
 

 
 
 
 
 
 

 
 

 A-Level 
COMPUTING 
COMP1 – Problem Solving, Programming, Data Representation and 
Practical Exercise 
Mark scheme 
 
 
2510 
June 2014 
 
Version/Stage: 1.1 Final 
 
 
  



 

 

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the 
relevant questions, by a panel of subject teachers.  This mark scheme includes any amendments 
made at the standardisation events which all associates participate in and is the scheme which was 
used by them in this examination.  The standardisation process ensures that the mark scheme covers 
the students’ responses to questions and that every associate understands and applies it in the same 
correct way.  As preparation for standardisation each associate analyses a number of students’ 
scripts: alternative answers not already covered by the mark scheme are discussed and legislated for.  
If, after the standardisation process, associates encounter unusual answers which have not been 
raised they are required to refer these to the Lead Assessment Writer. 
 
It must be stressed that a mark scheme is a working document, in many cases further developed and 
expanded on the basis of students’ reactions to a particular paper.  Assumptions about future mark 
schemes on the basis of one year’s document should be avoided; whilst the guiding principles of 
assessment remain constant, details will change, depending on the content of a particular 
examination paper. 
 
 
Further copies of this Mark Scheme are available from aqa.org.uk 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2014 AQA and its licensors.  All rights reserved. 
AQA retains the copyright on all its publications.  However, registered schools/colleges for AQA are permitted to copy material from this 
booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any 
material that is acknowledged to a third party even for internal use within the centre. 
 
 
 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 3 of 45 

 

 
 
The following annotation is used in the mark scheme: 
 

; - means a single mark 
// - means alternative response 
/ - means an alternative word or sub-phrase 
A. - means acceptable creditworthy answer 
R. - means reject answer as not creditworthy 
NE - means not enough 
I. - means ignore 
DPT - means "Don't penalise twice".  In some questions a specific error made by a 

candidate, if repeated, could result in the loss of more than one mark. The 
DPT label indicates that this mistake should only result in a candidate losing 
one mark, on the first occasion that the error is made.  Provided that the 
answer remains understandable, subsequent marks should be awarded as if 
the error was not being repeated'. 

 
 
No marks will be awarded for answers to testing questions where there is no evidence of 
programming code for the question(s) asked or where the screen captures provided by the 
candidate do not match what would be produced by the programming code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 4 of 45 

 

 
Qu Part Marking Guidance Marks 
    1 1 182; 1 

 
1 2 -;74; 2 

 
1 3 -128; to (+)127; 

Mark as follows: 
Lowest value identified correctly; 
Highest value identified correctly; 
 

2 

1 4 5 11/16 // 
5.6875;; 
 
A. 91 ÷ 16;; 
 
Mark as follows: 
Correct whole number part (5); 
Correct fractional/decimal part (11/16 or 0.6875); 
 

2 

1 5 B;6; 
 

2 

1 6 Easier for people to read/understand;  R. If implication is it easier for a 
computer to read/understand 
Can be displayed using fewer digits; 
More compact when printed/displayed; 
NE. Takes up less space 
NE. More compact 
 

MAX 1 

1 7 Shift all the bits one place to the left; and add a zero // 
Add an extra 0; to the RHS of the bit pattern; // 
 
A. Arithmetic left shift applied once / by one place;; 
 

2 

2 8 A (step-by-step) description of how to complete a task / a description of a 
process that achieves some task / a sequence of steps that solve a 
problem / A sequence of unambiguous instructions for solving a problem; 
 
Independent of any programming language;  
That can be completed in finite time; 
 

MAX 2 

2 9  
  X 

X X  
 
Marks as follows: 
1 mark for any two correct columns; 
2 marks for all three columns correct; 
 
A. Other, sensible, indicators instead of X 

2 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 5 of 45 

 

2 10  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mark as follows: 
Any one row containing the correct values for c, b and a; 
Any three rows containing the correct values for c, b and a; 
All rows contain the correct values for c, b and a; 
X column correct; 
Printed output column correct; A. printed output column incorrect – but 
matches the (incorrect) values provided for c, b and a, as long as a 
minimum of 3 rows have been completed 
 
I. Extra row at start of table containing the values 0, 0, 0, 0, 000 
 

x c b a Printed 
output 

0 0 0 0 000 
1 0 0 1 001 
2 0 1 1 011 
3 0 1 0 010 
4 1 1 0 110 

5 1 1 1 111 
6 1 0 1 101 
7 1 0 0 100 

5 

2 11 Print the (first 8) Gray code numbers; // 
(3 bit) Gray code counter; 
 
NE Convert to Gray code 
 

1 

3 12 Sort the list of numbers // Sort L; 
 

1 

3 13 The initial situation; 
 

1 

3 14 Ownership; 
Resources; 
Constraints; 
 

MAX 2 

3 15 FOR Count2 1 TO (MAX – 1); 
 
A. Any answer where meaning is clear 
 

1 

3 16 L[Count2]  L[Count2 + 1]; 
 
A. Any answer where meaning is clear 
 

1 

3 17 L[Count2 + 1]  Temp; 
 
A. Any answer where meaning is clear 

1 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 6 of 45 

 

3 18 63; 
 

1 

3 19 Set SwapMade to have a value of False before the inner loop starts; 
If a swap is made then set SwapMade to True; 
Change the outer loop so that it keeps on repeating until SwapMade 
equals False; 
 
Note: if neither of the first two mark points have been awarded 1 mark 
should be awarded for the idea of creating a flag / Boolean variable 
 
Alternative answer 
Set NoMoreSwaps to have a value of True before the inner loop starts; 
If a swap is made then set NoMoreSwaps to False; 
Change the outer loop so that it keeps on repeating until NoMoreSwaps 
equals True; 
 
Note: if neither of the first two mark points have been awarded 1 mark 
should be awarded for the idea of creating a flag / Boolean variable 
 
Alternative answer 
Set NoOfSwaps to have a value of 0 before the inner loop starts; 
If a swap is made then increment NoMoreSwaps; 
Change the outer loop so that it keeps on repeating until NoMoreSwaps 
equals 0; 
 
Note: if neither of the first two mark points have been awarded 1 mark 
should be awarded for the idea of creating a counter variable 
 
 
A. any sensible identifier 
A. no identifier specified 
A. alternative sensible data type 
A. pseudo-code answers 
 

3 

4 20 Correct variable declarations for ISBN, CalculatedDigit and Count; 
 
For loop, with syntax allowed by the programming language, set up to 
repeat the correct number of times; 
 
Correct prompt "Please enter next digit of ISBN: "; 
 
Followed by ISBN[Count] assigned value entered by the user – must 
be inside the 1st iterative structure; 
 
CalculatedDigit and Count initialised correctly (must be after 1st 
iterative structure and before 2nd iterative structure); 
 
2nd loop has syntax allowed by the programming language and correct 
condition for the termination of the loop; A. alternative correct logic for 
condition 

15 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 7 of 45 

 

 
CalculatedDigit assigned the value of its original value added to 
ISBN[Count] followed by incrementing Count – both inside the loop; 
 
CalculatedDigit assigned the value of its original value added to 
ISBN[Count] * 3 followed by incrementing Count – must be in the 
loop and after the 1st two assignment statements in the loop; 
 
3rd loop has syntax allowed by the programming language and correct 
condition for the termination of the loop; A. alternative correct logic for the 
condition 
 
10 subtracted from value ofCalculatedDigit and result assigned to 
CalculatedDigit – must be the only statement inside an iterative 
structure; 
 
Assignment statement CalculatedDigit  10 – 
CalculatedDigit - must not be in an iteration or selection structure; 
 
1st IF statement with correct condition – must not be in an iterative 
structure – with CalculatedDigit being assigned the value 0 inside 
the selection structure; 
 
2nd IF statement with correct condition – must not be in an iterative 
structure or inside the 1st selection structure; 
 
Correct output message (Valid ISBN) in THEN part of selection 
structure; 
 
Correct output message (Invalid ISBN) in ELSE part of selection 
structure; 
 
I. Case of variable names and output messages   
A. Minor typos in variable names and output messages 
I. spacing in prompts 
A. initialisation of variables at declaration stage 
A. Arrays using positions 0  to 12 instead of 1 to 13 
 
 
 
 
 
 
 
 
 
 
 
 
 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 8 of 45 

 

4 21 ****SCREEN CAPTURE**** 
Must match code from 20, including prompts on screen capture matching 
those in code.  Code for 20 must be sensible. 
 
