

You can add controls to the mobile Web form by dragging them from the Toolbox to the
mobile Web form. Note that you can place controls only on a Form control or on a Panel
control. A Panel control, like a Form control, acts as a container for other controls. The
only difference between a Form control and a Panel control is that a Form control cannot
be placed within another Form control, whereas a Panel control can hold another Panel
control.

When you follow the preceding steps, Visual Basic.NET automatically generates some
code. To view the HTML code, switch to the HTML view for the page by clicking the
HTML tab (at the bottom of the Design window.) Now observe the following code:
<%@ Register TagPrefix="mobile" Namespace="System.Web.UI.MobileControls"
 Assembly="System.Web.Mobile, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" %>
<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="MobileWebForm1.aspx.vb"
Inherits="MobileWebApplication4.MobileWebForm1" %>
The preceding lines of code, also referred to as the prolog of a mobile Web form, must
be present in the header of a mobile Web application. The @ Register directive
specifies the mobile Web form’s namespace and assembly, whereas the @Page directive
specifies the base class for the page. The TagPrefix directive instructs mobile Web
forms to add Web form controls to the mobile Web form. The Language attribute varies
depending on the application you use for creating the mobile Web application.

Also note the following code:
<mobile:Form id="Form1" runat="server"></mobile:Form>
This code indicates that the form with ID Form1 is a mobile Web control. The attribute
runat="server" should be present for each mobile Web control that you add to the
form.
Now that a form has been added to your mobile Web page, you can add controls to the
form. As previously mentioned, you add controls to a form by dragging controls from the
Toolbox to the mobile Web form. Now you will add controls to the main form of the
application. The main Web form, as shown in Figure 34-3, is a simple form that accepts
the user’s name and displays a welcome message. The form contains two labels, a text
box, and a button. When the user clicks the Start button, the next form (Form2) becomes
the active form.
The top two controls on the form are the labels. You will set two properties for the labels:
Text and ID. The Text property specifies the text that will appear on the form, and the
ID property specifies the object name that is assigned to the label to easily identify and
refer to it in the code. Table 34-1 describes the properties for the labels on the main
form.

Tip While specifying the ID for a control, it is good practice to follow a
naming convention. This will help other developers in your team to
easily identify the controls.

Table 34-1: Properties Assigned to the Labels on the Main Form

Control Property Value

Label 1 ID LblWelcomeMsg

Label 1 Text Welcome to
today's quiz

Label 2 ID LblName

Label 2 Text Please enter
your name

To easily identify the welcome text, you can change the font and color of the text. You
will now do just that to the text in the LblWelcomeMsg control. To change the font, set
the Font property in the Properties window. To specify the Font Style, set the Name
property. For this example, use the Font Style, Comic Sans MS. Next you can
change the color and alignment of the text. To change the color, click on the ForeColor
property. From the Color palette that appears, you can choose the color of your choice.
For this example, use Navy. However, you can choose any color you want. To change
the alignment of the text, use the Alignment property under the group Appearance.
For this example, center the text. Now that you have specified the properties for the
labels, let’s move on the text box and the button.
As shown in Figure 34-3, under the Label controls on the main form is a text box. The
text box will accept the user’s name. You should also add a validation to this control to
ensure that the user does not leave this field blank. However, before you add validations
to the text box, you will change the ID property of the text box. For this example, specify
the ID property of the text box as TxtEnterName. Let’s now add validations for the text
box.

You can add validations on a control to restrict the type of data entered into that control.
To add a validation to a control:

1. Drag the RequiredFieldValidator control to the bottom of the form.
2. In the Properties window, click the Control to Validate property.

All controls on the form appear in a drop-down menu. Because you need
to add the validation for the text box, select TxtEnterName.

3. For the Error Message property, enter the error message to be displayed
when the user does not enter data in the field. For this example, enter
the error message Please enter your name.

After changing the properties for validating text in a form, you need to add a small
amount of code to ensure that the user does not move to the next form until he or she

has entered the required information. Before you add the code, however, you need to
add another control to the form—the button. The properties you need to change for the
button are described in Table 34-2.
Table 34-2: Properties Assigned to the Button on the Main Form

Control Property Value

Button ID BtnStart

Button Text Start

Button Alignment Center

To insert a button on the form, drag the button to the form. Change the ID, Text, and
Alignment properties as you did for the other controls on the form. Now you need to
specify the task to be performed when the user clicks the Start button. When the user
clicks on the Start button, Form2 should be displayed. However, before you specify the
code, you need to first create Form2.

To create Form2, drag the Form control from the Toolbox to the mobile Web forms page.
You will now write the code for moving to Form2 when the user clicks the Start button
control.
To do this, you first need to open the Code window. To open the Code window, either
press the F7 key or double-click on the control for which you want to write the code. In
the Code window, write the following code for the Click event of the Start button.

Private Sub BtnStart_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BtnStart.Click
If Page.IsValid Then
 Session("UserName") = TxtEnterName.Text
 ActiveForm = Form2
 End If
End Sub
In the preceding code, note the first line. The Page.IsValid property checks to see
whether the page is in the valid format. In other words, it checks to make sure the data
entered on the form follows the validation specified for the controls. Recall that in the
previous step you had added validations on the TxtEnterName control. If the user does
not enter the name in the text box, Page.IsValid will return false, and further code will
not be executed.
The code ActiveForm=Form2 makes Form2 the active form.

Now that you have written the code for the Start button, navigate to the Declarations
section of the mobile Web form. Visual Basic.NET generates the following code by
default when you add various Form controls to the mobile Web form:
Public Class MobileWebForm1
 Inherits System.Web.UI.MobileControls.MobilePage
 Protected WithEvents LblWelcomeMsg As System.Web.UI.MobileControls.Label
 Protected WithEvents LblName As System.Web.UI.MobileControls.Label
 Protected WithEvents TxtEnterName As System.Web.UI.MobileControls.TextBox
 Protected WithEvents RequiredFieldValidator1 As
 System.Web.UI.MobileControls.RequiredFieldValidator
 Protected WithEvents BtnStart As System.Web.UI.MobileControls.Command
 Protected WithEvents Form2 As System.Web.UI.MobileControls.Form
 Protected WithEvents Form1 As System.Web.UI.MobileControls.Form
Let’s go ahead and create the next form. Before you do so, however, take a look at its
design (refer back to Figure 34-4). The next form consists of a label that contains the

question, four radio buttons for the options, and a button to move to the next form. The
tricky part when creating this form is adding the radio buttons. This is because the
Toolbox does not contain a separate control for adding radio buttons. To add a radio
button to the mobile Web form, you need to use the SelectionList control. (This will be
explained a little later.)
First, add a label on the mobile Web form and set properties for the label as shown in
Table 34-3.
Table 34-3: Properties Assigned to the Label on the Second Form

Control Property Value

Label ID LblQuestion1Stem

Label Text In the Harry
Potter series
the principal
character is:

Below the label, you need to add a radio button. To add a radio button to the mobile Web
form, drag a SelectionList control to the mobile Web form. Then, in the Properties
window, change the ID for the control to RdForm2. Next click the SelectType property.
A drop-down menu appears, as shown in Figure 34-7.

Figure 34-7: The SelectType property drop-down menu

Because you need to create a radio button, select Radio. Now you need to add the text
for the radio buttons. To do so, click the Items property. The RdForm2 dialog box
appears. Click the Create New Item button. Next you need to add the value for the items.
In the Item Text box, enter the text a wizard. This will be the text for the first option.
Next click on the Selected box. This will ensure that the first option is selected when the
page is loaded in the mobile browser. To add another option, click the Create New Item
button again. In the Item Text box, enter the text a gold smith. The text for the other
two radio buttons is given in Table 34-4.
Table 34-4: Properties Assigned to the Labels on the Main Form

Option Value

Option3 a
shoema
ker

Option4 a
barber

Finally, click on OK to create the options for the radio buttons. The second form is almost
ready. All you now need to do is add a button to move to the next form. The properties
you need to assign to the controls are listed in Table 34-5.
Table 34-5: Properties Assigned to the Button on the Second Form

Control Property Value

Button ID CmdForm2

Button Text Next

Button Alignment Center

In addition to these properties, you also need to add the code for moving to the next
form. And because you need to calculate the user’s score, you need to write the code to
do so. However, before you write the code for checking which option the user has
selected and accordingly increasing the score, you need to define two session variables
that will store the user’s name and score for a particular session. To declare the session
variables, in the Solution Explorer, right-click Global.asax and then choose View Code.
Type the following code for the Start event of the session:

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
 ' Fires when the session is started
 Dim UserName As String
 Dim Score As Integer
End Sub
The preceding code declares two session variables, UserName and Score, of data
types String and Integer, respectively. Close the file and then open the Code
window for the mobile Web page. Enter the following code for the Click event of the
CmdForm2 button:

Private Sub CmdForm2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles
CmdForm2.Click
'Code to calculate the score and move to the next form
 If RdForm2.SelectedIndex = 0 Then
 Session("Score") = 10
 Else
 Session("Score") = 0
 End If
 ActiveForm = Form3

End Sub
In the preceding code, the first option is the right answer. Hence, the SelectedIndex
property is checked for the control. The SelectedIndex property stores the value of
the option selected by the user. The first radio button has the index value 0, the second
option 1, and so on. In the code, if the user selects the first option (at index 0), the score
is incremented by 10.
Also note that the ToString method has been used while displaying the text in the
Label control. This is because to display the score in the Label control, it should be of the
String data type. By using the ToString method, you can convert values stored as
Integer to the String data type.
The other forms are similar to the second form. The properties you need to add for the
third Form control are listed in Table 34-6.
Table 34-6: Properties Assigned to the Controls on the Third Form

Control Property Value

Label ID LblQuestion2Stem

Label Text Tenzing Norgay
and __ were the
first people to
climb Mt.Everest

SelectionList SelectType Radio

SelectionList ID RdForm3

SelectionList Collection John Hillary

SelectionList Collection Edmund Hillary

SelectionList Collection Tim Smith

SelectionList Collection Aldrin Alwyn

Button ID CmdForm3

Button Text Next

Button Alignment Center

Now compare your form with Figure 34-8.

Figure 34-8: The design of the third form for the application

Now that the form is ready, you will add the code for the button. Before the next form is
made the active form, you need to increment the score by 10 points if the answer is

correct. To do so, enter the following code for the Click event of the CmdForm3
control:
Private Sub CmdForm3_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles
CmdForm3.Click
 If RdForm3.SelectedIndex = 1 Then
 Session("Score") = Session("Score") + 10
 End If
 ActiveForm = form4
 End Sub
Now that you have created Form3, let’s create the next form. The controls and properties
that you need to define for Form4 are shown in Table 34-7.
Table 34-7: Properties Assigned to the Controls on the Fourth Form

Control Property Value

Label ID LblQuestion3stem

Label Text Margaret
Thatcher was the
Prime Minister
of which
country?

SelectionList SelectType Radio

SelectionList ID RdForm4

SelectionList Collection Britain

SelectionList Collection Sri Lanka

SelectionList Collection India

SelectionList Collection Australia

Button ID CmdForm4

Button Text Next

Button Alignment Center

Compare your form with Figure 34-9.

Figure 34-9: The design of the fourth form for the application

Next add the following code for the Click event of the CmdForm4 button:

Private Sub CmdForm4_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles

CmdForm4.Click
 If RdForm4.SelectedIndex = 0 Then
 Session("Score") = Session("Score") + 10
 End If
 ActiveForm = form5
End Sub
In the preceding code, the SelectedIndex property has been checked with the value
0. This is because the third option is the correct answer. You now need to add two more
questions to complete the application. Create the next form based on the properties
specified in Table 34-8.
Table 34-8: Properties Assigned to the Controls on the Fifth Form

Control Property Value

Label1 ID LblQuestion4Stem

Label1 Text Who created the
cartoon
character Goofy?

SelectionList SelectType Radio

SelectionList ID RdForm5

SelectionList Collection Walt Disney

SelectionList Collection Mickey Mouse

SelectionList Collection Tim Matthew

Button ID CmdForm5

Button Text Next

Button Alignment Center

Compare your form with Figure 34-10.

Figure 34-10: The design of the fifth form for the application

Next add the following code for the Click event of the CmdForm5 button:

Private Sub CmdForm5_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles
CmdForm5.Click
 If RdForm5.SelectedIndex = 0 Then
 Session("Score") = Session("Score") + 10
 End If

 ActiveForm = Form6
End Sub
Because the management of Markup Toys wants you to post five questions, you need to
add one more form. The controls you need to add to the mobile Web form are given in
Table 34-9.
Table 34-9: Properties Assigned to the Controls on the Sixth Form

Control Property Value

Label1 ID LblQuestion5Stem

Label1 Text The largest
ocean in the
world is:

SelectionList SelectType Radio

SelectionList ID RdForm6

SelectionList Collection Pacific

SelectionList Collection Atlantic

SelectionList Collection Indian

SelectionList Collection Arctic

Button ID CmdForm6

Button Text Submit

Button Alignment Center

Compare your form with Figure 34-11.

Figure 34-11: The design of the sixth form for the application

Next add the following code for the Click event of the CmdForm6 button:

Private Sub CmdForm6_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles
CmdForm6.Click
 If RdForm6.SelectedIndex = 1 Then
 Session("Score") = Session("Score") + 10
 End If
End Sub
To complete the application, you now need to create a form that displays the user’s
name and score as well as the highest score attained for the quiz. To do so, create a

new form and drag two labels and a button to the mobile Web form. Change the ID of
the labels to LblDisplay, LblDisplay1 and the ID of the button to CmdStartAgain.
Change the Text property of the button to Start Again.
Compare your form with Figure 34-12.

Figure 34-12: The design of the seventh form for the application

Now let’s add the code to check whether the score of the current user is higher than the
score of the user with the current highest score. If the score is more than the current
highest score, you’ll update the score and the name in the UserRecord table. To
connect to the database, drag a SQL Connection control to the mobile Web form and
then, in the Properties window, specify the connection string. Test the connection to
make sure the connection is established with the database that stores the UserRecord
table.
The code to retrieve the highest score and the name of the user with the highest score is
given below. Add the following code in the Click event of the button of the sixth form.
Note, however, that you need to add this code beneath the code you added in the
previous section.
Dim Score As Integer
Dim sqlAdapter As SqlClient.SqlDataAdapter
Dim lstrSql As String
Dim Dataset As New DataSet()
Dim MaxScore As Integer
Dim UserName As String
lstrSql = "Select UserName , MaxScore from Userrecord where MaxScore = (select
max(MaxScore) from UserRecord)"
sqlAdapter = New SqlClient.SqlDataAdapter(lstrSql, SqlConnection1)
sqlAdapter.Fill(DataSet)
MaxScore = DataSet.Tables(0).Rows(0).Item(0)
UserName = DataSet.Tables(0).Rows(0).Item(1)
If Score > MaxScore Then
 Dim commandbld As New SqlClient.SqlCommandBuilder(sqlAdapter)
 DataSet.Tables(0).Rows(0).Item(0) = Score
 DataSet.Tables(0).Rows(0).Item(1) = Session("UserName ")
 sqlAdapter.Update(DataSet)
 UserName = Session("UserName ")
 commandbld.Dispose()
End If
 LblDisplay.Text = "Hi " + Session("UserName").ToString + "your score is " +
Session("Score").ToString
 LblDisplay1.Text = "The highest score in this quiz was scored by " + UserName
.ToString
 SqlConnection1.Close()

 sqlAdapter.Dispose()
 ActiveForm = Form7
End Sub
All you need to do now is add the code for the button of Form7. In the Click event of
the Start Again button, add the following code:

Private Sub StartAgainButton_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles
StartAgainButton.Click
 ActiveForm = Form1
End Sub

Your application is now ready. Let’s test it to make sure it functions the way you want it
to. While creating a mobile Web application, viewing the output in a browser window is
helpful in debugging. However, you probably would also like to test the application on a
mobile device. Fortunately, you do not require a mobile phone or a handheld PC to test
your application. Instead, you can test your mobile Web application in a mobile-like
environment by using a WAP device emulator. In this book, the Microsoft Mobile
Explorer 3.0 Emulator (MME Emulator) is used. This emulator acts like a mobile phone
that runs the Microsoft Mobile Explorer microbrowser.

