

AS

Computing

COMP1 – Problem Solving, Programming, Data Representation and

Practical Exercise

Mark scheme

2510

June 2016

Version :1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the
relevant questions, by a panel of subject teachers. This mark scheme includes any amendments
made at the standardisation events which all associates participate in and is the scheme which was
used by them in this examination. The standardisation process ensures that the mark scheme covers
the students’ responses to questions and that every associate understands and applies it in the same
correct way. As preparation for standardisation each associate analyses a number of students’
scripts. Alternative answers not already covered by the mark scheme are discussed and legislated
for. If, after the standardisation process, associates encounter unusual answers which have not been
raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular
examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2016 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any
material that is acknowledged to a third party even for internal use within the centre.

MARK SCHEME – AS LEVEL COMPUTING – COMP1 – JUNE 2016

 3 of NUMPAGES * Arabic

* Mî`–

óN

Notation used in GCE Computing mark schemes:

; - means a single mark
// - means alternative response
/ - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
I - means ignore
NE - means not enough

Qu Part Marking Guidance Marks
1 01 180;

1

1 02 5.625 //
5 5/8 //
45/8

Mark as follows:
3 bits before binary point correct (5);
5 bits after binary point correct (0.625 or 5/8);
Alternative:
45/8;;

2

1 03 Easier for people to read/understand;
(Can be displayed using) fewer digits;
More compact when printed/displayed;
NE. Takes up less space
NE. More compact

MAX 1

1

1 04 B;4;

2

1 05 -;76;

2

1 06 4;

I. any quotes

1

1 07 Error correction (not just error detection) (for single errors);
Can detect when two errors have occurred in data transmission;
Reduces the need for the retransmission of data;
Decreases the likelihood of an undetected error // improved error
detection;
Can locate an error (not just detect that an error has occurred);

Max 2

2

1 08 4;

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 4 of 51

2 09 The number of pixels/dots; per cm/inch/unit of measurement;
//
Width x height; in pixels;

2

2 10 24 // 16;

1

2 11 512;;; //
16*16;*16;÷8; //
4096;; ÷8;

MAX 2 if final answer not correct

3

2 12 (For geometric images) less storage space /memory likely to be needed;
NE. less space
(For geometric images) will load faster from secondary storage;
(For geometric images) will download faster;
Can be scaled/resized/zoomed without distortion // can be
scaled/resized/zoomed without loss of quality;
Image can be (more easily) searched for particular objects;
Can (more easily) manipulate individual objects in an image;
Can preserve the background so that it can be recreated if an object is
deleted;

MAX 2

2

3 13
Original State Input New State

S30 10 S40
S30 20 S50
S30 50 S0
S30 R S0

Note: order of rows not important

Mark as follows:
Any 2 rows correct;
All 3 rows correct;

2

3 14 5; 1

4 15 12 (bits); 1

4 16 1600 //
800 * 2;

1

4 17 48000;;; //
12*1600;*20;/8;

A. alternative values to 1600 only if match (incorrect) answer from 16

3

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 5 of 51

4 18 An analogue signal is an electrical signal;
that represents analogue/continuous data // that varies in a continuous
manner.;
Digital signals are electrical signals;
(with voltage changes that are) in discrete steps.;

Note: Only one mark for stating that either of / both of analogue and
digital signals are electrical signals

3

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 6 of 51

5 19 1) Correct variable declarations for X, F, L and N;

Note for examiners
If a language allows variables to be used without explicit declaration (eg
Python) then this mark should be awarded if the four correct variables
exist in the program code and the first value they are assigned is of the
correct data type.

2) Correct output message Enter a number:;

3) N assigned the value entered by the user;

4) F assigned the value of 16.0;

5) IF statement with correct condition;

6) X assigned the value stored in N;

7) WHILE loop, with syntax allowed by the programming language with
one correct condition for the termination of the loop; A. alternative correct
logic for condition

8) WHILE loop, has correct 2nd condition and correct logic, WHILE is
inside the selection structure; A. alternative correct logic for condition

9) Two correct assignment statements for X and L - inside the WHILE
statement; R. If order of assignment statements incorrect

10) 2nd WHILE loop, with syntax allowed by the programming language
and correct condition for the termination of the loop; R. If not inside 1st
iterative structure

11) One correct assignment statement for F or X - inside the 2nd WHILE
loop;

12) 2nd correct assignment statement for F or X - inside the 2nd WHILE
loop; R. If order of assignment statements incorrect

13) Value of X outputted – must not be in an iterative structure and must
be in the THEN part of the selection structure;

14) Correct output message Not a number greater than or
equal to 1 – must be in the ELSE part of the selection structure;

I. Case of variable names and output messages
A. Minor typos in variable names and output messages
I. spacing in prompts
A. initialisation of variables at declaration stage

14

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 7 of 51

5 20 ****SCREEN CAPTURE****
Must match code from 19, including messages on screen capture
matching those in code. Code for 19 must be sensible.

Mark as follows:
Value of 0.1 entered by the user followed by output message Not a
number greater than or equal to 1;

1

5 21 ****SCREEN CAPTURE****
Must match code from 19, including messages on screen capture
matching those in code. Code for 19 must be sensible.

Mark as follows:
Value of 4.1 entered by the user followed by output of 2.050025;
A. output of any number between 2 and 2.1

1

5 22 (Estimate the) square root (of a number);

1

5 23 A (step-by-step) description of how to complete a task / a description of a
process that achieves some task / a sequence of steps that solve a
problem / a sequence of unambiguous instructions for solving a problem;
NE. Set of instructions

Independent of any programming language //
That can be completed in finite time;

2

6 24 HumanPlayersTurn //
MoveIsValid //
FlipStillPossible //
FlipFound //
OpponentPieceFound;

A. Piece;
R. if any additional code
R. if spelt incorrectly
I. case

1

6 25 DisplayGameBoard //
SetUpGameBoard //
CheckIfMoveIsValid //
GameOver //
PlayGame;

R. if any additional code
R. if spelt incorrectly
I. case

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 8 of 51

6 26 Score //
RowCount //
ColumnCount;

R. if any additional code
R. if spelt incorrectly
I. case

1

6 27 Count //
Row //
Column //
ColumnCount //
RowCount;

R. if any additional code
R. if spelt incorrectly
I. case

1

6 28 Row // Column;

R. if any additional code
R. if spelt incorrectly
I. case

1

6 29 Choice //
BoardSize //
Move;

A. Coordinates
A. PlayerName
R. if any additional code
R. if spelt incorrectly
I. case

1

6 30 ChangeBoardSize //
GetHumanPlayerMove //
GetComputerPlayerMove //
GetPlayersName //
PrintLine //
DisplayGameBoard //
DisplayMenu //
GetMenuChoice;

A. WriteLine (VB6 only)
A. WriteNoLine (VB6 only)
A. ReadLine (VB6 only)
A. CreateBoard (Python only)
R. if any additional code
R. if spelt incorrectly
I. case

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 9 of 51

6 31 VB.Net
Row = Move Mod 10 //
MoveIsValid = False //
MoveIsValid = True //
Column = Move \ 10;

Pascal
Row := Move Mod 10 //
Column := Move Div 10 //
MoveIsValid := False //
MoveIsValid := True //
CheckIfMoveIsValid := MoveIsValid;
I. semicolons

VB6
Row = Move Mod 10 //
MoveIsValid = False //
MoveIsValid = True //
Column = Move \ 10 //
CheckIfMoveIsValid = MoveIsValid;

Java
row = move % 10 //
column = move / 10 //
moveIsValid = false //
moveIsValid = true;
I. semicolons

