Data Representation In Computers

Data Representation

NUMBERS
01000100

01000001

01010100

01000001
	Pure Binary Representation of Describe the representation of unsigned denary integers in binary.

Denary Integers Perform conversion from denary to binary and vice-versa.

Pure unsigned binary numbers
The basic number system used to identify positive integers.

An odd number always ends in 1
An even number always ends in 0

Questions typically deal with 8 or 16 bit registers and may use boxes for the register e.g. translate 35 into pure unsigned binary

fill from the right

unused space on the left should be left blank or filled with 0

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	1

Translate Pure Unsigned Binary to Denary
Get binary number
While more bits left

Get bit

If bit = 1 then

Write under column

Else

Write 0 under column

End if

End while

Sum column values with a 1
Example convert 101010102 to denary:

	128

	64
	32
	16
	8
	4
	2
	1
	Answer

	1

	0
	1
	0
	1
	0
	1
	0
	

	128+

	
	32+
	
	8+
	
	2+
	
	170

Convert pure unsigned binary to denary
1. 101010112

2. 110011002

3. 111111112

4. 100000012

5. 110100012

Translate Denary to Pure Binary
Get number to translate

While number >= 0

Compare number to column value

If number >= column then

Write 1 under column

Number = number – column value

Else

Write 0 under column

End if

End while

Example convert 70 into pure binary

	128

	64
	32
	16
	8
	4
	2
	1
	

	
	70 – 64 = 6

	
	
	
	6 – 4 = 2
	2 -2 =0
	
	Number / remainder

	0
	1
	0
	0
	0
	1
	1
	0
	Answer

Convert to pure unsigned binary
1. 17710

2. 12910

3. 7610

4. 12210

5. 6910

Hexadecimal numbers
	The Concept of Number Bases: Describe the conversion of a denary integer to hexadecimal form and

Denary, Binary and Hexadecimal vice versa. Describe the use of hexadecimal as shorthand for binary.

	Denary
	Pure Binary
	Hex

	0
	0
	0

	1
	1
	1

	2
	10
	2

	3
	11
	3

	4
	100
	4

	5
	101
	5

	6
	110
	6

	7
	111
	7

	8
	1000
	8

	9
	1001
	9

	10
	1010
	A

	11
	1011
	B

	12
	1100
	C

	13
	1101
	D

	14
	1110
	E

	15
	1111
	F

	16
	10000
	10

Hexadecimal is used to represent large binary numbers in a small number of characters. Each 4-bit binary nibble has a single hexadecimal number so translation is easy
What is hexadecimal used for?

A way of writing large binary (or denary) numbers in a shorter number of digits

e.g. colour codes in HTML
Convert Denary to Hexadecimal
1) Convert the denary number to pure binary

2) Break the binary number into 4-bit nibbles

3) Translate each nibble into the hex equivalent

Example translate 25510 into hex

25510

=
111111112

This can be split into

11112

11112
The hex code for

11112
 is
F16
Therefore, the number is

 FF16
Convert denary to hexadecimal

1.
7910

2. 12210

3. 2410

4. 1610

5. 17310

Convert Hexadecimal to denary

The quickest way to translate back to denary is to repeat the process in reverse.
1) Convert each hex character to a 4-bit nibble

2) Combine the nibbles into a single binary value

3) Calculate the denary value from the binary number – do not translate 4-bit blocks into BCD unless the question asks you to

Example Translate AD into denary

A

D

1010

1101

10101101

128 + 32 + 8 + 4 + 1 = 173

Also note: 173 = (10 x 16) + 13
Convert from hexadecimal to denary
1. A716

2. DC16

3. 6716

4. 7B16

5. C916

Addition and subtraction
	Binary Arithmetic Add two binary numbers and multiply two binary numbers.

Describe the use of Two’s Complement to perform subtraction.

The rules for addition and subtraction are the same in binary as for denary

Stating the obvious:

12 + 12 = 102
102 -12 = 12
The rules for carrying are the same as for denary but if carrying requires an extra bit… it disappears.
You can always check by translating the numbers, adding them and checking your binary answer.

Example 1

 0010 0001

+1010 0001

 1100 0010

Example 2

 1010 0010

- 0010 0001

 1000 0001

Perform the following additions

	 0011 0111
	 1010 0011
	 0000 1111

	+ 1001 0001

	+ 0011 0010

	+ 0010 0001

 Perform the following subtractions
	 1011 0111
	 1001 0001
	 1000 1010

	- 0001 0001

	- 0001 0000

	 - 1000 0001

N.b. multiplication and division are dealt with in assembly language.

To multiply by 2 – shift columns left 1 place.

To divide by 2 shift columns right one place

See also negatives for easier subtraction method
Representing Negative Numbers
	Representation of signed integers by Two’s Complement

Two’s Complement Convert a denary integer into Two’s Complement and vice versa.