Testing a Mobile Web Application
When you build and run the application, the output is displayed by default in Internet
Explorer. To test the application in MME Emulator, do the following:

1. Choose View, Mobile Explorer Browser, Show Browser.
2. Type the address in the Address box of the emulator and then press

Enter.
The output of the page appears as shown in Figure 34-13.

Figure 34-13: The main form in the MME Emulator

When you navigate to the next page, it is displayed as shown in Figure 34-14.

Figure 34-14: The second form in the MME Emulator

Now that you have learned about the code that enables the mobile Web application to
function, I’ll provide the complete code of the MobileWeb.aspx and MobileWeb.aspx.vb
pages of the application. Listing 34-1 provides the code of the MobileWeb.aspx page.

Listing 34-1: MobileWeb.aspx

Public Class MobileWebForm1

 Inherits System.Web.UI.MobileControls.MobilePage

 Protected WithEvents LblWelcomeMsg As System.Web.UI.MobileControls.Label

 Protected WithEvents LblName As System.Web.UI.MobileControls.Label

 Protected WithEvents TxtEnterName As System.Web.UI.MobileControls.TextBox

 Protected WithEvents RequiredFieldValidator1 As
System.Web.UI.MobileControls.RequiredFieldValidator

 Protected WithEvents BtnStart As System.Web.UI.MobileControls.Command

 Protected WithEvents Form2 As System.Web.UI.MobileControls.Form

 Protected WithEvents LblQuestion1Stem As System.Web.UI.MobileControls.Label

 Protected WithEvents RdForm2 As System.Web.UI.MobileControls.SelectionList

 Protected WithEvents CmdForm2 As System.Web.UI.MobileControls.Command

 Protected WithEvents Form3 As System.Web.UI.MobileControls.Form

 Protected WithEvents LblQuestion2Stem As System.Web.UI.MobileControls.Label

 Protected WithEvents RdForm3 As System.Web.UI.MobileControls.SelectionList

 Protected WithEvents CmdForm3 As System.Web.UI.MobileControls.Command

 Protected WithEvents Form4 As System.Web.UI.MobileControls.Form

 Protected WithEvents LblQuestion3stem As System.Web.UI.MobileControls.Label

 Protected WithEvents RdForm4 As System.Web.UI.MobileControls.SelectionList

 Protected WithEvents CmdForm4 As System.Web.UI.MobileControls.Command

 Protected WithEvents Form5 As System.Web.UI.MobileControls.Form

 Protected WithEvents LblQuestion4Stem As System.Web.UI.MobileControls.Label

 Protected WithEvents RdForm5 As System.Web.UI.MobileControls.SelectionList

 Protected WithEvents CmdForm5 As System.Web.UI.MobileControls.Command

 Protected WithEvents Form6 As System.Web.UI.MobileControls.Form

 Protected WithEvents LblQuestion5Stem As System.Web.UI.MobileControls.Label

 Protected WithEvents RdForm6 As System.Web.UI.MobileControls.SelectionList

 Protected WithEvents CmdForm6 As System.Web.UI.MobileControls.Command

 Protected WithEvents Form7 As System.Web.UI.MobileControls.Form

 Protected WithEvents LblDisplay As System.Web.UI.MobileControls.Label

 Protected WithEvents LblDisplay1 As System.Web.UI.MobileControls.Label

 Protected WithEvents CmdStartAgain As System.Web.UI.MobileControls.Command

 Protected WithEvents SqlConnection1 As System.Data.SqlClient.SqlConnection

 Protected WithEvents Form1 As System.Web.UI.MobileControls.Form

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 Me.SqlConnection1 = New System.Data.SqlClient.SqlConnection()

 'SqlConnection1

 Me.SqlConnection1.ConnectionString = "data source=VEERABH-D190;initial

 catalog=master;integrated security=SSPI;persist " & _

 "security info=False;workstation id=VEERABH-D190;packet size=4096"

 End Sub

 Private Sub Page_Init(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles

 MyBase.Init

 'CODEGEN: This method call is required by the Web Form Designer

 'Do not modify it using the code editor.

 InitializeComponent()

 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles

 MyBase.Load

 'Put user code to initialize the page here

 End Sub

 Private Sub BtnStart_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles

 BtnStart.Click

 If Page.IsValid Then

 Session("UserName") = TxtEnterName.Text

 ActiveForm = Form2

 End If

 End Sub

 Private Sub CmdForm2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles

 CmdForm2.Click

 'code to calculate the score and move to the next form

 If RdForm2.SelectedIndex = 0 Then

 Session("Score") = 10

 Else

 Session("Score") = 0

 End If

 ActiveForm = Form3

 End Sub

 Private Sub CmdForm3_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles

 CmdForm3.Click

 If RdForm3.SelectedIndex = 1 Then

 Session("Score") = Session("Score") + 10

 End If

 ActiveForm = form4

 End Sub

 Private Sub CmdForm4_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles

 CmdForm4.Click

 If RdForm4.SelectedIndex = 0 Then

 Session("Score") = Session("Score") + 10

 End If

 ActiveForm = form5

 End Sub

 Private Sub CmdForm5_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles

 CmdForm5.Click

 If RdForm5.SelectedIndex = 0 Then

 Session("Score") = Session("Score") + 10

 End If

 ActiveForm = Form6

 End Sub

 Private Sub CmdForm6_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CmdForm6.Click

 If RdForm6.SelectedIndex = 1 Then

 Session("Score") = Session("Score") + 10

 End If

 Dim Score As Integer

 Dim sqlAdapter As SqlClient.SqlDataAdapter

 Dim lstrSql As String

 Dim Dataset As New DataSet()

 Dim MaxScore As Integer

 Dim UserName As String

 lstrSql = "Select UserName, MaxScore from UserRecord where MaxScore = (select
max(MaxScore)

 from UserRecord)"

 sqlAdapter = New SqlClient.SqlDataAdapter(lstrSql, SqlConnection1)

 sqlAdapter.Fill(Dataset)

 MaxScore = Dataset.Tables(0).Rows(0).Item(0)

 UserName = Dataset.Tables(0).Rows(0).Item(1)

 If Score > MaxScore Then

 Dim commandbld As New SqlClient.SqlCommandBuilder(sqlAdapter)

 Dataset.Tables(0).Rows(0).Item(0) = Score

 Dataset.Tables(0).Rows(0).Item(1) = Session("UserName")

 sqlAdapter.Update(Dataset)

 UserName = Session("UserName")

 commandbld.Dispose()

 End If

 LblDisplay.Text = "Hi " + Session ("UserName").ToString + "your score is " +

 Session("Score").ToString

 LblDisplay1.Text = "The highest score in this quiz was scored by " + UserName
.ToString

 SqlConnection1.Close()

 sqlAdapter.Dispose()

 ActiveForm = Form7

 End Sub

End Class

Listing 34-2 provides the code of the MobileWeb.aspx.vb page.

Listing 34-2: MobileWeb.aspx.vb

<%@ Register TagPrefix="mobile" Namespace="System.Web.UI.MobileControls"

Assembly="System.Web.Mobile, Version=1.0.3300.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a" %>

<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="MobileWebForm1.aspx.vb"

Inherits="Mobile_Web_Application.MobileWebForm1" %>

<meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">

<meta name="CODE_LANGUAGE" content="Visual Basic 7.0">

<meta name="vs_targetSchema" content="http://schemas.microsoft.com/Mobile/Page">

<body Xmlns:mobile="http://schemas.microsoft.com/Mobile/WebForm">

 <mobile:Form id="Form1" runat="server">

 <mobile:Label id="LblWelcomeMsg" runat="server" Font-Name="Comic Sans
MS"

 Alignment="Center" ForeColor="Navy">Welcome to today's quiz</mobile:Label>

 <mobile:Label id="LblName" runat="server">Please enter your
name</mobile:Label>

 <mobile:TextBox id="TxtEnterName" runat="server"></mobile:TextBox>

 <mobile:RequiredFieldValidator id="RequiredFieldValidator1" runat="server"

 ErrorMessage="Please

 enter your name"
ControlToValidate="TxtEnterName"></mobile:RequiredFieldValidator>

 <mobile:Command id="BtnStart" runat="server"
Alignment="Center">Start</mobile:Command>

 </mobile:Form>

 <mobile:Form id="Form2" runat="server">

 <mobile:Label id="LblQuestion1Stem" runat="server">In the Harry Potter series
the principal

 character is:</mobile:Label>

 <mobile:SelectionList id="RdForm2" runat="server" SelectType="Radio">

 <Item Value="a wizard" Text="a wizard"></Item>

 <Item Value="a gold smith" Text="a gold smith"></Item>

 <Item Value="a shoemaker" Text="a shoemaker" </Item>

 <Item Value="a barber" Text=" a barber "></Item>

 </mobile:SelectionList>

 <mobile:Command id="CmdForm2" runat="server"

 Alignment="Center">Next</mobile:Command>

 </mobile:Form>

 <mobile:Form id="Form3" runat="server">

 <mobile:Label id="LblQuestion2Stem" runat="server">Tenzing Norgay and __
were the first

 people to climb Mt.Everest</mobile:Label>

 <mobile:SelectionList id="RdForm3" runat="server" SelectType="Radio">

 <Item Value="John Hillary" Text="John Hillary"></Item>

 <Item Value="Edmund Hillary" Text="Edmund Hillary"></Item>

 <Item Value="Tim Smith" Text="Tim Smith"></Item>

 <Item Value="Aldrin Alwyn" Text="Aldrin Alwyn"></Item>

 </mobile:SelectionList>

 <mobile:Command id="CmdForm3" runat="server"

 Alignment="Center">Next</mobile:Command>

 </mobile:Form>

 <mobile:Form id="Form4" runat="server">

 <mobile:Label id="LblQuestion3stem" runat="server">Margaret Thatcher was the
Prime Minister of

 which country?</mobile:Label>

 <mobile:SelectionList id="RdForm4" runat="server" SelectType="Radio">

 <Item Value="Britain" Text="Britain"></Item>

 <Item Value="Sri Lanka" Text="Sri Lanka"></Item>

 <Item Value="India" Text="India"></Item>

 <Item Value="Australia" Text="Australia"></Item>

 </mobile:SelectionList>

 <mobile:Command id="CmdForm4" runat="server"

 Alignment="Center">Next</mobile:Command>

 </mobile:Form>

 <mobile:Form id="Form5" runat="server">

 <mobile:Label id="LblQuestion4Stem" runat="server">Who created the cartoon
character

 Goofy?</mobile:Label>

 <mobile:SelectionList id="RdForm5" runat="server" SelectType="Radio">

 <Item Value="Walt Disney" Text="Walt Disney"></Item>

 <Item Value="Mickey Mouse" Text="Mickey Mouse"></Item>

 <Item Value="Tim Matthew" Text="Tim Matthew"></Item>

 </mobile:SelectionList>

 <mobile:Command id="CmdForm5" runat="server"

 Alignment="Center">Next</mobile:Command>

 </mobile:Form>

 <mobile:Form id="Form6" runat="server">

 <mobile:Label id="LblQuestion5Stem" runat="server">The largest ocean in the
world

 is:</mobile:Label>

 <mobile:SelectionList id="RdForm6" runat="server" SelectType="Radio">

 <Item Value="Pacific" Text="Pacific"></Item>

 <Item Value="Atlantic" Text="Atlantic"></Item>

 <Item Value="Indian" Text="Indian"></Item>

 <Item Value="Arctic" Text="Arctic"></Item>

 </mobile:SelectionList>

 <mobile:Command id="CmdForm6" runat="server"

 Alignment="Center">Submit</mobile:Command>

 </mobile:Form>

 <mobile:Form id="Form7" runat="server">

 <mobile:Label id="LblDisplay" runat="server">Label</mobile:Label>

 <mobile:Label id="LblDisplay1" runat="server">Label</mobile:Label>

 <mobile:Command id="CmdStartAgain" runat="server" Alignment="Center">Start

 Again</mobile:Command>

 </mobile:Form>

</body>

These sample files (MobileWeb.aspx and MobileWeb.aspx.vb) are included at the Web
site www.premierpressbooks.com/downloads.asp.

Summary
In this chapter, you learned how to design the forms used by the mobile Web application.
You also learned about the working of the application. Then you learned about the code
attached to the various controls on the forms. Next you learned how the connection to
the database is established and how the data retrieved from the database is displayed to
the users. Finally, you learned how to use the MME Emulator to test your mobile Web
application

Part VII: Appendixes
Chapter List

Appendix A: .NET Vision and Goals
Appendix B: Developing Console Applications in Visual Basic .NET
Appendix C: The Graphical Device Interface (GDI)
Appendix D: Localization
Appendix E: Deployment in Windows Applications
Appendix F: The .NET Family

Appendix A: .NET Vision and Goals
The world of computing is moving fast toward the Web. Businesses today operate on
varied technologies and platforms. The need of the hour is a uniform base on which
businesses can operate and developers can develop. The uniform base will enable
developers to work on independent platforms and, at the same time, not bother about
compatibility with other systems. Also, platforms that fully integrate with the Internet will
provide businesses with an opportunity they never had before. Microsoft kept in mind
these growing needs for the computer community when designing the .NET framework.
This appendix will discuss the vision of the .NET framework and the design goals for
developing effective business solutions using the .NET platform.

The .NET Vision
The .NET initiative aims to address the challenge facing organizations by combining an
architectural vision with a complete set of Microsoft technologies. Application architects
use these technologies to develop, deploy, and support multitier, distributed applications.
The vision of the .NET initiative is to provide a highly integrated but flexible platform to
enable developers to build end-to-end business solutions that can leverage existing
architectures and applications.

The Windows DNA architecture aimed at building tightly coupled, distributed Web
applications. However, as the requirements for distributed applications moved toward
more loosely coupled principles, the Microsoft .NET architecture evolved.

The Philosophy of .NET
The .NET philosophy is aimed at providing a logical approach for developing successful
business solutions. This philosophy intends to provide developers with the ability to
develop flexible and scalable applications. The key principle of creating distributed

applications with the .NET framework is to logically partition an application into three
fundamental tiers or layers:

 The presentation layer
 The business logic layer
 The data access and storage layer

By partitioning applications along these lines, using component-based programming
techniques, and fully utilizing the features of the .NET framework, developers can now
build highly scalable and flexible applications and thus create successful business
solutions.

A simple application model consists of a client (the presentation layer) that
communicates with the middle tier. The middle tier (the business logic layer) consists of
the application server and an application containing the business logic. The application,
in turn, communicates with a database that supplies and stores data (the data access
and storage layer).

The next few sections discuss these elements in more detail, starting with the
presentation layer.

The Presentation Layer

The presentation layer consists of either a rich-client or thin-client interface to an
application. The rich-client interface provides a full programming interface to the
operating system’s capabilities and uses components extensively, either directly by using
the Microsoft Win32 API or indirectly through Windows forms. Using a thin-client
interface (such as a Web browser), a developer can build business logic that can be
executed on any of the three application tiers. With the features that the .NET framework
provides, the thin client is able to provide a visually rich, flexible, and interactive user
interface to applications. Thin clients are also more portable across platforms.

The Business Logic/Application Layer

The business logic layer, also called the application layer, is divided into application
servers and services that support clients. Web applications can be written to take
advantage of COM+ services, directory services, and security services using the .NET
framework. Application services, in turn, can interact with several data services on the
data access layer.