Mark as follows: 
'Please enter next digit of ISBN: ' + user input of 9 
'Please enter next digit of ISBN: ' + user input of 7 
'Please enter next digit of ISBN: ' + user input of 8 
'Please enter next digit of ISBN: ' + user input of 0 
'Please enter next digit of ISBN: ' + user input of 0 
'Please enter next digit of ISBN: ' + user input of 9 
'Please enter next digit of ISBN: ' + user input of 9 
'Please enter next digit of ISBN: ' + user input of 4 
'Please enter next digit of ISBN: ' + user input of 1 
'Please enter next digit of ISBN: ' + user input of 0 
'Please enter next digit of ISBN: ' + user input of 6 
'Please enter next digit of ISBN: ' + user input of 7 
'Please enter next digit of ISBN: ' + user input of 6; 
'Valid ISBN ' message shown;  
 
A.  alternative output messages if match code for 20 
A.  if can only see some of the latter user inputs (e.g. due to first few 
inputs scrolling off the top of the console screen) – but must be able to 
see the last three digits entered (6, 7, 6) 
 

2 

4 22 ****SCREEN CAPTURE**** 
Must match code from 20, including prompts on screen capture matching 
those in code.    Code for 20 must be sensible. 
 
Mark as follows: 
'Please enter next digit of ISBN: ' + user input of 9 
'Please enter next digit of ISBN: ' + user input of 7 
'Please enter next digit of ISBN: ' + user input of 8 
'Please enter next digit of ISBN: ' + user input of 1 
'Please enter next digit of ISBN: ' + user input of 8 
'Please enter next digit of ISBN: ' + user input of 5 
'Please enter next digit of ISBN: ' + user input of 7 
'Please enter next digit of ISBN: ' + user input of 0 
'Please enter next digit of ISBN: ' + user input of 2 
'Please enter next digit of ISBN: ' + user input of 8 
'Please enter next digit of ISBN: ' + user input of 8 
'Please enter next digit of ISBN: ' + user input of 9 
'Please enter next digit of ISBN: ' + user input of 4  
'Invalid ISBN ' message shown;  
 
A.  alternative output messages if match code for 20 
A.  if can only see some of the latter user inputs (e.g. due to first few 
inputs scrolling off the top of the console screen) – but must be able to 
see the last three digits entered (8, 9, 4) 
 
 

1 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 9 of 45 

 

5 23 TCard //  
TRecentScore //  
TDeck (Pascal only) //  
TRecentScores (Pascal only); 
 
R. if any additional code 
R. if spelt incorrectly 
I. case 
 

1 

5 24 CInt (VB.Net / VB6 only) // 
Val (Pascal only) // 
StrToInt (Delphi only) // 
parseInt (Java only) // 
Integer.parseInt (Java only) // 
int (Python only); 
 
R. if any additional code 
R. if spelt incorrectly 
I. case 
 

1 

5 25 Deck//RecentScores; 
 
R. if any additional code 
R. if spelt incorrectly 
I. case 
 

1 

5 26 Temporary; 
 

1 

5 27 Most recent holder;  
 

1 

5 28 Stepper; 
 

1 

5 29 When the name in the variable PlayerX is not in the array 
RecentScores; 
 
A. answer that does not use identifiers but clearly suggests that the name 
is not in the array 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 10 of 45 

 

5 30 WHILE Found = False AND Position <= NoOfRecentScores;; 
 
A. Alternative loop conditions that would provide correct functionality eg 
Position <4 , Position <= 3 
A. Description of how to alter code instead of altered code 
 
Mark as follows: 
1 mark for identifying that an additional termination condition is needed // 
identifying that code is needed to prevent the attempt to access an array 
element that does not exist; 
1 mark for correct additional condition and correct logic of entire 
compound condition;  
 
Note: alternative valid methods that solve the problem should be referred 
to team leader 
 

2 

5 31 Linear search; 
 
NE Search 
 

1 
 

6 32 Repetition structure in the correct place in the code with correct 
termination condition; 
Correct error message displayed;  
Error message will be displayed every time an invalid name has been 
entered and will only be displayed when an invalid name has been 
entered; 
Getting name from user is inside the repetition structure; 
 
A. Minor typos in error message 
I. Capitalisation and spacing in error message 
 

4 

6 33 ****SCREEN CAPTURE**** 
Must match code from 32, including prompts on screen capture matching 
those in code.  Code for 32 must be sensible. 
 
Mark as follows: 
No name entered and either error message displayed or asked to enter 
name; R. If does not match code for 32 
Name of Emily entered and no error message displayed; 
 
 
 
 
 
 
 
 
 
 
 
 

2 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 11 of 45 

 

7 34 Selection structure that checks if the current and last card have the same 
rank;  A. equivalent logic 
Selection structure that checks if the suit of the next card is higher than 
the suit of the last card; A. equivalent logic 
A. one selection structure with two conditions 
Note: if overall logic for the first two mark points is not correct only one of 
the two marks is to be given 
 
Higher assigned value of True if the two cards have the same rank and 
the suit of the next card is higher;  R. If Higher always assigned the 
value of True 
Value of Higher is returned to the calling routine; R. if no evidence of 
code used to calculate value of Higher when the two cards have the 
same rank 
 
MAX 3 if any existing functionality is incorrectly changed or if an incorrect 
value is returned under any circumstances 
 

4 

7 35 ****SCREEN CAPTURE**** 
Must match code from 34, including prompts on screen capture matching 
those in code.  Code for 34 must be sensible. 
 
Mark as follows: 
y entered by user results in  message Well done!  You guessed 
correctly. 
Followed by n entered by user resulting in message Well done!  You 
guessed correctly.; 
I. if first y entered and first message not shown on screen capture 
A. if code for 34 has been attempted and screen capture matches what 
would be produced by code for 34 
 
Followed by y entered by user resulting in message Well done!  You 
guessed correctly.; 
 
R. if test is for a random (shuffled deck) game 
R. If answer for 34 has no code for checking if the ranks of the two cards 
are equal / not equal 
 

2 

8 36 Modified message in sensible place in code Do you think the next 
card will be higher than the last card (enter y or n 
or j to play a joker)?; 
 
A. any sensible message 
A. two messages instead of a modified message 
A. no evidence in 36 of this modified message being in the correct place 
in the code if there is supporting evidence from screen capture(s) for 38 
that it is in the correct place 
 
 
 

1 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 12 of 45 

 

8 37 Appropriately named variable (eg NoOfJokers), of sensible data type, 
given initial value of 2; 
 
Modify loop condition so that y, n and j are all allowed; 
Additional condition so that j is only allowed if NoOfJokers is greater 
than 0; correct logic used;  
A. player loses game if they try to play a 3rd joker as long as correct final 
score is displayed – note that using this method it is possible that a 
selection structure is being used instead of a modified loop;; 
 
A. equivalent logic 
 
Value of NoOfJokers decremented by 1 inside a selection structure; 
which has correct condition to check if j was option chosen by user; 
 
Modify selection structure so that correct guess is called if either the user 
has guessed correctly or the player used a Joker;  R. If code will not 
allow the player to always use two jokers 
 
 
Alternative answer 
Appropriately named variable (e.g.NoOfJokers) of sensible data type,  
given initial value of 0;  A. value of 0 not explicitly given if code would 
work without this  
 
Modify loop condition so that y, n and j are all allowed; 
Additional condition so that j is only allowed if NoOfJokers is less than 
2; correct logic used;  
A. player loses game if they try to play a 3rd joker as long as correct final 
score is displayed – note that using this method it is possible that a 
selection structure is being used instead of a modified loop;; 
 
A. equivalent logic 
 
Value of NoOfJokers incremented by 1 inside a selection structure; 
which has correct condition to check if j was option chosen by user; 
 
Modify selection structure so that correct guess is called if either the user 
has guessed correctly or the player used a Joker;  R. If code will not 
allow the player to always use two jokers 
 
MAX 5 if, when the game continues, there are unwanted side-effects 
(e.g. 3rd joker allowed, Deck changed when it shouldn’t be, score goes up 
when j entered for a third time, etc...) 
 