C#
Row = Move % 10 //
Column = Move / 10 //
MoveIsValid = false //
MoveIsValid = true;
I. semicolons

Python
Row = Move % 10 //
Column = Move // 10 //
MoveIsValid = False //
MoveIsValid = True;

R. if any additional code
R. if spelt incorrectly
I. case

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 10 of 51

6 32 Missing parameter (Board) in the calls to
FlipOpponentPiecesInOneDirection;

When FlipOpponentPiecesInOneDirection is called with the last
two parameters being 0 and 0 this will not be for a diagonal;

There are only three calls to FlipOpponentPiecesInOneDirection, there
should be 4 // Not all diagonals have been checked;

The subroutine calls have been placed before the variable Row has been
given a value // The subroutine calls have been placed before the
variable Column has been given a value // The subroutine calls have
been placed before the variables have been given values // The
subroutine calls have been placed after the if statement;

4

6 33 When row 10 is entered Row will be assigned a value of 0;

When 10 / a 2-digit row is entered the value of Column is always going to
be greater than 10 // when 10 / a 2-digit row is entered the value of
Column will contain part of the row number;

//

When the user tries to place a piece in 1010 then the program will try to
insert a piece in column 101 row 0;;
NE row / column would be incorrect
Note for examiners
To get 2 marks the answer must include the inputs that would be used by
the program to produce incorrect outputs for row and column and the
incorrect values that would be assigned to both row and column from
these inputs.

2

7 34 Selection structure with correct condition in correct place in program code
e.g. by checking for empty string or checking length of string is 0;

Correct message That is not a valid name, using default
name instead displayed – must be inside the selection structure;

Default name Human player assigned to the PlayerName variable –
must be inside the selection structure;

3

7 35 ****SCREEN CAPTURE****
Must match code from 34. Code for 34 must be sensible.

No name entered followed by error message from code for 34 being
displayed;
Message saying Human player enter the letter of your
chosen option displayed;

2

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 11 of 51

8 36 Additional parameter in subroutine call to CheckIfMoveIsValid
subroutine; R. If parameters do not match routine interface for code from
37

1

8 37 1) Additional parameter in routine interface for CheckIfMoveIsValid
subroutine;

2) Selection structure with two correct conditions and correct logic;

3) Selection structure with all four correct conditions and correct logic;

4) Check for square containing a space is only done within their attempt
at 2 and/or 3 i.e. when their conditions have been met;

5) Correct Boolean values returned by subroutine under all
circumstances; R. if check for boundary values are incorrect

A. answers that obtain correct functionality by just modifying the existing
selection structure rather than creating a new selection structure. The
check that Board(Row, Column) contains a space must be the last
condition to award the final two mark points for 37 and short circuit
evaluation must be used to connect this condition to the others. If short
circuit evaluation has not been used and evidence has been provided
showing that the modified program works then examiners should refer
the answer to their team leader for advice (in case this functionality could
be obtained by altering compiler settings).

5

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 12 of 51

8 38 ****SCREEN CAPTURE****
Must match code from 36 and 37. Code for 36 and 37 must be sensible.

Coordinates of 74 followed by message saying their name followed by
enter the coordinates for the square that you want to put a
piece in:
Coordinates of 47 followed by message saying their name followed by
enter the coordinates for the square that you want to put a
piece in:;
R. if no/incorrect upper boundary check in code for 37

Coordinates of 10 followed by message saying their name followed by
enter the coordinates for the square that you want to put a
piece in:
Coordinates of 01 followed by message saying their name followed by
enter the coordinates for the square that you want to put a
piece in:
Coordinates of 66 followed by game board being displayed with a H in
the bottom-right corner;
R. if no/incorrect lower boundary check in code for 37.

R. both marks if when coordinates entered are out of bounds the program
code from 37 would execute the check for an invalid square being empty.

2

9 39 1) Appropriate message displayed to the user;

2) Code that allows the user to enter their choice;

3) Selection structure with suitable condition (comparing user’s choice to
another value) in correct place in code;

4) Correct code will be executed if the user chooses the four centre
square option;

5) Attempt at code for the four corner square option is in the correct part
of the selection structure and code will work correctly for at least one size
of board;

6) Code for four corner square option works correctly for two corners for
all board sizes;

7) Code for four corner square option works correctly for all four corners
for all board sizes;

7

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 13 of 51

9 40 ****SCREEN CAPTURE****
Must match code from 39, including prompts on screen capture matching
those in code. Code for 39 must be sensible.

User input for four centre square option followed by board display shown
below;

 H C

 C H

1

9 41 ****SCREEN CAPTURE****
Must match code from 39, including prompts on screen capture matching
those in code. Code for 39 must be sensible.

User input for four corner square option followed by board display shown
below;

H C

C H

1

9 42 ****SCREEN CAPTURE****
Must match code from 39, including prompts on screen capture matching
those in code. Code for 39 must be sensible.

User input for four corner square option followed by board display shown
below;

H C

C H

1

10 43 1) Correctly named subroutine GetFlipSquares created; I. Case and
minor typos

10

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 14 of 51

2) Two parameters of the correct data type in the routine interface for
new subroutine;

3) Code that will cause message Choosing one of the following
squares will mean you flip some pieces: to be displayed;
A. Code for message in PlayGame

4) Code will look at every row on the board;
R. if not for all board sizes

5) Code will look at every column on the board;
R. if not for all board sizes

Note for examiners
The following apply to mark points 6, 7 and 8
R. if will not work correctly for a square on the edge of the board.
R. if possible flips are checked for a non-empty square.
R. if squares get “permanently” changed when checking for flips
I. Out of bounds checks

6) Code correctly checks for flips in one direction;

7) Code correctly checks for flips in a second direction;

8) Code correctly checks for flips in all four directions

9) Selection structure that checks if square will result in flips;

10) Coordinates of square displayed – must be inside selection structure
that checks if square will result in flips; A. alternative code which works
correctly

MAX 9 if code will display any incorrect squares
MAX 9 if code will not display any correct square

Note for examiners
Refer unusual answers to Team Leader

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 15 of 51

10 44 Correct subroutine call to GetFlipSquares subroutine;
R. if subroutine call would not work I. Case

Subroutine call added in correct place in program code;

2

10 45 ****SCREEN CAPTURE****
Must match code from 43 and 44, including prompts on screen capture
matching those in code. Code for 43 and 44 must be sensible.

Message Choosing one of the following squares will mean
you flip some pieces: is displayed followed by the values 24, 35,
53, 42;

I. order of values displayed

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 16 of 51

Pascal

Qu Part Marking Guidance Marks

5 19 Program Question5;
 Var
 N : Real;
 X : Real;
 L : Real;
 F : Real;
 Begin
 Write('Enter a number: ');
 Readln(N);
 F := 16;
 If N >= 1
 Then
 Begin
 X := N;
 While (X * X - N > 1) And (F - 1 > 1)
 Do
 Begin
 L := X;
 X := X / F;
 While (X * X <= N)
 Do
 Begin
 F := F - 0.1;
 X := L / F;
 End;
 End;
 Writeln(X);
 End
 Else Writeln('Not a number greater than or equal to
1');
 Readln;
 End.

14

7 34 Function GetPlayersName : String;
 Var
 PlayerName : String;
 Begin
 Write('What is your name? ');
 Readln(PlayerName);
 If PlayerName = ''
 Then
 Begin
 Writeln('That is not a valid name, using default
name instead');
 PlayerName := 'Human player';
 End;
 GetPlayersName := PlayerName;
 End;

3

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 17 of 51

8 36 ...

 Else Move := GetComputerPlayerMove(BoardSize);
 MoveIsValid := CheckIfMoveIsValid(Board, Move,
BoardSize);
Until MoveIsValid;
...

