

A-level

Computer Science
Paper 1 (7517/1)

Mark scheme (applicable for all programming languages A, B, C, D and E)

7517

June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the

relevant questions, by a panel of subject teachers. This mark scheme includes any amendments

made at the standardisation events which all associates participate in and is the scheme which was

used by them in this examination. The standardisation process ensures that the mark scheme covers

the students’ responses to questions and that every associate understands and applies it in the same

correct way. As preparation for standardisation each associate analyses a number of students’

scripts. Alternative answers not already covered by the mark scheme are discussed and legislated

for. If, after the standardisation process, associates encounter unusual answers which have not been

raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and

expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark

schemes on the basis of one year’s document should be avoided; whilst the guiding principles of

assessment remain constant, details will change, depending on the content of a particular

examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2017 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any
material that is acknowledged to a third party even for internal use within the centre.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 3 of 47

A-level Computer Science

Paper 1 (7517/1) – applicable to all programming languages A, B, C, D and E

June 2017

The following annotation is used in the mark scheme:

; - means a single mark
// - means alternative response
/ - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
NE - means not enough
I - means ignore
DPT - means "Don't penalise twice". In some questions a specific error made by a candidate, if

repeated, could result in the loss of more than one mark. The DPT label indicates that
this mistake should only result in a candidate losing one mark, on the first occasion that
the error is made. Provided that the answer remains understandable, subsequent marks
should be awarded as if the error was not being repeated.

Pages 4 to 5 contain ‘Level of Response’ marking instructions.

Pages 6 to 17 contain the generic mark scheme.

Pages 18 to 47 contain the ‘Program Source Code’ specific to the programming languages for
questions 7.1, 9.1, 10.1, 11.1, 11.2, 11.3, 11.4, 12.1, 12.2;

 pages 18 to 22 – VB.NET
 pages 23 to 26 – PYTHON 2
 pages 27 to 30 – PYTHON 3
 pages 31 to 36 – C#
 pages 37 to 41 – PASCAL/Delphi
 pages 42 to 47 – JAVA

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 4 of 47

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The

descriptor for the level shows the average performance for the level. There are marks in each

level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it

(as instructed) to show the qualities that are being looked for. You can then apply the mark

scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer
meets the descriptor for that level. The descriptor for the level indicates the different qualities that
might be seen in the student’s answer for that level. If it meets the lowest level then go to the next
one and decide if it meets this level, and so on, until you have a match between the level descriptor
and the answer. With practice and familiarity you will find that for better answers you will be able to
quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick
holes in small and specific parts of the answer where the student has not performed quite as well
as the rest. If the answer covers different aspects of different levels of the mark scheme you
should use a best fit approach for defining the level and then use the variability of the response to
help decide the mark within the level, ie if the response is predominantly level 3 with a small
amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the
level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to
allocate marks can help with this. The exemplar materials used during standardisation will help.
There will be an answer in the standardising materials which will correspond with each level of the
mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can
compare the student’s answer with the example to determine if it is the same standard, better or
worse than the example. You can then use this to allocate a mark for the answer based on the
Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify
points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 5 of 47

Examiners are required to assign each of the candidates’ responses to the most appropriate level
according to its overall quality, then allocate a single mark within the level. When deciding upon
a mark in a level examiners should bear in mind the relative weightings of the assessment
objectives

eg

In question 7.1, the marks available for the AO3 elements are as follows:

AO3 (design) – 4 marks
AO3 (programming) – 8 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can
receive will be restricted accordingly.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 6 of 47

01 1 Marks are for AO1 (understanding)

Real number Valid? (Yes/No)

87.000 Yes

97+12 No

12.31E+12 Yes

A. alternative indicators for Yes/No eg Y/N.

Mark as follows:
One mark per correct row

3

01 2 Marks are for AO2 (apply)

<natural> ::= <digit> | <digit> <natural>

A. alternative names for <natural>

A. recursive and non-recursive cases swapped around

Mark as follows:

1 mark: correct recursive case
1 mark: correct non-recursive case
MAX 1 if any errors in answer eg missing |

2

02 1 Mark is for AO2 (analyse)

Input string is a (valid) postcode followed by additional characters // the input string is
not a valid (UK) postcode // the mail will not be put in any of the three vans;

NE. the input string is not a valid IP postcode
A. Postcode has additional characters at the end
A. Postcode is too long

1

02 2 Mark is for AO2 (analyse)

(The string represents) an IP postcode that is not for a location in the town of Ipswich //
(The string represents) an IP postcode that is for a location near Ipswich //
(The string represents) a postcode for a letter that needs to go in Van B;

NE. valid postcode

1

02 3 Mark is for AO2 (analyse)

(IP / two letters) followed by number, letter, (number, letter, letter) //
(IP / two letters) followed by number between 5 and 9, number, (number, letter, letter) //
IP followed by 0;

A. postcodes that only have one letter at the start

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 7 of 47

02 4 Marks are for AO2 (apply)

\a?\a;\d;(\a|\d)?;\d\a\a; //

\a\a?;\d;(\a|\d)?;\d\a\a; //

\a?\a;\d;(\d|\a)?;\d\a\a; //

\a\a?;\d;(\d|\a)?;\d\a\a;

Mark as follows:

1 mark:
1. regular expression can start with either one or two letters R. if more than two letters
allowed