 
 
 
 
 

7 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 13 of 45 

 

8 38 ****SCREEN CAPTURE**** 
Must match code from 36 and 37, including prompts on screen capture 
matching those in code.  Code for 37 must be sensible. 
 
Mark as follows: 
j entered by user results in message Well done!  You guessed 
correctly.; R. if this aspect of test is for a random (shuffled deck) 
game 
 
2nd j entered by user results in message Well done!  You guessed 
correctly.; R. if this aspect of test is for a random (shuffled deck) 
game 
 
3rd j entered by user results in message Do you think the next 
card will be higher than the last card (enter y or 
n)?; A. if test for 3rd joker being played is for a random (shuffled deck) 
game  A. message not being displayed and game ends (only if matches 
code for 37)  I. additional error messages being displayed after j entered 
and before the message Do you think the next card will be 
higher than the last card (enter y or n)? as long as error 
messages match code for 37  R. if player’s score is increased when they 
play a 3rd joker 
 
 

3 

9 39 A. any sensibly named identifiers for variables/parameters instead of 
those used in this mark scheme 
 
There are 5 marks available for setting up a new subroutine and the 
routine interface: 
 
Created a new subroutine named CalculateProbability; 
Correct routine interface with parameters of LastCard and Deck of 
correct data type; 
All data needed by new subroutine is passed to the subroutine via the 
routine interface (ie no data values obtained from global variables);  
Mechanism to return a numeric value to the calling routine set up;  R. use 
of global variable 
Value calculated by subroutine is returned to calling routine;   
I. additional parameters 
 
 
 
 
 
 
 
 
 
 
 
 

11 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 14 of 45 

 

There are then 6 marks available for calculating the probability: 
 
Repetition structure set up to look at each card in Deck that has not yet 
been used in the game; 
Selection structure, inside repetition structure, that checks if LastCard is 
higher than a card in Deck; 
 
Inside the selection structure NoOfCardsHigher incremented if the 
condition in the selection structure is for a comparison of two cards;  R. If 
NoOfCardsHigher always incremented 
Inside the selection structure NoOfCardsLower incremented  R. If 
NoOfCardsLower is always incremented; 
// 
Inside the selection structure NoOfCardsHigher incremented if the 
condition in the selection structure is for a comparison of two cards;  R. If 
NoOfCardsHigher always incremented 
Correct calculation for NoOfCardsInDeck (does not matter if inside or 
outside repetition structure); 
// 
Inside the selection structure NoOfCardsLower incremented if the 
condition in the selection structure is for a comparison of two cards;  R. If 
NoOfCardsLower always incremented 
Correct calculation for NoOfCardsInDeck (does not matter if inside or 
outside repetition structure); 
 
Correctly calculates the number of cards, that have not been used in the 
game so far, that are higher/lower than LastCard in Deck; 
 
Dividing NoOfCardsHigher by NoOfCardsInDeck  // Dividing 
NoOfCardsHigher by the sum of NoOfCardsHigher and 
NoOfCardsLower;  A. any equivalent calculation  A. correct expression 
using incorrectly calculated values for NoOfCardsHigher / 
NoOfCardsLower 
 
Note: alternative methods that calculate the probability correctly should 
be referred to team leader. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 15 of 45 

 

9 40 Call to CalculateProbability subroutine in correct place; 
R.  if parameter list does not match answer to 39 
 
Displays "The probability of the next card being higher 
is " in correct place;  
A. minor typos in prompt   
I. capitalisation  
 
Displays the calculated probability; 
R. if probability not returned by CalculateProbability subroutine 
A. use of temporary variable to store the value returned by 
CalculateProbability with contents of temporary variable then 
displayed using output message 
A. incorrect probability as long as value displayed is the value returned 
by CalculateProbability subroutine 
I. Case of identifiers and output messages   
A. Minor typos in output messages 
I. spacing in output messages 
 

3 

9 41 ****SCREEN CAPTURE(S)**** 
This is conditional on sensible code for 39 and/or 40 
 
The probability of the next card being higher is 1; 
User enters y followed by The probability of the next card 
being higher is 0.9 ; 
 
A. probabilities expressed as percentages (100, 90) 
A. probabilities expressed as fractions (51 / 51, 45 / 50) 
A. probabilities expressed in scientific form (1.00E+00, 0.90E+00) 
A. 0.9411765 and 0.88 instead of 1 and 0.9 - if question 7 not completed 
/ completed after question 9 
A. other values for probabilities that are correct based on incorrect 
answer for question 7 only if code for question 9 is correct 
R. if test is for a random (shuffled deck) game 
R. probability of 0 
 

2 

 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 16 of 45 

 

Pascal 
 
Qu Part Marking Guidance Marks 
    4 20 Program Question4; 

Var 
  CalculatedDigit : Integer; 
  ISBN : Array[1..13] Of Integer; 
  Count : Integer; 
Begin 
  For Count := 1 To 13 
    Do 
      Begin 
        Writeln('Please enter next digit of ISBN: '); 
        Readln(ISBN[Count]); 
      End; 
  CalculatedDigit := 0; 
  Count := 1; 
  While Count < 13 
    Do 
      Begin 
        CalculatedDigit := CalculatedDigit + 
ISBN[Count]; 
        Count := Count + 1; 
        CalculatedDigit := CalculatedDigit + 
ISBN[Count] * 3; 
        Count := Count + 1; 
      End; 
  While CalculatedDigit >= 10 
    Do CalculatedDigit := CalculatedDigit - 10; 
  CalculatedDigit := 10 - CalculatedDigit; 
  If CalculatedDigit = 10 
    Then CalculatedDigit := 0; 
  If CalculatedDigit = ISBN[13] 
    Then Writeln('Valid ISBN') 
    Else Writeln('Invalid ISBN'); 
  Readln; 
End. 
 

15 

6 32 ... 
Writeln; 
Repeat 
  Write('Please enter your name: '); 
  Readln(PlayerName); 
  If Length(PlayerName) = 0 
    Then Writeln('You must enter a name'); 
Until Length(PlayerName) > 0; 
Writeln; 
... 
 
 
 

4 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 17 of 45 

 

Alternative answer 
 
... 
Writeln; 
Repeat 
  Write('Please enter your name: '); 
  Readln(PlayerName); 
  If PlayerName = '' 
    Then Writeln('You must enter a name'); 
Until PlayerName <> ''; 
Writeln; 
... 
 
Alternative answer 
 
... 
Writeln; 
PlayerName := ''; 
While PlayerName = '' 
  Do 
    Begin 
      Write('Please enter your name: '); 
      Readln(PlayerName); 
      If Length(PlayerName) = 0 
        Then Writeln('You must enter a name'); 
    End; 
Writeln; 
... 
 

7 34 Function IsNextCardHigher(LastCard, NextCard : TCard) 
: Boolean; 
  Var 
    Higher : Boolean; 
  Begin 
    Higher := False; 
    If NextCard.Rank > LastCard.Rank 
      Then Higher := True; 
    If NextCard.Rank = LastCard.Rank 
      Then 
        If NextCard.Suit > LastCard.Suit 
          Then Higher := True; 
    IsNextCardHigher := Higher; 
  End; 
 
Alternative answer 
 
Function IsNextCardHigher(LastCard, NextCard : TCard) 
: Boolean; 
  Var 
    Higher : Boolean; 
  Begin 

4 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 18 of 45 

 

    If NextCard.Rank > LastCard.Rank 
      Then Higher := True 
    Else 
      If NextCard.Rank < LastCard.Rank 
        Then Higher := False 
        Else     
          If NextCard.Suit > LastCard.Suit 
            Then Higher := True 
            Else Higher := False; 
    IsNextCardHigher := Higher; 
  End; 
 
Alternative answer 
 
Function IsNextCardHigher(LastCard, NextCard : TCard) 
: Boolean; 
  Var 
    Higher : Boolean; 
  Begin  
    If NextCard.Rank > LastCard.Rank 
      Then Higher := True 
      Else Higher := (NextCard.Rank = LastCard.Rank) 
AND (NextCard.Suit > LastCard.Suit); 
    IsNextCardHigher := Higher; 
End; 
 

8 36 ... 
Var 
Choice : Char; 
Begin 
  Write('Do you think the next card will be higher 
than the last card (enter y or n or j to play a 
joker)? '); 
  Readln(Choice); 
... 
 