1

8 37 Function CheckIfMoveIsValid(Board : TBoard; Move, BoardSize
: Integer) : Boolean;
 Var
 Row : Integer;
 Column : Integer;
 MoveIsValid : Boolean;
 Begin
 Row := Move Mod 10;
 Column := Move Div 10;
 MoveIsValid := False;
 If (Row <= BoardSize) And (Row >= 1) And (Column <=
BoardSize) And (Column >= 1)
 Then
 If Board[Row, Column] = ' '
 Then MoveIsValid := True;
 CheckIfMoveIsValid := MoveIsValid;
 End;

Alternative answer

Function CheckIfMoveIsValid(Board : TBoard; Move, BoardSize
: Integer) : Boolean;
 ...
 MoveIsValid := False;
 If (Row > BoardSize) Or (Row < 1) Or (Column > BoardSize)
Or (Column < 1)
 Then MoveIsValid := False
 Else If Board[Row, Column] = ' '
 Then MoveIsValid := True;
 ...

5

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 18 of 51

9 39 Procedure SetUpGameBoard(Var Board : TBoard; BoardSize :
Integer);
 Var
 Row : Integer;
 Column : Integer;
 Choice : Char;
 Begin
 Write('Do you want to play with the starting pieces
being on the four c(e)ntre squares');
 Write('or on the four c(o)rner squares?');
 Readln(Choice);
 If Choice = 'e'
 Then
 For Row := 1 To BoardSize
 Do
 For Column := 1 To BoardSize
 Do
 If (Row = (BoardSize + 1) Div 2) And
(Column = (BoardSize + 1) Div 2 + 1)
 Or (Column = (BoardSize + 1) Div 2) And
(Row = (BoardSize + 1) Div 2 + 1)
 Then Board[Row, Column] := 'C'
 Else
 If (Row = (BoardSize + 1) Div 2 + 1)
And (Column = (BoardSize + 1) Div 2 + 1)
 Or (Column = (BoardSize + 1) Div 2)
And (Row = (BoardSize + 1) Div 2)
 Then Board[Row, Column] := 'H'
 Else Board[Row, Column] := ' '
 Else
 For Row := 1 To BoardSize
 Do
 For Column := 1 To BoardSize
 Do
 If (Row = 1) And (Column = 1)
 Or (Row = BoardSize) And (Column =
BoardSize)
 Then Board[Row, Column] := 'H'
 Else
 If (Row = 1) And (Column = BoardSize)
 Or (Row = BoardSize) And (Column = 1)
 Then Board[Row, Column] := 'C'
 Else Board[Row, Column] := ' ';
 End;

7

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 19 of 51

Alternative answer

Procedure SetUpGameBoard(Var Board : TBoard; BoardSize :
Integer);
 Var
 Row : Integer;
 Column : Integer;
 Choice : Char;
 Begin
 Write('Do you want to play with the starting pieces
being on the four c(e)ntre squares');
 Write('or on the four c(o)rner squares?');
 Readln(Choice);
 If Choice = 'e'
 Then
 For Row := 1 To BoardSize
 Do
 For Column := 1 To BoardSize
 Do
 If (Row = (BoardSize + 1) Div 2) And
(Column = (BoardSize + 1) Div 2 + 1)
 Or (Column = (BoardSize + 1) Div 2) And
(Row = (BoardSize + 1) Div 2 + 1)
 Then Board[Row, Column] := 'C'
 Else
 If (Row = (BoardSize + 1) Div 2 + 1)
And (Column = (BoardSize + 1) Div 2 + 1)
 Or (Column = (BoardSize + 1) Div 2)
And (Row = (BoardSize + 1) Div 2)
 Then Board[Row, Column] := 'H'
 Else Board[Row, Column] := ' '
 Else
 Begin
 For Row := 1 To BoardSize
 Do
 For Column := 1 To BoardSize
 Do
 Board[Row, Column] := ' ';
 Board[1, 1] := 'H';
 Board[BoardSize, 1] := 'C';
 Board[1, BoardSize] := 'C';
 Board[BoardSize, BoardSize] := 'H';
 End;
 End;

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 20 of 51

10 43 Procedure GetFlipSquares(Board : TBoard; BoardSize :
Integer);
 Var
 Row, Column: Integer;
 SquareWillCauseFlips : Boolean;
 OldValue : Char;
 Begin
 Writeln('Choosing one of the following squares will
mean you flip some pieces: ');
 For Row := 1 To BoardSize
 Do
 For Column := 1 To BoardSize
 Do
 If Board[Row, Column] = ' ' Then

 Begin
 OldValue := Board[Row, Column];
 Board[Row, Column] := 'H';
 SquareWillCauseFlips := False;
 If CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, 0 , 1)
 Then SquareWillCauseFlips := True;
 If CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, 0 , -1)
 Then SquareWillCauseFlips := True;
 If CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, 1 , 0)
 Then SquareWillCauseFlips := True;
 If CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, -1 , 0)
 Then SquareWillCauseFlips := True;
 If SquareWillCauseFlips
 Then
 Begin
 Write(Column);
 Writeln(Row);
 End;
 Board[Row, Column] := OldValue;
 End;

 End;

10

10 44 ...
 If HumanPlayersTurn
 Then
 Begin
 GetFlipSquares(Board, BoardSize);
 Move := GetMove(PlayerName);
 End
 Else Move := GetComputerPlayerMove(BoardSize);
 MoveIsValid := CheckIfMoveIsValid(Board, Move,
BoardSize);
Until MoveIsValid;
...

2

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 21 of 51

VB.Net

Qu Part Marking Guidance Marks

5 19 Dim N As Single
Dim X As Single
Dim L As Single
Dim F As Single
Console.Write("Enter a number: ")
N = Console.ReadLine
F = 16
If N >= 1 Then
 X = N
 While X * X - N > 1 And F - 1 > 1
 L = X
 X = X / F
 While X * X <= N
 F = F - 0.1
 X = L / F
 End While
 End While
 Console.WriteLine(X)
Else
 Console.WriteLine("Not a number greater than or equal to
1")
End If
Console.ReadLine()

14

7 34 Function GetPlayersName() As String
 Dim PlayerName As String
 Console.Write("What is your name? ")
 PlayerName = Console.ReadLine
 If PlayerName = "" Then
 Console.WriteLine("That is not a valid name, using
default name instead")
 PlayerName = "Human player"
 End If
 Return PlayerName
End Function

3

8 36 ...
 End If
 MoveIsValid = CheckIfMoveIsValid(Board, Move, BoardSize)
Loop Until MoveIsValid
...

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 22 of 51

8 37 Function CheckIfMoveIsValid(ByVal Board(,) As Char, ByVal
Move As Integer, ByVal BoardSize As Integer) As Boolean
 Dim Row As Integer
 Dim Column As Integer
 Dim MoveIsValid As Boolean
 Row = Move Mod 10
 Column = Move \ 10
 MoveIsValid = False
 If Row > BoardSize Or Row < 1 Or Column > BoardSize Or
Column < 1 Then
 MoveIsValid = False
 ElseIf Board(Row, Column) = " " Then
 MoveIsValid = True
 End If
 Return MoveIsValid
End Function

Alternative answer

Function CheckIfMoveIsValid(ByVal Board(,) As Char, ByVal
Move As Integer, ByVal BoardSize As Integer) As Boolean
 ...
 If Row <= BoardSize And Row >= 1 And Column <=
BoardSize And Column >= 1 Then
 If Board(Row, Column) = " " Then
 MoveIsValid = True
 End If
 End If
 ...