1 mark:
2. regular expression has a numeric digit after the initial letters A. if more than the
correct number of letters allowed
//
regular expression has a numeric digit before it allows a single, optional letter or
numeric digit

1 mark:
3. regular expression allows a single, optional letter or numeric digit after the first
numeric digit in the expression
//
regular expression allows a single, optional letter or numeric digit before the numeric
digit followed by exactly two letters at the end of the expression

1 mark:
4. regular expression ends with a numeric digit followed by exactly two letters

MAX 3 if final answer is not correct

R. any mark points after 2nd use of | metacharacter

A. suitable alternatives to \a and \d e.g. use of [A-Z], [a-z] or [A-Za-z]

instead of \a and [0-9] instead of \d

DPT. / instead of \

4

03 1 Mark is for AO1 (knowledge)

Merge sort;

1

03 2 Mark is for AO1 (understanding)

4;

1

03 3 Mark is for AO1 (knowledge)

n
2 // O(n2);

A. other ways of indicating n2 e.g. n^2 A. On2

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 8 of 47

03 4 Marks are for AO1 (understanding)

In each pass through the list n items will be examined;

There will be (at most) n passes through the list;

2

04 1 Mark is for AO1 (knowledge)

A subroutine that calls itself;

1

04 2 Mark is for AO1 (understanding)

When target equals node // (When target does not equal node and) node is a leaf //

node = target;

1

04 3 Marks are for AO2 (apply)

Function Call Output

TreeSearch(Olivia, Norbert) (Visited) Norbert;

TreeSearch(Olivia, Phil); (Visited) Phil;

MAX 2 if any errors eg additional outputs / function calls after output of Phil

I. minor spelling and punctuation errors

3

05 1 Mark is for AO2 (apply)

-2;

1

05 2 Mark is for AO2 (apply)

[8, 3];

I. missing brackets
I. wrong type of brackets

1

05 3 Marks are for AO2 (apply)

Calculation Result

U [1, 1]

v = [position of hero] - [position of enemy] [6, -4];

u.v 2;

EnemyCanSee True;

A. different answers that have been correctly calculated based on an incorrect answer
for 5.2

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 9 of 47

05 4 1 mark for AO1 (knowledge)

a heuristic approach employs a method of finding a solution that might not be the best;

1 mark for AO1 (understanding)

algorithm might need to consider visiting less/fewer cells/co-ordinates // algorithm might
use knowledge of the domain to cut-down the search space // algorithm might consider
visiting certain cells/coordinates first;

2

05 5 Marks are for AO1 (understanding)

static data structures have storage size determined at compile-time / before program is
run / when program code is translated; dynamic data structures can grow/shrink during
execution / at run-time;
//
Static data structures can waste storage space/memory if the number of data items
stored is small relative to the size of the structure; whereas dynamic data structures
only take up the amount of storage space required for the actual data;
//
Static data structures have fixed (maximum) size; whereas size of dynamic data
structures can change;
//
Dynamic data structures (typically) require memory to store pointer(s) to the next
item(s); which static data structures (typically) do not need; NE. Dynamic data
structures use pointers
//
Static data structures (typically) store data in consecutive memory locations; which
dynamic data structures (typically) do not;

2

06 1 Marks are for AO2 (analyse)

1. Stack / data structure is used to store the (user’s) actions; A. by implication

2. Each time an action is completed it is pushed/added onto the top of the stack;

3. unless it is an undo (or repeat) action;

4. When repeat action is used the top item from the stack is used to indicate the action
to complete // when repeat action is used the result of peek function is used to indicate
the action to complete; R. implication that top item of stack is popped/deleted from
stack – unless it is clear it is subsequently pushed/added back to the stack A. when
repeat action is used a copy of the top item from the stack is pushed/added to the top of
the stack

5. When undo action is used the top item is popped/removed from the stack of actions;

5

06 2 Mark is for AO1 (understanding)

Stack empty (error) // (stack) underflow;

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 10 of 47

07 1 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark scheme

Level Description Mark

Range

4 A line of reasoning has been followed to arrive at a logically
structured working or almost fully working programmed solution that
meets most of the requirements of Task 1. All of the appropriate
design decisions have been taken. To award 12 marks, all of the
requirements must be met.

10-12

3 There is evidence that a line of reasoning has been followed to
produce a logically structured program. The program displays a
prompt, inputs the string value and includes a loop. An attempt has
been made to count the number of consecutive instances of a
character and to output a character followed by the count of that
character, although some of this may not work. The solution
demonstrates good design work as most of the correct design
decisions have been taken.

7-9

2 A program has been written and some appropriate, syntactically
correct programming language statements have been written.
There is evidence that a line of reasoning has been partially
followed as although the program may not have the required
functionality, it can be seen that the response contains some of the
statements that would be needed in a working solution. There is
evidence of some appropriate design work as the response
recognises at least one appropriate technique that could be used by
a working solution, regardless of whether this has been
implemented correctly.

4-6

1 A program has been written and a few appropriate programming
language statements have been written but there is no evidence
that a line of reasoning has been followed to arrive at a working
solution. The statements written may or may not be syntactically
correct. It is unlikely that any of the key design elements of the task
have been recognised.

