Fundamentals of programming

Introduction
To
Programming

And

Problem Solving

In

Visual Basic.Net
Contents

3First Steps using RAPTOR

3Raptor Sequence and Assignment tasks

3Area of a square

4First steps in Visual Basic.Net

4Basic Input, Processing and Output (Sequence and Assignment)

5Variables

5Working with numbers

6Sequence programs Homework

6Organising your code..

7Selection in Visual Basic.Net

7AND operators

8IF…THEN…ELSE

9Nested IF statements

9Case Statement

10Iteration in Visual Basic.Net (1)

12Iteration (2) -Do While Until

13Boolean data types and IF…THEN…ELSE…

14Using built-in functions

14Good Programming Practice

17Error Types

18More on data types

212D Arrays

24RECAP- Give an example of the following.

24Assignment

24Selection

24Loop with known number of iterations

24Loop that exits due to a condition

24The use of a built-in function

24Declaration of an array with 8 element containing text.

25Structured programming

25Scope of variables

27Parameter passing (by Reference)

28Parameter Passing By Value

28Formal parameters

28Actual parameters

28Passed by value

28Passed by reference

29Functions

30Reading and writing to/from Files

More on variables – gatherers etc

String handling functions

More on operators / sets / logical operators

Module Module1 methods

Validation

Language features
First Steps using RAPTOR
· Input, assignment, output, basic maths operators, Text Concatenation, Variables
Raptor Sequence and Assignment tasks

The aim of these tasks is to give you confidence in solving simple problems by programming a sequence of commands that allow the user to input values, process the values using an algorithm, assigning the solution to a variable and outputting the value

Class Practice

· Hello World

· Add Two numbers

· Multiply two numbers

Homework

Area of a square
· Write a program that allows the user to input the length of a squares side (in meters) and then calculates the squares area (in m2)
· The user should be prompted with an input message.
The input should be assigned to the variable Side
· The calculated area should be assigned to the variable Area
· The Varable area should be outputted with appropriate text
e.g. “ The area of the square is 6.5 m^2”
· Area of a rectangle

· How long to run?

· PAYG monthly cost
First steps in Visual Basic.Net
There are more examples of each type of program in B&L chpts 2.1 (3.2.
1. Everyone’s first program

Module Module1

 Sub Main()

 console.writeline("hello world")

 End Sub

End Module
Modify the program so that as
· It says hello and your name (no input just change the output string)
· There are a line of stars underneath your name

2. A program with input and output

Module Module1

 Sub Main()

 Dim name As String

 console.writeline("enter your name")

 name = console.readline()

 console.writeline("hello "& name)

 End Sub

End Module
Basic Input, Processing and Output (Sequence and Assignment)
Definition of a Program:
…………………………………………………………………………………………

………………………………………………………………………………………….

…………………………………………………………………………………………

· INPUT as data is entered by the user into the program

· PROCESS as calculations/sorting/searching of some sort are carried out

· OUTPUT as where results are sent to the user

[image: image1]
Variables

Definition of a variable
Module Module1

 Sub Main()

 Dim name As String

 Console.WriteLine("enter your name")

 name = Console.ReadLine()

 Console.WriteLine("hello "& name)

 console.readline()

 End Sub

End Module
Modify the Module that as
· it asks for your first name and your surname (you will need to add a variable)
· it outputs them in the correct order

· it outputs them in reverse order

Working with numbers

What is an Assignment?
…………………………………………………………………………………………

What is a Real number? Real data types = (Single, Double, Decimal)
…………………………………………………………………………………………

What is an Integer? Integer data types = (Byte, Short, Integer, Long)
…………………………………………………………………………………………

Module Module1

 Sub Main()

 Dim num1 As Integer

 Dim num2 As Integer

 Dim total As Integer

 console.writeline("enter a number")

 num1 = console.readline()

 console.writeline("enter another number")

 num2 = console.readline()

 total = num1 + num2

 console.writeline("the total was "& total)

 console.readline()
End Sub

End Module
· Create a program that reads 5 numbers from the user

· The program should find the total

· Once the total has been found modify the program show the average as well
Sequence programs Homework

Complete the Introductory programming exercises set on the computing course site
Organising your code..

All high level programming languages have facilities to allow you to separate you code into small chunks. You will learn MUCH more about modules, functions and procedures later in the course.
View the “very quick” overview of how to create a new procedure and module on the Computing AS course site.
Create a new VB “solution” called ModPractice and create the following program.. Note that there are two modules
Module Module1

 Sub Main()

 Call helloWorld() 'this runs the sub procedure in this module

 Call helloworld2() ' this runs the sub procedure in the other module

 End Sub

 Sub helloWorld()

 'You are allowed to create as many other procs as you like

 Console.WriteLine("Hello World")

 Console.WriteLine("I have just created my first sub procedure")

 Console.ReadLine()

 End Sub

End Module
Now add a new module by using the option in the project menu.
You will need to give it the right name in the dialog box!!!
Module ModulePractice

 Sub helloworld2()

 'NB you are not allowed to have two sub procedures of the same name!

 Console.WriteLine("hello world again!!!")