5

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 23 of 51

9 39 Sub SetUpGameBoard(ByVal Board(,) As Char, ByVal BoardSize
As Integer)
 Dim Row As Integer
 Dim Column As Integer
 Dim Choice As Char
 Console.Write("Do you want to play with the starting
pieces being on the four c(e)ntre squares or on the four
c(o)rner squares?")
 Choice = Console.ReadLine
 If Choice = "e" Then
 For Row = 1 To BoardSize
 For Column = 1 To BoardSize
 If Row = (BoardSize + 1) \ 2 And Column =
(BoardSize + 1) \ 2 + 1 Or Column = (BoardSize + 1) \ 2 And
Row = (BoardSize + 1) \ 2 + 1 Then
 Board(Row, Column) = "C"
 ElseIf Row = (BoardSize + 1) \ 2 + 1 And Column =
(BoardSize + 1) \ 2 + 1 Or Column = (BoardSize + 1) \ 2 And
Row = (BoardSize + 1) \ 2 Then
 Board(Row, Column) = "H"
 Else
 Board(Row, Column) = " "
 End If
 Next
 Next
 Else
 For Row = 1 To BoardSize
 For Column = 1 To BoardSize
 If Row = 1 And Column = 1 Or Row = BoardSize And
Column = BoardSize Then
 Board(Row, Column) = "H"
 ElseIf Row = 1 And Column = BoardSize Or Row =
BoardSize And Column = 1 Then
 Board(Row, Column) = "C"
 Else
 Board(Row, Column) = " "
 End If
 Next
 Next
 End If
End Sub

7

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 24 of 51

Alternative answer

Sub SetUpGameBoard(ByVal Board(,) As Char, ByVal BoardSize
As Integer)
 Dim Row As Integer
 Dim Column As Integer
 Dim Choice As Char
 Console.Write("Do you want to play with the starting
pieces being on the four c(e)ntre squares or on the four
c(o)rner squares?")
 Choice = Console.ReadLine
 If Choice = "e" Then
 For Row = 1 To BoardSize
 For Column = 1 To BoardSize
 If Row = (BoardSize + 1) \ 2 And Column =
(BoardSize + 1) \ 2 + 1 Or Column = (BoardSize + 1) \ 2 And
Row = (BoardSize + 1) \ 2 + 1 Then
 Board(Row, Column) = "C"
 ElseIf Row = (BoardSize + 1) \ 2 + 1 And Column =
(BoardSize + 1) \ 2 + 1 Or Column = (BoardSize + 1) \ 2 And
Row = (BoardSize + 1) \ 2 Then
 Board(Row, Column) = "H"
 Else
 Board(Row, Column) = " "
 End If
 Next
 Next
 Else
 For Row = 1 To BoardSize
 For Column = 1 To BoardSize
 BoardSize(Row, Column) = " "
 Next
 Next
 Board(1,1) = "H"
 Board(BoardSize, BoardSize) = "H"
 Board(1, BoardSize) = "C"
 Board(BoardSize, 1) = "C"
 End If
End Sub

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 25 of 51

10 43 Sub GetFlipSquares(ByVal Board(,) As Char, ByVal BoardSize
As Integer)
 Dim Row As Integer
 Dim Column As Integer
 Dim SquareWillCauseFlips As Boolean
 Dim OldValue As Char
 Console.WriteLine("Choosing one of the following
squares will mean you flip some pieces: ")
 For Row = 1 To BoardSize
 For Column = 1 To BoardSize
 If Board(Row, Column) = " " Then
 OldValue = Board(Row, Column)
 Board(Row, Column) = "H"
 SquareWillCauseFlips = False
 If CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, 0, 1) Then
 SquareWillCauseFlips = True
 ElseIf
CheckIfThereArePiecesToFlip(Board, BoardSize, Row, Column,
0, -1) Then
 SquareWillCauseFlips = True
 ElseIf
CheckIfThereArePiecesToFlip(Board, BoardSize, Row, Column,
1, 0) Then
 SquareWillCauseFlips = True
 ElseIf
CheckIfThereArePiecesToFlip(Board, BoardSize, Row, Column,
-1, 0) Then
 SquareWillCauseFlips = True
 End If
 If SquareWillCauseFlips Then
 Console.Write(Column)
 Console.WriteLine(Row)
 End If
 Board(Row, Column) = OldValue
 End If
 Next
 Next
 Console.WriteLine()
 End Sub

10

10 44 ...
Do
 If HumanPlayersTurn Then
 GetFlipSquares(Board, BoardSize)
 Move = GetMove(PlayerName)
 Else
 Move = GetComputerPlayerMove(BoardSize)
 End If
 MoveIsValid = CheckIfMoveIsValid(Board, Move, BoardSize)
Loop Until MoveIsValid
...

2

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 26 of 51

VB6

Qu Part Marking Guidance Marks

5 19 Private Sub Form_Load()

 Dim N As Single
 Dim X As Single
 Dim L As Single
 Dim F As Single
 N = ReadLine("Enter a number: ")
 F = 16
 If N >= 1 Then
 X = N
 While X * X - N > 1 And F - 1 > 1
 L = X
 X = X / F
 While X * X <= N
 F = F - 0.1
 X = L / F
 Wend
 Wend
 WriteLine(X)
 Else
 WriteLine("Not a number greater than or equal to 1")
 End If
End Sub

Alternative answers could use some of the following instead of
WriteLine:
Console.Text = Console.Text & ...
WriteLineWithMsg
WriteWithMsg
Msgbox
WriteNoLine

14

7 34 Private Function GetPlayersName() As String
 Dim PlayerName As String
 PlayerName = ReadLine("What is your name? ")
 If PlayerName = "" Then
 WriteLine ("That is not a valid name, using default
name instead")
 PlayerName = "Human player"
 End If
 GetPlayersName = PlayerName
End Function

3

8 36 ...
 End If
 MoveIsValid = CheckIfMoveIsValid(Board, Move, BoardSize)
Loop Until MoveIsValid
...

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 27 of 51

8 37 Private Function CheckIfMoveIsValid(ByRef Board() As
String, ByVal Move As Integer, ByVal BoardSize As Integer)
As Boolean
 Dim Row As Integer
 Dim Column As Integer
 Dim MoveIsValid As Boolean
 Row = Move Mod 10
 Column = Move \ 10
 MoveIsValid = False
 If Row > BoardSize Or Row < 1 Or Column > BoardSize Or
Column < 1 Then
 MoveIsValid = False
 ElseIf Board(Row, Column) = " " Then
 MoveIsValid = True
 End If
 CheckIfMoveIsValid = MoveIsValid
End Function

Alternative answer

Private Function CheckIfMoveIsValid(ByRef Board() As
String, ByVal Move As Integer, ByVal BoardSize As Integer)
As Boolean
 ...
 If Row <= BoardSize And Row >= 1 And Column <=
BoardSize And Column >= 1 Then
 If Board(Row, Column) = " " Then
 MoveIsValid = True
 End If
 End If
 ...