The Data Access and Storage

This layer consists of data services that support data access and storage. The common
data access services include:

 ADO.NET. Provides a simplified programmatic access to data by using
either scripting or programming languages

 OLE DB. An established universal data provider
 XML. A markup standard for specifying data structures.

Advantages of the .NET Framework
By adopting the .NET framework’s distributed application model, developers can derive
many advantages. The .NET framework offers a lot more than the ancestral
programming languages and platforms. The .NET framework provides developers with
the following:

 A rich programming framework for building Win32 client applications
 A unified Web development platform that provides the services necessary for

developers to build enterprise-class Web applications
 A URL-addressable resource that programmatically returns information to

clients who have requested it

 The ability to build components that efficiently manage data from multiple data
sources and that support disconnected scenarios

 Standards-based support for processing XML
 The ability to interact with COM components, .NET framework services,

external type libraries, and many operating system services
 Control access to operations and resources based on policy and a set of

configurable rules to determine which permissions to grant to code, based
on the code’s domain, user, and assembly

 The ability to pass objects by value or by reference between distributed
applications.

 A programming interface to many of the protocols found on the network, such
as HTTP, DNS, TCP, and UDP.

 The ability to use the COM+ Services, including transactions, object pooling,
and queued components

 Access to the Active Directory from managed code
 Lower total cost of ownership by enabling powerful enterprise-class

management of systems, applications, and devices
 Support for globalization and localization of resources

Let’s now discuss the shift in the .NET framework architecture, its causes, and its impact
on the computer community.

The Architectural Shift in .NET
Ever since the computing mainstream moved toward Internet technologies, business-
computing models changed dramatically. This change was based on a complex, costly,
and often-proprietary model called the client/server computing model. This was the
revolutionary Web model.

You can characterize the Web model as a collection of diverse information and
applications that reside on varied hardware platforms. Since the inception of the Internet,
constantly occupying the minds of the developer community has been the desire to
provide a common information-delivery platform that is scalable, extensible, and highly
available. The Web platform is flexible and limited by only the computer capacity and the
imagination of the application designer.
As the Web browser rapidly became omnipresent and Web servers proliferated
throughout companies, it was clear—despite the best efforts of client/server software
producers to Web-enable their products—that developers needed a radically different
way of thinking about the application model. Obviously, new techniques and tools were
required to meet the technology shifts and challenges facing developers. The next
section discusses these technology shifts and the developer challenges.

Technology Shifts and Developer Challenges
Once the Internet revolution took hold and new technologies appeared, developers faced
several challenges that existing design models and tools could not adequately address.
The following issues were central to the developers’ dilemma:

 Heterogeneous environments. One of the earliest, and perhaps biggest,
challenges was the need to build applications that could easily integrate
heterogeneous environments. Most large organizations had a diverse
range of terminals, rich clients, and thin (Web) clients. In addition to
accommodating the large client base, new applications had to interact with
legacy data and applications hosted on mainframe and midrange
computers, often from different hardware vendors.

 Scalability. Before Internet technologies overwhelmed the computer
community, the computing environment was a closed system due to the
limitations in resources and access requirements. Scalability was,
therefore, an issue that was easy to manage because strategists had

ample historical data on which to base their projections for scaling the
computing environment to match consumer demand. Also, the application
development life cycle typically spanned several years, thus providing
planners with ample time to plan for system and application scaling.
However, the influx of the Internet altered the corporate mindset
significantly. Organizations viewed this new technology as an ideal, low-
cost method for sharing information throughout the organization. Along with
these advantages, organizations realized the challenges. The new design
paradigm required system designs to accommodate a user-base size from
less than one hundred to more than one million. The traditional foundation
for scalability planning crumbled when companies opened their doors to the
outside world.

 Rapid application development and deployment. The intranet and Internet
phenomena highlighted the possibility of, and need for, rapid application
deployment. As a result, the viability of the traditional development platform
and processes were questioned. Organizations were not prepared to wait
for years to be able to use an application. From an investment perspective,
the business community questioned any investment in applications that
would be legacy systems by the time they were completed. The concept of
rapid application development changed even further as organizations
expanded their application horizon from the intranet to the Internet. To be
competitive, developers needed to create applications virtually on demand
for immediate use—just-in-time (JIT) development. To achieve this, they
needed to completely revamp and revitalize their approach to application
development.

 Platform administration and management. It did not take long for professionals
to realize that the Internet world was far from perfect. Professionals soon
discovered that the freedom and flexibility brought a completely new set of
administration and management issues that revolved around clients,
applications, and hosts. The browser, for one, did not have an industry
standard, and from a development perspective, the lack of standardization
meant that application designers had to accommodate the HTML-rendering
capabilities of each browser version separately. Application deployment
was even more difficult to manage because system administrators had to
contend with large numbers of content providers rather than a single
developer group. Dynamic and data-driven content on the Web sites made
management even more difficult due to the existence of diverse data stores
and different scripting languages, and so did the users’ expectations of 24-
hour/7-day-a-week uninterrupted access.

 Network-aware applications. Advances in portable computing technology and
the decline in cost for portable computers—such as laptops, notebooks,
and palmtops—put the final nail in the coffin for Web application
developers. Mobile computing evolved at an unprecedented rate.
Developers no longer had the liberty to distinguish between offline and
online usage because the user community expected to be able to use
applications and services at all times.

All these challenges posed problems that the developer community needed solutions to.
The .NET framework guided application developers to be able to create well-designed
applications to overcome the challenges posed by the traditional development platforms.
Precise goals for the design phase of the application development life cycle were defined
to provide a direction to developers. The following section will talk about the design goals
of the .NET framework.

.NET Framework Design Goals
During the design phase of an application, design goals are established. The following
aspects of application development were kept in mind to meet the design goals:

 Availability: Is the application to be present and ready for use?

 Manageability: Can the application be administered?
 Performance: What is the measure of an application’s operation under load?
 Reliability: Is the application able to perform in a predictable manner?
 Scalability: Can the application match increasing demand with an increase in

resources?
 Securability: Is the application ready to protect its resources?

The following sections discuss each of these aspects in detail and discuss how the .NET
framework supports application development with these design goals in mind.

Availability

All applications must be available at least some of the time, but Web-based applications
and mission-critical enterprise applications typically must provide round-the-clock
services. If your enterprise application needs to work round-the-clock, you need to
design your application for high availability. Availability refers to the uptime for your
applications and the amount of time your applications are available for use. Advances in
hardware and software have dramatically increased the quality of high-availability
applications. However, availability is not easy to implement and requires a considerably
more complex architectural infrastructure than the previous generations of client/server
applications.

Companies that increasingly rely on Web-based, distributed applications for important
business activity need a range of availability engineering options to meet service-level
requirements in a cost-effective manner. Web-based applications usually depend on
multiple servers, perhaps hundreds or thousands of client workstations, internal and
external network communications, database services, operational processes, and a host
of other infrastructure services that must work uniformly together. Where the business
ideal is a continuous flow of information, creating high-availability applications becomes
an important business strategy.

Realistically, not all applications require 100% uptime. However, some applications must
provide very high availability with virtually no perceivable downtime. Application failures
occur for many reasons, including the following:

 Lack of stable software engineering processes
 Weak code
 Inadequate testing
 Change management problems
 Lack of constant monitoring and analysis
 Interaction with external services or applications
 Different operating conditions such as usage-level changes and peak

overloads
 Unusual events such as security failures and broadcast storms
 Hardware failures such as disks, controllers, network devices, servers,

power supplies, memory, and CPU failures
 Natural disasters

If applications fail as a result of natural disasters, there’s not much you can do. However,
such causes for application failures are pretty rare as compared to the causes you can
prevent—they account for just about 10% of the total application downtime. The other
90% of application downtime is a combined result of inadequate testing, change
management problems, lack of ongoing failure monitoring and rigorous procedures, and
backup/restoration errors.

The application downtime obviously includes the amount of time necessary for repairs
because applications being repaired are not available for use. Availability is commonly
expressed as a percentage, such as 99% availability.

What might surprise you is the fact that 99% availability is not too great by industry
standards. In fact, if your application is 99% available, it is actually down for 88 hours in
a year. Similar calculations disclose that 99.9% availability means 8.5 hours of downtime

per year, and 99.99% availability means a downtime of 1 hour per year. As per industry
standards, it is common for enterprise applications to have 99.9% availability.

As you move towards greater availability, however, you face greater challenges in the
form of the following:

 Increasing hardware costs for the application due to server, network, and
disk redundancy

 Greater difficulty in identifying and eliminating complex failures
 Growing requirements for comprehensive testing of every automatic and

people-based procedure that might affect your application

Choosing the right hardware and software technology infrastructure certainly helps the
high-availability cause. Also, high levels of availability are not possible without a serious
commitment to skilled personnel, quality life-cycle processes, and operational
excellence.

Planning Availability Levels
Determining the satisfactory availability levels for your requirements is never easy. Not
only is it difficult to estimate the actual required availability that satisfies your anticipated
business requirements and also meets budget and schedule expectations, the usage
pattern and running environment of software can change over time. The original
availability assumptions might change and, as a result, require reconsideration of the
original availability plans.

In deciding what level of availability is appropriate for your application, you need to
answer a few questions:

 Who are the customers, and what are their expectations?
 How much downtime is acceptable?
 Do internal company processes depend on the service?
 What is the schedule and budget?

A project’s schedules and budget should not conflict with a requirement for business- or
mission-critical availability. Although it is tempting to build and deploy a less-than-perfect
version of your application, don’t do it. The cost of round-the-clock maintenance hassles
and lost customers isn’t worth it. If you must implement a high-availability application and
the budget and schedules aren’t viable, the right thing to is to retarget the scope of the
project and get the appropriate funding.

Designing for availability poses difficult challenges. Because of the wide variety of
application architectures, no single availability solution works for every situation. The
decision to deploy a comprehensive, fault-tolerant, fully redundant, load-balanced
solution may be appropriate for high-volume, online-transaction processing. On the other
hand, some applications can accept modest downtime with little consequence to the
customers. Ultimately, such design decisions depend on a combination of business
requirements, application-specific data, and the available budget.

The main technique for increasing availability is redundancy. For example, you might
take a close look at your application’s architecture and decide to implement full
redundancy including cloned front-end servers, redundant network infrastructure, and
cloned backend servers.

Designing for Availability
Engineering your applications for availability is all about doing your best to create reliable
applications. You must also be ready to accept the fact that your application will probably
fail sometimes. So you must design quick-recovery mechanisms to minimize downtime.

Some design ideas for generating highly available applications are listed here. However,
you must not forget the basic requirements of having tested and proven life-cycle
processes, trained staff, and a rigorous commitment to availability.

 Avoid older, traditional approaches to availability, such as multiple
CPUs and a duplicated system with fully replicated components.
These approaches have several drawbacks.

 Reduce unplanned downtime with clustering. Cluster service with a
shared disk avoids most downtime and provides automatic recovery
from hardware or software failures.

 Use network load balancing to redefine clusters and redirect traffic to
other servers when there are failures.

 Use RAID for data stores to use multiple hard disks so that data is
stored in multiple places.

 Reduce planned downtime by using rolling upgrades available with
Windows 2000 Advanced Server.

 Isolate mission-critical applications. Eliminate data and system
dependencies by using separate physical backbones for each in the
case of mission-critical applications.

 Use queuing to enable your application to communicate with other
applications by sending and receiving asynchronous messages.

 Use the distributed file system (DFS) to resolve drive letters to UNC
names to provide real file nomenclatures.

Testing for Availability
Testing for availability means running an application for a planned period of time,
collecting failure events and repair times, and comparing the availability percentage to
the original estimate.

Some testing concepts that can help you create long-term applications are as follows:
 Test the change control process.
 Test catastrophic failure and recover technologies.
 Test the failover technologies.
 Test the monitoring technology.
 Test the help desk procedures.
 Test for resource conflicts.

Best Practices for Availability
The following best practices are recommended for creating applications with high-
availability:

 Use clustering.
 Use network load balancing.
 Use service-level agreements.
 Provide vigilant monitoring.
 Establish a help desk to reduce downtime.
 Test the recovery plan.
 Choose good infrastructure.
 Synchronize all clocks.
 Use data backups.
 Review all security plans.
 Advocate training and certification.
 Pay attention to the budget.

Manageability

Managing distributed applications can be a whole new experience as compared to
managing traditional, standalone applications because distributed Web-based
applications pose an interesting problem. Managing an enterprise application contributes
highly to the total cost of ownership, but to minimize operation and management costs,

you want the cost of ongoing application administration to decrease. This is a dilemma
that emerging technologies have brought with them. As a solution, you need an efficient
way to deploy, configure, upgrade, and monitor all local and remote components and
services of your distributed application.

Managing a modern .NET application requires an efficient way to handle local and
remote application support processes, including the following:

 Initial deployment
 Configuration tuning
 Scheduled and unscheduled maintenance
 Frequent health checks
 Occasional troubleshooting

Designing for Manageability
Manageability for an enterprise-scale application should include some efficient way to
handle common administrative tasks such as local and remote installation, configuration
changes, and maintenance updates over the lifetime of the application. Generally,
designing manageable distributed applications requires three design features:

 Management agents. Each hardware device, operating system
service, and application service requires a management agent.
Management agents monitor the local resource, publish data about the
resource’s current state and performance, and provide local
configuration services as a way to make remote management
possible.

 The collection process. The information collection process collects,
filters, correlates, and stores information from all of the management
agents.

 The management console. The management console workstation
aggregates and reports on application-management information. From
this central console, an administrator can monitor all devices, analyze
operational profiles, automate certain recurring activities, receive
notifications from managed elements, and initiate remote configuration
changes.

In addition to a sound design, you also need to collate application information over the
application’s lifetime to ensure constant manageability.

Testing for Manageability
Testing for manageability is about making sure the deployment, maintenance, and
monitoring technologies you have designed into your application are working as
expected. The following are some important testing recommendations for verifying that
you have created a manageable application:

 Test cluster configuration.
 Test network load balancing.
 Test application synchronization.
 Test change control procedures.

Performance

Common application metrics, such as transaction throughput and resource utilization,
define application performance. Network throughput and disk access are common
application-performance bottlenecks. From a user’s perspective, application response
time defines performance. You’ll often find yourself at a crossroad, however, where one
path leads you to high-performing applications, and the other leads to cost control. You
must take your pick intelligently.

Performance problems typically do not become apparent until testers place an
application under an increased load. However, the responsibility for application
performance is important both at design time and at runtime.

At design time, developers must avoid using code that could hinder the application’s
performance. Developers can follow accepted programming practices and take
advantage of the inherent performance-enhancing capabilities of the programming
language.

At runtime, the application should undergo extensive performance testing to identify
application bottlenecks such as contention for resources or slow-running code. However,
before conducting extensive performance tests, make sure the application is functionally
sound.

Designing for Performance
It is imperative that you define performance requirements before you start development
and debugging. You must do the following before you start developing your application:

 Identify project constraints such as schedules or the choice of tools
and technologies you can use.

 Determine services that the application will perform, including
performance scenarios, database access, and other services.

 Specify the load on the application, such as the number of clients that
will use this application and how much time elapses between the
response and request chain.

You can then use this information to select appropriate metrics and determine specific
performance goals.

Testing for Performance
After you’ve identified specific performance requirements and have developed your
application, you can begin testing to determine whether the application meets those
requirements. Performance monitoring is primarily a collection of the following related
activities:

 Measuring performance
 Defining performance tests
 Determining baseline performance
 Stress testing
 Solving performance problems

Reliability

Reliability is all about an application’s ability to operate failure free. As distributed Web-
based applications continue to influence everything from your customer’s experience to
your relationship with vendors, there is an increasing need to improve the reliability and
operating quality of software, primarily for the following reasons:

 The cost of application failure is high.
 The expense of repairing corrupted data is high.
 Users bypass unreliable Web sites, resulting in lost revenue and reduced

future sales.
 Unreliable systems are difficult to maintain and improve because the

failure points typically are hidden throughout the system.
 Modern software technology makes it easy to create reliable

applications.