 Console.ReadLine()

 End Sub

End Module
From now on if an example has a module name that isn’t Module1, you should add a new module name it as specified and Call the procedure from the Sub Main()
Selection in Visual Basic.Net
Read pgs46(51 in B&L (chpt 2.3)
· Selection using IF…THEN… statements

· Use of AND operators

…………………………………………………………………………………………

…………………………………………………………………………………………..

…………………………………………………………………………………………

By the end of this chapter you will have a program with FOUR sub procedures and a MENU written in the Main procedure that allows the user to choose which SUB they wish to run
Module Module1

 Sub Main()

 Call IfExample()

 Console.ReadLine()

 End Sub

 Sub IfExample()

 'IF...THEN... is an example of SELECTION

 Dim mark As Integer

 Console.WriteLine("enter a mark")

 mark = Console.ReadLine

 If mark > 50 Then

 Console.Clear()

 Console.WriteLine("pass")

 End If

 If mark <= 50 Then

 Console.Clear()

 Console.WriteLine("fail")

 End If

 console.readline()

 End Sub

End Module
[image: image2.png]

 Use the “step into” button to trace what happens for a number less than 50, a number more than 50 and exactly 50. (you will need to run the program 3 times)

Modify the above code so that:
· The pass mark is 65

· If a mark of 100 is entered an additional WELL DONE message is displayed

· If a Mark of less than 25 is entered an additional message Your Fired is displayed

AND operators

…………………………………………………………………………………………..

…………………………………………………………………………………………

…………………………………………………………………………………………..

Fot this example create a new sub procedure called Ifexample2 BUT edit the Sub Main()

You are only allowed ONE Sub Main() per program

Module Module1

 Sub Main()

 Call IfExample2()

 Console.ReadLine()

 End Sub

 Sub IfExample2()

 'this demo's the use of AND

 Dim mark As Integer '

 Console.WriteLine("enter a mark")

 mark = Console.ReadLine

 If mark > 70 Then

 Console.WriteLine("Merit")

 End If

'NOTE I have to refered to the variable identifier in both parts of the AND

 If mark <= 70 And mark > 50 Then

 Console.WriteLine("Pass")

 End If

 If mark <= 50 Then

 Console.WriteLine("Fail")

 End If

console.readline()

End Sub

End Module
Modify the code above so that a distinction is awarded above 80, (merit between 70 and 79)

IF…THEN…ELSE

A useful variation on the normal IF…THEN… statement where there are two possible outcomes

Module Module1

 Sub Main()

 Call IfElseExample()

 Console.ReadLine()

 End Sub

 Sub IfElseExample()

 Dim number As Integer

 console.writeline("enter a number")

 number = Console.ReadLine()

 If number < 100 Then ' all numbers over 100 are big

 Console.WriteLine("*********")

 Console.WriteLine("* small *")

 Console.WriteLine("*********")

 Else ' as there are only two options there is no need for another If

 Console.WriteLine("*********")

 Console.WriteLine("* big *")

 Console.WriteLine("*********")

 End If

console.readline()

End Sub

End Module

Nested IF statements
Are used where you have an IF statement inside another IF statement In VB.net you can use the ELSEIF statement

Module Module1

 Sub Main()

 Call IfNestExample()

 Console.ReadLine()

 End Sub

 Sub IfNestExample()

 'returns how big the number is on an arbitory scale

 Dim number As Integer

 Console.WriteLine("enter a number")

 number = Console.ReadLine()

 If number > 100 Then

 Console.WriteLine("massive")

 ElseIf number > 50 And number < 100 Then

 Console.WriteLine("big but not massive")

 ElseIf number <= 50 And number > 0 Then

 Console.WriteLine("small")

 Else

 Console.WriteLine("you have entered a negative number")

 End If

console.readline()
 End Sub

End Module

Rewrite IfExample2 using ElseIf statements (making it shorter)
Case Statement

NB note that the following example is being written in the Sub Main() procedure!!!!
Module Module1

 Sub Main()

 Dim NumberOption As Char

 Console.WriteLine("Press 1 for option 1")

 Console.WriteLine("Press 2 for option 2")

 Console.WriteLine("Press 3 for option 3")

 Console.WriteLine("Press q to quit")

 Select Case NumberOption

 Case Is = "1"

 Console.WriteLine("you chose option 1")

 Case Is = "2"

 Console.WriteLine("you chose option 1")

 Case Is = "3"

 Console.WriteLine("you chose option 1")

 Case Is = "q"

 End

 End Select

console.readline()
End Sub

End Module
Alter the code so that it is a menu that calls each of the selection examples you have just written

Rewrite IfExample2 using Case statements (making it shorter still!)
Iteration in Visual Basic.Net (1)

Read B&L chpt 2.4 pgs52 (54
· What is iteration?