5

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 28 of 51

9 39 Private Sub SetUpGameBoard(ByRef Board() As String, ByVal
BoardSize As Integer)
 Dim Row As Integer
 Dim Column As Integer
 Dim Choice As String
 Choice = ReadLine("Do you want to play with the starting
pieces being on the four c(e)ntre squares or on the four
c(o)rner squares?")
 If Choice = "e" Then
 For Row = 1 To BoardSize
 For Column = 1 To BoardSize
 If Row = (BoardSize + 1) \ 2 And Column =
(BoardSize + 1) \ 2 + 1 Or Column = (BoardSize + 1) \ 2 And
Row = (BoardSize + 1) \ 2 + 1 Then
 Board(Row, Column) = "C"
 ElseIf Row = (BoardSize + 1) \ 2 + 1 And Column =
(BoardSize + 1) \ 2 + 1 Or Column = (BoardSize + 1) \ 2 And
Row = (BoardSize + 1) \ 2 Then
 Board(Row, Column) = "H"
 Else
 Board(Row, Column) = " "
 End If
 Next
 Next
 Else
 For Row = 1 To BoardSize
 For Column = 1 To BoardSize
 If Row = 1 And Column = 1 Or Row = BoardSize And
Column = BoardSize Then
 Board(Row, Column) = "H"
 ElseIf Row = 1 And Column = BoardSize Or Row =
BoardSize And Column = 1 Then
 Board(Row, Column) = "C"
 Else
 Board(Row, Column) = " "
 End If
 Next
 Next
 End If
End Sub

7

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 29 of 51

Alternative answer

Private Sub SetUpGameBoard(ByRef Board() As String, ByVal
BoardSize As Integer)
 Dim Row As Integer
 Dim Column As Integer
 Dim Choice As String
 Choice = ReadLine("Do you want to play with the starting
pieces being on the four c(e)ntre squares or on the four
c(o)rner squares?")
 If Choice = "e" Then
 For Row = 1 To BoardSize
 For Column = 1 To BoardSize
 If Row = (BoardSize + 1) \ 2 And Column =
(BoardSize + 1) \ 2 + 1 Or Column = (BoardSize + 1) \ 2 And
Row = (BoardSize + 1) \ 2 + 1 Then
 Board(Row, Column) = "C"
 ElseIf Row = (BoardSize + 1) \ 2 + 1 And Column =
(BoardSize + 1) \ 2 + 1 Or Column = (BoardSize + 1) \ 2 And
Row = (BoardSize + 1) \ 2 Then
 Board(Row, Column) = "H"
 Else
 Board(Row, Column) = " "
 End If
 Next
 Next
 Else
 For Row = 1 To BoardSize
 For Column = 1 To BoardSize
 BoardSize(Row, Column) = " "
 Next
 Next
 Board(1,1) = "H"
 Board(BoardSize, BoardSize) = "H"
 Board(1, BoardSize) = "C"
 Board(BoardSize, 1) = "C"
 End If
End Sub

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 30 of 51

10 43 Private Sub GetFlipSquares(ByRef Board() As String, ByVal
BoardSize As Integer)
 Dim Row As Integer
 Dim Column As Integer
 Dim SquareWillCauseFlips As Boolean
 Dim OldValue As String
 WriteLine ("Choosing one of the following squares will
mean you flip some pieces: ")
 For Row = 1 To BoardSize
 For Column = 1 To BoardSize
 If Board(Row, Column) = " " Then

 OldValue = Board(Row, Column)
 Board(Row, Column) = "H"
 SquareWillCauseFlips = False
 If CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, 0, 1) Then
 SquareWillCauseFlips = True
 ElseIf CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, 0, -1) Then
 SquareWillCauseFlips = True
 ElseIf CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, 1, 0) Then
 SquareWillCauseFlips = True
 ElseIf CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, -1, 0) Then
 SquareWillCauseFlips = True
 End If
 If SquareWillCauseFlips Then
 WriteNoLine (Column)
 WriteLine (Row)
 End If
 Board(Row, Column) = OldValue
End If

 Next
 Next
 WriteLine ("")
End Sub

10

10 44 ...
Do
 If HumanPlayersTurn Then
 Call GetFlipSquares(Board, BoardSize)
 Move = GetHumanPlayerMove(PlayerName)
 Else
 Move = GetComputerPlayerMove(BoardSize)
 End If
 MoveIsValid = CheckIfMoveIsValid(Board, Move, BoardSize)
Loop Until MoveIsValid
...

2

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 31 of 51

Java

Qu Part Marking Guidance Marks
5 19 public static void main(String[] args) {

 float n;
 float x;
 float l;
 float f;
 console.print("Enter a number: ");
 n = Float.parseFloat(console.readLine());
 f = 16;
 if (n >= 1) {
 x = n;
 while ((x * x - n > 1) && (f - 1 > 1)) {
 l = x;
 x = (float)(x / f);
 while (x * x <= n) {
 f = (float)(f - 0.1);
 x = (float)(l / f) ;
 }
 }
 console.println(x);
 }
 else {
 console.println("Not a number greater than or equal to
1");
 }
}

Alternative answer (not using AQAConsole2016) :

public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 float n;
 float x;
 float l;
 float f;
 System.out.print("Enter a number: ");
 n = Float.parseFloat(in.next());
 f = 16;
 if (n >= 1) {
 x = n;
 while ((x * x - n > 1) && (f - 1 > 1)) {
 l = x;
 x = (float)(x / f);
 while (x * x <= n) {
 f = (float)(f - 0.1);
 x = (float)(l / f) ;
 }
 }

14

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 32 of 51

 System.out.println(x);
 }
 else {
 System.out.println("Not a number greater than or equal
to 1");
 }
}

Alternative answer (using double variables)

public static void main(String[] args) {
 double n;
 double x;
 double l;
 double f;
 console.print("Enter a number: ");
 n = Double.parseDouble(console.readLine());
 f = 16;
 if (n >= 1) {
 x = n;
 while ((x * x - n > 1) && (f - 1 > 1)) {
 l = x;
 x = x / f;
 while (x * x <= n) {
 f = f - 0.1;
 x = l / f ;
 }
 }
 console.println(x);
 }
 else {
 console.println("Not a number greater than or equal to
1");
 }
}

N.B. For n = 4.1 this gives output 2.049999999999958

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 33 of 51

7 34 String getPlayersName() {
 String playerName;
 console.print("What is your name? ");
 playerName = console.readLine();
 if (playerName.equals("")){
 console.println("That is not a valid name, using
default name instead");
 playerName = "Human player";
 }
 return playerName;
}

Alternative answer :

String getPlayersName() {
 String playerName;
 console.print("What is your name? ");
 playerName = console.readLine();
 if (playerName.isEmpty()) {
 console.println("That is not a valid name, using
default name instead");
 playerName = "Human player";
 }
 return playerName;
}

Alternative answer :

String getPlayersName() {
 String playerName;
 console.print("What is your name? ");
 playerName = console.readLine();
 if (playerName.length() == 0) {
 console.println("That is not a valid name, using
default name instead");
 playerName = "Human player";
 }
 return playerName;
}

3

8 36 . . .
 if (humanPlayersTurn) {
 move = getHumanPlayerMove(playerName);
 } else {
 move = getComputerPlayerMove(boardSize);
 }
 moveIsValid = checkIfMoveIsValid(board, move, boardSize);
} while (!moveIsValid);
. . .