1-3

Guidance

Evidence of AO3 (design) – 4 points:

Evidence of design to look for in responses:

1. Identifying that a method that looks at each character in text entered is needed
2. Identifying that a comparison is needed to check if the current character is the

same as the previous character or not
3. Mechanism that "remembers" value of previous character in the string //

mechanism that "remembers" character at start of the run
4. Identifying that the first character in the string can’t be compared to a previous

12

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 11 of 47

character // the last character in the string can’t be compared to the next
character NOTE: award mark based on method attempted in answer provided

Note that AO3 (design) points are for selecting appropriate techniques to use to solve
the problem, so should be credited whether the syntax of programming language
statements is correct or not and regardless of whether the solution works.

Evidence for AO3 (programming) – 8 points:

Evidence of programming to look for in response:

5. Suitable prompt displayed before any loop structures
6. Text input by user and stored into a variable with a suitable name, after prompt

is displayed and before any loop structures
7. Loop structure coded with correct termination condition
8. Selection structure coded with correct condition, selection structure must be

inside loop A. second loop structure with correct condition that is nested in first
loop structure

9. One added to count of character under the correct circumstances
10. Count of character reset to one under the correct circumstances
11. Character and correct count of character displayed for some characters from

beginning of text input by user
12. Character and correct count of character displayed for all characters of any text

entered by the user

Note that AO3 (programming) points are for programming and so should only be
awarded for syntactically correct code.

Information for examiner: Refer answers that use alternative methods to produce the
RLE to team leader.

07 2 Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from 7.1, including prompts on screen capture
matching those in code. Code for 7.1 must be sensible.

Display of suitable prompt and user input of AAARRRRGGGHH followed by output of A

3 R 4 G 3 H 2;

A. Each output on its own line, no spaces, other delimiter used instead of space

1

07 3 Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from 7.1, including prompts on screen capture
matching those in code. Code for 7.1 must be sensible.

Display of suitable prompt and user input of A followed by output of A 1;

A. no space between A and 1, other delimiter used instead of space

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 12 of 47

08 1 Marks are for AO2 (analyse)

Feature Is present in Figure 11? (Yes/No)

Inheritance No

Protected method No

Private attribute Yes

A. alternative indicators instead of Yes/No eg Y/N.

Mark as follows:
One mark per correct row

3

8 2 Mark is for AO2 (analyse)

Rabbit // Fox;

R. if spelt incorrectly

R. if any additional code

I. case

1

8 3 Marks are for AO1 (understanding)

A protected attribute can be accessed (within its class and) by derived class instances /
subclasses;

A private attribute can only be accessed within its class;

A. private attribute can only be accessed within its file (Java only)

2

8 4 1 mark for AO2 (analyse)

MAX 1 from:

RabbitCount (is a private attribute and) is not accessible outside of the Warren

class;

GetRabbitCount (is a public method and) is accessible outside of the Warren

class;

1 mark for AO1 (understanding)

means the way RabbitCount is represented can be modified without having to

change any other objects that interact with Warren NE. without having to change other

code // makes it easier to reuse / inherit from the Warren class (as there is a well-

defined interface) ;

A. this allows data/properties to be modified in a controlled way

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 13 of 47

8 5 Marks are for AO2 (analyse)

when a rabbit dies it is replaced by null/none; A. when rabbits die they are not removed
from the list

CompressRabbitList makes sure that the space used for dead rabbits in the list is

made available for new rabbits // CompressRabbitList makes sure that the fixed

size array does not fill up with dead rabbits;

CompressRabbitList moves live rabbits to the start of the list

A. CompressRabbitList moves null objects / dead rabbits to the end of the list

 // other sections of the code assume that the live rabbits are in continuous locations in

the array (so would not work correctly without a call to CompressRabbitList);

MAX 2

2

8 6 Marks are for AO2 (apply)

HDRabbit = Class(Rabbit)

 Private:

 InfectionRate: Real

 Generation: Integer

 Public:

 Procedure Inspect() (Override)

 Function IsInfertile()

 Function GetGeneration()

 Function GetInfectionRate()

End Class

Information for examiner:
Accept answers that use different notations, so long as meaning is clear.

Mark as follows:

1 mark: 1. for correct header including name of class and parent class

1 mark: 2. for redefining the Inspect method A. Override not stated

1 mark: 3. for defining the two additional attributes, with appropriate data types and
identified as private R. if other attributes included
1 mark: 4. for defining methods needed to read the two additional attributes, and an

IsFertile method, all identified as being public R. if other methods included

I. missing brackets
I. additional Get/Set methods
I. constructor method

A. any suitable alternatives used instead of Function or Procedure keywords

A. any suitable alternatives for data types eg float or double instead of real
R. do not award mark for declaring new methods if any of the functions have the same
name as the variables

4

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 14 of 47

09 1 Marks are for AO3 (programming)

1 mark: 1. tests for lower bound and displays error message if below
1 mark: 2. tests for upper bound and displays error message if above

1 mark: 3. Upper bound test uses LandscapeSize instead of data value of 14/15 A.

in use of incorrect condition
1 mark: 4. 1-3 happen repeatedly until valid input (for the upper and lower bounds used
in the code provided) and forces re-entry of data each time

A. use of pre or post-conditioned loop

MAX 3 if error message is not Coordinate is outside of landscape,

please try again A. minor typos in error message I. case I. spacing I. minor

punctuation differences

MAX 2 if new code has been added to Simulation constructor instead of

InputCoordinate method

4

09 2 Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from 09.1, including error message. Code for 09.1 must be sensible.