· Use of the FOR loop

· Combine a FOR loop with IF…THEN…

· Introduction to trace tables
Module Module1

 Sub Main()

 Dim num, counter As Integer

 Console.WriteLine("how many stars?")

 num = Console.ReadLine()

 For counter = 1 To num

 Console.Write("*")

 Next

 Console.ReadLine()

 End Sub

End Module

Write a Module …

· Ask the user to enter their name

· Ask how many times they want their name written out

· Write their name out the required number of times
Use a loop to add up a series of numbers – better than having to read ten variables and then add them all up

Module Module1
 Sub Main()

 Dim number As Integer

 Dim total As Integer

 Dim counter As Integer

 Dim average As Decimal

 For counter = 1 To 10

 Console.WriteLine("enter number "& counter)

 number = Console.ReadLine()

 total = total + number

 Next

 average = total / 10

 console.writeline("the total was "& total)

 Console.WriteLine("the average was "& average)

 Console.ReadLine()

 End Sub

End Module
· enter the program and test it. modify the program so that there are 12 numbers to input and the screen clears before each new number is input – think carefully about where the clear screen command must be

· Complete the trace table as you run the program
	Count
	Number
	Total

	1
	5
	5

	
	7
	

	
	8
	

	
	4
	

	
	1
	

	
	1
	

	
	2
	

	
	3
	

	
	6
	

	
	9
	

Modify the exam grades program so that the teacher can process a class of ten marks

More Iteration and selection
Module Module1

 'demo of a FOR loop

 Sub Main()

 Dim number, total, counter As Integer

 Dim average As Decimal

 For counter = 1 To 10

 console.writeline("enter number"& counter)

 number = Console.ReadLine

 total = total + number

 Next

 average = total / 10

 console.writeline("the total was "& total)

 Console.WriteLine("the average was " & average)

 Console.ReadLine()

 End Sub

End Module
· enter the Module test it

· modify the Module so that there are 12 numbers to input and the screen clears before each new number is input – think carefully about where the clear screen command must be

Module Module1

 'demo of IF...THEN... with a FOR loop

 Sub Main()

 Dim selection, candidates, count As Integer

 Console.WriteLine("enter number of candidates")

 candidates = Console.ReadLine()

 For count = 1 To candidates

 Console.WriteLine("which mark range are you in?")

 Console.WriteLine()

 Console.WriteLine("less than 50% as 1")

 Console.WriteLine("between 51% and 60% as 2")

 Console.WriteLine("between 61% and 70% as 3")

 Console.WriteLine("between 71% and 80% as 4")

 Console.WriteLine("between 81% and 90% as 5")

 Console.WriteLine("if over 90% as 6")

 selection = Console.ReadLine()

 Console.Clear()

 'select correct grade

 If selection = 1 Then

 'consequences of selection

 Console.WriteLine("Fail")

 Console.WriteLine("----")

 End If

 If selection = 2 Then

 Console.WriteLine("Grade E")

 Console.WriteLine("-------")

 End If

 If selection = 3 Then

 Console.WriteLine("Grade D")

 Console.WriteLine("-------")

 End If

 If selection = 4 Then

 Console.WriteLine("Grade C")

 Console.WriteLine("-------")

 End If

 If selection = 5 Then

 Console.WriteLine("Grade B")

 Console.WriteLine("-------")

 End If

 If selection = 6 Then

 Console.WriteLine("Grade A")

 Console.WriteLine("-------")

 End If

 Next
 Console.ReadLine()

 End Sub

End Module
Iteration (2) -Do While Until

· While…Until

· Difference to FOR loops

· Menu driven programs

· CHAR data type

Why do we need another loop?

…………………………………………………………………………………………

…………………………………………………………………………………………

Do loops

…………………………………………………………………………………………

…………………………………………………………………………………………
Here are two programs that do nearly the same thing

	 Sub doWhileExample()

 Dim i As Integer

 Console.WriteLine("Enter a number less than 10 and see a count")

 i = Console.ReadLine

 Do While i < 10

 Console.WriteLine(i)

 i = i + 1

 Loop

 Console.ReadLine()

 End Sub
	 Sub loopUntilExample()

 Dim i As Integer

 Console.WriteLine("Enter a number less than 10 and see a count")

 i = Console.ReadLine

 Do

 Console.WriteLine(i)

 i = i + 1

 Loop Until i > 10

 Console.ReadLine()

 End Sub

· What does each of the examples do if you input 5?

· What does each of the examples do if you input 10?

· What does each of the examples do if you input 11?

· What does each of the examples do if you input 20?

 Sub Main()

 Dim inches, cm As Decimal

 Dim response As Char

 Do

 console.clear()

 console.writeline("inches to cm converter")

 console.writeline("press 1 to convert inches to cm")

 console.writeline("press 2 to convert cm to inches")

 console.writeline("press 3 to quit")

 response = console.readline()

 If response = "1" Then

 Console.WriteLine("enter inches")

 inches = console.readline()

 cm = inches * 2.54

 Console.WriteLine(inches & "inches = " & cm & "cm")

 End If

 If response = "2" Then

 Console.WriteLine("enter cm")

 cm = Console.ReadLine()

 inches = cm / 2.54

 Console.WriteLine(cm & " cm = " & inches & " inches")

 End If

 console.writeline()

 console.writeline("press any key to continue")

 Loop Until (response = "3")

 Console.ReadLine()

 End Sub

Sub Main()