Designing for Reliability
The process of designing applications for reliability involves estimating the application’s
expected usage pattern, specifying the required reliability profile, and engineering the

software architecture with the intention of meeting the profile. Good reliability designs
typically do the following:

 Put reliability requirements in the design specification
 Use good architectural infrastructure
 Build management information into the application
 Use redundancy for reliability
 Use quality development tools
 Use built-in application health checks
 Use consistent error handling

Testing for Reliability
Testing for reliability is about exercising an application so that failures are discovered
and removed before the system is deployed. It is no doubt difficult to identify all potential
problems, but you should aim at identifying as many as you can by estimating various
usage scenarios.

The following are important testing strategies:
 Component stress testing
 Integration stress testing
 Real-world testing
 Random destruction testing

Best Practices for Reliability
For creating and deploying reliable applications, it is important for you to keep reliability
as a foremost concern throughout the application-development life cycle. The following
are some best practices for reliable application development:

 Invest in people.
 Use a robust operating system.
 Remove failure points from your application design.
 Provide ongoing reliability monitoring.
 Invest in quality software-engineering processes.
 Use smart testing.
 Deploy changes very carefully.

Scalability

Scalability is the capability to add resources to an application to produce an equivalent
increase in service capacity. Scalability must be part of the design process because it is
not a discrete feature you can add later.

Designing for Scalability
The design of an application has the greatest impact on its scalability. Smart designs can
greatly improve the scalability of applications. Other factors that influence scalability,
though on a lesser scale, include hardware, software, and code. The primary goal when
designing for scalability is to ensure efficient resource management.

To design applications for high scalability, keep the following design aspects in mind:
 The application must not have to wait any more than is absolutely

necessary for using vital resources.
 The application must not have to contend for resources—such as

memory, processor, and bandwidth—with other applications.
 The application must be designed for commutability; operations should

be able to be applied in any order to achieve the same results.
 The application must be designed for interchangeability by using

resource pooling with technologies such as COM+ and ODBC
connections.

 The relationship between resources and activities must be minimized
to avoid bottlenecks.

Testing for Scalability
To make a truly scalable application, it is critical that you rigorously and regularly test it
for scalability problems. The purpose of scalability testing is to identify major workloads
and mitigate bottlenecks that can impede the scalability of the application.

If your application does not meet performance requirements, you should analyze data
from the test results to identify bottlenecks in the system and to determine a cause. You
can also identify bottlenecks using tools such as Windows Task Manager, Windows
Performance Monitor, and the Component Services administrative tool. You can often
alleviate bottlenecks through performance tuning.

Securability

Securability is the ability to provide security to an application and its data. Security is
about controlling access to a variety of resources such as application components, data,
and hardware. The securability of an application is impacted by numerous design
choices such as the selection of communication protocols and the method of user
authentication.

Designing for Securability
Security is an issue that can affect your application—and consequently you—every day.
New security threats emerge daily. The following are some guidelines to help you design
secure applications:

 Analyze the impending threats. Threats could include spoofing identity,
tampering with data, repudiability, information disclosure, denial of
service, and elevation of privilege.

 Prioritize threats based on the criticality, the effort involved in
eliminating the threat, and the potential damage to your application.

 Apply available security policies to your application.
 Select appropriate and applicable security technologies based on the

type of threats.
 Design security services that your application must support.

Testing for Securability
Security testing is about validating your application’s security services and identifying
potential security flaws. There are no standard methods for conducting security testing,
however, because attackers have no standard method of breaking into things. The
following are some methods you can use to test the securability of your applications:

 Test for buffer overflows.
 Conduct source-code security reviews.
 Validate contingency plans.
 Attack your application.

Best Practices for Securability
The following are some best practices for developing secure applications:

 Exercise constant vigilance.
 Conduct periodic reviews.
 Establish and follow security policies.
 Secure data.
 Use access-control mechanisms.
 Use the least-access approach.
 Enable strong authentication.

 Encourage the use of strong passwords.
 Use system-integrated authorization.
 Avoid buffer overflows.
 Require minimal privileges.
 Layer your application.
 Validate user input.
 Develop contingency plans
 Conduct scheduled backups.
 Monitor not-found errors.
 Use a perimeter network to protect your internal network.
 Develop applications using the .NET framework.

Appendix B: Developing Console Applications in
Visual Basic .NET
Overview
You’ve probably created console applications using Visual Basic, and now you will use
the new features provided by .NET to create them. You use the Console Application
project template provided in Visual Studio.NET to create a Visual Basic.NET console
application. This template automates the work of adding the necessary files and folders
to the project. The files and folder that are automatically added to the application are as
follows:

 AssemblyInfo.vb. This file consists of all the information about the assembly of
the application.

 Module1.vb. This file contains the Sub Main() method, which acts as an
entry point for the application.

 References. This folder consists of references to the .NET framework
namespaces, such as System, System.Data, and System.XML.:

The Console class is a part of the .NET framework class library, which provides basic
support for applications that read characters from and write characters to the console.
Data from the console is read from the standard input stream, whereas the normal data
and the error data are written to the standard output stream. These streams get
automatically associated with the console when you run your application. The method
and the property members of the stream objects represented by In, Out, and Error
properties can be explicitly invoked.

Coding a Visual Basic .NET Console Application
Consider a scenario in which you are creating an application that accepts the name and
working experience of an employee. The steps for generating a simple Visual Basic.NET
console application for this scenario are as follows:

1. In Visual Studio.NET, choose New from File menu and choose Project
from the New submenu.

2. In the New Project dialog box, select Visual Basic Projects from the
Project Types window. Select Console Application from the Templates
window. Name the application ConsoleApplication2 and click OK.
Visual Studio.NET creates a module named Module1 containing Sub
Main() by default.

3. Add the following code within the Sub Main() and End Sub block:

4. Dim strName As String
5. Dim iExp As Integer
6. Console.Write("Please Enter Your Name: ")

7. strName = Console.ReadLine()
8. Console.Write("Please Enter Your Work Experience in Years : ")
9. iExp = CInt(Console.ReadLine())
10. Console.WriteLine("Your Name is " & strName)

Console.WriteLine("Your work experience is: " & iExp)
11. Press the Ctrl and F5 keys to execute the application. Enter the name

and work experience and press the Enter key. The output for the console
application is shown in Figure B-1.

Figure B-1: The output of the console application

Appendix C: The Graphical Device Interface (GDI)
Overview
Each type of object is followed by a set of routines used to create that object. The
graphical component of the Windows environment is referred to as the graphical device
interface (GDI). It is a subsystem of the Windows operating system that enables an
application to communicate with device drivers. Let’s say you are drawing a triangle on
the screen. You need to consider where the triangle should start, the color of the border,
the color to be used to fill the triangle, and the size of the triangle so as to specify this in
your application. The GDI acts as a buffer between applications and output devices, thus
presenting a device-independent view of the application.

You need to call the methods of GDI classes, which in turn call specific device drivers to
write an application that needs to draw on screens or printers. An enhanced version of
the GDI, called GDI+, comes with the latest version of the Windows operating system,
codenamed Whistler. GDI+ provides two sets of classes; the first set is written using
C++, and another set is written using managed code.

The two distinct features of GDI+ are as follows:
 GDI+ provides new capabilities such as gradient brushes and alpha blending.
 GDI+ has a revised programming model. This has been devised to make

graphics programming easier and flexible.

GDI Categories
Three types of drawing categories are supported by GDI: two-dimensional vector
graphics, bitmaps, and texts. Let’s now discuss them in detail.

Two-Dimensional Vector Graphics

An image with a width and a height is referred to as a two-dimensional vector image, so
you can assume that all two-dimensional images have a width and a height. You can

represent these 2-D images as arrays of points on a plane. For example, to represent a
rectangle, you can specify the endpoints of the line by using upper-left and lower-right
corners. Vector graphics use this mechanism to draw images. 2-D vector graphics are
suitable to draw simple images.

Bitmaps
You can store images as bitmaps (defined as an array of bits), which specify the color of
each pixel in a rectangular array of pixels. Images that cannot be represented using
vector graphics are stored as bitmaps. For example, a photograph cannot be stored as a
2-D vector graphic because this might involve an endless number of coordinates. To
solve this problem, you use bitmaps instead. The Bitmap class inherited from the
Image class represents bitmaps in GDI.

Text

Unlike images, you can also draw text by using GDI. This text can be drawn in a variety
of fonts, styles, and sizes

Implementing GDI
All the classes of GDI are contained in the System.Drawing namespace class. The
methods to draw lines, rectangles, ellipses, arcs, and text are defined in the
System.Drawing.Graphics class. Some of the important methods used in the
Graphics class are as follows:

 DrawArc(). To draw an arc that spans part of an ellipse
 DrawEllipse(). To draw an ellipse
 DrawLine(). To draw a line
 DrawRectangle(). To draw a rectangle
 DrawString(). To draw text:

All of these methods use a System.Drawing.Pen object to draw on the screen. You
use the pen object to draw lines and curves, but the Pen class cannot be inherited. You
can use any of the colors defined in the System.Drawing.Color class to specify
colors while specifying a Pen object. Alternatively, you can also use an overloaded
constructor that accepts a System.Drawing.Brush object. To specify the coordinates
and the bounding rectangle, you can use the System.Drawing.RectangleF
structure. All the coordinate points are specified as Single.
Consider an example in which you are required to draw on a form. To try this example,
you need to first create a Windows application project. A form window is displayed.
Double-click on the form to view the code window. In the Form Paint event, change the
procedure in the following manner and then execute the project by pressing the F5 key.
Private Sub Form1_Paint(ByVal sender As Object, ByVal ev As
System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint
 Dim Pen1 As Pen = New Pen(Color.Blue)
 Dim Brush1 As SolidBrush = New SolidBrush(Color.Black)
 Dim Rect1 As RectangleF = New RectangleF(50, 50, 200, 200)
 ev.Graphics.DrawEllipse(Pen1, Rect1)
End Sub

Note The Paint event is called every time a form is redrawn. When the
form is maximized, minimized, or resized, for example, it is
redrawn and the Paint event is called.

In the preceding sample code, the Form1_Paint() event handler takes an object of the
PaintEventArgs class, which is used to provide data about the Paint event. It is this
data that includes the area that needs to be redrawn. The Graphics class is a member
of the PaintEventArgs class, which specifies the Graphics object to be used to paint

the form. You can use this member of the PaintEventArgs class to draw graphics on
the form.
In the preceding code, you declared a Pen object and a SolidBrush object as shown
here. The Pen object, Pen1, is created with blue color, and the SolidBrush object,
Brush1, is created with black color.

Dim Pen1 As Pen = New Pen(Color.Blue)
Dim Brush1 As SolidBrush = New SolidBrush(Color.Black)
A RectangleF structure, Rect1, is then created with the upper-left corner at (50,50)
and the lower-right corner at (200,200).
Dim Rect1 As RectangleF = New RectangleF(50, 50, 200, 200)

A rectangle is then drawn on the screen, and the text “Hello” is written.
ev.Graphics.DrawEllipse(Pen1, Rect)
Figure C-1 shows the output displayed when you run the preceding code:

Figure C-1: The output of the GDI application code

Appendix D: Localization
Overview
People all over the world speak different languages and follow different conventions and
cultures. In addition, there are people in different regions that speak the same language,
but their conventions and cultures vary. Take the European countries, for example,
where people speak different languages but use the same currency. Also, there are
countries where people living in the same region speak multiple languages. Therefore,
you cannot identify a locale specifically on the basis of region or language. A locale is
specifically defined as a combination of a language and region.
You can create international-ready applications using ASP.NET. These applications can
be used globally without specifying, modifying, or recompiling. The process of creating
international applications is defined as internationalization. When creating an
international application, you must know the language to be used to design the user
interface and the locale-specific settings such as currency formats and number formats.
Internationalization can be further classified as globalization, localizability, and
localization. Globalization is defined as the process of designing and implementing
applications that include generic coding and design considerations so that they can
adapt themselves according to the locale in which they are used.

An intermediate phase between globalization and localization is defined as
localizability—a quality-assurance phase that verifies that a globalized application is
ready for localization by separating the resources that require localization from the rest of
the application.
Localization is defined as the process of working with resources such as string and
image representations for specific locales. Localization primarily relates to the translation
of the user interface.
Conceptually, a globalized application consists of two parts: a data block and a code
block. The data block has all user-interface resources and is locale dependent. The code
block has the application code that can work with the data blocks irrespective of locales.

You can represent data in a number of ways identified as character sets. You will use
these character sets for localization later in this appendix.

Understanding Character Sets
A set of characters grouped together from different languages is defined as a character
set. Any character/text that you input from your keyboard has a code associated with it,
and this code is referred to as a character code. Thus, a character code is an internal
representation of a character. Some of the commonly used character sets are American
National Standards Institute (ANSI), Double Byte Character Set (DBCS), and Unicode.
Table D-1 gives a description of these commonly used character sets.
Table D-1: Character Sets and Their Descriptions

Character Sets Description

American National Standards Institute (ANSI) Consists of
256
characters
and
punctuation
codes. Each
character is
represented
as a single
byte.

Double Byte Character Set (DBCS) Consists of
a
combination
of the
standard
ASCII
character
set and
alphabets
from East
Asian
languages.
East Asian
characters
are
represented
as 2 bytes.

Unicode Consists of
characters
from almost
all major
languages

Table D-1: Character Sets and Their Descriptions

Character Sets Description
spoken
today. It
enables you
to easily
transfer data
between
different
locales.

Configuration Settings
Configuration settings enable you to access locale-specific properties for the entire
application. This feature is provided by ASP.NET. These settings are included in the
<globalization> tag of the Web.config configuration file of each ASP.NET
application. The following code illustrates the configuration settings used in globalization:
<globalization
 requestEncoding="any valid encoding string"
 responseEncoding="any valid encoding string"
 fileEncoding="any valid encoding string"
 culture="any valid culture string"
 uiCulture="any valid culture string"
/>

In the preceding code:
 requestEncoding specifies the way the request data is encoded.
 responseEncoding specifies the way the response data is encoded.
 fileEncoding specifies the way the ASPX, ASMX, and ASAX files are

encoded.
 culture specifies the default culture used to process the Web requests.
 uiCulture specifies the default culture used to search for resources.

You can control the settings of the entire globalization application by specifying the
configuration settings in the <globalization> tag. However, you can also specify the
page-level configuration settings for a specific page. The page-level settings override the
settings specified in the Web.config file. It is always advisable to specify page-level
setting because if the ASPX file is moved to a server that does not use the same settings
as your application, the page-level settings will ensure that the correct encoding is done.

You will now learn to make region and culture settings in ASP.NET applications.

Culture and Region
In addition to configuration settings, you will use the classes provided by the .NET
framework to create international applications. These classes are a part of the
System.Globalization namespace. In addition, you will also use the Thread class
of the System.Threading namespace to control the locale-specific settings for each
executing instance of an application.
Consider this example: You want to create an application that displays text based on the
language used in a specific region. For this purpose, you can use a localized application
provided by the .NET framework. You will use the localization classes contained within
the System.Globalization namespace. These classes enable an application to
determine the locale at runtime, thus giving the flexibility of creating applications that can

automatically adapt themselves to the locale in which they run. The following sections
describe the CultureInfo and RegionInfo classes of this namespace.

Note Combination of a language and a region is defined as a locale. For
example, English-US is the locale that represents the culture
specific to the English language spoken in the United States.

