#breadth first search GRAPH = {} def make_link(Graph, node1,node2): """ A graph will be a dictionary containing nodes. These nodes will be a dictionary of neighbour nodes. The node's dictionary key will be the neighbour node and its value will be 1. Return the updated graph. """ if node1 not in Graph: Graph[node1] = {} Graph[node1][node2] = 1 if node2 not in Graph: Graph[node2] = {} Graph[node2][node1] = 1 return Graph #end make_link #breadth first search def bfs(graph, start): visited = [] queue = [start] i = 0 while queue: vertex = queue.pop(0) if vertex not in visited: visited.append(vertex) queue.append(graph[vertex][i]) print('visited',visited, queue) i+=1 return visited def marked_node(G, node, marked): marked[node] = True total_marked = 1 for neighbour in G[node]: total_marked+= marked_node(G, neighbour,marked) #the subroutine list_node_sizes(G) sets up a dictionary to hold marked nodes, # i.e. the nodes that have been visited. def list_node_sizes(G): marked = {} for node in G.keys(): if node not in marked: print("graph containing", node,\ ":",marked_node(G,node,marked)) def short_path (G, node1,node2): #return shortest path from node1 to node2 dist_from_start = {} queue = [node1] # dist_from_start[node1] = 0 dist_from_start[node1] = [node1] while len(queue) > 0: current = queue[0] del queue[0] for neighbour in G[current].keys(): if neighbour not in dist_from_start: # dist_from_start[neighbour]= dist_from_start[current]+1 dist_from_start[neighbour]= dist_from_start[current]+[neighbour] if neighbour == node2: return dist_from_start[node2] queue.append(neighbour) return False #main #graph = {'A': ['B', 'C'], # 'B': ['A', 'D', 'E'], ## 'C': ['A', 'F'], # 'D': ['B'], # 'E': ['B', 'F'], # 'F': ['C', 'E']} towns = [('A','B'),('A','D'),('A','E'), ('B','A'),('B','C'),('B','D'), ('C','B'),('C','G'), ('D','A'),('D','B'),('D','E'),('D','F'), ('E','A'),('E','D'),('E','F'), ('F','D'), ('G','C')] #traversal = bfs(graph, 'A') # {'B', 'C', 'A', 'F', 'D', 'E'} #print(traversal) for (x,y) in towns: make_link(GRAPH,x,y) print (short_path(GRAPH,'E','G'))