 Call constExample()

 End Sub

 Sub constexample()

 Dim price, total_price As Decimal

 Const postage As Decimal = 0.45

 Write("enter price £")

 price = Console.ReadLine()

 total_price = price + postage

 Console.WriteLine("the total price is £" & total_price)

 End Sub
Write a program
· Allow VAT to be added to the price of an item

· The Module Module1 run in a loop until the user says stop

· Add up the amount of VAT taken

Boolean data types and IF…THEN…ELSE…

· Use of IF…THEN…ELSE…

· Boolean data types

Module Module1_and_boolean

 Sub Main()

 Dim number, squared As Integer

 Dim cont As Char

 Dim finish As Boolean

 finish = False

 Do

 Console.WriteLine("enter a number")

 number = (Console.ReadLine())

 squared = number * number

 Console.WriteLine(number & "squared = " & squared)

 Console.WriteLine("another go (y/n ")

 cont = console.ReadLine())

 If cont = "n" Then

 finish = True

 Else

 Console.WriteLine("Module Module1 continue")

 End If

 Loop Until (finish = True)

 Console.WriteLine("End of program")

 Console.ReadLine()

 End Sub

End Module

· Write a program using Boolean data types and IF…THEN…ELSE… to allow the user to calculate the area of a circle.

· Pi should be declared as a constant

Using built-in functions

Investigate and note the following functions..

LEN, MID,INSTR, ROUND, CEILING, TRUNCATE, RND

· User inputs full name program returns First Middle and surname

· User inputs their name and college number on a single line (joe bloggs 1234) the program returns

· User inputs dob program returns Day, Month, year they were born (separately)

· User inputs the cost of a single sweet and how much money they have, program returns how many sweets they can buy (and how much money they have left over)

· Create a program that allows a user to enter their height in meters and returns the height in feet and inches

· Create a program that allows a user to enter a new password. It should ensure that the password is at least 8 characters long…. It could check that there is at least 1 number in the string.

Good Programming Practice

Here is a reminder of what I hope you have picked up so far…

· Use obvious variable identifiers

· Apply data type carefully

· Comment your code at every change of construct to state the purpose (best practice says type you solution in structured English/ pseudocode then turn these into comments)

· Use a hierarchy chart to help you plan a logical sequence

· Make sure user inputs / outputs are well formatted and obvious

· Avoid duplicating code (use loops)

· Make logic/comparison statements as simple as possible

USE STEPWISE refinement. Solve a simple problem first if need be
Follow up Module Module1 Selection and Iteration

Hospital Ward Levels

A hospital has four wards each of which has 20 beds

A system is required to monitor the number of admissions and discharges from each ward during the day

The system should also show the number of beds available at any particular time

Thinking about the problem…

1. What data needs to be stored? This will help determine the variables required

2. How will we keep the Module Module1? Is a FOR loop or a REPEAT loop most suitable

3. How will we decide which variables are going to be incremented/decremented to show the number of people in a ward?

Basic Pseudocode

Repeat

Show menu

Input selection

if selection = admit to ward 1 then

increment number in ward 1…

End Sub if

if selection = show data then

output number in ward 1…

output number admitted to ward 1…

output number discharged from ward 1…

output number of beds available in ward 1…

End Sub if

Until response = quit

Adding to the program

1. It would be useful to have a warning if there are <= 3 beds available in a ward

2. The overall view of bed availability might be shown with the menu so that the user can decide where to sEnd Sub a patient

3. The user should not be able to admit a patient if there are no available beds

Summary of main statements
	Structure
	Where used
	Example

	Declaration
	Setting up variables and constants
	Const

VAT = 1.175

Dim Num as Integer

	Assignment
	Placing a value into a variable
	Num = 3.14

Average = total/number

	Selection as IF…THEN…
	Branching in a Module Module1 Subing the situation
	If number > 10 then

 Console.writeline (“big”)

	Selection as CASE
	Branching where there are many possible alternative e.g. in a menu driven program
	Case response of

1 as

 Console.writeline (“hello”)

End Sub
2 as

 Console.writeline (“goodbye”)

End Sub

	Iteration as FOR
	Causing code to execute more than once

The number of loops must be known before the loop starts

Test for carrying on loop is at top
	For counter = 1 to 10

 Console.writeline (“hello”)

 NEXT

	Iteration as REPEAT
	Causing code to execute more than once

The loop must execute at least once

The decision about how many times to loop can be made inside the loop

Test for carrying on loop is at top
	Do
 Num = num + 1

 Console.writeline (num)

LOOP Until num = 10

	Iteration as WHILE
	Causing code to execute more than once

Does not always need to loop at all

The decision about how many times to loop can be made inside the loop

Test for carrying on loop is at bottom
	DO While num <= 10
 Num = num + 1

 Console.writeline (num)

LOOP

Error Types

Compile Time / Syntax

……

……

……

……
Run-time/ Logic / Semantic
……

……

……

……
……

……

……

What is a user-defined type?