1 

8 37 ... 
Choice : Char; 
NoOfJokers : Integer; 
Begin 
  NoOfJokers := 2; 
  GameOver := False; 
... 
  While (NoOfCardsTurnedOver < 52) And Not GameOver 
... 
    Repeat 
      Choice := GetChoiceFromUser; 
    Until (Choice = 'y') Or (Choice = 'n') Or (Choice 
= 'j') And (NoOfJokers > 0); 
    If Choice = 'j' 
      Then NoOfJokers := NoOfJokers - 1; 

7 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 19 of 45 

 

  DisplayCard(NextCard); 
  NoOfCardsTurnedOver := CardsTurnedOver + 1; 
  Higher := IsNextCardHigher(LastCard, NextCard); 
  If Higher And(Choice='y') Or Not Higher And (Choice 
= 'n') Or (Choice = 'j') 
    Then 
      Begin 
      DisplayCorrectGuessMessage(NoOfCardsTurnedOver);        
... 
 
A.  equivalent logic for condition (eg NoOfJokers >=1 ) 
 
Alternative Answer 
... 
Choice : Char; 
NoOfJokers : Integer; 
Begin 
  NoOfJokers := 0; 
  GameOver := False; 
... 
  While (NoOfCardsTurnedOver< 52) And Not GameOver 
... 
    Repeat 
      Choice := GetChoiceFromUser; 
    Until (Choice = 'y') Or (Choice = 'n') Or (Choice 
= 'j') And (NoOfJokers <=1); 
    If Choice = 'j' 
      Then NoOfJokers := NoOfJokers + 1; 
    DisplayCard(NextCard); 
    NoOfCardsTurnedOver := CardsTurnedOver + 1; 
    Higher := IsNextCardHigher(LastCard, NextCard); 
    If Higher And(Choice='y') Or Not Higher And 
(Choice = 'n') Or (Choice = 'j') 
      Then 
        Begin 
   DisplayCorrectGuessMessage(NoOfCardsTurnedOver);        
... 
 
A.  equivalent logic for condition (eg NoOfJokers < 2) 
 

9 39 Function CalculateProbability(Deck : TDeck; 
NoOfCardsTurnedOver : Integer; LastCard : TCard) : 
Real; 
  Var 
    Probability : Real; 
    Count : Integer; 
    NoOfCardsHigher : Integer; 
    NoOfCardsLower : Integer; 
  Begin 
    NoOfCardsHigher := 0; 
    NoOfCardsLower := 0; 

11 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 20 of 45 

 

    For Count := 1 To (52 – NoOfCardsTurnedOver) 
      Do 
        If IsNextCardHigher(LastCard, Deck[Count]) 
          Then NoOfCardsHigher := NoOfCardsHigher + 1 
          Else NoOfCardsLower := NoOfCardsLower + 1; 
    Probability := NoOfCardsHigher / (NoOfCardsHigher 
+ NoOfCardsLower); 
    CalculateProbability := Probability; 
  End; 
 
Alternative answer 
 
... 
For Count := 1 To (52 – NoOfCardsTurnedOver) 
  Do 
    If IsNextCardHigher(LastCard, Deck[Count]) 
      Then NoOfCardsHigher := NoOfCardsHigher + 1; 
Probability := NoOfCardsHigher / (52 - 
NoOfCardsTurnedOver); 
CalculateProbability := Probability; 
... 
 
 
Alternative answer 
 
Function CalculateProbability(Deck : TDeck; LastCard : 
TCard) : Real; 
Var 
  Probability :Real; 
  Count : Integer; 
  NoOfCardsHigher : Integer; 
  Begin 
    NoOfCardsHigher := 0; 
    Count := 1; 
    While (Count < 52) And (Deck[Count].Suit <> 0) 
      Do 
        Begin 
          If IsNextCardHigher(LastCard, Deck[Count])  
            Then NoOfCardsHigher := NoOfCardsHigher + 
1; 
            Count := Count + 1; 
        End; 
    Probability := NoOfCardsHigher / (Count - 1); 
    CalculateProbability:= Probability; 
  End; 
 
A. Deck[Count].Rank instead of Deck[Count].Suit 
 

9 40 ... 
Writeln('The probability of the next card being higher 
is ', CalculateProbability(Deck, NoOfCardsTurnedOver, 

3 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 21 of 45 

 

LastCard):3:2); 
GetCard(NextCard, Deck, NoOfCardsTurnedOver); 
Repeat 
  Choice := GetChoiceFromUser; 
... 
 

 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 22 of 45 

 

VB.Net 
 
Qu Part Marking Guidance Marks 
    4 20 Module Module1 

  Sub Main() 
    Dim CalculatedDigit As Integer 
    Dim ISBN(13) As Integer 
    Dim Count As Integer 
    For Count = 1 To 13 
      Console.Write("Please enter next digit of ISBN: 
") 
      ISBN(Count) = Console.ReadLine() 
    Next 
    CalculatedDigit = 0 
    Count = 1 
    While Count < 13 
      CalculatedDigit = CalculatedDigit + ISBN(Count) 
      Count = Count + 1 
      CalculatedDigit = CalculatedDigit + ISBN(Count) 
* 3 
      Count = Count + 1 
    End While 
    While CalculatedDigit >= 10 
      CalculatedDigit = CalculatedDigit - 10 
    End While 
    CalculatedDigit = 10 - CalculatedDigit 
    If CalculatedDigit = 10 Then 
      CalculatedDigit = 0 
    End If 
    If CalculatedDigit = ISBN(13) Then 
      Console.WriteLine("Valid ISBN") 
    Else 
      Console.WriteLine("Invalid ISBN") 
    End If 
    Console.ReadLine() 
  End Sub 
End Module 
 

15 

6 32 ... 
Console.WriteLine() 
Do 
  Console.Write("Please enter your name: ") 
  PlayerName = Console.ReadLine 
  If PlayerName.Length = 0 Then 
    Console.WriteLine("You must enter a name") 
  End If 
Loop Until PlayerName.Length > 0 
Console.WriteLine() 
... 
 
 

4 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 23 of 45 

 

Alternative answer 
 
... 
Console.WriteLine() 
Do 
  Console.Write("Please enter your name: ") 
  PlayerName = Console.ReadLine 
  If PlayerName = "" Then 
    Console.WriteLine("You must enter a name") 
  End If 
Loop Until PlayerName <> "" 
Console.WriteLine() 
... 
 
Alternative answer 
 
... 
Console.WriteLine() 
PlayerName = "" 
While PlayerName = "" 
  Console.Write("Please enter your name: ") 
  PlayerName = Console.ReadLine 
  If PlayerName = "" Then 
    Console.WriteLine("You must enter a name") 
  End If 
End While 
Console.WriteLine() 
... 
 

7 34 Function IsNextCardHigher(ByVal LastCard As TCard, 
ByVal NextCard As TCard) As Boolean 
  Dim Higher As Boolean 
  Higher = False 
  If NextCard.Rank > LastCard.Rank Then 
    Higher = True 
  End If 
  If NextCard.Rank = LastCard.Rank Then 
    If NextCard.Suit > LastCard.Suit Then 
      Higher = True 
    End If 
  End If 
  Return Higher 
End Function 
 
Alternative answer 
 
Function IsNextCardHigher(ByVal LastCard As TCard, 
ByVal NextCard As TCard) As Boolean 
  Dim Higher As Boolean 
  If NextCard.Rank > LastCard.Rank Then 
    Higher = True 

4 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 24 of 45 

 

  ElseIf NextCard.Rank < LastCard.Rank Then 
    Higher = False 
  ElseIf NextCard.Suit > LastCard.Suit Then 
    Higher = True 
  Else 
    Higher = False 
  End If 
  Return Higher 
End Function 
 
Alternative answer 
 
Function IsNextCardHigher(ByVal LastCard As TCard, 
ByVal NextCard As TCard) As Boolean 
  Dim Higher As Boolean 
  Higher = False 
  If NextCard.Rank > LastCard.Rank Then 
    Higher = True 
  ElseIf (NextCard.Rank = LastCard.Rank) And 
(NextCard.Suit > LastCard.Suit) Then 
    Higher = True 
  End If 
  Return Higher 
End Function 
 

8 36 ... 
Dim Choice As Char 
Console.Write("Do you think the next card will be 
higher than the last card (enter y or n or j to play a 
joker)? ") 
Choice = Console.ReadLine 
... 
 