1 mark: Screen capture(s) showing the required sequence of inputs (-1, 15, 0), the

correct error message being displayed for -1 and 15, and that 0 has been accepted as

the program has displayed the prompt for the y coordinate to be input.

A. alternative error messages if match code for 09.1

1

10 1 Marks are for AO3 (programming)

1 mark: 1. New subroutine created, with correct name, that overrides the subroutine in

the Animal class

I. private, protected, public modifiers

1 mark: 2. CalculateNewAge subroutine in Animal class is always called

1 mark: 3. Check made on gender of rabbit, and calculations done differently for each
gender
I. incorrect calculations

1 mark: 4. Probability of death by other causes calculated correctly for male rabbits
1 mark: 5. Probability of death by other causes calculated correctly for female rabbits

5

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 15 of 47

10 2 Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from 10.1. Code for 10.1 must be sensible.

1 mark: Any screen capture(s) showing the correct probability of death by other causes
for a male rabbit (0.11 to 2dp) and a female rabbit (0.1);

Example:

1

11 1 Marks are for AO3 (programming)

1 mark: Structure set-up to store the representation of terrain for a location
1 mark: Type of terrain is passed to constructor as parameter
1 mark: Type of terrain stored into attribute by constructor A. default value, that makes
type of terrain for location clear, instead of value from a parameter

3

11 2 Marks are for AO3 (programming)

1 mark: 1. An indicator for type of terrain will be stored for every location
I. wrong type of terrain in a location
R. if indicators other than R or L used
I. case of indicators

1 mark: 2. Vertical river created in column 5
1 mark: 3. Horizontal river created in row 2
MAX 1 FOR 2 & 3 if only creates a river when foxes & warrens are in default locations
MAX 2 if creates any rivers in incorrect locations

3

11 3 Marks are for AO3 (programming)

1 mark: R/L, or other indicator as long as it is clear what the type of terrain is, displayed
in each location (could be different letters, use of different colours) A. type of terrain
not displayed if location contains a fox

1 mark: Row containing column indices matches new display of landscape I. number
of dashes not adjusted to match new width R. if terrain indicators not displayed A. no
adjustment made if indicators for terrain used mean no adjustment to width of display
for terrain was needed

2

11 4 Marks are for AO3 (programming)

1 mark: Warren/fox will not be placed in a river

1 mark: Warren will not be placed where there is a warren // fox will not be placed
where there is a fox
R. if no sensible attempt at preventing warren/fox from being placed in a river

1 mark: Fully correct logic in second subroutine

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 16 of 47

11 5 Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from 11.1 to 11.4. Code for these parts must be sensible

1 mark: Screen capture(s) indicating which locations are land and which are rivers
A. incorrect location of rivers if these match those set in 11.2

1

12 1 Marks are for AO3 (programming)

Structure of subroutine:

1) 1 mark: Subroutine created with correct name CheckIfPathCrossesRiver I.

private/public/protected modifiers
2) 1 mark: Subroutine has four parameters of appropriate data type, which are the

coordinates of the two locations to check the path between I. self parameter in

Python answers I. additional parameters
3) 1 mark: Subroutine returns a Boolean value

Horizontal or vertical:
4) 1 mark: Repetition structure created that has start and end points that correspond

to one coordinate of the locations that need to be checked on the column/row A. if
start and end points include the columns/rows that contain the fox and warren,
even though this is not necessary

5) 1 mark: Repetition structure will work regardless of whether or not the fox is to the
left/right of or above/below the warren (depending on which direction is being
checked) A. use of separate repetition structures to achieve this

6) 1 mark: Within repetition structure a check is made of the type of terrain at the
appropriate coordinate

7) 1 mark: If a section of river is detected, subroutine will return true R. if subroutine
would return true when the path does not cross a river

Other of vertical or horizontal:
8) 1 mark: Correct cells are checked regardless of whether or not the fox is to the

left/right of or above/below the warren A. if start and/or end points include the
columns/rows that contain the fox and warren

9) 1 mark: If a river is detected, subroutine will return true; R. if subroutine would
return true when the path does not cross a river

MAX 7 if 2 and 5 are used instead of checking terrain type
MAX 5 if code does not use each of the relevant coordinates between fox and warren

9

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 17 of 47

12 2 Marks are for AO3 (programming)

1 mark: CheckIfPathCrossesRiver subroutine is called within the two repetition

structures, with the coordinates of the warren and fox as parameters
1 mark: If the subroutine returns true, the fox will not eat any rabbits in the warren,
otherwise it will eat rabbits if the warren is near enough

2

12 3 Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from 12.1 to 12.2. Code for these parts must be sensible

1 mark: Screen capture(s) show that no rabbits are eaten in the warren at (1, 1)

Note: Exact rabbit numbers killed/born do not need to match screenshot, but the start
and end periods should be 0 and 1.