……

……

More on data types

Module Module1

 Structure student

 Dim firstName As String

 Dim surname As String

 Dim DoB As Date

 Dim Height As Decimal

 End Structure

 Sub Main()

 'student top trumps

 Dim stu1, stu2 As student

 Dim namelength1, namelength2 As Integer

 'get student1 data

 Console.WriteLine("Enter student1 firstname")

 stu1.firstName = Console.ReadLine()

 Console.WriteLine("Enter student1 surname")

 stu1.surname = Console.ReadLine()

 Console.WriteLine("Enter student1 Hieght")

 stu1.Height = Console.ReadLine()

 Console.WriteLine("Enter student1 DoB")

 stu1.DoB = Console.ReadLine()

 'get student2 data

 Console.WriteLine("Enter student2 firstname")

 stu1.firstName = Console.ReadLine()

 'complete

 'find lenghts of the first names and assign

 namelength1 = Len(stu1.firstName)

 '''''''''''''you find length of stu2 firstname'''''''''''''''

 'if name1>name2 then stu1 has longest name

 'who is the oldest?

 'who is the tallest?

 End Sub

Modify the above program to:

· Allow the input and comparison of a students IQ

· Play top trumps with three students

· Use a simple menu to allow the user to choose what is compared

· How hard would it be to extend the program to four students?
Create a User defined data type (structure) for a PC.. that includes:

· CPU frequency

· RAM size

· Hard drive capacity

· Monitor diameter

 You should use a suitable data type for each of these variables

Arrays

What are they?

…………………………………………………………………………………………………

………………………………………………………………………………………….............

…………………………………………………………………………………………………

…………………………………………………………………………………………………

………………………………………………………………………………………….............

An array and variables to store rainfall data

We would need 12 different identifiers to store 12 months data

	Jan
	Feb
	
	
	
	
	Dec

	
	
	
	
	
	
	

With an array we can have a “single” identifier with 12 locations to hold data

	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]
	[12]

	
	
	
	
	
	
	
	
	
	
	
	

Declaring an array

…………………………………………………………………………………………………

………………………………………………………………………………………….............

…………………………………………………………………………………………………

………………………………………………………………………………………….............

Input and output of data

…………………………………………………………………………………………………

………………………………………………………………………………………….............

…………………………………………………………………………………………………

…………………………………………………………………………………………………

………………………………………………………………………………………….............

…………………………………………………………………………………………………

 Sub main()

 Dim number(10) As Integer

 Dim count As Integer

 'this loop asks the user to enter 10 numbers and add each one to an element within the array

 For count = 0 To 9

 Console.WriteLine("enter number" & count)

 number(count) = Console.ReadLine()

 Next

 'this loop outputs each element within the array

 Console.WriteLine("the arry looks like this")

 Console.WriteLine("Element" & " " & "value")

 For count = 0 To 9

 Console.WriteLine(count & " " & number(count))

 Next

 Console.ReadLine()

 '''''''''''Get the above code working before moving on'''''''''''''

 ' average()

 Dim total As Integer

 Dim average As Decimal

 Console.Clear()

 For count = 0 To 9

 Console.WriteLine("enter number" & count)

 number(count) = Console.ReadLine()

 Next

 For count = 0 To 9

 total = total + (number(count))

 Next

 average = total / count 'there is a small but significant error in this line

 Console.WriteLine("total =" & total & " average =" & average)

 Console.WriteLine()

 ''''''''''Get the above code working before moving on'''''''''''''

 ' reverse()

 Console.WriteLine()

 Console.WriteLine("press any key to see numbers backwards")

 Console.ReadLine()

 For count = 9 To 0 Step -1

 Console.WriteLine(count & " " & number(count))

 Next

 End Sub

· Write a short program that allows you to enter 5 names and then outputs the names

· Modify/add to the above code to find the maximum and minimum value in the array

Weather station

1. Enter monthly rainfall and temperature data to two separate arrays

2. Calculate average rainfall and temperature

3. Produce a table to show the month number in column 1, the temperature in column 2 and the rainfall in column 3

2D Arrays

Below are two examples of simple 2D arrays used in a program

You would probably never use a 2D array to store names like this (see page 72 of B&L) but here is a simple program to help you get your head around 2D arrays…

Module Module1

 Sub Main()

 Dim studentNames(2, 5) As String 'two "colomns" and 5 "rows"

 Dim response As Char

 Dim student_count As Integer

 Do

 Console.WriteLine("press 1 to enter names")

 Console.WriteLine("press 2 to view names")

 Console.WriteLine("press 3 to quit")

 response = Console.ReadLine

 Select Case response

 Case Is = "1" ' entering values

 For student_count = 1 To 5 'interates through the five students

 Console.WriteLine("enter name for student" & student_count)

 Console.WriteLine("enter first name")

 studentNames(1, student_count) = Console.ReadLine()

 Console.WriteLine("enter surname")

 studentNames(2, student_count) = Console.ReadLine()

 Next

 Case Is = "2" 'viewing results

 Console.WriteLine("num first name surname")

 For student_count = 1 To 5

 Console.Write(student_count & " ") ' NB writes on the same line!