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 34 of 51

8 37 boolean checkIfMoveIsValid(char[][] board, int move, int
boardSize) {
 int row;
 int column;
 boolean moveIsValid;
 row = move % 10;
 column = move / 10;
 moveIsValid = false;
 if (row <= boardSize && row >= 1 && column <= boardSize
&& column >= 1) {
 if (board[row][column] == ' ') {
 moveIsValid = true;
 }
 }
 return moveIsValid;
}

Alternative answer :

boolean checkIfMoveIsValid(char[][] board, int move, int
boardSize) {
 int row;
 int column;
 boolean moveIsValid;
 row = move % 10;
 column = move / 10;
 moveIsValid = false;
 if (row > boardSize || row < 1 || column > boardSize ||
column < 1) {
 moveIsValid = false;
 } else {
 if (board[row][column] == ' ') {
 moveIsValid = true;
 }
 }
 return moveIsValid;
}

5

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 35 of 51

9 39 void setUpGameBoard(char[][] board, int boardSize) {
 char choice;
 console.print("Do you want to play with the starting
pieces being on the four c(e)ntre squares");
 console.print(" or on the four c(o)rner squares? ");
 choice = console.readChar();
 if (choice == 'e') {
 for (int row = 1; row <= boardSize; row++) {
 for (int column = 1; column <= boardSize; column++) {
 if (row == (boardSize + 1) / 2 && column ==
(boardSize + 1) / 2 + 1 || column == (boardSize + 1) / 2 &&
row == (boardSize + 1) / 2 + 1) {
 board[row][column] = 'C';
 } else {
 if (row == (boardSize + 1) / 2 + 1 && column ==
(boardSize + 1) / 2 + 1 || column == (boardSize + 1) / 2 &&
row == (boardSize + 1) / 2) {
 board[row][column] = 'H';
 } else {
 board[row][column] = ' ';
 }
 }
 }
 }
 } else {
 for (int row = 1; row <= boardSize; row++) {
 for (int column = 1; column <= boardSize; column++) {
 if (row == 1 && column == 1 || row == boardSize &&
column == boardSize) {
 board[row][column] = 'H';
 } else {
 if (row == 1 && column == boardSize || row ==
boardSize && column == 1) {
 board[row][column] = 'C';
 } else {
 board[row][column] = ' ';
 }
 }
 }
 }
 }
}

7

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 36 of 51

Alternative answer :

void setUpGameBoard(char[][] board, int boardSize) {
 char choice;
 console.print("Do you want to play with the starting
pieces being on the four c(e)ntre squares");
 console.print(" or on the four c(o)rner squares? ");
 choice = console.readChar();
 if (choice == 'e') {
 for (int row = 1; row <= boardSize; row++) {
 for (int column = 1; column <= boardSize; column++) {
 if (row == (boardSize + 1) / 2 && column ==
(boardSize + 1) / 2 + 1 || column == (boardSize + 1) / 2 &&
row == (boardSize + 1) / 2 + 1) {
 board[row][column] = 'C';
 } else {
 if (row == (boardSize + 1) / 2 + 1 && column ==
(boardSize + 1) / 2 + 1 || column == (boardSize + 1) / 2 &&
row == (boardSize + 1) / 2) {
 board[row][column] = 'H';
 } else {
 board[row][column] = ' ';
 }
 }
 }
 }
 } else {
 for (int row = 1; row <= boardSize; row++) {
 for (int column = 1; column <= boardSize; column++) {
 board[row][column] = ' ';
 }
 }
 board[1][1] = 'H';
 board[boardSize][1] = 'C';
 board[1][boardSize] = 'C';
 board[boardSize][boardSize] = 'H';
 }
}

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 37 of 51

10 43 void getFlipSquares(char[][] board, int boardSize) {
 boolean squareWillCauseFlips;
 char oldValue;
 console.println("Choosing one of the following squares
will mean you flip some pieces");
 for (int row = 1; row <= boardSize; row++) {
 for (int column = 1; column <= boardSize; column++) {
 if (board[row][column] == ' ') {

 oldValue = board[row][column];
 board[row][column] = 'H';
 squareWillCauseFlips = false;
 if (checkIfThereArePiecesToFlip(board, boardSize,
row, column, 0, 1)) {
 squareWillCauseFlips = true;
 }
 if (checkIfThereArePiecesToFlip(board, boardSize,
row, column, 0, -1)) {
 squareWillCauseFlips = true;
 }
 if (checkIfThereArePiecesToFlip(board, boardSize,
row, column, 1, 0)) {
 squareWillCauseFlips = true;
 }
 if (checkIfThereArePiecesToFlip(board, boardSize,
row, column, -1, 0)) {
 squareWillCauseFlips = true;
 }
 if (squareWillCauseFlips) {
 console.print(column);
 console.println(row);
 }
 board[row][column] = oldValue;

 }
 }
 }
 console.println();
}

10

10 44 . . .
do {
 if (humanPlayersTurn) {
 getFlipSquares(board, boardSize);
 move = getHumanPlayerMove(playerName);
 } else {
 move = getComputerPlayerMove(boardSize);
 }
 moveIsValid = checkIfMoveIsValid(board, move, boardSize);
} while (!moveIsValid);
. . .

2

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 38 of 51

C#

Qu Part Marking Guidance Marks
5 19 double X, F, L, N;

Console.WriteLine("Enter a number:");
N = Convert.ToDouble(Console.ReadLine());
F = 16.0;
if (N >= 1.0)
{
 X = N;
 while (X * X - N > 1.0 && F - 1.0 > 1.0)
 {
 L = X;
 X = X / F;
 while (X * X <= N)
 {
 F = F - 0.1;
 X = L / F;
 }
 }
 Console.WriteLine(X);
}
else
{
 Console.WriteLine("Not a number greater than or equal to
1");
}
Console.ReadLine();

14

7 34 static string GetPlayersName()
{
 string PlayerName;
 Console.Write("What is your name? ");
 PlayerName = Console.ReadLine();
 if (PlayerName == "")
 {
 Console.WriteLine("That is not a valid name, using
default name instead");
 PlayerName = "Human Player";
 }
 return PlayerName;
}

3

8 36 ...
 Move = GetComputerPlayerMove(BoardSize);
 }
 MoveIsValid = CheckIfMoveIsValid(Board, Move, BoardSize);
}
if (!HumanPlayersTurn)
...

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 39 of 51

8 37 static bool CheckIfMoveIsValid(char[,] Board, int Move, int
BoardSize)
{
 int Row;
 int Column;
 bool MoveIsValid;
 Row = Move % 10;
 Column = Move / 10;
 MoveIsValid = false;
 if (Row < 1 || Row > BoardSize || Column < 1 || Column >
BoardSize)
 {
 MoveIsValid = false;
 }
 else if (Board[Row, Column] == ' ')
 {
 MoveIsValid = true;
 }
 return MoveIsValid;
}

Alternative answer

static bool CheckIfMoveIsValid(char[,] Board, int Move, int
BoardSize)
{
 ...
 if (Row >= 1 && Row <= BoardSize && Column >= 1 && Column
<= BoardSize)
 {
 if (Board[Row, Column] == ' ')
 {
 MoveIsValid = true;
 }
 }
 ...
}

5

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 40 of 51

9 39 static void SetUpGameBoard(char[,] Board, int BoardSize)
{
 char Choice;
 Console.Write("Do you want to play with the starting
pieces being on the four c(e)ntre squares or the four
c(o)rner squares?");
 Choice = Convert.ToChar(Console.ReadLine());
 if (Choice == 'e')
 {
 for (int Row = 1; Row <= BoardSize; Row++)
 {
 for (int Column = 1; Column <= BoardSize; Column++)
 {
 if (Row == (BoardSize + 1) / 2 && Column ==
(BoardSize + 1) / 2 + 1 || Column == (BoardSize + 1) / 2 &&
Row == (BoardSize + 1) / 2 + 1)
 {
 Board[Row, Column] = 'C';
 }
 else if (Row == (BoardSize + 1) / 2 + 1 && Column
== (BoardSize + 1) / 2 + 1 || Column == (BoardSize + 1) / 2
&& Row == (BoardSize + 1) / 2)
 {
 Board[Row, Column] = 'H';
 }
 else
 {
 Board[Row, Column] = ' ';
 }
 }
 }
 }
 else
 {
 for (int Row = 1; Row <= BoardSize; Row++)
 {
 for (int Column = 1; Column <= BoardSize; Column++)
 {
 if (Row == 1 && Column == 1 || Row == BoardSize &&
Column == BoardSize)
 {
 Board[Row, Column] = 'H';
 }
 else if (Row == 1 && Column == BoardSize || Row ==
BoardSize && Column == 1)
 {
 Board[Row, Column] = 'C';
 }
 else
 {
 Board[Row, Column] = ' ';
 }
 }
 }
 }
}