1 

8 37 ... 
Dim Choice As Char 
Dim NoOfJokers As Integer 
NoOfJokers = 2 
GameOver = False 
... 
While NoOfCardsTurnedOver < 52 And Not GameOver 
  ... 
  Do 
    Choice = GetChoiceFromUser() 
  Loop Until Choice = "y" Or Choice = "n" Or Choice = 
"j" And NoOfJokers > 0 
  If Choice = "j" Then 
    NoOfJokers = NoOfJokers - 1 
  End If 
  DisplayCard(NextCard) 
  CardsTurnedOver = CardsTurnedOver + 1 
  Higher = IsNextCardHigher(LastCard, NextCard) 

7 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 25 of 45 

 

  If Higher And Choice = "y" Or Not Higher And Choice 
= "n" Or Choice = "j" Then 
    DisplayCorrectGuessMessage(NoOfCardsTurnedOver) 
... 
 
 
A.  equivalent logic for condition (eg NoOfJokers >= 1) 
 
 
Alternative Answer 
 
... 
Dim Choice As Char 
Dim NoOfJokers As Integer 
NoOfJokers = 0 
GameOver = False 
... 
While NoOfCardsTurnedOver < 52 And Not GameOver 
  ... 
  Do 
    Choice = GetChoiceFromUser() 
  Loop Until Choice = "y" Or Choice = "n" Or Choice = 
"j" And NoOfJokers <= 1 
  If Choice = "j" Then 
    NoOfJokers = NoOfJokers + 1 
  End If 
  DisplayCard(NextCard) 
  CardsTurnedOver = CardsTurnedOver + 1 
  Higher = IsNextCardHigher(LastCard, NextCard) 
  If Higher And Choice = "y" Or Not Higher And Choice 
= "n"Or Choice = "j" Then 
    DisplayCorrectGuessMessage(NoOfCardsTurnedOver) 
... 
 
A.  equivalent logic for condition (eg NoOfJokers < 2) 
 

9 39 Function CalculateProbability(ByVal Deck() As TCard, 
ByVal NoOfCardsTurnedOver As Integer, ByVal LastCard 
As TCard) As Single 
  Dim Probability As Single 
  Dim Count As Integer 
  Dim NoOfCardsHigher As Integer = 0 
  Dim NoOfCardsLower As Integer = 0 
  For Count = 1 To(52 – NoOfCardsTurnedOver) 
    If IsNextCardHigher(LastCard, Deck(Count)) Then 
      NoOfCardsHigher = NoOfCardsHigher + 1 
    Else 
      NoOfCardsLower = NoOfCardsLower + 1 
    End If 
  Next 
  Probability = NoOfCardsHigher / (NoOfCardsHigher + 

11 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 26 of 45 

 

NoOfCardsLower) 
  Return Probability 
End Function 
 
 
Alternative answer 
 
... 
For Count = 1 To (52 – NoOfCardsTurnedOver) 
  If IsNextCardHigher(LastCard, Deck(Count)) Then 
    NoOfCardsHigher = NoOfCardsHigher + 1 
  End If 
Next 
Probability = NoOfCardsHigher / (52 -
NoOfCardsTurnedOver) 
CalculateProbability = Probability 
... 
 
Alternative answer 
 
 
Function CalculateProbability(ByVal Deck() As TCard, 
ByVal LastCard As TCard) As Single 
  Dim Probability As Single 
  Dim Count As Integer 
  Dim NoOfCardsHigher As Integer = 0 
  Count = 1 
  While Count < 52 And Deck(Count).Suit <> 0 
    If IsNextCardHigher(LastCard, Deck(Count)) Then 
      NoOfCardsHigher = NoOfCardsHigher + 1 
    End If 
    Count = Count + 1 
  End While 
  Probability = NoOfCardsHigher / (Count - 1) 
  Return Probability 
End Function 
 
A. Deck(Count).Rank instead of Deck(Count).Suit 
Note: return mechanism does not need to be explicitly set up in routine 
interface 
 

9 40   ... 
  Console.WriteLine("The probability of the next card 
being higher is " & CalculateProbability(Deck, 
NoOfCardsTurnedOver, LastCard)) 
  GetCard(NextCard, Deck, NoOfCardsTurnedOver) 
  Do 
    Choice = GetChoiceFromUser() 
    ... 

3 

 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 27 of 45 

 

VB6 
 
Qu Part Marking Guidance Marks 
    4 20 Private Sub Form_Load() 

  Dim CalculatedDigit As Integer 
  Dim ISBN(13) As Integer 
  Dim Count As Integer 
  For Count = 1 To 13 
    ISBN(Count) = ReadLine("Please enter next digit of 
ISBN: ") 
  Next 
  CalculatedDigit = 0 
  Count = 1 
  While Count < 13 
    CalculatedDigit = CalculatedDigit + ISBN(Count) 
    Count = Count + 1 
    CalculatedDigit = CalculatedDigit + (ISBN(Count) * 
3) 
    Count = Count + 1 
  Wend 
  While CalculatedDigit >= 10 
    CalculatedDigit = CalculatedDigit - 10 
  Wend 
  CalculatedDigit = 10 - CalculatedDigit 
  If CalculatedDigit = 10 Then 
    CalculatedDigit = 0 
  End If 
  If CalculatedDigit = ISBN(13) Then 
    WriteLine("Valid ISBN") 
  Else 
    WriteLine("Invalid ISBN") 
  End If 
End Sub 
 
Alternative answers could use some of the following instead of 
WriteLine / ReadLine: 
Console.Text = Console.Text & ... 
WriteLineWithMsg 
WriteWithMsg 
Msgbox 
InputBox 
WriteNoLine 
 
 

15 

6 32 ... 
WriteLine("") 
Do 
PlayerName = ReadLine("Please enter your name: ") 
  If Len(PlayerName) = 0 Then 
    WriteLineWithMsg ("You must enter a name") 
  End If 

4 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 28 of 45 

 

Loop Until Len(PlayerName) > 0 
WriteLine("") 
... 
 
Alternative answer 
 
... 
WriteLine("") 
Do 
  PlayerName = ReadLine("Please enter your name: ") 
  If PlayerName = "" Then 
    WriteLineWithMsg ("You must enter a name") 
  End If 
Loop Until PlayerName <>"" 
WriteLine("") 
... 
 
Alternative answer 
 
... 
WriteLine("") 
PlayerName = "" 
While PlayerName = "" 
PlayerName = ReadLine("Please enter your name: ") 
  If PlayerName = "" Then 
    WriteLineWithMsg ("You must enter a name") 
  End If 
Wend 
WriteLine("") 
... 
 
Alternative answers could use some of the following instead of 
WriteLineWithMsg: 
Console.Text = Console.Text & ... 
WriteLine 
WriteWithMsg 
Msgbox 
WriteNoLine 
 

7 34 Private Function IsNextCardHigher(ByRef LastCard As 
TCard, ByRef NextCard As TCard) As Boolean 
  Dim Higher As Boolean 
  Higher = False 
  If NextCard.Rank > LastCard.Rank Then 
    Higher = True 
  End If 
  If NextCard.Rank = LastCard.Rank Then 
    If NextCard.Suit > LastCard.Suit Then 
      Higher = True 
    End If 
  End If 

4 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 29 of 45 

 

  IsNextCardHigher = Higher 
End Function 
 
 
Alternative answer 
 
Private Function IsNextCardHigher(ByRef LastCard As 
TCard, ByRefNextCard As TCard) As Boolean 
  Dim Higher As Boolean 
  If NextCard.Rank > LastCard.Rank Then 
    Higher = True 
  ElseIf NextCard.Rank < LastCard.Rank Then 
    Higher = False 
  ElseIf NextCard.Suit > LastCard.Suit Then 
    Higher = True 
  Else 
    Higher = False 
  End If 
  IsNextCardHigher = Higher 
End Function 
 
 
Alternative answer 
 
Private Function IsNextCardHigher(ByRef LastCard As 
TCard, ByRefNextCard As TCard) As Boolean 
  Dim Higher As Boolean 
  Higher = False 
  If NextCard.Rank > LastCard.Rank Then 
    Higher = True 
  ElseIf (NextCard.Rank = LastCard.Rank) And 
(NextCard.Suit > LastCard.Suit) Then 
    Higher = True 
  End If 
  IsNextCardHigher = Higher 
End Function 
 

8 36 ... 
  Dim Choice As String 
  Choice = ReadLine("Do you think the next card will 
be higher than the last card (enter y or n or j to 
play a joker)? ") 
  GetChoiceFromUser = Choice... 
 