 Console.Write(studentNames(1, student_count) & " ")

 Console.Write(studentNames(2, student_count))

 Console.WriteLine()

 Next

 End Select

 Loop Until (response = "3") 'quits the program

 End Sub

End Module

After giving the program a quick test you should “step through” the code and trace what happened to the array (use VB’s Watch feature).

Module Module1

Sub Main()

 Dim marks(5, 2) As Integer '(x,y) co-ordinates

 Dim paper_count, student_count, total As Integer

 Dim average As Decimal

 Dim response As Char

 Do

 Console.WriteLine("press 1 to enter")

 Console.WriteLine("press 2 to view results")

 Console.WriteLine("press 3 to quit")

 response = Console.ReadLine

 Select Case response

 Case Is = "1" ' entering values

 For student_count = 1 To 5 'the x co-ordinate}

 Console.WriteLine("enter marks for student" & student_count)

 For paper_count = 1 To 2 'y co-ordinate}

 Console.WriteLine("enter mark for paper" & paper_count)

 marks(student_count, paper_count) = Console.ReadLine()

 Next

 Next

 Case Is = "2" 'viewing results

 Console.WriteLine("p1 p2 total average")

 For student_count = 1 To 5

 total = 0 'total=0 for each student initailly

 For paper_count = 1 To 2

 Console.Write(marks(student_count, paper_count) & " ") ' NB writes on the same line!

 total = total + marks(student_count, paper_count)

 Next

 average = total / 2

 Console.WriteLine(" " & total & " " & average)

 Next

 End Select

 Loop Until (response = "3") 'quits the program

End Sub

End Module
Hand Trace

	Marks

	[1]
	[2]
	[3]
	[4]
	[5]

	[1]

	
	
	
	
	

	[2]

	
	
	
	
	

Nb The two count variables will hold different values at different stages of the program

Write Program that….

· A science experiment requires 4 temperature readings to be taken on each of 3 different liquids

· These must be stored in a 2D array

· Find the average temperature for the whole experiment

· Extension 1 as find the average temperature for each liquid

· Extension 2 as create a bar chart to compare the data from extension 1

Introduction
To

Programming

And

Problem Solving

In

Visual Basic.Net

Part 2

Structured Programming

and

File Handling
RECAP- Give an example of the following.

Assignment

Selection

Loop with known number of iterations

Loop that exits due to a condition
The use of a built-in function

Declaration of an array with 8 element containing text.

Structured programming

What is it? Why Do It?
…………………………………………………………………………………………...........................

…………………………………………………………………………………………...........................

…………………………………………………………………………………………...........................

…………………………………………………………………………………………...........................

…………………………………………………………………………………………...........................

…………………………………………………………………………………………...........................

…………………………………………………………………………………………...........................

Procedures and Functions

	Procedures

……………………………………………………………

……………………………………………………………

…………………………………………………………

…………………………………………………….……
	Functions

…………………………………………...........................

…………………………………………...........................

……………………………………………………………

…….………………………………………………………

You have used procedures a lot to separate different problem tasks…. They are also used to separate tasks within a program before… So the last program you wrote about student marks could be separated like so… SHAPE * MERGEFORMAT

With each of the block representing a separate sub procedure. (In fact this program could be split up further)…. Unfortunately if we try and do this we encounter MAJOR problems with the way we currently use variables…

Scope of variables

Local v Global variables
…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

Try this version of the addition program you created in the first week!

Module Module1

 Dim number1, number2 As Integer 'these are global variables !!!

 Dim answer As Single 'they are valid in ALL procedures !!!!

 Sub Main() 'main is the procedure that is run first

 '(it doesn't need to be at the top)

 Call input2nums()

 Call addition()

 Call output()

 Console.ReadLine()

 End Sub

 Sub input2nums()

 'allows the input of two numers

 Console.WriteLine("Input Number 1")

 number1 = Console.ReadLine

 Console.WriteLine("Input Number 2")

 number2 = Console.ReadLine

 End Sub

 Sub addition() 'adds two numbers

 answer = number1 + number2

 End Sub

 Sub output()

 Console.WriteLine(answer)

 End Sub

End Module
Modify the above code

· To have subtraction, multiplication and division (in three separate sub procedures) with a menu (also in it’s own sub procedure)

· So you are not using any global variables

NB: You may need lots of local variables and find that a lot of code is repeated in different procedures (
There is a third option! It allows the safety of local variables and the convenience of global variables (
Parameter passing (by Reference)

Module Module1

 'they are valid in ALL procedures !!!!

 Sub Main()

 Dim number1, number2 As Integer 'these are LOCAL variables !!!

 Call input2nums(number1, number2)

 Call addition(number1, number2)

 Console.ReadLine()

 End Sub

 Sub input2nums(ByRef numberA As Integer, ByRef numberB As Integer)

 'allows the input of two numers

 Console.WriteLine("Input Number 1")

 number1 = Console.ReadLine

 Console.WriteLine("Input Number 2")

 number2 = Console.ReadLine

 End Sub

 Sub addition(ByRef numberA As Integer, ByRef numberB As Integer)
'adds two numbers

 Dim answer As Single

 answer = numberA + numberB

 Call output(answer) 'I don’t like calls within calls… there is a better way.
 End Sub

 Sub output(ByRef answer As Single)

 Console.WriteLine(answer)

 End Sub

End Module

What is it?