7

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 41 of 51

Alternative answer

static void SetUpGameBoard(char[,] Board, int BoardSize)
{
 char Choice;
 Console.Write("Do you want to play with the starting
pieces being on the four c(e)ntre squares or the four
c(o)rner squares?");
 Choice = Convert.ToChar(Console.ReadLine());
 if (Choice == 'e')
 {
 for (int Row = 1; Row <= BoardSize; Row++)
 {
 for (int Column = 1; Column <= BoardSize; Column++)
 {
 if (Row == (BoardSize + 1) / 2 && Column ==
(BoardSize + 1) / 2 + 1 || Column == (BoardSize + 1) / 2 &&
Row == (BoardSize + 1) / 2 + 1)
 {
 Board[Row, Column] = 'C';
 }
 else if (Row == (BoardSize + 1) / 2 + 1 && Column
== (BoardSize + 1) / 2 + 1 || Column == (BoardSize + 1) / 2
&& Row == (BoardSize + 1) / 2)
 {
 Board[Row, Column] = 'H';
 }
 else
 {
 Board[Row, Column] = ' ';
 }
 }
 }
 }
 else
 {
 for (int Row = 1; Row <= BoardSize; Row++)
 {
 for (int Column = 1; Column <= BoardSize; Column++)
 {
 Board[Row, Column] = ' ';
 }
 Board[1, 1] = 'H';
 Board[BoardSize, BoardSize] = 'H';
 Board[1, BoardSize] = 'C';
 Board[BoardSize, 1] = 'C';
 }
 }
}

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 42 of 51

10 43 static void GetFlipSquares(char[,] Board, int BoardSize)
{
 bool SquareWillCauseFlips;
 char OldValue;
 Console.WriteLine("Choosing one of the following squares
will mean you flip some pieces: ");
 for (int Row = 1; Row <= BoardSize; Row++)
 {
 for (int Column = 1; Column <= BoardSize; Column++)
 {
 if (Board[Row, Column] == ' ')
 {

 OldValue = Board[Row, Column];
 Board[Row, Column] = 'H';
 SquareWillCauseFlips = false;
 if (CheckIfThereArePiecesToFlip(Board, BoardSize,
Row, Column, 0, 1))
 {
 SquareWillCauseFlips = true;
 }
 else if (CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, 0, -1))
 {
 SquareWillCauseFlips = true;
 }
 else if (CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, 1, 0))
 {
 SquareWillCauseFlips = true;
 }
 else if (CheckIfThereArePiecesToFlip(Board,
BoardSize, Row, Column, -1, 0))
 {
 SquareWillCauseFlips = true;
 }
 if (SquareWillCauseFlips)
 {
 Console.Write(Column);
 Console.WriteLine(Row);
 }
 Board[Row, Column] = OldValue;

 }
 }
 }
 Console.WriteLine();
}

10

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 43 of 51

10 44 ...
do
{
 if (HumanPlayersTurn)
 {
 GetFlipSquares(Board, BoardSize);
 Move = GetHumanPlayerMove(PlayerName);
 }
 else
 {
 Move = GetComputerPlayerMove(BoardSize);
 }
 MoveIsValid = CheckIfMoveIsValid(Board, Move);
} while (!MoveIsValid);
...

2

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 44 of 51

Python 2

Qu Part Marking Guidance Marks
5 19 N = float(raw_input("Enter a number:"))

F = 16.0
if N >= 1.0:
 X = N
 while X * X - N > 1.0 and F - 1.0 > 1.0:
 L = X
 X = X / F
 while X * X <= N:
 F = F - 0.1
 X = L / F
 print X
else:
 print "Not a number greater than or equal to 1"

14

7 34 def GetPlayersName():
 PlayerName = raw_input("What is your name? ")
 if PlayerName == "":
 print "That is not a valid name, using default name
instead"
 PlayerName = "Human player"
 return PlayerName

Alternative answer

def GetPlayersName():
 PlayerName = raw_input("What is your name? ")
 if len(PlayerName) == 0:
 print "That is not a valid name, using default name
instead"
 PlayerName = "Human player"
 return PlayerName

3

8 36 ...
else:
 Move = GetComputerPlayerMove(BoardSize)
MoveIsValid = CheckIfMoveIsValid(Board, Move, BoardSize)
...

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 45 of 51

8 37 def CheckIfMoveIsValid(Board, Move, BoardSize):
 Row = Move % 10
 Column = Move / 10
 MoveIsValid = False
 if Row > BoardSize or Row < 1 or Column > BoardSize or
Column < 1:
 MoveIsValid = False
 elif Board[Row][Column] == " ":
 MoveIsValid = True
 return MoveIsValid

Alternative answer

def CheckIfMoveIsValid(Board, Move, BoardSize):
 Row = Move % 10
 Column = Move / 10
 MoveIsValid = False
 if Row <= BoardSize and Row >= 1 and Column <= BoardSize
and Column >= 1:
 if Board[Row][Column] == " ":
 MoveIsValid = True
 return MoveIsValid

Alternative answer

def CheckIfMoveIsValid(Board, Move, BoardSize):
 Row = Move % 10
 Column = Move / 10
 MoveIsValid = False
 if Row <= BoardSize and Row >= 1 and Column <= BoardSize
and Column >= 1 and Board[Row][Column] == " ":
 MoveIsValid = True
 return MoveIsValid

5

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 46 of 51

9 39 def SetUpGameBoard(Board, BoardSize):
 Choice = raw_input("Do you want the starting pieces being
on the four c(e)ntre squares or on the four c(o)rner
squares?")
 if Choice == "e":
 for Row in range(1, BoardSize + 1):
 for Column in range(1, BoardSize + 1):
 if (Row == (BoardSize + 1) / 2 and Column ==
(BoardSize + 1) / 2 + 1) or (Column == (BoardSize + 1) / 2
and Row == (BoardSize + 1) / 2 + 1):
 Board[Row][Column] = "C"
 elif (Row == (BoardSize + 1) / 2 + 1 and Column ==
(BoardSize + 1) / 2 + 1) or (Column == (BoardSize + 1) / 2
and Row == (BoardSize + 1) / 2):
 Board[Row][Column] = "H"
 else:
 Board[Row][Column] = " "
 else:
 for Row in range(1, BoardSize + 1):
 for Column in range(1, BoardSize + 1):
 if Row == 1 and Column == 1 or Row == BoardSize and
Column == BoardSize:
 Board[Row][Column] = "H"
 elif Row == 1 and Column == BoardSize or Row ==
BoardSize and Column == 1:
 Board[Row][Column] = "C"
 else:
 Board[Row][Column] = " "

Alternative answer

def SetUpGameBoard(Board, BoardSize):
 Choice = raw_input("Do you want the starting pieces being
on the four c(e)ntre squares or on the four c(o)rner
squares?")
 if Choice == "e":
 for Row in range(1, BoardSize + 1):
 for Column in range(1, BoardSize + 1):
 if (Row == (BoardSize + 1) / 2 and Column ==
(BoardSize + 1) / 2 + 1) or (Column == (BoardSize + 1) / 2
and Row == (BoardSize + 1) / 2 + 1):
 Board[Row][Column] = "C"
 elif (Row == (BoardSize + 1) / 2 + 1 and Column ==
(BoardSize + 1) / 2 + 1) or (Column == (BoardSize + 1) / 2
and Row == (BoardSize + 1) / 2):
 Board[Row][Column] = "H"
 else:
 Board[Row][Column] = " "