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 18 of 47

VB.NET

07 1 Example Solution

Sub Main()

 Dim Text As String

 Dim LastChar As String

 Dim CountOfLastChar As Integer

 Console.Write("Enter the text to compress: ")

 Text = Console.ReadLine()

 Console.Write("The compressed text is: ")

 LastChar = ""

 CountOfLastChar = 0

 For Count = 0 To Len(Text) - 1

 If Text(Count) = LastChar Then

 CountOfLastChar += 1

 Else

 If LastChar <> "" Then

 Console.Write(LastChar & " " & CountOfLastChar & " ")

 End If

 LastChar = Text(Count)

 CountOfLastChar = 1

 End If

 Next

 Console.Write(LastChar & " " & CountOfLastChar & " ")

 Console.ReadLine()

End Sub

12

09 1 Do

 Console.Write(" Input " & CoordinateName & " coordinate: ")

 Coordinate = CInt(Console.ReadLine())

 If Coordinate < 0 Or Coordinate >= LandscapeSize Then

 Console.WriteLine("Coordinate is outside of landscape, please

try again.")

 End If

Loop While Coordinate < 0 Or Coordinate >= LandscapeSize

Alternative answer

Do

 Console.Write(" Input " & CoordinateName & " coordinate: ")

 Coordinate = CInt(Console.ReadLine())

 If Coordinate < 0 Or Coordinate >= LandscapeSize Then

 Console.WriteLine("Coordinate is outside of landscape, please

try again.")

 End If

Loop Until Coordinate >= 0 And Coordinate < LandscapeSize

4

10 1 Public Overrides Sub CalculateNewAge()

 MyBase.CalculateNewAge()

 If Gender = Genders.Male Then

5

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 19 of 47

 ProbabilityOfDeathOtherCauses = ProbabilityOfDeathOtherCauses

* 1.5

 Else

 If Age >= 2 Then

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses + 0.05

 End If

 End If

End Sub

A. If Age > 1 Then instead of If Age >= 2 Then

11 1 Class Location

 Public Fox As Fox

 Public Warren As Warren

 Public Terrain As Char

 Public Sub New(ByVal TerrainType As Char)

 Fox = Nothing

 Warren = Nothing

 Terrain = TerrainType

 End Sub

End Class

3

11 2 For x = 0 To LandscapeSize - 1

 For y = 0 To LandscapeSize - 1

 If x = 5 Or y = 2 Then

 Landscape(x, y) = New Location("R")

 Else

 Landscape(x, y) = New Location("L")

 End If

 Next

Next

3

11 3 Private Sub DrawLandscape()

 Console.WriteLine()

 Console.WriteLine("TIME PERIOD: " & TimePeriod)

 Console.WriteLine()

 Console.Write(" ")

 For x = 0 To LandscapeSize - 1

 Console.Write(" ")

 If x < 10 Then

 Console.Write(" ")

 End If

 Console.Write(x & " |")

 Next

 Console.WriteLine()

 For x = 0 To LandscapeSize * 5 + 3 'CHANGE MADE HERE

 Console.Write("-")

 Next

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 20 of 47

 Console.WriteLine()

 For y = 0 To LandscapeSize - 1

 If y < 10 Then

 Console.Write(" ")

 End If

 Console.Write(" " & y & "|")

 For x = 0 To LandscapeSize - 1

 If Not Me.Landscape(x, y).Warren Is Nothing Then

 If Me.Landscape(x, y).Warren.GetRabbitCount() < 10 Then

 Console.Write(" ")

 End If

 Console.Write(Landscape(x, y).Warren.GetRabbitCount())

 Else

 Console.Write(" ")

 End If

 If Not Me.Landscape(x, y).Fox Is Nothing Then

 Console.Write("F")

 Else

 Console.Write(" ")

 End If

 Console.Write(Landscape(x, y).Terrain)

 Console.Write("|")

 Next

 Console.WriteLine()

 Next

End Sub

11 4 Private Sub CreateNewWarren()

 Dim x As Integer

 Dim y As Integer

 Do

 x = Rnd.Next(0, LandscapeSize)

 y = Rnd.Next(0, LandscapeSize)

 Loop While Not Landscape(x, y).Warren Is Nothing Or Landscape(x,

y).Terrain = "R"

 If ShowDetail Then

 Console.WriteLine("New Warren at (" & x & "," & y & ")")

 End If

 Landscape(x, y).Warren = New Warren(Variability)

 WarrenCount += 1

End Sub

Private Sub CreateNewFox()

 Dim x As Integer

 Dim y As Integer

 Do

 x = Rnd.Next(0, LandscapeSize)

 y = Rnd.Next(0, LandscapeSize)

 Loop While Not Landscape(x, y).Fox Is Nothing Or Landscape(x,

y).Terrain = "R"

 If ShowDetail Then

 Console.WriteLine(" New Fox at (" & x & "," & y & ")")

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 21 of 47

 End If

 Landscape(x, y).Fox = New Fox(Variability)

 FoxCount += 1

End Sub

12 1 Private Function CheckIfPathCrossesRiver(ByVal FoxX As Integer,

ByVal FoxY As Integer, ByVal WarrenX As Integer, ByVal WarrenY As

Integer) As Boolean

 Dim xChange As Integer

 Dim yChange As Integer

 Dim x As Integer

 Dim y As Integer

 If FoxX - WarrenX > 0 Then

 xChange = 1

 Else

 xChange = -1

 End If

 If WarrenX <> FoxX Then

 x = WarrenX + xChange

 While x <> FoxX

 If Landscape(x, FoxY).Terrain = "R" Then

 Return True

 End If

 x += xChange

 End While

 End If

 If FoxY - WarrenY > 0 Then

 yChange = 1

 Else

 yChange = -1

 End If

 If WarrenY <> FoxY Then

 y = WarrenY + yChange

 While y <> FoxY

 If Landscape(FoxX, y).Terrain = "R" Then

 Return True

 End If

 y += yChange

 End While

 End If

 Return False

End Function

9

12 2 Private Sub FoxesEatRabbitsInWarren(ByVal WarrenX As Integer,

ByVal WarrenY As Integer)