……….

……….

Why is it useful?

……….

……….

What is a formal parameter?

……….

………

What is an actual parameter?

………

………

Draw a basic structure diagram for the program above

Parameter Passing By Value
Module byvalExample

 Sub Payment(ByVal Rate As Single, ByRef hours As Single)

 Dim wages As Decimal 'I'm using decimal to avoid hundreds of decimal places

 wages = Rate * hours

 Console.WriteLine(wages)

 End Sub

 Sub Main()

 Dim hourlyrate, HoursWorked As Single

 hourlyrate = 6.25

 HoursWorked = Console.ReadLine

 Call Payment(hourlyrate, HoursWorked)

 Console.ReadLine()

 End Sub

End Module
What is it?

………………………………………………………………………………………

………………………………………………………………………………………

Why do we do it?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

With all of the programs you created using the byRef pass… change the parameter to ByVal and see the difference.. (your code will probably not work for some of the examples!)

Functions

This simple example demo’s a built-in function and a user defined function…

Module Module1

 Function cube(ByVal number As Integer) As Integer

 'a function always returns a value}

 'note how the declaration is the name of the function}

 cube = number * number * number

 End Function

 Sub main()

 Dim num, answer, answer2 As Single

 Console.WriteLine("enter number to cube")

 num = Console.ReadLine()

 answer = cube(num) 'user function}

 answer2 = Math.Sqrt(num) 'Visual Basic.Net function}

 Console.WriteLine(num & " cubed is " & answer)

 Console.WriteLine(num & " squarerooted is " & answer2)

 Console.ReadLine()

 End Sub

Here is that program again…. Now using a function to replace the clumsy call within a call..

End Module
 Sub Main()

 Dim firstNum, secondNum, answer As Integer

 Call input2nums(firstNum, secondNum)

 answer = addition(firstNum, secondNum)

 Call output(answer)

 Console.ReadLine()

 End Sub

 Sub input2nums(ByRef numberA As Integer, ByRef numberB As Integer)

 'allows the input of two numbers

 Console.WriteLine("Input Number 1")

 numberA = Console.ReadLine

 Console.WriteLine("Input Number 2")

 numberB = Console.ReadLine

 End Sub

 'NB the byVal declarations so that the original numbers can't be changed

 Function addition(ByVal numberA As Integer, ByVal numberB As Integer)

 addition = numberA + numberB

 End Function

 Sub output(ByRef answer As Single)

 Console.WriteLine(answer)

 End Sub
How is a function different from a procedure?

……

……

……

Reading and writing to/from Files

There are several ways to read from files in VB.NET…. The simplest (but not the best!!!) is detailed below…

The basic format is that you should:

FileOpen

The file open command has several sections:

FileOpen(1, "wordlist.txt", OpenMode.Input)

This program opens a file that contains one line of text, reads the contents and assigns the text to a variable with a string data type, displays the text then closes the file. In this example the file is stored in debug folder of your VB project. Use notepad to create a txt file that contains a single word.
 Sub Main()

 Dim myString As String

 FileOpen(1, "wordlist.txt", OpenMode.Input)

 myString = LineInput(1)

 Console.WriteLine(myString)

 FileClose(1)
 Console.ReadLine()

 End Sub

A very simple program that opens a file and writes a single line

Sub Main()
 FileOpen(2, "H:\writeTest.txt", OpenMode.Output)

 WriteLine(2, "hello world")

 FileClose(2)

End Sub

There are a number of ways to read in a whole file. Assigning the contents to a string, or to an array of strings is often used. The contents can then be processed without continually accessing the file.

Here are a list of functions and procedures that are useful when working with files.

= filenumber (set in the fileOpen statement) myStr is just a variable identifier as string dataType

	FileClose(#)
	It is important to close files after you have finished using them. If you don’t then the operating system will still this it is being used

	EOF(#)
	A Boolean function that returns true when the end of a file is reached. Useful when looping through reading a file.

	Input(#,myStr)
	Reads a single data item that has been delimited by commas and quotes. Passes it to the second parameter (called myStr in the example)

	LineInput(#)
	A function that returns a whole line of a file at a time. You need to assign it to a variable.

	InputString(#,x)
	Unlike the Input function, the InputString function returns all of the characters it reads, including commas, carriage returns, line feeds, quotation marks, and leading spaces, (x is a specific number of characters)

	Print(#,myStr)
	Writes display-formatted data to a sequential file

	Printline(#,myStr)
	Same as Print but adds a line feed at the end

	Write(#,myStr)
	function inserts commas between items and quotation marks around strings as they are written to the file

	Writeline(#,myStr)
	Same as Write but adds a line feed at the end

	LOC (#)
	Function returns current location within a file

	LOF(#)
	Function returns the length of a file

	TAB(x) or SPC(x)
	Used with print or write to add a number of tabs or spaces

You need to get your head around the different ways of using files.