The CultureInfo Class
The CultureInfo class represents country-, region-, language-, or culture-specific
information. The culture names have prefixes or suffixes to specify the scripts for the
culture. For example, the prefix "ar-" represents the Arabic script, and the suffix "In-"
represents the International sort. The culture name "ar-AE" represents Arabic-U.A.E.
Table D-2 lists some of the specific culture names.
Table D-2: Some Specific Culture Names with Their Descriptions

Culture Name Description

ar-AE Arabic-
U.A.E.

ar-EG Arabic-
Egypt

ar-KW Arabic-
Kuwait

bg-BG Bulgarian-
Bulgaria

cs-CZ Czech-
Czech
Republic

de-DE German-
Germany

el-GR Greek-
Greece

en-US English-
United
States

en-NZ English-New
Zealand

es-ES Spanish-
Spain

fa-IR Farsi-Iran

Fr-FR French-
France

Fr-BE French-
Belgium

hi-IN Hindi-India

hu-HU Hungarian-
Hungary

id-ID Indonesian-
Indonesia

Table D-2: Some Specific Culture Names with Their Descriptions

Culture Name Description

ja-JP Japanese-
Japan

ru-RU Russian-
Russia

sa-IN Sanskrit-
India

th-TH Thai-
Thailand

ur-PK Urdu-Islamic
Republic of
Pakistan

zh-CHT or zh-CHS Chinese
(Traditional)
or Chinese
(Simplified)

A specific identifier identifies each culture. For example, the culture “en-US" has a
unique identifier value, 0x0409. You can access the complete list of culture names from
the .NET documentation.
Now you will learn to create an object of the CultureInfo class. When you create an
object, the constructor of the CultureInfo is automatically called. You will use the
following Visual Basic syntax to create a CultureInfo object:

Dim CuInfo as CultureInfo
CuInfo = new CultureInfo (culture name/culture identifier)
The culture name or the culture identifier is represented in the following
format:
langcode-country/region
To specify the CultureInfo object to a "German-Germany" culture, you will use the
following code:
Dim CuInfo as CultureInfo
CuInfo = new CultureInfo ("ru-RU")

or
Dim CultIdentifier As Integer
cultIdentifier = &H407
Dim Cult As New CultureInfo(CultIdentifier)

“ru-RU” is the culture name, and 0x0419 is the culture identifier for the “Russian-Russia”
culture.
You can also access the culture-specific information directly from the CultureInfo
class without creating an object of the CultureInfo class. The CultureInfo class is
used to represent the information specific to the culture used by the system. Table D-3
describes the properties of the CultureInfo class that can be used to access the
culture-specific information.
Table D-3: The CultureInfo Class: Properties and Their Uses

Property Uses
Name Used to return the name

of the culture in the

Table D-3: The CultureInfo Class: Properties and Their Uses

Property Uses
<languagecode2>-
<country/regioncod
e2> format.

DisplayName Used to return the full
name of the culture in
.NET framework
language in the
<language>-
<country/region>
format.

NativeName Used to return the full
name of the culture in
the user interface
language in the
<language>-
<country/region>
format.

EnglishName Used to return the full
name of the culture in
English in the
<language>-
<country/region>
format.

CurrentCulture Used to return the
CultureInfo instance,
which represents the
current culture for the
current thread.

CurrentUICulture Used to return the
CultureInfo instance,
which represents the
current culture for the
culture-specific
resources.

LCID Used to return the
culture identifier of the
CultureInfo instance.

The RegionInfo Class
The RegionInfo class represents country-specific or region-specific information. The
RegionInfo class information does not depend on the user’s language or culture.
Unlike CultureInfo names, the RegionInfo names are not case sensitive. Table D-4
lists the two-letter codes supported by the RegionInfo class to represent countries or
regions. You can refer the complete list of region names in the .NET documentation.
Table D-4: Two-Letter Codes and Their Region Names

Two-Letter Code Country/Region

AE United Arab
Emirates

AU Australia

Table D-4: Two-Letter Codes and Their Region Names

Two-Letter Code Country/Region

AT Austria

BG Bulgaria

BR Brazil

CA Canada

CH Switzerland

CZ Czech Republic

DE Germany

EG Egypt

ES Spain

GB United Kingdom

GR Greece

HU Hungary

IN India

JP Japan

LB Lebanon

MX Mexico

NZ New Zealand

PK Pakistan

RU Russia

SG Singapore

TR Turkey

US United States

ZA South Africa
When creating an object of the RegionInfo class for a specific region, you must pass
the region name or culture identifier as an argument to the RegionInfo constructor.
Table D-5 shows some of the properties of the RegionInfo class.
Table D-5: The RegionInfo Class: Properties and Their Uses

Property Uses
CurrentRegion Used to

return the
RegionIn
fo
instance,
which
represents
the
country/reg
ion for the
current

Table D-5: The RegionInfo Class: Properties and Their Uses

Property Uses
thread.

Name Used to
return the
two-letter
code for
the
country/reg
ion of the
RegionIn
fo
instance.

EnglishName Used to
return the
complete
name of
the
country/reg
ion in
English.

DisplayName Used to
return the
complete
name of
the
country/reg
ion in the
.NET
framework.

CurrencySymbol Used to
return the
currency
symbol
associated
with the
country/reg
ion.

IsMetric Used to
indicate
whether or
not the
country/reg
ion uses
the metric
system of
measurem
ent.

Resource Files
As previously discussed, a global ASP.NET application can be divided into two parts:
data block and code block. These separate parts help create localized versions of the
applications without modifying the executable content. To develop localized versions of a

global ASP.NET application, you need to create localized versions of the data files.
These data files are called resource files and must be created in a binary resource file
format at runtime. The appropriate resources are loaded depending on the culture
settings provided by the browser at runtime.
When you create an application, it is a part of an assembly called the main assembly.
You need to recompile the application if any change is made to this main assembly. This
is because you need to add the resources to provide support for more cultures; it is
therefore always advisable to keep only the default set of resources in the main
assembly. The other sets of resources can be kept in separate assemblies called
satellite assemblies.
The first step in creating a resource file is to identify the resources specific to different
cultures and include them in files. You need to include resources in a separate file for
each culture. To do so, you need to create a text file. This text file stores a key/value pair
for each resource. For example, you need to write the following code to store a value
Name as a resource:

;A key/value pair
NameMessage = "Name"
The text A key/value pair preceded by a semicolon represents a comment.
NameMessage is a key, and the value assigned to the key is Name. These key names
are case sensitive.

You can also use XML format to include the identified resources in ResX format, and you
can include an embedded object in addition to the string resources. The following is a
typical ResX format:
[Header]
[Entries: Strings]
key=value
[Entries: Objects]
A specific naming convention should be followed for resource entries files so that the
resource files are traceable during runtime. You should name these file as Strings.txt or
Strings.ResX for the default culture. For any other culture, the file name must be of the
form Strings.culture-name.txt or Strings.culture-name.ResX. For example, if the culture is
“fr-FR," the file should be named as Strings.fr-FR.txt or Strings.fr-FR.ResX.

After including all the resources in a file (in text or ResX format), you need to convert it to
a format that the .NET runtime can understand. To do so, you use the Resource File
Generator (ResGen.exe) utility. The following is the syntax for the Resource File
Generator:
resgen [/compile] filename.extension
[outputFilename.extension]
Here, filename.extension is a file that includes all the resource entries. The
extension can be one of the following:

 TXT. Denotes a text file to be converted to a RESOURCES or RESX file. This
file can consist of only string resources.

 RESX. Denotes an XML-based resource file to be converted to a
RESOURCES or TXT file.

 RESOURCES. Denotes a resource file to be converted to a RESX or TXT file.
outputFilename.extension is the RESOURCES file that is generated
after conversion, and /compile specifies multiple RESX or TXT files to
convert to a RESOURCES file in a single bulk operation, which is optional.

Creating a Localized Application Using VB.NET
You can create a localized version of an application without modifying the application
code. As previously discussed, all the text and localizable resources are kept in resource
files.
Visual Basic.NET provides the Localizable property for Windows forms to create
localized applications. The Visual Studio.NET project system automatically adds a
neutral resource file to the project when the Localizable property is set to True. The
file name is the same as that of the form and the extension RESX. This file contains the
strings and resources in the language in which the application is developed. For each
localized version of the form, additional resource files are created. The resource file’s
name contains the name of the culture. For example, to create a localized version of a
form named Form1 for the language French (France), the name of the resource file will
be Form1.fr-FR.resx.

You will now learn to create an application that accepts the culture preference from a
user and displays the form’s text in the language specific to that culture. To create the
application, you need to perform the following steps:

1. Choose File, New, Project. Select Visual Basic Project templates from
the Project Types pane in the New Project dialog box. From the
Templates pane, select Windows Application. Enter the name of the
project as Localization. Click on the OK button to close the New
Project dialog box. This adds the form Form1 to the project automatically.

2. Create a label and set its Text property as Select Language.
3. Create a combo box and set its Name property as Combo1.
4. Create a button and set its Text property as OK. Change the Name

property of the control to btnOK. Compare your form with Figure D-1.

Figure D-1: The design of Form1
5. Type the following code in the Form1_Load() event handler to populate

the combo box:
6. combo1.Items.Add("English (US)")

 combo1.Items.Add("French (France)")
7. Type the following code in the Click event of the btnOK button.

 Dim Culture As String
 Select Case CmbLanguage.SelectedIndex
 Case 0
 Culture = "en-US"
 Case 1
 Culture = "fr-FR"
 End Select

 Dim NextForm As New Form2(Culture)
 NextForm.Show()

The preceding code assigns the value en-US or fr-FR to the string, based on the user
selection after declaring a string variable. Then an instance of Form2 is created. The
constructor of Form2 takes the Culture string as a parameter.

You need to perform the following steps to create a localized form based on the user
selection:

1. From the Project menu, choose the Add Windows Form command. In the
Add New Item dialog box, ensure that Windows Form is selected in the
Templates pane. Type the name of the new form as Form2.vb. Click on
the OK button to close the Add New Item dialog box.

2. To switch to the Properties window, press the F4 key. The
Localizable property of Form2 is set to True. Set the Language
property of the form to Default.

3. Add two labels and set their Text properties to Enter Your Name?
and Enter Your Age?.

4. Add two text boxes.
5. Add a button. Set the Text property of the button to OK.
6. Press the F4 key to switch to the Properties window of the selected form.

Set the Language property of the form to French (France). Click the
Show All Files button to display the Form2.vb file. Expand the Form2.vb
node to display the RESX file for different languages.

7. Select Label 1 to set its Text property to Comment vous appellez
vous?. Select Label 2 and set its Text property to Quel age avez-
vous?. Figure D-2 shows the design of this form.

Figure D-2: The design of Form2
8. Open the Code View window by choosing Code from the View menu.

Use the following statements to import the System.Globalization
and System.Threading namespaces:

9. Imports System.Globalization
 Imports System.Threading

10. Expand the Windows Forms Designer generated code node to specify
the following string parameter:

 Public Sub New(ByVal culturestr As String)
11. Add the following code before the InitializeComponent()

statement:
 Thread.CurrentThread.CurrentUICulture = New CultureInfo(CultureStr)
In the preceding statement, a new instance of the CultureInfo class is created. This
instance is assigned to the CurrentUICulture property of the current thread. The
CurrentUICulture property is used to look up culture-specific resources and load
them. Therefore, when you specify fr-FR as the culture name, the Form2.fr-FR.resx
file is loaded for the current instance of an application, and strings from the resource
file are displayed at runtime.

1. Type the following code in the Button1_Click() event handler:
 Close()

2. Choose Start from the Select menu. Select a language from the drop-
down list and click on the OK button. Note that in Figures D-3 and D-4
the text in Form2 is displayed in the specified language.

Figure D-3: Form2 when en-US is selected in Form1’s combo box

Figure D-4: Form2 when fr-FR is selected in Form1’s combo box

Appendix E: Deployment in Windows Applications

Overview
It is not necessary for an application created using Visual Studio.NET to be confined to
the system on which it was created. You can distribute the application as an installation
(or deployment) program so that a user can install your application. Installation of an
application involves the creation of a folder structure on the end user’s computer, and
then some modifications to the registry are made by the application so that the
application runs successfully. In Visual Studio.NET applications, the common language
runtime (CLR) files are made available by the installation program for successful
execution of an application.

In this section, you will learn to deploy Windows applications by using an installation
program.

Unlike other projects provided by Visual Studio.NET you can also create an installation
program for your application by using a deployment project. In this section, you will be
introduced to different types of installation programs available in Visual Studio.NET.
Visual Studio.NET provides the following three types of installation programs:

 Microsoft Windows Installer files
 Merge modules
 Cabinet files

The following sections discuss these three installation programs

Microsoft Windows Installer Files
Microsoft Windows Installer files, also known as MSI (Microsoft Installer) files, help you
install applications by using the Microsoft Installer service introduced with Microsoft
Windows 2000.
This service was introduced by Microsoft to optimize project deployment, enabling you to
reinstall application files that may have been accidentally deleted without adversely
affecting the application. Some of the Microsoft products installed using the Microsoft
Installer service are Microsoft Office 2000 and Microsoft Commerce Server 2000.

When compiling a deployment project for a Windows application, Visual Studio.NET
creates an MSI file that includes the .NET runtime files required to execute your
application.

Merge Modules
Merge modules are created for packaging components that need to be shared across
applications. Consider an example in which you have a set of dynamic link library (DLL)
files that are to be used in three applications. Instead of individually adding the DLL files
in the deployment project for all three applications, you can create a merge module for
the DLL files and then add it to the deployment project for the three applications. This is
one of the important benefits provided by merge modules. The MSI file, generated by
compiling the deployment project to which the merge module is added, stores
information about the version of the module. When installing the application, the
information related to the version is added to a Windows Installer database, thus
ensuring that the component is not uninstalled when a component is used by multiple
applications and you uninstall one of the applications.

Cabinet (CAB) Files
Cabinet files are used to package ActiveX controls that a user can download and install
from a Web site. You can create a CAB file with the help of the basic support provided by
Visual Studio.NET. You will learn about these features later in this appendix.

Saving Installation Program Files
You can store installation programs for your application in the following locations:

 Shared folders. You can store your installation program in shared folders on a
network so that other users can access the program and install your
application. Corporate organizations usually employ this method of saving
installation programs when computers are connected over a network.

 Installation media. As previously discussed, you can also distribute your
application by using storage-media devices such as CD-ROMs, DVDs, and
floppy disks.

 Web sites. The easiest way to reach the masses is to host your application on
Web sites from which the users can download the installation files. You can
commercialize your installation program or make your installation program
freely downloadable.

Deploying a Project
The first step in deploying an application is to create a deployment project. Next, you
need to add this project to another existing deployed project. Then you need to perform
the following steps:

1. Open any project for which the installation program is to be created.
Preferably, use an application that involves the use of .NET runtime files.

2. From the File menu, select Add Project, New Project to open the Add
New Project dialog box.

3. In the Add New Project dialog box, select Setup and Deployment
Projects from the Project Types list, as shown in Figure E-1.

Figure E-1: The Add New Project dialog box
4. Click the Setup Project icon in the Templates pane. This is used to

create an MSI file for deploying a Windows application.
5. Enter Setup1 in the Name text box as the name of the project and then

click on OK. You have added a new deployment project.
A deployment project consists of a number of editors. Visual Studio.NET opens the File
System editor (see Figure E-2) by default when you add a new deployment project to

your solution. The following sections discuss some of the editors provided in .NET
framework.

Figure E-2: The File System editor

The File System Editor

The File System editor is used to design the folder structure of your application as it
should appear on a user computer. In addition, you can add the final output of an
application to your project and create shortcuts for the output file.

The Registry Editor

The system registry is defined as a complex structure that consists of a number of nodes
and subnodes. You often need to add data to the system registry when creating an
application.

The Registry editor displays the nodes and subnodes of the registry in a hierarchy, thus
simplifying your task of specifying a subnode.