 Dim FoodConsumed As Integer

 Dim PercentToEat As Integer

 Dim Dist As Double

 Dim RabbitsToEat As Integer

 Dim RabbitCountAtStartOfPeriod As Integer = Landscape(WarrenX,

WarrenY).Warren.GetRabbitCount()

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 22 of 47

 For FoxX = 0 To LandscapeSize - 1

 For FoxY = 0 To LandscapeSize - 1

 If Not Landscape(FoxX, FoxY).Fox Is Nothing Then

 If Not CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY) Then

 Dist = DistanceBetween(FoxX, FoxY, WarrenX, WarrenY)

 If Dist <= 3.5 Then

 PercentToEat = 20

 ElseIf Dist <= 7 Then

 PercentToEat = 10

 Else

 PercentToEat = 0

 End If

 RabbitsToEat = CInt(Math.Round(CDbl(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed = Landscape(WarrenX,

WarrenY).Warren.EatRabbits(RabbitsToEat)

 Landscape(FoxX, FoxY).Fox.GiveFood(FoodConsumed)

 If ShowDetail Then

 Console.WriteLine(" " & FoodConsumed & " rabbits

eaten by fox at (" & FoxX & "," & FoxY & ").")

 End If

 End If

 End If

 Next

 Next

End Sub

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 23 of 47

Python 2

07 1 text = raw_input("Enter the text to compress: ")

print "The compressed text is:",

LastChar = ""

CountOfLastChar = 0

for Count in range(0, len(text)):

 if text[Count] == LastChar:

 CountOfLastChar += 1

 else:

 if LastChar != "":

 print LastChar, CountOfLastChar,

 LastChar = text[Count]

 CountOfLastChar = 1

print LastChar,CountOfLastChar

12

09 1 def __InputCoordinate(self, CoordinateName):

 Coordinate = int(raw_input(" Input " + CoordinateName + "

coordinate:"))

 while Coordinate < 0 or Coordinate >= self.__LandscapeSize:

 Coordinate = int(raw_input("Coordinate is outside of

landscape, please try again."))

 return Coordinate

4

10 1 def CalculateNewAge(self):

 super(Rabbit, self).CalculateNewAge()

 if self.__Gender == Genders.Male:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses * 1.5

 else:

 if self._Age >= 2:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses + 0.05

5

11 1 class Location:

 def __init__(self, TerrainType):

 self.Fox = None

 self.Warren = None

 self.Terrain = TerrainType

3

11 2 def __CreateLandscapeAndAnimals(self, InitialWarrenCount,

InitialFoxCount, FixedInitialLocations):

 for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if x == 5 or y == 2:

 self.__Landscape[x][y] = Location("R")

 else:

 self.__Landscape[x][y] = Location("L")

 if FixedInitialLocations:

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 24 of 47

...

11 3 def __DrawLandscape(self):

 print

 print "TIME PERIOD:", str(self.__TimePeriod)

 print

 sys.stdout.write(" ")

 for x in range (0, self.__LandscapeSize):

 sys.stdout.write(" ")

 if x < 10:

 sys.stdout.write(" ")

 sys.stdout.write(str(x) + " |")

 print

 for x in range (0, self.__LandscapeSize * 5 + 3): #CHANGED 4 TO

5

 sys.stdout.write("-")

 print

 for y in range (0, self.__LandscapeSize):

 if y < 10:

 sys.stdout.write(" ")

 sys.stdout.write(str(y) + "|")

 for x in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Warren is None:

 if self.__Landscape[x][y].Warren.GetRabbitCount() < 10:

 sys.stdout.write(" ")

sys.stdout.write(self.__Landscape[x][y].Warren.GetRabbitCount())

 else:

 sys.stdout.write(" ")

 if not self.__Landscape[x][y].Fox is None:

 sys.stdout.write("F")

 else:

 sys.stdout.write(" ")

 sys.stdout.write(self.__Landscape[x][y].Terrain)

 sys.stdout.write("|")

 print

2

11 4 def __CreateNewWarren(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Warren is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 sys.stdout.write("New Warren at (" + str(x) + "," + str(y) +

")")

 self.__Landscape[x][y].Warren = Warren(self.__Variability)

 self.__WarrenCount += 1

def __CreateNewFox(self):

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 25 of 47

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Fox is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 sys.stdout.write(" New Fox at (" + str(x) + "," + str(y) +

")")

 self.__Landscape[x][y].Fox = Fox(self.__Variability)

 self.__FoxCount += 1

12 1 def CheckIfPathCrossesRiver(self, FoxX, FoxY, WarrenX, WarrenY):

 if FoxX - WarrenX > 0:

 xChange = 1

 else:

 xChange = -1

 if WarrenX != FoxX:

 x = WarrenX + xChange

 while x != FoxX:

 if self.__Landscape[x][FoxY].Terrain == "R":

 return True

 x += xChange

 if FoxY - WarrenY > 0:

 yChange = 1

 else:

 yChange = -1

 if WarrenY != FoxY:

 y = WarrenY + yChange

 while y != FoxY:

 if self.__Landscape[FoxX][y].Terrain == "R":

 return True

 y += yChange

 return False

9

12 2 def __FoxesEatRabbitsInWarren(self, WarrenX, WarrenY):