· Create a new console project called FileExamples

· Do a “save all” (make sure “create a directory” is ticked)

· Use window explorer to find your project directory (probally: My documents/visual studio 2008/projects/FileExamples

· Find the Bin/Debug folder. Create 2 new txt files (right click: New: text document)

· Rename the first File = testRead.txt

· Rename the second File = testWrite.txt

· Open testRead.txt using notepad and add this text (
· Save testRead.txt (leave windows explorer open!)

Right!! Now we are ready to try some code that
manipulates files

Reading from simple text files

If the file contains just one data item the following would read it, assign it to a variable and display it to the console.

Dim tempData As String

 FileOpen(1, "testread.txt", OpenMode.Input)

 Input(1, tempData)
 Console.Write(tempLineStr)

 FileClose(1)

Run the code and see what is displayed

If you know you want to read a whole line then this is better

Dim tempData As String

 FileOpen(1, "testread.txt", OpenMode.Input)

 tempData = LineInput(1)
 Console.Write(tempLineStr)

 FileClose(1)

NB Input is a procedure with a reference parameter;
lineInput is a function that returns a value to an assigned variable
If we want to read a multi-line file then all we need to do is LOOP through the file like this

Dim tempData As String

 FileOpen(1, "testread.txt", OpenMode.Input)

 Do Until EOF(1) 'eof is true at the end of file
 Input(1, tempData)

 Console.Write(tempData)

 Loop

 FileClose(1)

Dim tempData As String

 FileOpen(1, "testread.txt", OpenMode.Input)

 Do Until EOF(1) 'eof is true at the end of file
 Input(1, tempData)

 Console.Write(tempData)

 Loop

 FileClose(1)

 Alter the code so you are using the lineInput function.. screenshot the output from both … Make sure you understand the difference between the two.

Reading from a file to an array

To keep it simple lets read a whole line at a time putting the whole line into an array element.

 We will assume that there are no more than 10 lines in the file.

 Dim tempData(10) As String

 Dim i As Integer = 1

 FileOpen(1, "testread.txt", OpenMode.Input)

 Do Until EOF(1) 'eof is true at the end of file

 tempData(i) = LineInput(1) ’Assigns the whole line to the ith element
 i = i + 1

 Console.Write(tempData(i))

 Loop

 FileClose(1)
Now lets turn a comma delimted file into a table array

Sub Main()

 Dim tempData(5, 3) As String

 Dim row, column As Integer

 FileOpen(1, "testread.txt", OpenMode.Input)

 For row = 1 To 4 'here we are poretendingh we know how big the file is

 For column = 1 To 3

 Input(1, tempData(row, column)) 'Assigns the whole line to the ith element

 Next

 Next

 FileClose(1)

 Console.ReadLine()

 'displayArray

 For row = 1 To 3

 For column = 1 To 3

 Console.Write(tempData(row, column))

 Next

 Console.WriteLine()

 Next

 Console.ReadLine()

 End Sub
 Unfortunately just using a single array means everything is stored as strings using an array with a Record Data Type allows us to read the above data using sensible data types for each column.
 Structure MyData

 Dim name As String

 Dim DoB As Date

 Dim LikePizza As Boolean

 End Structure
Sub main()

 Dim tempData(5) As MyData ' this is an array using the myData record structure

 Dim row As Integer

 Dim ColumnHeaders As String

 FileOpen(1, "testread.txt", OpenMode.Input)

 ColumnHeaders = LineInput(1) 'as the header arn't of the correct data type we need _

 'to read them so we can get to the reast of the data

 For row = 1 To 3 'here we are poretending we know how big the file is

 Input(1, tempData(row).name) ' remember how the input command works???

 Input(1, tempData(row).DoB)

 Input(1, tempData(row).LikePizza)

 Next

 FileClose(1)

 Console.ReadLine()

 'displayArray

 For row = 1 To 3

 Console.Write(tempData(row).name)

 Console.Write(tempData(row).DoB)

 Console.Write(tempData(row).LikePizza)

 Console.WriteLine()

 Next

 End Sub
[image: image4.png]

INPUT

PROCESS

OUTPUT

FEEDBACK

Hello world

“Hello world”

some, comma, delimited, data

some tab delimited data

“commas”, ”and”, ”quotes”

“this is the last line in quotes”

State examples of:

Formal parameters

…………………………………………………

…………………………………………………

Actual parameters

…………………………………………………

…………………………………………………

Passed by value

…………………………………………………

………………………………………………..

Passed by reference

………………………………………………..

………………………………………………..

Output marks

Calc totals & averages

Input marks

Student marks

Open File

Use File

Close File

FileNumber�You choose the fileNumber. You use this number to refer to the file in future

Filename,

The filename and path of the file you wish to open

Input = reading from the file

Output = writing to the file

Write in the boxes what lines 4 and 5 do

Name,Dob,Like pizza?

Joe,17/09/1981,True

Phil,20/08/1960,True

Caroline,14/7/1749,False

Name�
Dob�
Like Pizza?�
�
Joe�
17/09/1981�
True�
�
Phil�
20/08/1960�
True�
�
Caroline�
14/7/1749�
False�
�

34
Adapted with permission from Into to Pascal by Chris Whelan