The File Types Editor

You use the File Types editor to associate file extensions with your application. For
example, the EXE file extension is associated with installation files.

The User Interface Editor

A user interface enables you to select a destination directory and specify user
information before installing an application. The Setup Project template is used to
provide a set of standard screens that can be added to a deployment project. You can
fine-tune your installation program by using the User Interface editor.

The Custom Actions Editor

At times, you might need to configure an application after installing it on a user computer.
For example, you might need to register a set of DLL files after your application is
installed. Such tasks aren’t part of the standard setup process but are essential for the
functioning of your application. These tasks are defined as custom actions.

To do this, you can create custom actions in batch files or DLL files, and then you can
include the files into your deployment project by using the Custom Actions editor.

The Launch Conditions Editor

You use the Launch Conditions editor to check a user’s computer for software or
hardware that is required to install your application. For example, a user should be able
to install Windows XP only if the user has 128MB of random access memory (RAM).

Adding Files

After adding a deployment project to your application, you need to add the output of your
application to the deployment project. Then you need to specify the location of
application shortcuts so that your application is easily assessable by users.

After you read through this section, you should be able to configure the template-
generated deployment project to deploy your application successfully.

Adding an Executable File
The executable file used to run the application is the output of a Windows application.
Visual Studio.NET automatically determines the dependencies for your project and adds
the required assemblies and DLL files to your application when you add the executable
file of your application to a deployment project.

You need to perform the following steps to add your application’s output to the
deployment project:

1. From the Project menu, select Add, Project Output to open the Add
Project Output Group dialog box shown in Figure E-3.

Figure E-3: The Add Project Output Group dialog box

2. Retain the default options for all settings in the Add Project Output
Group dialog box and click OK to return to the File System editor.
These default options denote that you’re adding the primary output
of your application to the deployment project.

3. In the File System on Target Machine node, click the Application
Folder. The right pane of the File System editor displays the
contents of the Application Folder.

All folders in the File System on Target Machine node represent the folders on a user’s
computer, including the Application Folder. Therefore, you can store the shortcuts in the
User’s Desktop folder.

To enable end users to access your application conveniently, you will include shortcuts
to the primary output of your application on the user’s computer desktop or in the
Programs menu. To add these shortcuts, you need to perform the following steps:

1. Right-click on the file for the primary output of your application and
then select the Create Shortcut to the <file name> menu option
(where <file name> is the name of the file for the primary output).

2. Type a name for the shortcut so that it helps end users identify your
application.

3. Drag the shortcut to the User’s Desktop folder in the File System on
Target Machine node so that the shortcut is stored on the user’s
computer.

Enhancing a Deployment Project

You will now learn to enhance your deployment projects by adding icons for your
application and by optimizing project performance. You will also change deployment
project properties to ensure that users without the latest version of Windows Installer can
also install your application. Finally, you will learn to add screens to the deployment
project to optimize it for the application. The following section shows you how to add
icons to your application.

Adding Icons
Standard Windows executable file icons represent shortcuts to the primary output of your
application. Imagine the plight of a user who has to routinely use these hard-to-identify
icons to launch your application. To solve this problem, you should use an icon that
easily, if not uniquely, identifies your application. Follow these steps to change the icons
for the sample application’s shortcuts to things that a user might relate the application to:

1. Select the Application Folder from the File System editor.
2. From the Project menu, choose Add, File to open the Add Files dialog

box.
3. Navigate to the location of the icon file (an icon file is followed by the

extension ICO) and click Open.
4. Right-click an application shortcut and select Properties Window from

the shortcut menu.
5. In the Properties window, select the (Browse) option from the Icon list

to open the Icon dialog box (see Figure E-4).

Figure E-4: The Icon dialog box

6. Double-click the Application Folder in the Select Item in Project dialog
box. You will observe that the name of the icon appears in the
folder.

7. Click on OK to move the selected icon to the Icon dialog box. The icon
selected in step 3 appears in the Current Icon list of the Icon dialog
box.

8. Click on the Close button to close the Icon dialog box.

Follow these steps to add icons to all the shortcuts created for the application.

Adding Screens to the Deployment Project
You will use the Setup Project template provided by Visual Studio.NET to add a set of
standard screens for creating a setup project or application. In addition to the default
screens, you can customize your application by adding more screens as per your project
requirement. For example, you might include a license-agreement screen in your
application as per the corporate world’s requirement. To add this screen to your
deployment project, you need to use the User Interface editor provided by Visual
Studio.NET. To open this editor, choose Editor, User Interface from View menu. The
User Interface editor is opened. Notice that there are two types installations: Install and
Administrative Install. Figure E-5 displays the User Interface editor.

Figure E-5: The User Interface editor

You use the Install installation type for installing an application to the local computer. The
system administrator uses the Administrative Install installation type to install an
application on a network.

Visual Studio.NET allows you to add only selected screens for each stage of
deployment. The scheme followed by Visual Studio.NET is as follows:

 Start stage. This stage refers to adding the Splash, Welcome, License
Agreement, Radio Buttons, Checkboxes, Textboxes, Installation
Folder, and Confirm Installation screens. It is always advisable that
you add the required screens as listed here.

 Progress stage. When your application is being installed and there is
no user interaction, you can add only the Progress screen. This is
done in the progress stage.

 End stage. In the end stage, which is the final stage of a setup
application, you can add only the Register User and Finished screens.:

In the running example, you will add the License Agreement screen to your project. For
this, you need to add the License Agreement file to your application. This process is
similar to the process of adding icons, which was discussed earlier. The only difference
is that you need to import rich text format (RTF) files with the license agreement.

After you add the license agreement file to your application, you need to follow these
steps to add the License Agreement screen to your application:

1. Click the Start stage in the User Interface editor. (To open the User
Interface editor, choose Editor, User Interface from the View menu.)

2. Select Add Dialog from the Action menu.
3. Select License Agreement from the Add Dialog box and then click OK.
4. Move the License Agreement screen to the Welcome screen.
5. To associate the License Agreement screen with the text file you

imported for the license agreement, right-click the License
Agreement screen and then select Properties Window from the
shortcut menu that appears.

6. Select the (Browse) option in the LicenseFile list to open the Select
Item in Project dialog box. Figure E-6 displays the Select Item in
Project dialog box.

Figure E-6: The Select Item in Project dialog box

7. Double-click on the Application Folder.
Note If you use a text file as the file for the license agreement, select All

Files (*.*) from the Files of type list.
8. Select the License Agreement file and then click on OK.

Repeat these steps to include the License Agreement screen in Administrative Install as
well so that this is displayed in both the Install and the Administrative Install installation
types.

Adding the Windows Installer Bootstrapper
You should include the latest version of Windows Installer with your application to enable
users with earlier versions of Windows to install your application. This is done by
including the Windows Installer bootstrapper with your application by changing the
project properties. To include the Windows Installer bootstrapper, you need to perform
the following steps:

1. Choose View, Solution Explorer to open the Solution Explorer dialog
box.

2. Right-click the name of the deployment project, Setup1, and then
select Properties from the shortcut menu.

3. Select the Windows Installer Bootstrapper option from the
Bootstrapper list, as shown in Figure E-7.

Figure E-7: The property page of the Setup1 deployment project

4. Click on the Apply button and then click on OK to close the Setup1
Property Pages dialog box.

The deployment project is now ready for compiling and testing.

Verifying the Deployment Project

In this section, you will learn the procedure for compiling and testing your deployment
project on a test platform.

Compiling the Application
You develop your application in the Debug configuration during the development stage.
After finalizing your application, compile it in the Release configuration so that your
application is optimized for speed and performance. Create an installation program.
Perform the following steps to compile your application in the Release configuration:

1. Choose Build, Configuration Manager to open the Configuration
Manager dialog box.

2. Select Release from the Active Solution Configuration list.
3. Close the Configuration Manager dialog box by clicking on the Close

button.
4. Choose Build Solution from the Build menu. The MSI file for your

application is created by the Visual Studio.NET compiler.

Launching the Application
You must make sure your application has been packaged correctly. To do so, you need
to install the application on a test computer by performing the following steps:

1. Double-click on the MSI file to start installation. Verify that the
Welcome screen appears.

2. Click on the Next button to continue. Verify that the License
Agreement screen appears.

3. Select the I Agree option to accept the license agreement and then
click on the Next button. Also make sure the Next option is disabled
when the I Agree option to accept the license agreement is not
selected. Verify that the Select Installation Folder screen appears.

4. To install your application in the Default folder, click on the Next
button. Verify that the Confirm Installation screen appears.

5. Click on the Next button to install your application. Verify that the
Progress screen appears. When your application is installed, the
installation program moves to the next screen and the Installation
Complete screen appears.

6. Click on the Close button to complete the installation of your
application.

Developing Merge Module Projects
Merge modules are used to deploy components that are shared across applications. You
can package a component in a merge module by using Visual Studio.NET. To do so,
perform the following steps:

1. In Visual Studio.NET, select File, New, Project.
2. From the Project Types pane, select Setup and Deployment Projects.
3. From the Templates pane, select Merge Module Project.
4. Specify the name of the merge module project (as shown in Figure E-8)

and click on the OK button.

Figure E-8: The New Project dialog box
5. You have created a merge module project. As in Microsoft Windows

Installer, you can use various deployment editors to add assemblies and
files to the merge module. However, a merge module project provides
only four deployment editors: File System, Registry, File Types, and
Custom Actions.

The files contained in a merge module are installed at the location set by the merge
model’s author. However, you can provide flexibility to the end users of the merge
module by specifying the location of files. To do this, you need to set the Module
Retargetable Folder property exposed by the merge module.

After performing these steps, build the project. When creating a merge module project, a
file with the MSM extension is created. You can now merge this file into a Windows
Installer package. To add a merge module to a setup project, perform the following
steps:

1. Open an existing setup project or create a new setup project.
2. In the Solution Explorer window, select the setup project.
3. Select Project, Add, Merge Module.
4. In the Add Modules dialog box, click to select the MSM files to be

included in the setup project and then click on Open.

Developing CAB Projects
As discussed earlier in this appendix, CAB projects are used to package components
that can be downloaded from a Web server to a Web browser. This type of project is
used when you want a component to execute on a client computer instead of a Web
server. To create a CAB project, you need to perform the following steps:

1. In Visual Studio.NET, select File, New, Project.
2. From the Project Types pane, select Setup and Deployment Projects.

3. From the Templates pane, select CAB Project.
4. Specify the name of the CAB project and click on OK.

Note CAB projects do not provide deployment editors for including files
and registry entries.

Appendix F: The .NET Family
With the current emphasis on the .NET framework and its benefits to e-commerce,
Microsoft has introduced a set of products and services you can use to implement
business solutions using the .NET framework. These products and services essentially
form the .NET family and consist of .NET Enterprise Servers, .NET Server, Windows XP,
and the .NET Passport service. In addition, Visual Studio.NET forms an integral part of
this set by helping you create applications using the .NET framework.

In this appendix, you will be introduced to .NET Enterprise Servers, .NET Server,
Windows XP, and their roles in the .NET framework. You will also look at how the .NET
Passport service works as well as its benefits.

.NET Enterprise Servers
An important requirement in business is to constantly find better and easier ways to
enhance business opportunity and get an edge over competitors. This constant
endeavor requires companies to look for and implement solutions to build an integrated
and scalable business infrastructure. .NET Enterprise Servers provide the solution to
such a quest.

An enterprise can use .NET Enterprise Servers to implement and manage solutions to
Web-enable businesses. With this view, .NET Enterprise Servers have been designed
keeping two considerations in mind. The first is to provide accessibility to all Web users.
To facilitate this, the servers have been built using open Web standards such as XML.
The second consideration is the interoperability and scalability of the servers, which have
been created to ensure interoperability with the existing infrastructure.

The .NET Enterprise Servers include the following:
 Application Center 2000
 BizTalk Server 2000
 Commerce Server 2000
 Content Management Server 2001
 Exchange 2000
 Host Integration Server 2000
 Internet Security and Acceleration (ISA) Server
 Mobile Information 2001 Server
 SharePoint Portal Server 2001
 SQL Server 2000

The following sections discuss the role of each .NET Enterprise Server in the .NET
framework.

Application Center 2000

Companies often host high-availability Web applications. As a developer or a Web site
administrator, you can deploy and manage such applications built on Windows 2000 by
using Application Center 2000. Application Center 2000 is a server that facilitates the
deployment and management of Web applications by implementing clustering.

Application Center 2000 enables you to create groups that include elements of an
application, such as Web sites and COM+ components, which can be managed through
an Application Center cluster. Further, cluster management is simplified by enabling you

to manage an entire cluster of servers as a single server. Application Center 2000 also
supports the automation of application deployment from one cluster to another. The
changes resulting from a deployment are synchronized across all the members in a
cluster. Therefore, an Application Center cluster offers the same content to users
independent of the cluster member catering to client requests.

Additionally, Application Center clusters are scalable, thereby enabling you to add or
remove members to or from the cluster based on requirements.

In its effort to ensure the continued availability of a Web site, Application Center 2000
also offers monitoring capabilities. It can be used for performance checks on either an
entire cluster or individual members of a cluster. You can also use Application Center
2000 to automate responses to specific events or conditions. For instance, when the
processor usage of a cluster member exceeds the threshold limit, all subsequent user
requests for similar resources will be redirected to an alternate cluster member.

As an additional feature to manage clusters and maintain Web site availability,
Application Center 2000 supports the distribution of workloads among members of a
cluster. Application Center 2000 supports Network Load Balancing (NLB) to balance IP
requests and Component Load Balancing (CLB) to balance the activation of COM+
components across cluster members.

BizTalk Server 2000

You can create applications in different formats based on ease of use or the functionality
required. This poses compatibility- and interoperability-related problems across
platforms. You can integrate applications created in different formats by using BizTalk
Server 2000. BizTalk Server 2000 provides a suite of tools and services you can use to
create and deploy integrated business processes within an organization or across
organizations. These graphical tools, such as BizTalk Orchestration Designer and
BizTalk Messaging Manager, empower you to integrate, manage, and automate dynamic
business processes.

BizTalk Server 2000 not only ensures the integrity of all communication and data
exchange between transacting parties, it also ensures the security of the communication
and data transfer. To facilitate a secure document exchange, BizTalk Server 2000
implements secure and reliable connections irrespective of the operating system,
programming language, or programming model. For this purpose, BizTalk Server 2000
uses technologies such as public key encryption and digital signatures. In addition to the
security risks, the electronic exchange of documents is also marred with problems
related to exchange across different platforms. BizTalk Server 2000 resolves the
exchange of documents across platforms by managing data translation, encryption, and
data tracking services. For instance, BizTalk Server 2000 tools such as BizTalk Mapper
ensure transformation of documents into a commonly accepted format. BizTalk Server
2000 uses an open industry framework called BizTalk Framework 2.0 to facilitate routing
and analysis of data and documents exchanged across electronic or organizational
barriers. Another important tool in BizTalk Server 2000 that enables you to manage
document exchange between applications and trading partners is the BizTalk Messaging
Manager. BizTalk Server 2000 also offers tools such as BizTalk Orchestration Designer
that allow the use of XLANG, an XML-based language.

Commerce Server 2000

Generally, organizations are in search of a scalable platform that they can readily
customize to create e-commerce Web sites in a cost effective and less cumbersome
way. This is exactly what Commerce Server 2000 has to offer. Commerce Server 2000 is
a server that provides you with the ability to create e-commerce sites quickly and with
ease.

To facilitate the creation of e-commerce sites, Commerce Server 2000 provides Solution
Sites that you can readily use as templates to create your own Web sites. You can build

on Solution Sites by adding new functionalities and enhancements as per customer and
organizational requirements.