 RabbitCountAtStartOfPeriod =

self.__Landscape[WarrenX][WarrenY].Warren.GetRabbitCount()

 for FoxX in range(0, self.__LandscapeSize):

 for FoxY in range (0, self.__LandscapeSize):

 if not self.__Landscape[FoxX][FoxY].Fox is None:

 if not self.CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY): #INDENTATION CHANGED AFTER THIS LINE

 Dist = self.__DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 if Dist <= 3.5:

 PercentToEat = 20

 elif Dist <= 7:

 PercentToEat = 10

 else:

 PercentToEat = 0

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 26 of 47

 RabbitsToEat = int(round(float(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed =

self.__Landscape[WarrenX][WarrenY].Warren.EatRabbits(RabbitsToEat)

 self.__Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsumed)

 if self.__ShowDetail:

 sys.stdout.write(" " + str(FoodConsumed) + " rabbits

eaten by fox at (" + str(FoxX) + "," + str(FoxY) + ")." + "\n")

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 27 of 47

Python 3

07 1 Example Solution

text = input("Enter the text to compress: ")

print ("The compressed text is: ", end="")

LastChar = ""

CountOfLastChar = 0

for Count in range(0, len(text)):

 if text[Count] == LastChar:

 CountOfLastChar += 1

 else:

 if LastChar != "":

 print (LastChar, " " , CountOfLastChar, " ",end="")

 LastChar = text[Count]

 CountOfLastChar = 1

print (LastChar, " " , CountOfLastChar, " ")

12

09 1 def __InputCoordinate(self, CoordinateName):

 Coordinate = int(input(" Input " + CoordinateName + "

coordinate:"))

 while Coordinate < 0 or Coordinate >= self.__LandscapeSize:

 Coordinate = int(input("Coordinate is outside of landscape,

please try again."))

 return Coordinate

4

10 1 def CalculateNewAge(self):

 super(Rabbit, self).CalculateNewAge()

 if self.__Gender == Genders.Male:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses * 1.5

 else:

 if self._Age >= 2:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses + 0.05

5

11 1 class Location:

 def __init__(self, TerrainType):

 self.Fox = None

 self.Warren = None

 self.Terrain = TerrainType

3

11 2 def __CreateLandscapeAndAnimals(self, InitialWarrenCount,

InitialFoxCount, FixedInitialLocations):

 for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if x == 5 or y == 2:

 self.__Landscape[x][y] = Location("R")

 else:

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 28 of 47

 self.__Landscape[x][y] = Location("L")

 if FixedInitialLocations:

...

11 3 def __DrawLandscape(self):

 print()

 print("TIME PERIOD:", self.__TimePeriod)

 print()

 print(" ", end = "")

 for x in range (0, self.__LandscapeSize):

 print(" ", end = "")

 if x < 10:

 print(" ", end = "")

 print(x, "|", end = "")

 print()

 for x in range (0, self.__LandscapeSize * 5 + 3): #CHANGE

 print("-", end = "")

 print()

 for y in range (0, self.__LandscapeSize):

 if y < 10:

 print(" ", end = "")

 print("", y, "|", sep = "", end = "")

 for x in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Warren is None:

 if self.__Landscape[x][y].Warren.GetRabbitCount() < 10:

 print(" ", end = "")

 print(self.__Landscape[x][y].Warren.GetRabbitCount(), end

= "")

 else:

 print(" ", end = "")

 if not self.__Landscape[x][y].Fox is None:

 print("F", end = "")

 else:

 print(" ", end = "")

 print(self.__Landscape[x][y].Terrain, end = "")

 print("|", end = "")

 print()

2

11 4 def __CreateNewWarren(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Warren is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 print("New Warren at (", x, ",", y, ")", sep = "")

 self.__Landscape[x][y].Warren = Warren(self.__Variability)

 self.__WarrenCount += 1

def __CreateNewFox(self):

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 29 of 47

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Fox is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 print(" New Fox at (", x, ",", y, ")", sep = "")

 self.__Landscape[x][y].Fox = Fox(self.__Variability)

 self.__FoxCount += 1

12 1 def CheckIfPathCrossesRiver(self, FoxX, FoxY, WarrenX, WarrenY):

 if FoxX - WarrenX > 0:

 xChange = 1

 else:

 xChange = -1

 if WarrenX != FoxX:

 x = WarrenX + xChange

 while x != FoxX:

 if self.__Landscape[x][FoxY].Terrain == "R":

 return True

 x += xChange

 if FoxY - WarrenY > 0:

 yChange = 1

 else:

 yChange = -1

 if WarrenY != FoxY:

 y = WarrenY + yChange

 while y != FoxY:

 if self.__Landscape[FoxX][y].Terrain == "R":

 return True

 y += yChange

 return False

9

12 2 def __FoxesEatRabbitsInWarren(self, WarrenX, WarrenY):

 RabbitCountAtStartOfPeriod =

self.__Landscape[WarrenX][WarrenY].Warren.GetRabbitCount()

 for FoxX in range(0, self.__LandscapeSize):

 for FoxY in range (0, self.__LandscapeSize):

 if not self.__Landscape[FoxX][FoxY].Fox is None:

 if not self.CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY): #INDENTATION CHANGED AFTER THIS LINE