The 2’s complement system is used to represent negative numbers. In this system the MSB of any binary number (regardless of the number of bits or whether or not it is a floating point number) is always a negative if it has the value 1. Besides being a ‘sign’ it also has a value:

Example 1:

 11112 the MSB has the value –8.

Example 2:

111111002 the MSB has the value –128

The remaining bits are all positive values. Add them together and then add to the column value of the MSB.
Example 1:

 11112 the MSB has the value –8.

 Rest of data = 4+2+1 = 7

 Add together -8 + 7 = -1
Example 2:

 111111002 the MSB has the value –128

 Rest of data = 64+32+16+8+4 = 124

 Add together -128 + 124 = -4
To find the value of a 2’s complement number:

If MSB = 1 then

find column value and make negative

find the denary value of the rest of the number

add value of rest to MSB

else

find the denary value of the number

end if

· Any number beginning with a 1 is negative
· Any number beginning with a 0 is positive

Alternative method:
1. Write down the binary number as a positive (e.g. if you are asked to translate a negative denary write it out as a pure unsigned binary). Make sure that the number is positive! i.e. the MSB is 0
2. Change every 0 to 1 and every 1 to 0

3. Add 1 to the result:

What is -810 expressed as a 2’s complement number?

Write positive binary

 01000
Convert 1 to 0 and 0 to 1

 10111
Add 1 to result

 10111

+ 1

= 11000
 (i.e. -16 + 8)
What is the denary value of the following 2s comp numbers?
1. 11111100

2. 10101010

3. 11001001

4. 10100010

5. 10001000

6. 10111101

7. 11000000

What is the 2s comp value of the following denary numbers?
1. -113

2. -86

3. -23

4. -1

5. -127

6. -44

7. -69

Binary subtraction using 2s complement
The easiest way to carry out subtraction with binary numbers:

· Take the number to be subtracted
· Make it negative

· Add it to the first number:

Example:

 15 – 12 =

 12

0000 11002

Make it negative
 -12

1111 01002
Add

 15

0000 11112
 Answer

0000 00112

Notice what happened to the carry bit on the left

In the Sign and Magnitude method (S&M) the MSB is used to indicate the sign of the number but it does not have a value.
A 1 is used to indicate a negative number and a 0 is used for a positive number.

The value (magnitude) of the number is calculated by adding up the value of the remaining bits.

The S&M system may lead to problems over the value of zero:

100000002

000000002
Questions involving negative numbers will assume a 2’s complement arrangement unless the question states otherwise
Binary multiplication

is actually much simpler than decimal multiplication. In the case of decimal multiplication, we need to remember 3 x 9 = 27, 7 x 8 = 56, and so on. In binary multiplication, we only need to remember the following,

0 x 0 = 0
0 x 1 = 0
1 x 0 = 0
1 x 1 = 1

Note that since binary operates in base 2, the multiplication rules we need to remember are those that involve 0 and 1 only. As an example of binary multiplication we have 101 times 11,

101
x11
First we multiply 101 by 1, which produces 101. Then we put a 0 as a placeholder as we would in decimal multiplication, and multiply 101 by 1, which produces 101.

 101
x 11
 101
1010 <-- the 0 here is the placeholder

The next step, as with decimal multiplication, is to add. The results from our previous step indicates that we must add 101 and 1010, the sum of which is 1111.

 101
x 11
 101
1010
1111

Do the following showing all working…

1. 0010 * 1010

2. 1010 * 1100

3. 1011 * 1111

4. 0111 * 1010

Numbers with fractional parts
	Integers and Numbers with a Draw a distinction between integers and numbers with a fractional

Fractional Part part in a computer context.

Describe how an unsigned denary number with a fractional part is

represented in fixed-point form in binary.

Fixed point numbers

In a fixed point number the binary (decimal) point is placed in a position that does not change.

The columns to the right of the binary (decimal) point halve in value each time a move to the right tales place

Advantage:

· This is useful because it is very simple to translate which makes processing faster

· If the number range is known then there is greater precision than with floating point numbers.

· Used with currency data types – only ever two (denary) places to the right of the point

Disadvantage:

· The number range is limited

· Columns are potentially wasted

Example 7.875 =
	16
	8

	4
	2
	1
	·
	0.5
	0.25
	0.125

	0
	0

	1
	1
	1
	·
	1
	1
	1

	0
	0

	4
	2
	1
	
	1/2
	1/4
	1/8

Convert the following bytes into denary . The decimal point is at the fourth bit
e.g. 00101100 (0010.1100 = 2.75 (the integer part is 0010 = 2, the decimal part 1100 = 0.5+0.75 =0.75)
1. 10011001 =

2. 11000010 =

3. 10101010 =

4. 11111111 =
[image: image1.png]
3