1 

8 37 ... 
Dim Choice As String 
Dim NoOfJokers As Integer 
NoOfJokers = 2 
GameOver = False 
... 
While NoOfCardsTurnedOver< 52 And Not GameOver 

7 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 30 of 45 

 

  ... 
  Do 
    Choice = GetChoiceFromUser() 
  Loop Until Choice = "y" Or Choice = "n" Or Choice = 
"j" And NoOfJokers > 0 
  If Choice = "j" Then 
    NoOfJokers = NoOfJokers - 1 
  End If 
  Call DisplayCard(NextCard) 
  NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1 
  Higher = IsNextCardHigher(LastCard, NextCard) 
  If Higher And Choice = "y" Or Not Higher And Choice 
= "n"Or Choice = "j" Then 
    DisplayCorrectGuessMessage(NoOfCardsTurnedOver) 
... 
 
 
A.  equivalent logic for condition (eg NoOfJokers >= 1) 
 
 
Alternative Answer 
 
Dim Choice As String 
Dim NoOfJokers As Integer 
NoOfJokers = 0 
GameOver = False 
... 
While NoOfCardsTurnedOver < 52 And Not GameOver 
  ... 
  Do 
    Choice = GetChoiceFromUser() 
  Loop Until Choice = "y" Or Choice = "n" Or Choice = 
"j" And NoOfJokers <=1 
  If Choice = "j" Then 
    NoOfJokers = NoOfJokers + 1 
  End If 
  Call DisplayCard(NextCard) 
  NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1 
  Higher = IsNextCardHigher(LastCard, NextCard) 
  If Higher And Choice = "y" Or Not Higher And Choice 
= "n"Or Choice = "j" Then 
    DisplayCorrectGuessMessage(NoOfCardsTurnedOver) 
... 
 
A.  equivalent logic for condition (eg NoOfJokers < 2) 
 
 

9 39 Private Function CalculateProbability(ByRef Deck() As 
TCard, ByVal NoOfCardsTurnedOver As Integer, ByRef 
LastCard As TCard) As Single 
  Dim Probability As Single 

11 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 31 of 45 

 

  Dim Count As Integer 
  Dim NoOfCardsHigher As Integer 
  Dim NoOfCardsLower As Integer 
  NoOfCardsHiger = 0 
  NoOfCardsLower = 0 
  For Count = 1 To (52 – NoOfCardsTurnedOver) 
    If IsNextCardHigher(LastCard, Deck(Count)) Then 
      NoOfCardsHigher = NoOfCardsHigher + 1 
    Else 
      NoOfCardsLower = NoOfCardsLower + 1 
    End If 
  Next 
  Probability = NoOfCardsHigher / (NoOfCardsHigher + 
NoOfCardsLower) 
  CalculateProbability = Probability 
End Function 
 
Alternative answer 
 
... 
For Count = 1 To (52 – NoOfCardsTurnedOver) 
  If IsNextCardHigher(LastCard, Deck(Count)) Then 
    NoOfCardsHigher = NoOfCardsHigher + 1 
  End If 
Next 
Probability = NoOfCardsHigher / (52 - 
NoOfCardsTurnedOver) 
CalculateProbability = Probability 
... 
 
Alternative answer 
 
Private Function CalculateProbability(ByRef Deck() As 
TCard, ByRef LastCard As TCard) As Single 
  Dim Probability As Single 
  Dim Count As Integer 
  Dim NoOfCardsHigher As Integer 
  NoOfCardsHigher = 0 
  Count = 1 
  While Count < 52 And Deck(Count).Suit <> 0 
    If IsNextCardHigher(LastCard, Deck(Count)) Then 
      NoOfCardsHigher = NoOfCardsHigher + 1 
    End If 
    Count = Count + 1 
  Wend 
  Probability = NoOfCardsHigher / (Count - 1) 
  CalculateProbability = Probability 
End Function 
 
A. Deck(Count).Rank instead of Deck(Count).Suit 
 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 32 of 45 

 

9 40   ... 
WriteLine("The probability of the next card being 
higher is " & CalculateProbability(Deck, 
NoOfCardsTurnedOver, LastCard)) 
Call GetCard(NextCard, Deck, NoOfCardsTurnedOver) 
Do 
  Choice = GetChoiceFromUser() 
  ... 
 
Alternative answers could use some of the following instead of 
WriteLine: 
Console.Text = Console.Text & ... 
WriteLineWithMsg 
WriteWithMsg 
Msgbox 
WriteNoLine 
 

3 

 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 33 of 45 

 

Python 2 
 
Qu Part Marking Guidance Marks 
    4 20 # Question 4 

if __name__ == "__main__": 
  ISBN = [None, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
  for Count in range(1, 14): 
    print 'Please enter next digit of ISBN: ', 
    ISBN[Count] = int(raw_input()) 
  CalculatedDigit = 0 
  Count = 1 
  while Count < 13: 
    CalculatedDigit = CalculatedDigit + ISBN[Count] 
    Count = Count + 1 
    CalculatedDigit = CalculatedDigit + ISBN[Count] * 
3 
    Count = Count + 1 
  while CalculatedDigit >= 10: 
    CalculatedDigit = CalculatedDigit - 10 
  CalculatedDigit = 10 - CalculatedDigit 
  if CalculatedDigit == 10: 
    CalculatedDigit = 0 
  if CalculatedDigit == ISBN[13]: 
    print 'Valid ISBN' 
  else: 
    print 'Invalid ISBN' 
 
Alternative print/input combination: 
 
ISBN[Count] = int(raw_input('Please enter next digit 
of ISBN: ',)) 
 
 

15 

6  32 ... 
print 
Playername = '' 
while len(PlayerName) == 0: 
  print 'Please enter your name: ' 
  PlayerName = raw_input() 
  if len(PlayerName) == 0: 
    print 'You must enter a name' 
print 
 
Alternative answer: 
 
... 
print 
PlayerName = '' 
while PlayerName == '': 
  print 'Please enter your name: ', 
  PlayerName = raw_input() 

4 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 34 of 45 

 

  if PlayerName == '': 
    print 'You must enter a name' 
print 
 

7 34 def IsNextCardHigher(LastCard, NextCard): 
  Higher = False 
  if NextCard.Rank > LastCard.Rank: 
    Higher = True 
  if NextCard.Rank == LastCard.Rank: 
    if NextCard.Suit > LastCard.Suit: 
      Higher = True 
  return Higher 
 
 
Alternative answer 
 
def IsNextCardHigher(LastCard, NextCard): 
  Higher = False 
  if NextCard.Rank > LastCard.Rank: 
    Higher = True 
  else: 
    if NextCard.Rank < LastCard.Rank: 
      Higher = False 
    else: 
      if NextCard.Suit > LastCard.Suit: 
        Higher = True 
      else: 
        Higher = False 
  return Higher 
 
Alternative answer 
 
def IsNextCardHigher(LastCard, NextCard): 
  Higher = False 
  if NextCard.Rank > LastCard.Rank: 
    Higher = True 
  elif NextCard.Rank == LastCard.Rank and 
NextCard.Suit > LastCard.Suit: 
    Higher = True 
  return Higher 
 

4 

8 36 ...  
print 'Do you think the next card will be higher than 
the last card (enter y or n or j toplay a joker)? ' 
Choice = raw_input() 
...  
 
 

1 

8 37 ...  
NoOfJokers = 2 
GameOver = False 

7 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 35 of 45 

 

... 
while (NoOfCardsTurnedOver < 52) and (not GameOver): 
...          
  Choice = '' 
  while (Choice != 'y') and (Choice != 'n') and 
((Choice != 'j') or (NoOfJokers == 0)): 
    Choice = GetChoiceFromUser() 
  if Choice == 'j': 
    NoOfJokers = NoOfJokers - 1 
  DisplayCard(NextCard) 
  NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1 
  Higher = IsNextCardHigher(LastCard, NextCard) 
  if (Higher and Choice == 'y') or (not Higher and 
Choice == 'n') or (Choice == 'j'): 
...  
 