7

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 47 of 51

 else:
 for Row in range(1, BoardSize + 1):
 for Column in range(1, BoardSize + 1):
 Board[Row][Column] = " "
 Board[1][1] = "H"
 Board[BoardSize][BoardSize] = "H"
 Board[1][BoardSize] = "C"
 Board[BoardSize][1] = "C"

10 43 def GetFlipSquares(Board, BoardSize):
 print "Choosing one of the following squares will mean
you will flip some pieces: "
 for Row in range(1, BoardSize + 1):
 for Column in range(1, BoardSize + 1):
 if Board[Row][Column] == " ":

 OldValue = Board[Row][Column]
 Board[Row][Column] = "H"
 SquareWillCauseFlips = False
 if CheckIfThereArePiecesToFlip(Board, BoardSize,
Row, Column, 0, 1):
 SquareWillCauseFlips = True
 elif CheckIfThereArePiecesToFlip(Board, BoardSize,
Row, Column, 0, -1):
 SquareWillCauseFlips = True
 elif CheckIfThereArePiecesToFlip(Board, BoardSize,
Row, Column, 1, 0):
 SquareWillCauseFlips = True
 elif CheckIfThereArePiecesToFlip(Board, BoardSize,
Row, Column, -1, 0):
 SquareWillCauseFlips = True
 if SquareWillCauseFlips:
 print str(Column) + str(Row)
 Board[Row][Column] = OldValue

 print

10

10 44 . . .
 while not MoveIsValid:
 if HumanPlayersTurn:
 GetFlipSquares(Board, BoardSize)
 Move = GetHumanPlayerMove(PlayerName)
 else:
. . .

2

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 48 of 51

Python 3

Qu Part Marking Guidance Marks
5 19 N = float(input("Enter a number:"))

F = 16.0
if N >= 1.0:
 X = N
 while X * X - N > 1.0 and F - 1.0 > 1.0:
 L = X
 X = X / F
 while X * X <= N:
 F = F - 0.1
 X = L / F
 print(X)
else:
 print("Not a number greater than or equal to 1")

14

7 34 def GetPlayersName():
 PlayerName = input("What is your name? ")
 if PlayerName == "":
 print("That is not a valid name, using default name
instead")
 PlayerName = "Human player"
 return PlayerName

Alternative answer

def GetPlayersName():
 PlayerName = raw_input("What is your name? ")
 if len(PlayerName) == 0:
 print("That is not a valid name, using default name
instead")
 PlayerName = "Human player"
 return PlayerName

3

8 36 ...
else:
 Move = GetComputerPlayerMove(BoardSize)
MoveIsValid = CheckIfMoveIsValid(Board, Move, BoardSize)
...

1

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 49 of 51

8 37 def CheckIfMoveIsValid(Board, Move, BoardSize):
 Row = Move % 10
 Column = Move // 10
 MoveIsValid = False
 if Row > BoardSize or Row < 1 or Column > BoardSize or
Column < 1:
 MoveIsValid = False
 elif Board[Row][Column] == " ":
 MoveIsValid = True
 return MoveIsValid

Alternative answer

def CheckIfMoveIsValid(Board, Move, BoardSize):
 Row = Move % 10
 Column = Move // 10
 MoveIsValid = False
 if Row <= BoardSize and Row >= 1 and Column <= BoardSize
and Column >= 1:
 if Board[Row][Column] == " ":
 MoveIsValid = True
 return MoveIsValid

Alternative answer

def CheckIfMoveIsValid(Board, Move, BoardSize):
 Row = Move % 10
 Column = Move // 10
 MoveIsValid = False
 if Row <= BoardSize and Row >= 1 and Column <= BoardSize
and Column >= 1 and Board[Row][Column] == " ":
 MoveIsValid = True
 return MoveIsValid

5

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 50 of 51

9 39 def SetUpGameBoard(Board, BoardSize):
 Choice = input("Do you want the starting pieces being on
the four c(e)ntre squares or on the four c(o)rner
squares?")
 if Choice == "e":
 for Row in range(1, BoardSize + 1):
 for Column in range(1, BoardSize + 1):
 if (Row == (BoardSize + 1) / 2 and Column ==
(BoardSize + 1) / 2 + 1) or (Column == (BoardSize + 1) / 2
and Row == (BoardSize + 1) / 2 + 1):
 Board[Row][Column] = "C"
 elif (Row == (BoardSize + 1) / 2 + 1 and Column ==
(BoardSize + 1) / 2 + 1) or (Column == (BoardSize + 1) / 2
and Row == (BoardSize + 1) / 2):
 Board[Row][Column] = "H"
 else:
 Board[Row][Column] = " "
 else:
 for Row in range(1, BoardSize + 1):
 for Column in range(1, BoardSize + 1):
 if Row == 1 and Column == 1 or Row == BoardSize and
Column == BoardSize:
 Board[Row][Column] = "H"
 elif Row == 1 and Column == BoardSize or Row ==
BoardSize and Column == 1:
 Board[Row][Column] = "C"
 else:
 Board[Row][Column] = " "

Alternative answer

def SetUpGameBoard(Board, BoardSize):
 Choice = input("Do you want the starting pieces being on
the four c(e)ntre squares or on the four c(o)rner
squares?")
 if Choice == "e":
 for Row in range(1, BoardSize + 1):
 for Column in range(1, BoardSize + 1):
 if (Row == (BoardSize + 1) / 2 and Column ==
(BoardSize + 1) / 2 + 1) or (Column == (BoardSize + 1) / 2
and Row == (BoardSize + 1) / 2 + 1):
 Board[Row][Column] = "C"
 elif (Row == (BoardSize + 1) / 2 + 1 and Column ==
(BoardSize + 1) / 2 + 1) or (Column == (BoardSize + 1) / 2
and Row == (BoardSize + 1) / 2):
 Board[Row][Column] = "H"
 else:
 Board[Row][Column] = " "

7

MARK SCHEME – A-LEVEL COMPUTING – COMP1 –JUNE 2016

 51 of 51

 else:
 for Row in range(1, BoardSize + 1):
 for Column in range(1, BoardSize + 1):
 Board[Row][Column] = " "
 Board[1][1] = "H"
 Board[BoardSize][BoardSize] = "H"
 Board[1][BoardSize] = "C"
 Board[BoardSize][1] = "C"

10 43 def GetFlipSquares(Board, BoardSize):
 print("Choosing one of the following squares will mean
you will flip some pieces: ")
 for Row in range(1, BoardSize + 1):
 for Column in range(1, BoardSize + 1):
 if Board[Row][Column] == " ":

 OldValue = Board[Row][Column]
 Board[Row][Column] = "H"
 SquareWillCauseFlips = False
 if CheckIfThereArePiecesToFlip(Board, BoardSize,
Row, Column, 0, 1):
 SquareWillCauseFlips = True
 elif CheckIfThereArePiecesToFlip(Board, BoardSize,
Row, Column, 0, -1):
 SquareWillCauseFlips = True
 elif CheckIfThereArePiecesToFlip(Board, BoardSize,
Row, Column, 1, 0):
 SquareWillCauseFlips = True
 elif CheckIfThereArePiecesToFlip(Board, BoardSize,
Row, Column, -1, 0):
 SquareWillCauseFlips = True
 if SquareWillCauseFlips:
 print(str(Column) + str(Row))
 Board[Row][Column] = OldValue

 print()

10

10 44 ...
while not MoveIsValid:
 if HumanPlayersTurn:
 GetFlipSquares(Board, BoardSize)
 Move = GetHumanPlayerMove(PlayerName)
 else:
...

2

>'