Commerce Server 2000 also empowers business managers to manage Web sites in a
real-time environment. This, in turn, means that whenever the content on a Web site is
updated to meet customer requirements, the changes take effect immediately. As a
result, this gives the managers a chance to provide highly personalized and relevant
content on their sites at all times. Additionally, with Commerce Server 2000, you can
provide business managers with essential decision-support mechanisms such as data
warehousing and data mining. The server also incorporates analytical capabilities that
can be used to analyze business scenarios and to update sites in real time based on the
results of the analysis.

You can integrate Commerce Server 2000 with other .NET Enterprise Servers to provide
enhanced functionalities.

Content Management Server 2001

Not only is the maintenance of content-driven Web sites difficult, the creation of such
sites is also time consuming. As the name of the server suggests, Content Management
Server 2001 enables content providers to effectively manage Web content. You can
readily develop, publish, and maintain highly dynamic, content-driven Web sites for the
Internet and intranet by using Content Management Server 2001.

Content Management Server 2001 offers a novel way to archive all the updated
documents automatically. You can also track versions of a particular document. In
addition, Content Management Server 2001 permits multiple levels of review and
approval of a document before it is published on a Web site. It is also possible for users
to schedule the publication and archival of content by using scheduling tools.

As with other .NET Enterprise Servers, Content Management Server 2001 permits
scalability to meet the growing demands of an ever-changing online market. You can
create clusters of servers running Content Management Server 2001 and ensure
workload balancing.

Content Management Server 2001 also supports integration with Windows 2000
Advanced Server, SQL Server 2000, Commerce Server 2000, and FrontPage 2000.

Exchange 2000

Communication forms the backbone for any business establishment. With most
commercial transactions shifting to the Internet, it becomes essential to supply the right
information to the right person at the right time. Therefore, there is an emphasis and a
requirement for a reliable and scalable messaging service. Exchange 2000 is a
messaging infrastructure that can provide the necessary solutions to the communication-
related problems of an enterprise.

To meet the growing demands of an organization in terms of communication, Exchange
2000 supports a range of collaborative activities, including discussion groups and
scheduling capabilities. To facilitate access to information across geographic and
organizational barriers, Exchange 2000 supports features such as instant messaging
and video conferencing. With Exchange 2000, you can set up conferences by using MS
NetMeeting with any T.120 client. The Conference Management Service of Exchange
2000 enables you to control access to conferences. Additionally, Exchange 2000
provides services such as contact and task management.

Exchange 2000 provides a single platform that you can use for e-mail, voice mail, fax,
and page messages. Additionally, Exchange 2000 provides chat services based on the
IRC protocol for text-based chat. Users can also access e-mail and contacts remotely
from the Internet.

In addition to supporting such data exchange, Exchange 2000 also enables you to
conduct discussions through data conferencing. In an online business, it becomes
imperative to allow remote access to information and data. Users can also access the
data stored in Exchange 2000 from a Web browser. For interoperability’s sake,
Exchange 2000 supports Internet standards such as XML and HTTP.

You can also create Web forms in Exchange 2000. Additionally, Outlook Web Access
forms an integral component of Exchange 2000. Outlook Web Access has been updated
in scalability and functionality from its earlier version. It also supports the addition of
audio and video clips to a message.

Exchange 2000 also supports clustering. This allows high availability and scalability. The
Enterprise Edition of Exchange 2000 supports multiple storage groups and databases.
Exchange 2000 also provides features to ensure secured communication. For instance,
you can set permissions for items or documents and can achieve new levels of security
for workflow applications.

Host Integration Server 2000

You can handle interoperability with non-Windows systems by using Host Integration
Server 2000. This means you can utilize existing AS/400 and mainframe systems’ data
or applications by using Host Integration Server 2000 while retaining them in their
original form. To achieve this, Host Integration Server 2000 enables you to develop
applications that integrate host system to Internet or host system to intranet.

Host Integration Server 2000 allows three-fold interoperability: It enables you to interact
with host systems through data integration, network integration, and application
integration.

Using Host Integration Server 2000, you can also reap the benefits of a comprehensive
security system that incorporates the Windows 2000 Active Directory and Windows NT
4.0 domain security model as well as host-based security. This security system ensures
that all client-to-server and network-to-network VPN connections are secure and
tunneled by using Host Integration Server 2000. Host Integration Server 2000 offers an
invaluable tool to integrate the best that Internet, intranet, and client/server technologies
have to offer.

As with other .NET Enterprise Servers, Host Integration Server 2000 supports clustering
and workload balancing. It is also possible to integrate host systems with .NET-based
applications. For instance, you can integrate Host Integration Server 2000 with BizTalk
and Commerce Server.

Internet Security and Acceleration (ISA) Server

As more and more organizations turn to the Internet for business opportunities, there is
an increasing need for fast and secure connections to the Internet. With this in mind,
Microsoft developed the Internet Security and Acceleration (ISA) Server 2000. ISA
Server 2000 implements a Web cache to facilitate fast Internet access. Additionally, to
secure the connection to the Internet without compromising network performance, ISA
Server implements a firewall. You can therefore use this server to enhance Internet
access and to implement organizational security policies.

It is also possible to scale the Web cache by adding additional ISA servers. Alternatively,
you can increase the capacity of an ISA Server Web cache by adding multiple
processors, implementing symmetric multiprocessing (SMP), increasing disk space, or
increasing RAM.

Additionally, ISA Server implements multiple caching technologies, which are discussed
in the following sections.

Forward Caching
In forward caching, clients from within the network of an organization access servers on
the Internet. The frequently accessed Web content is cached on the ISA Server.

Distributed Caching
An ISA Server implements distributed caching when multiple ISA Server computers are
used. In such a case, ISA Server uses the Cache Array Routing Protocol (CARP), which
creates a single logical cache by using ISA Server computers.

Hierarchical Caching
In a hierarchy of interconnected ISA Server computers, you can ensure that users
access caches that are located in geographic proximity. To do so, you can place ISA
Server Web caches in a hierarchy depending on geographical location and link client
nodes to the nearest leaf node of the hierarchy. Whenever the client requests a
resource, it goes to the nearest (leaf) node and then travels up the hierarchy until the
requested object is found.

Scheduled Caching
You can update the ISA Web cache by scheduling the automatic update of the cache
content. Such a caching mechanism is called scheduled caching.

Reverse Caching
In reverse caching, an ISA Server is placed as a layer over an organization’s Web
server. In this case, all incoming requests from clients are provided from the ISA cache.
If the requested object is not available in the ISA cache, the request is forwarded to the
underlying Web server that it sheaths. This secures the communication between clients
on the Internet and the publishing Web servers located within an organization.

Mobile Information 2001 Server

Mobile Information 2001 Server provides the capability to develop mobile applications by
using standard Web and WAP applications’ authoring tools. The server also provides
.NET Mobile Web SDK to design and render Web applications. You can also create
applications with a common interface regardless of the mobile device used to access the
application. This is possible because Mobile Information 2001 Server enables you to use
mobile controls and Web forms, which ensure that the content and interface you create
remain compatible with various mobile devices.

With mobile access to information arises the question of security and privacy of the data
accessed. Mobile Information 2001 Server ensures end-to-end security of the
information accessed and communications across mobile devices. To prevent
unauthorized interception of data and communications, all notifications from enterprise
applications are sent to mobile devices securely through technologies such as Secure
Socket Layer (SSL), IP Security Protocol (IPSec), and VPN solutions. Additionally, the
server application allows the use of the .NET Passport service, PKI, and smartcards.

Mobile Information 2001 Server supports Web standards such as HTTP, HTTP
Distributed Authoring and Versioning (DAV), SMTP, and the like to provide
interoperability with mobile devices and integration with the existing applications and
infrastructure. In addition, Mobile Information 2001 Server supports mobile devices with
the WAP 1.1 browser. Mobile Information 2001 Server also is capable of sending
notifications to mobile devices capable of receiving SMS or to an SMTP addressable
device such as a pager.

The Mobile Information Server 2002 Enterprise Edition includes the new features
discussed in the following sections.

Microsoft Server ActiveSync
The Microsoft Server ActiveSync feature has been added to synchronize information
from Microsoft Exchange 2000 Server, such as e-mail and a calendar sent to a Pocket
PC 2002–based device. This feature securely synchronizes the required information over
a wireless link.

Enhanced Security
The Mobile Information Server Enterprise Edition enables you to use either SSL or IPSec
to secure the link between Mobile Information Server Enterprise Edition and Mobile
Information Server Carrier Edition.

SharePoint Portal Server 2001

SharePoint Portal Server includes document-management features such as document
locking and versioning. To ensure that the correct version of the document is published,
there is a need to monitor the creation of the document and to coordinate the work being
done on the document by different users, maybe simultaneously. With each user
contributing to the document in a specific way, it becomes essential to retain the latest
changes to the document and prevent simultaneous access to the document. SharePoint
Portal Server enables a user to address this by providing features such as document
locking and versioning. These features make it easier to control and track a document
that passes through different phases in its life cycle before it finally sees the light of the
day or is published. The approval-routing feature enables you to track changes as a
document passes through different phases in its life cycle. To further ease the life of the
user, SharePoint Portal Server integrates these features with the applications you use to
create and manage documents, such as Microsoft Word.

SharePoint Portal Server also provides the capability to store documents and keep a
track of the metadata related with business documents in Document Profile forms.
Additionally, SharePoint Portal Server provides features that help you work with
documents with ease, such as Document Collaboration, Profiling, and Lifecycle
Management.

To ensure interoperability, the server supports all the Internet standards, such as XML
and HTTP, and ActiveX Data Objects (ADO) and OLE DB for data access. Therefore, it
becomes possible for you to integrate Active Server Pages (ASP) functionality into the
Web portal. SharePoint Portal Server 2001 also consists of built-in services you can use
to create Web-based applications.

For users to benefit from the features of the SharePoint Portal Server, a user interface
needs to be created for SharePoint Portal Server. To create a user interface for
SharePoint Portal Server, you use the Microsoft Digital Dashboard technology. Digital
dashboards are Web applications that run on Windows 2000 IIS and can be accessed by
using Web browsers such as Internet Explorer. Digital dashboards make extensive use
of Web Part technology.

Note

Each digital dashboard is composed of individual sections known as Web Parts. A Web
Part is a customizable section that encapsulates a script fragment with a custom
property schema that Microsoft defines. You can either use third-party Web Parts or
create customized Web Parts by using HTML, XML, and JavaScript.

SQL Server 2000

The need to store and maintain information in a systematic manner that can be queried
with ease can never be overlooked by an organization. To meet this requirement,
organizations can use SQL Server 2000. SQL Server 2000 is a server that enables you
to create databases and analyze and query the data in these databases.

Some of the features of SQL Server 2000 are as follows:
 Comprehensive data store
 Enhanced analytical capabilities
 Full-text search
 Indexed views
 Support for Web-enabled database applications
 Enhanced application development features
 Scalability

Comprehensive Data Store
SQL Server 2000 is fully integrated with the Web and enables you to access the data
and query databases from the Web itself.

Enhanced Analytical Capabilities
The Analysis Services feature introduces data mining to locate information in online
analytical processing (OLAP) cubes and relational databases. These features can help
you analyze and predict useful information by using the data stored in SQL Server 2000
databases.

Full-Text Search
You can use the full-text search feature of SQL Server 2000 to query the data stored in
SQL Server 2000 databases.

Indexed Views
A new feature called indexed views simplifies data access, resulting in application
performance boost.

Support for Web-Enabled Database Applications
SQL Server 2000 supports XML data exchange with client applications and data access
through ADO, OLE DB, and ODBC. Therefore, in SQL Server 2000, it is possible to
create and maintain Web-enabled database applications.

Enhanced Application Development Features
It is possible to ensure high availability of business applications by using the SQL Server
2000 features such as online backups, clustering, and log shipping. You can also import
data from heterogeneous systems (such as flat files and legacy databases) by using
routines that can extract, transform, and load the data automatically.

The most important feature provided by SQL Server 2000 is Meta Data Services, which
enables you to store, view, and retrieve descriptions of objects in your applications and
system.

Scalability
To meet the needs of an ever-expanding business scenario, it is possible to scale SQL
Server 2000 by adding multiple processors and additional RAM. You can also create
clusters of SQL Server 2000 and distribute the database and data across servers.
Additionally, you can interactively tune and debug queries and quickly move and
transform data to and from any source.

So far, this appendix has discussed the .NET Enterprise Servers that enable you to
create and deploy solutions to use the .NET framework. The Whistler group of products
is an additional set of Microsoft products designed as a foundation for the .NET platform.

The Whistler family of products incorporates enhancements to enable businesses to
implement the .NET framework with ease. For instance, the Whistler products support
real-time communications such as instant messaging and exchanging voice and video.
Additionally, built-in support for enhanced Windows Media Services also enables these
products to meet the .NET vision.

The Whistler family of Microsoft products includes the Windows .NET Server family of
server applications and client-side Windows XP.

Let’s now look at the .NET Passport service provided by Windows XP.

.NET Passport Service
Microsoft provides a solution to such problems with the .NET Passport service. .NET
Passport is an Internet-based authentication service that allows users to sign in to
multiple participating Web sites by using a single e-mail address and password. This
means that Web sites need not maintain separate authentication mechanisms. In
addition, .NET Passport eliminates the need to type personal information repeatedly for
each site visited during a Web browsing session. This makes the entire process of Web
site personalization based on user profiles a simple and fast task. Users can also store
credit card–related information in .NET Passport. Therefore, not only is the time
necessary for online transactions reduced, the entire process is simplified.

Note

A participating Web site is a site that has registered with .NET Passport.

For a user to benefit from .NET Passport, he or she needs to create a .NET Passport
account. An account is created when a user registers for .NET Passport. A user can
choose to register for .NET Passport by using any of the following methods:

 Signing up for an e-mail account on www.hotmail.com or www.msn.com
 Registering at the .NET Passport site, www.passport.com
 Registering at a participating Web site such as www.mcafee.com
 Using the Windows XP Registration Wizard

A user with an e-mail account on www.hotmail.com or www.msn.com is automatically
registered as a .NET Passport user.

Although the home page of .NET Passport enables you to register directly by using the
.NET Passport registration page, a participating Web site will redirect all potential .NET

Passport users to a .NET Passport registration page. Additionally, although .NET
Passport’s home page only requires an e-mail address and password to create a .NET
Passport account, a participating site might require additional information. For instance,
a participating site might require the user’s address. Such additional information is stored
in the user’s .NET Passport account (if indicated by the site by the presence of an icon).

When creating a .NET Passport account, a user can specify which information can be
shared with the participating sites during a Web browsing session. For instance, users
can specify whether a participating Web site can have access to their e-mail address or
first and last name only. Optionally, users can share all the remaining information in
addition to the their e-mail address and first and last name. Therefore, in .NET Passport
service, users exercise complete control over their information. Regardless of the
information that a user has shared while registering for .NET Passport, all participating
sites (besides the site used for registration) receive only the information that the user has
chosen to share. In any case, the password of a user is never communicated to a
participating Web site.

A .NET Passport account stores credentials pertaining to the user. These credentials are
unique and are used to validate the user whenever he or she visits a participating Web
site.

A .NET Passport account consists of the following information:
 .NET Passport Unique Identifier. This identifier, also called a PUID, is a 64-bit

numeric value assigned by .NET Passport.
 .NET Passport User Profile. This profile stores all the information specified

while registering for .NET Passport, such as first name, last name, e-mail
address, phone number, city, state and postal code.

 .NET Passport Credential. This component of the .NET Passport account
consists of two components: the Standard .NET Passport Credential and
the Security key. The Standard .NET Passport Credential stores the basic
inputs required to create a .NET Passport account. These inputs are the e-
mail address or phone number of the user along with a password or PIN.
The security key is a four-digit key that is required to sign in to the strong-
credential security level. When creating the key, the user selects three
questions and specifies the answers for these questions. These questions
will help the user restore the key if the server disables the account as a
precautionary measure.