 
A. Equivalent logic for condition (eg NoOfJokers < 1) 
 
 
 
Alternative answer: 
 
...  
NoOfJokers = 0 
GameOver = False 
... 
while (NoOfCardsTurnedOver < 52) and (not GameOver): 
...          
  Choice = '' 
  while (Choice != 'y') and (Choice != 'n') and 
((Choice != 'j') or (NoOfJokers == 2)): 
    Choice = GetChoiceFromUser() 
  if Choice == 'j': 
    NoOfJokers = NoOfJokers + 1 
  DisplayCard(NextCard) 
  NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1 
  Higher = IsNextCardHigher(LastCard, NextCard) 
  if (Higher and Choice == 'y') or (not Higher and 
Choice == 'n') or (Choice == 'j'): 
...  
 
 
A. Equivalent logic for condition (eg NoOfJokers > 1) 
 

9 39 def CalculateProbability(Deck, NoOfCardsTurnedOver, 
LastCard): 
  NoOfCardsHigher = 0 
  NoOfCardsLower = 0 
  for Count in range(1, 53 – NoOfCardsTurnedOver): 
    if (IsNextCardHigher(LastCard, Deck[Count]): 

11 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 36 of 45 

 

       NoOfCardsHigher = NoOfCardsHigher + 1 
    else:                
       NoOfCardsLower = NoOfCardsLower + 1 
  Probability = NoOfCardsHigher / (NoOfCardsHigher + 
NoOfCardsLower) 
  return Probability 
 
Alternative answer: 
 
... 
for Count in range(1, 53 – NoOfCardsTurnedOver): 
  if (IsNextCardHigher(LastCard, Deck[Count]): 
    NoOfCardsHigher = NoOfCardsHigher + 1 
Probability = NoOfCardsHigher / (52 – 
NoOfCardsTurnedOver) 
return Probability 
...  
 
Alternative answer: 
 
def CalculateProbability(Deck,LastCard): 
  NoOfCardsHigher = 0 
  Count = 1 
  while (Count < 52) and (Deck[Count].Suit != 0): 
    if (IsNextCardHigher(LastCard, Deck[Count]): 
       NoOfCardsHigher = NoOfCardsHigher + 1 
    Count = Count + 1 
  Probability = NoOfCardsHigher / (Count - 1) 
  return Probability 
 
A. Deck[Count].Rank instead of Deck[Count].Suit 
 

9 40 ... 
print 'The probability of the next card being higher 
is %3.2f' %CalculateProbability(Deck, 
NoOfCardsTurnedOver, LastCard) 
GetCard(NextCard, Deck, NoOfCardsTurnedOver) 
Choice = '' 
while (Choice != 'y') and (Choice != 'n'): 
  Choice = GetChoiceFromUser() 
... 

3 

 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 37 of 45 

 

Python 3 
 
Qu Part Marking Guidance Marks 
    4 20 # Question 4 

if __name__ == "__main__": 
  ISBN = [None, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
for Count in range(1, 14): 
    print('Please enter next digit of ISBN: '), 
    ISBN[Count] = int(input()) 
  CalculatedDigit = 0 
  Count = 1 
  while Count < 13: 
    CalculatedDigit = CalculatedDigit + ISBN[Count] 
    Count = Count + 1 
    CalculatedDigit = CalculatedDigit + ISBN[Count] * 
3 
    Count = Count + 1 
  while CalculatedDigit >= 10: 
    CalculatedDigit = CalculatedDigit - 10 
  CalculatedDigit = 10 - CalculatedDigit 
  if CalculatedDigit == 10 : 
    CalculatedDigit = 0 
  if CalculatedDigit == ISBN[13]: 
    print('Valid ISBN') 
  else: 
    print('Invalid ISBN') 
 
Alternative print/input combination: 
 
ISBN[Count] = int(input('Please enter next digit of 
ISBN: ',)) 
 

15 

6 32 ... 
print() 
PlayerName = '' 
while len(PlayerName) == 0: 
  print('Please enter your name: '), 
  PlayerName = input() 
  if len(PlayerName) == 0: 
    print('You must enter a name') 
print() 
 
Alternative Answer: 
 
... 
print() 
PlayerName = '' 
while PlayerName == '': 
  print('Please enter your name: '), 
  PlayerName = input() 
  if PlayerName == '': 

4  



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 38 of 45 

 

    print('You must enter a name') 
print() 
... 
 

7 34 def IsNextCardHigher(LastCard, NextCard): 
  Higher = False 
  if NextCard.Rank > LastCard.Rank: 
    Higher = True 
  if NextCard.Rank == LastCard.Rank: 
    if NextCard.Suit > LastCard.Suit: 
      Higher = True 
  return Higher 
 
Alternative answer: 
 
def IsNextCardHigher(LastCard, NextCard): 
  Higher = False 
  if NextCard.Rank > LastCard.Rank: 
    Higher = True 
  else: 
    if NextCard.Rank < LastCard.Rank: 
      Higher = False 
    else: 
      if NextCard.Suit > LastCard.Suit: 
        Higher = True 
      else: 
        Higher = False 
  return Higher 
 
Alternative answer 
 
def IsNextCardHigher(LastCard, NextCard): 
  Higher = False 
  if NextCard.Rank > LastCard.Rank: 
    Higher = True 
  elif NextCard.Rank == LastCard.Rank and 
NextCard.Suit > LastCard.Suit: 
    Higher = True 
  return Higher 
 

4 

8 36 ...  
  print('Do you think the next card will be higher 
than the last card (enter y or n or j to play a 
joker)? ') 
  Choice = input() 
...  
 
 

1 

8 37 ...  
NoOfJokers = 2 
GameOver = False 

7 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 39 of 45 

 

... 
while (NoOfCardsTurnedOver < 52) and (not GameOver): 
...          
  Choice = '' 
  while (Choice != 'y') and (Choice != 'n') and 
((Choice != 'j') or (NoOfJokers == 0)): 
    Choice = GetChoiceFromUser() 
  if Choice == 'j': 
    NoOfJokers = NoOfJokers - 1 
  DisplayCard(NextCard) 
  NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1 
  Higher = IsNextCardHigher(LastCard, NextCard) 
  if (Higher and Choice == 'y') or (not Higher and 
Choice == 'n') or (Choice == 'j'): 
...  
 
A. Equivalent logic for condition (eg NoOfJokers < 1) 
 
 
 
Alternative answer: 
 
...  
NoOfJokers = 0 
GameOver = False 
... 
while (NoOfCardsTurnedOver < 52) and (not GameOver): 
...          
  Choice = '' 
  while (Choice != 'y') and (Choice != 'n') and 
((Choice != 'j') or (NoOfJokers == 2)): 
    Choice = GetChoiceFromUser() 
  if Choice == 'j': 
    NoOfJokers = NoOfJokers + 1 
  DisplayCard(NextCard) 
  NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1 
  Higher = IsNextCardHigher(LastCard, NextCard) 
  if (Higher and Choice == 'y') or (not Higher and 
Choice == 'n') or (Choice == 'j'): 
...  
 
A. Equivalent logic for condition (eg NoOfJokers > 1) 
 

9 39 def CalculateProbability(Deck, NoOfCardsTurnedOver, 
LastCard): 
  NoOfCardsHigher = 0 
  NoOfCardsLower = 0 
  for Count in range(1, 53 – NoOfCardsTurnedOver): 
    if (IsNextCardHigher(LastCard, Deck[Count]): 
       NoOfCardsHigher = NoOfCardsHigher + 1 
    else:                

11 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 40 of 45 

 

       NoOfCardsLower = NoOfCardsLower + 1 
  Probability = NoOfCardsHigher / (NoOfCardsHigher + 
NoOfCardsLower) 
  return Probability 
 
 
Alternative answer: 
 
... 
for Count in range(1, 53 – NoOfCardsTurnedOver): 
  if (IsNextCardHigher(LastCard, Deck[Count]): 
    NoOfCardsHigher = NoOfCardsHigher + 1 
Probability = NoOfCardsHigher / (52 – 
NoOfCardsTurnedOver) 
return Probability 
...  
 
Alternative answer: 
 
def CalculateProbability(Deck, LastCard): 
  NoOfCardsHigher = 0 
  Count = 1 
  while (Count < 52) and (Deck[Count].Suit != 0): 
    if (IsNextCardHigher(LastCard, Deck[Count]): 
      NoOfCardsHigher = NoOfCardsHigher + 1 
    Count = Count + 1 
  Probability = NoOfCardsHigher / (Count - 1) 
  return Probability 
 
A. Deck[Count].Rank instead of Deck[Count].Suit 
 

9 40 ... 
print('The probability of the next card being higher 
is %3.2f' %CalculateProbability(Deck, 
NoOfCardsTurnedOver, LastCard)) 
GetCard(NextCard, Deck, NoOfCardsTurnedOver) 
Choice = '' 
while (Choice != 'y') and (Choice != 'n'): 
  Choice = GetChoiceFromUser() 
... 

3 

 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 41 of 45 

 

Java 
 
Qu Part Marking Guidance Marks 
    4 20 public class Question4 { 

  AQAConsole2014 console = new AQAConsole2014(); 
 
  public Question4() { 
    int ISBN[] = new int[14]; 
    int count; 
    int calculatedDigit; 
    for (count = 1; count <= 13; count++) { 
      ISBN[count] = console.readInteger("Please enter 
next digit of ISBN: "); 
    } 
    calculatedDigit = 0; 
    count = 1; 
    while (count < 13) { 
      calculatedDigit = calculatedDigit + ISBN[count]; 
      count++; 
      calculatedDigit = calculatedDigit + ISBN[count] 
* 3; 
      count++; 
    } 
    while (calculatedDigit >= 10) { 
      calculatedDigit = calculatedDigit - 10; 
    } 
    calculatedDigit = 10 - calculatedDigit; 
    if (calculatedDigit == 10) { 
      calculatedDigit = 0; 
    } 
    if (calculatedDigit == ISBN[13]) { 
      console.println("Valid ISBN"); 
    } else { 
      console.println("Invalid ISBN"); 
    } 
  } 
 
  public static void main(String[] args) { 
    new Question4(); 
  } 
} 
 

15 

6 32 ... 
console.println(); 
do { 
  playerName = console.readLine("Please enter your 
name: "); 
  if (playerName.length() == 0) { 
    console.println("You must enter a name"); 
  } 
} while (playerName.length() == 0); 

4 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 42 of 45 

 

console.println(); 
... 
 
Alternative answer: 
 
... 
console.println(); 
do {  
  playerName = console.readLine("Please enter your 
name: "); 
  if (playerName.equals("") { 
    console.println("You must enter a name"); 
  } 
} while (playerName.equal("")); 
console.println(); 
... 
 

7 34 boolean isNextCardHigher(TCard lastCard, TCard 
nextCard){ 
  boolean higher; 
  higher = false; 
  console.println(lastCard.rank); 
  console.println(nextCard.rank); 
  if (nextCard.rank > lastCard.rank){ 
    higher = true; 
  } 
  if (nextCard.rank == lastCard.rank) { 
    if (nextCard.suit > lastCard.suit) { 
      higher = true; 
    } 
  } 
  return higher; 
} 
 
Alternative answer 
 
boolean isNextCardHigher(TCard lastCard, TCard 
nextCard){ 
  boolean higher; 
  higher = false; 
  console.println(lastCard.rank); 
  console.println(nextCard.rank); 
  if (nextCard.rank > lastCard.rank){ 
    higher = true; 
  } else if (lastCard.rank == nextCard.rank) { 
    if (nextCard.suit > lastCard.suit) { 
      higher = true; 
    } 
  } 
  return higher; 
} 

4 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 43 of 45 

 

 
Alternative answer 
boolean isNextCardHigher(TCard lastCard, TCard 
nextCard){ 
  boolean higher; 
  higher = false; 
  console.println(lastCard.rank); 
  console.println(nextCard.rank); 
  if (nextCard.rank > lastCard.rank){ 
    higher = true; 
  } 
  if (nextCard.rank == lastCard.rank) && 
(nextCard.suit > lastCard.suit) { 
    higher = true; 
  } 
  return higher; 
} 
 
 

8 36 ... 
choice = console.readChar("Do you think the next card 
will be higher than the last card (enter y or n or j 
to play a joker)? "); 
... 
 

1 

8 37 ... 
char choice; 
int noOfJokers; 
... 
noOfJokers = 2; 
gameOver = false; 
... 
while (noOfCardsTurnedOver < 52 && !gameOver) { 
  getCard(nextCard, deck, noOfCardsTurnedOver); 
  do { 
    choice = getChoiceFromUser(); 
  } while (!(choice == 'y' || choice == 'n' || choice 
== 'j' && noOfJokers != 0)); 
if (choice == 'j') { 
    noOfJokers = noOfJokers - 1; 
  } 
  displayCard(nextCard); 
  noOfCardsTurnedOver = noOfCardsTurnedOver + 1; 
  higher = isNextCardHigher(lastCard, nextCard); 
  if (higher && choice =='y' || !higher && choice=='n' 
|| choice == 'j') { 
... 
 
A. Equivalent logic for condition (eg NoOfJokers > 0) 
 
Alternative answer: 

7 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 44 of 45 

 

 
... 
char choice; 
int noOfJokers; 
... 
noOfJokers = 0; 
gameOver = false; 
... 
while (noOfCardsTurnedOver < 52 && !gameOver) { 
  getCard(nextCard, deck, noOfCardsTurnedOver); 
  do { 
    choice = getChoiceFromUser(); 
  } while (!(choice == 'y' || choice == 'n' || choice 
== 'j' && noOfJokers != 2)); 
  if (choice == 'j') { 
    noOfJokers = noOfJokers + 1; 
  } 
  displayCard(nextCard); 
  noOfCardsTurnedOver = noOfCardsTurnedOver + 1; 
  higher = isNextCardHigher(lastCard, nextCard); 
  if (higher && choice =='y' || !higher && choice=='n' 
|| choice == 'j') { 
... 
 
A. Equivalent logic for condition (eg NoOfJokers < 2) 
 

9 39 float calculateProbability(TCard[] deck, int 
noOfCardsTurnedOver, TCard lastCard) { 
  int noOfCardsHigher; 
  int noOfCardsLower; 
  float probability; 
  noOfCardsHigher = 0; 
  noOfCardsLower = 0; 
  for (int count = 1; count <= 52 - 
noOfCardsTurnedOver; count++) { 
    if (isNextCardHigher(lastCard, deck[count])) { 
     noOfCardsHigher = noOfCardsHigher + 1; 
    } else { 
      noOfCardsLower = noOfCardsLower + 1; 
    } 
  } 
  probability = (float) noOfCardsHigher / 
(noOfCardsHigher + noOfCardsLower); 
  return probability; 
} 
 
Alternative answer: 
 
float calculateProbability(TCard[] deck, int 
noOfCardsTurnedOver, TCard lastCard) { 
  int noOfCardsHigher; 

11 



MARK SCHEME – A-LEVEL COMPUTING – COMP1 – JUNE 2014 

 

 45 of 45 

 

  float probability; 
  noOfCardsHigher = 0; 
  for (int count = 1; count <= 52 - 
noOfCardsTurnedOver; count++) { 
    if (isNextCardHigher(lastCard, deck[count])) { 
      noOfCardsHigher = noOfCardsHigher + 1; 
    } 
  } 
  probability = (float) noOfCardsHigher / (52 - 
noOfCardsTurnedOver); 
  return probability; 
} 
 
Alternative answer: 
 
float calculateProbability(TCard[] deck, int 
noOfCardsTurnedOver, TCard lastCard) { 
  int noOfCardsHigher; 
  float probability; 
  int count; 
  count = 1; 
  noOfCardsHigher = 0; 
  while (count < 52 && deck[count].suit != 0) { 
    if (isNextCardHigher(lastCard, deck[count])) { 
     noOfCardsHigher = noOfCardsHigher + 1; 
    } 
    count = count + 1; 
  } 
  probability = (float) noOfCardsHigher / (count - 1); 
  return probability; 
} 
 
A. deck[count].rank instead of deck[count].suit 
 

9 40 ... 
console.print("The probability of the next card being 
higher is "); 
console.println(calculateProbability(deck, 
noOfCardsTurnedOver, lastCard)); 
getCard(nextCard, deck, noOfCardsTurnedOver); 
... 
 

3 

 


	A-Level