 .NET Passport wallet. A user can create a .NET Passport wallet to store credit
card–related information and billing and shipping addresses. This can be
done when registering at the .NET Passport site or by accessing the
member services page.

After a .NET Passport account has been created for a user, he or she can implement the
services offered by .NET Passport. .NET Passport provides a set of services to
implement user authenticity, security, and privacy. These services are as follows:

 .NET Passport Single Sign-In
 .NET Passport Express Purchase
 Kids .NET Passport

Each of these services enhances the Web experience for users in its own way. Let’s look
at each of the .NET Passport services in detail.

.NET Passport Single Sign-In

The .NET Passport Single Sign-In service enables users to use a single .NET Passport
account across Web sites. Therefore, during a single Web browsing session, a user can
navigate across participating sites by supplying his or her sign-in name and password
only once. This eliminates the need to authenticate the user at all the sites visited. .NET
Passport prevents unauthorized access to Web sites (and services offered by the sites)
by using powerful Internet security technologies. Some of the security-based
implementations in .NET Passport are as follows:

 Use of standard Web technologies and techniques such as SSL, HTTP
redirects, cookies, and JavaScript

 No sharing of the password used by users to sign in to .NET Passport
 Encryption of all authentication- and profile-related information when sent

to a participating site
 User control of information to be shared between participating sites
 Implementation of security levels

Three different security levels can be implemented depending on the sensitivity of the
content or the service offered by the site. These three levels of authentication are as
follows:

 Standard sign-in. Participating Web sites implement the Standard sign-in
if the content or service offered by the site is not sensitive enough to
merit high security.

 Secure Channel sign-in. Secure Channel sign-in shares most features of
the Standard sign-in. The essential difference lies in the implementation
of an end-to-end secure channel for authentication. In this security level,
the .NET Passport ticket is written in a secure format to avoid any
manipulation of the ticket. Even the .NET Passport sign-in page is
displayed using SSL with up to 128-bit encryption.

 Strong Credential sign-in. Strong Credentials sign-in is designed to
ensure security and privacy for the most sensitive data. This level
involves a two-stage sign-in. Although the first stage is similar to the
Secure Channel sign-in, the second stage requires the user to enter a
four-digit security key on a sign-in page. To ensure end-to-end security,
the second sign-in page is displayed using SSL. Further, the key is
disabled after five consecutive unsuccessful attempts to type the correct
key. To enable the key, the user needs to reset the security key to regain
access to the .NET Passport account. This key-resetting process
requires the user to answer three secret questions that the user decided
on while selecting the secret key.

.NET Passport Express Purchase

The information stored in the .NET Passport wallet is used when a user uses the .NET
Passport express purchase service. To implement this service, participating sites need to
accept labels for e-commerce POST data complying with the Electronic Commerce
Modeling Language (ECML). Additionally, the site needs to add the .NET Passport
express purchase link or button. This button is used to redirect a .NET Passport user to
his or her respective .NET Passport wallet. This initiates a .NET Passport express
purchase.

Note

ECML is an XML-based standard that allows the automation of information exchange
between users and merchants through digital wallets.

When a user initiates a .NET Passport express purchase, the following sequence of
activities occurs:

1. The site ID of the participating site is authenticated by the .NET
Passport wallet server.

2. A user who is already signed in to .NET Passport is required to reenter
his or her password. Users who have not signed in are required to sign
in to .NET Passport.

3. The user selects the credit card and the billing and shipping addresses
from his or her .NET Passport wallet.

4. Credit card details and the billing and shipping addresses are
encrypted using an encryption key and are sent back to the
participating site.

5. The participating site decrypts the information by using the .NET
Passport Manager.

Similarly, with a special emphasis on the online security and privacy of children, .NET
Passport provides the Kids .NET Passport service.

Note

When a site registers as a .NET Passport participating site, .NET Passport grants a
unique ID and encryption key to the site. The ID granted to the site is known as its site
ID. The site ID is used to authenticate the site whenever it redirects a user to the .NET
Passport Login server.

The encryption key is used to retrieve the user-related information sent by the .NET
Passport Login server.

Kids .NET Passport Service

The Kids .NET Passport service is implemented by using .NET Passport Single Sign-In.
The service essentially requires that all registered participating sites comply with the
Children’s Online Privacy Protection Act (COPPA). The Kids .NET Passport service
allows parents or guardians of children under age 13 to control the information and its
subsequent use by Web sites.

To use the service, .NET Passport users register their children to create Kids .NET
Passport accounts. When a child signs in to a participating site, .NET Passport follows a
two-stage authentication process. In the first stage, .NET Passport verifies the child’s
date of birth by using the profile information. In the second stage, if the child is younger
than 13, the Kids .NET Passport account is checked to determine whether a consent
level has been granted to the site for the child. The Kids .NET Passport account is used
to store information such as name, date of birth, and e-mail address. In addition, the
account stores information about the sites that can be accessed by children and the
associated level of consent for each site.

Hashing

COPPA is an Internet law that seeks to ensure the online privacy of children. The law
ensures that the collection, use, and disclosure of all personal information related to
children by online services and Web sites are done following parental consent.

Kids .NET Passport allows parents and guardians to specify one of three levels of
consent for each participating site. Based on the level of consent, the collection and use
of personal information related to children is restricted. The consent levels that a parent
or guardian can grant to a site are as follows:

 Deny. The Deny consent level is used to prevent a site from collecting
any information from the child. Additionally, this consent might also
disable the use of the services offered by a site or the site itself.

 Limited. The Limited consent level allows participating sites to only
collect, store, and use the information collected from the child. This
consent level prevents disclosure of the information to other companies
or individuals except if necessary for the working of the site or services.

 Full. The Full consent level allows a site or service to collect, store, use,
and disclose the information collected from children.

Note

To implement .NET Passport Single Sign-In (SSI) and the Kids .NET Passport service,
each participating site needs to install .NET Passport Manager. .NET Passport
Manager is a Component Object Model (COM) object located on the server side that
manages the authentication and profile information of the users as they navigate from
or within a participating Web site.

One reason why .NET Passport Manager is a COM object is so that not every
participating site would be required to have .NET framework components. Besides, the
.NET Passport service can easily interoperate with COM components.

To use either of these .NET Passport services, a user needs to sign in to a .NET
Passport participating site. A user can do this by clicking on the .NET Passport sign-in
link located on the site. When a user clicks the sign-in link, the site redirects the user to
the .NET Passport Login server.

Tip

When a user authenticated by .NET Passport visits a site where he or she has not
signed in, the user needs to click on the .NET Passport sign-in link. The participating
site initiates the .NET Passport authentication process. Henceforth, the user can visit
any other participating site simply by clicking the sign-in link on the site.

Some users owning a private computer might prefer to be signed in automatically to
.NET Passport. To facilitate this, users can store their .NET Passport sign-in name and
password on a computer. This option enables users to remain signed in to .NET
Passport at all times on the computer where the .NET Passport credentials are stored.
However, users with access to a public computer only may choose not to do so.

When redirecting the user to the .NET Passport Login server, the site sends its site ID.
The .NET Passport Login server uses this site ID to verify the site from the list of
registered participating Web sites. (See Figure F-1 for this sequence.)

Figure F-1: Stage 1 of the .NET Password authentication process

If a matching entry is found, the .NET Passport Login server displays a sign-in page. The
participating site can either cobrand the .NET Passport sign-in page or embed a small
sign-in module within a page. The user enters .NET Passport credentials on the page.
The .NET Passport Login server then authenticates these credentials by using the .NET
Passport database. The .NET Passport database stores the credentials and
authentication- and profile-related information (such as the PUID) for all the users who
have registered for .NET Passport.
Upon locating a matching record in the database, the .NET Passport Login server
retrieves the .NET Passport Unique ID (PUID) and the sharable user profile information
for the respective user from the database. Figure F-2 shows Stage 2 of the process. This
entire process is known as the .NET Passport authentication process.

Figure F-2: Stage 2 of the .NET Password authentication process

Using the information retrieved from the database, the .NET Passport Login server
creates three .NET Passport cookies as follows:

 Ticket cookie
 Profile cookie
 Visited Sites cookie

The Ticket cookie stores the PUID and the time stamp when the user was authenticated.
All the information related to the user profile is stored in the Profile cookie. The Visited
Sites cookie is constantly updated with the names of the sites to which a user signs in.
Next, the data stored in the Ticket and Profile cookies is encrypted by the .NET Passport
Login server and sent to the user’s browser. From the browser, the information is
forwarded to the respective participating site. The participating site sends this information
to .NET Passport Manager. At .NET Passport Manager, the information is decrypted to
obtain the user’s PUID and the profile information. .NET Passport Manager uses the

profile information to personalize the content on the Web site based on the user’s
preferences, as shown in Figure F-3.

Figure F-3: Stage 3 of the .NET Password authentication process

The user can now navigate within the site or to other participating sites. When the time
specified in the Ticket cookie expires, however, the user is unable to access the
participating site. In this case, to resume access to the site, the user needs to sign in to
the participating site again. To do so, the user is required to reenter the password.
Failure to do so denies .NET Passport services to the user. Additionally, if a user types
an incorrect password several times, .NET Passport blocks access to the .NET Passport
account.

Note

The use of the information related to a .NET Passport user is bound by the privacy
policy of the site. The participating site can also store the PUID and the profile
information of a user in its own database. In addition, the information can also be
written by the site to cookies and stored on the user’s computer. Hashing transforms
the strings contained in a message into a string of lesser value of a fixed length. This
string represents the original string.

To sign out of .NET Passport, the user needs to click the sign-out link placed on the
participating Web site. The participating site replaces the sign-in link with a sign-out link
after a user has been authenticated. When a user clicks the .NET Passport sign-out link,
the .NET Passport server ensures that each participating site visited by the user during
the browsing session deletes the cookies placed on the user’s computer during sign-in.
As such, the cookies placed on the user’s computer are deleted when the user ends a
Web browsing session. This is not the case, however, when the user signs in
automatically to .NET Passport. The cookies can also be set for expiration by .NET
Passport or the participating site.

With the widespread and ever-increasing dependence on wireless devices, .NET
Passport has been enhanced for use on wireless cell phones and Pocket PC devices.
However, not all the features related to .NET Passport are supported on mobile devices.
For instance, features such as strong credential sign-in and inline sign-in are not
supported on mobile devices because the processing and network capabilities of such
devices currently pose a bottleneck to accomplish this.

So far, you’ve looked at the .NET Passport service and its benefits. You will now look at
Visual Studio.NET, the integrated environment for creating applications by using .NET
languages.

Visual Studio .NET
Visual Studio.NET provides an integrated development environment that enables you to
create solutions for the .NET framework. Visual Studio.NET integrates the best of
programming languages in a single interface you can use to develop enterprise-scale
Web applications and high-performance desktop applications.

Visual Studio.NET enables you to create a myriad of applications. Some of the
applications commonly developed using Visual Studio.NET are as follows:

 Console applications
 Windows applications
 ASP.NET applications
 Web services

You can create Web services and applications by using the languages offered by Visual
Studio.NET. Visual Studio.NET provides the following programming languages:

 Visual Basic.NET
 Visual C#
 Visual Foxpro
 Visual C++.NET

With so many languages to choose from, you might be wondering which language to use
for developing applications in Visual Studio.NET. You can use any language from the
suite made available by Visual Studio.NET. It is likely that familiarity with a previous
version of the language will guide your selection.

In addition to the incorporated feature of the programming languages, Visual Studio.NET
includes certain enhanced features of its own. Some of these features are as follows:

 Implementation of Web forms
 Implementation of Web services
 Implementation of Windows forms
 Implementation of the project-independent object model
 Enhanced debugging
 Support for ASP.NET programming
 Enhanced IDE

The following sections will elaborate each of these features.

Implementation of Web Forms

Visual Studio.NET provides Web forms to enable you to create Web applications. The
applications created using Web forms can be implemented on any browser or mobile
device. To ensure compliance across devices, Web forms implement controls that render
HTML compliant to the specific browser.

Web forms are implemented as classes that are compiled into DLL(s), thereby ensuring
server-side code security.

Implementation of Web Services

Another important feature of Visual Studio.NET is the creation, deployment, and
debugging of Web services. The support for Internet standards such as HTTP and XML
allows use of Web services across platforms.

Implementation of Windows Forms

Visual Studio.NET supports Windows forms that you can use to create Windows
applications for the .NET framework. Windows forms are object oriented and consist of
an extensible set of classes. You can implement Windows forms and Windows forms
controls to create the presentation tier.

Implementation of Project-Independent Object Model

Visual Studio.NET as a Rapid Application Development tool has various ways to
represent IDE tools, the components of a solution, and the information exchange with the
developer. Visual Studio.NET implements a project-independent object model to access
the components and events of the Visual Studio.NET IDE. This model includes
components that represent solutions, projects, tools, code editors, debuggers, code
objects, documents, and events. You can use this model through macros, add-ins,
wizards, and the Visual Studio.NET Integration Program (VSIP). VSIP is a program that
can be used to extend the Visual Studio.NET IDE. This program provides you with
additional objects and interfaces to create customized tools, file types, and designers.

Enhanced Debugging

Visual Studio.NET provides an integrated debugger that can be used to debug solutions
written in different languages. In addition, you can associate the debugger to a currently
executing program. This enables you to debug multiple programs simultaneously. You
can also debug multithreaded programs or programs executing on a remote computer.

Support for ASP.NET Programming

An important feature of Visual Studio.NET is support for ASP.NET programming. This
support incorporates technologies such as ASP.NET that simplify the design,
development, and deployment of business solutions. You can create Web applications
by using Visual Studio.NET. You can also use the Visual Studio.NET tools such as
Visual Designer for Web pages and code-aware text editors for writing code.

Enhanced IDE

The Visual Studio.NET IDE extends across the programming languages supported by
Visual Studio.NET. You can even create customized tools to enhance the capabilities of
Visual Studio by creating macros and using the customization features of the IDE. Visual
Studio also now enables you to simultaneously debug and troubleshoot a Web
application such as an ASP .NET page, along with its corresponding DLLs.

The projects created using Visual Studio.NET are stored in containers for easy
manageability and accessibility. Containers are used to store components of
applications, such as files and folders. Visual Studio.NET provides two types of
containers:

 Project. A project consists of all the interrelated components of an
application.

 Solution. A solution consists of one or more related projects. A solution
container can be used to store projects. You can also implement
solutions to apply specific settings and options to multiple projects. To
create a project, you can select the New Project button on the Start
Page.

When you begin creating a Windows application project from the Start Page, the
following components are displayed:

 Windows Forms Designer. You use the Windows Forms Designer to
design the user interface for the application.

 Solution Explorer. Solution Explorer provides a hierarchical view of
application-related information such as project name, solution name,
references, and the various files that are a part of the solution.

 The Properties window. You use the Properties window to view the
characteristics associated with an object, such as a text box control on a
form.

 Toolbox. The Toolbox includes multiple tabs. Each tab has a list of items
providing functionalities to aid in the creation of applications.

 The Output window. You use the Output window to view the status of the
activities performed by Visual Studio.NET, such as updating references
and building satellite assemblies.

 Task List. You use the Task List to identify the errors detected when
applying enterprise template policies, editing code, or compiling code.
Other features include user notes for the solution.

 Server Explorer. You use the Server Explorer to view information related
to the servers available on the network. In addition, Server Explorer
enables you to perform administrative tasks.

 The Dynamic Help window. You use the Dynamic Help window to view a
context-specific list of help topics.

 The Component tray. You use the Component tray to view the invisible
controls (such as OleDbDataAdapter) in an application and to modify
these while creating the application.

 The Class View window. You use the Class View window to view the
classes, methods, and properties associated with a solution.

 Code and Text Editor. The Code and Text Editor provides you with word-
processing capabilities that enable you to enter and edit code and text.