 Dist = self.__DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 if Dist <= 3.5:

 PercentToEat = 20

 elif Dist <= 7:

 PercentToEat = 10

 else:

 PercentToEat = 0

 RabbitsToEat = int(round(float(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 30 of 47

 FoodConsumed =

self.__Landscape[WarrenX][WarrenY].Warren.EatRabbits(RabbitsToEat)

self.__Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsumed)

 if self.__ShowDetail:

 print(" ", FoodConsumed, " rabbits eaten by fox at

(", FoxX, ",", FoxY, ").", sep = "")

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 31 of 47

C#

07 1 string Text = "";

string LastChar = "";

int CountOfLastChar = 0;

Console.Write("Enter the text to compress: ");

Text = Console.ReadLine();

Console.Write("The compressed text is: ");

for (int Count = 0; Count < Text.Length ; Count++)

{

 if (Text[Count].ToString() == LastChar)

 {

 CountOfLastChar++;

 }

 else

 {

 if (LastChar != "")

 {

 Console.Write(LastChar + " " + CountOfLastChar + " ");

 }

 LastChar = Text[Count].ToString();

 CountOfLastChar = 1;

 }

}

Console.Write(LastChar + " " + CountOfLastChar + " ");

Console.ReadLine();

12

09 1 do

{

 Console.Write(" Input " + Coordinatename + " coordinate: ");

 Coordinate = Convert.ToInt32(Console.ReadLine());

 if ((Coordinate < 0) || (Coordinate >= LandscapeSize))

 {

 Console.WriteLine("Coordinate is outside of landscape,

please try again.");

 }

} while ((Coordinate < 0) || (Coordinate >= LandscapeSize));

4

10 1 public override void CalculateNewAge()

{

 base.CalculateNewAge();

 if (Gender == Genders.Male)

 {

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses * 1.5;

 }

 else

 {

 if (Age >= 2)

 {

 ProbabilityOfDeathOtherCauses =

5

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 32 of 47

ProbabilityOfDeathOtherCauses + 0.05;

 }

 }

}

11 1 class Location

{

 public Fox Fox;

 public Warren Warren;

 public char Terrain;

 public Location(char Terraintype)

 {

 Fox = null;

 Warren = null;

 Terrain = Terraintype;

 }

}

3

11 2 for (int x = 0; x < LandscapeSize; x++)

{

 for (int y = 0; y < LandscapeSize; y++)

 {

 if ((x == 5) || (y == 2))

 {

 Landscape[x, y] = new Location('R');

 }

 else

 {

 Landscape[x, y] = new Location('L');

 }

 }

}

3

11 3 private void DrawLandscape()

{

 Console.WriteLine();

 Console.WriteLine("TIME PERIOD: "+TimePeriod);

 Console.WriteLine();

 Console.Write(" ");

 for (int x = 0; x < LandscapeSize; x++)

 {

 Console.Write(" ");

 if (x < 10) { Console.Write(" "); }

 Console.Write(x + " |");

 }

 Console.WriteLine();

 for (int x = 0; x <= LandscapeSize * 5 + 3; x++)

 {

 Console.Write("-");

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 33 of 47

 }

 Console.WriteLine();

 for (int y = 0; y < LandscapeSize; y++)

 {

 if (y < 10) { Console.Write(" "); }

 Console.Write(" " + y + "|");

 for (int x = 0; x < LandscapeSize; x++)

 {

 if (Landscape[x, y].Warren != null)

 {

 if (Landscape[x, y].Warren.GetRabbitCount() < 10)

 {

 Console.Write(" ");

 }

 Console.Write(Landscape[x,

y].Warren.GetRabbitCount());

 }

 else { Console.Write(" "); }

 if (Landscape[x, y].Fox != null)

 {

 Console.Write("F");

 }

 else

 {

 Console.Write(" ");

 }

 Console.Write(Landscape[x, y].Terrain);

 Console.Write("|");

 }

 Console.WriteLine();

 }

}

11 4 private void CreateNewWarren()

{

 int x, y;

 do

 {

 x = Rnd.Next(0, LandscapeSize);

 y = Rnd.Next(0, LandscapeSize);

 } while ((Landscape[x, y].Warren != null) || (Landscape[x,

y].Terrain == 'R'));

;

 if (ShowDetail)

 {

 Console.WriteLine("New Warren at (" + x + "," + y + ")");

 }

 Landscape[x, y].Warren = new Warren(Variability);

 WarrenCount++;

}

private void CreateNewFox()

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 34 of 47

{

 int x, y;

 do

 {

 x = Rnd.Next(0, LandscapeSize);

 y = Rnd.Next(0, LandscapeSize);

 } while ((Landscape[x, y].Fox != null) || (Landscape[x,

y].Terrain == 'R'));

 if (ShowDetail) { Console.WriteLine(" New Fox at (" + x + ","

+ y + ")"); }

 Landscape[x, y].Fox = new Fox(Variability);

 FoxCount++;

}

12 1 private bool CheckIfPathCrossesRiver(int FoxX, int FoxY, int

WarrenX, int WarrenY)

{

 int xChange, yChange, x, y;

 if (FoxX - WarrenX > 0)

 {

 xChange = 1;

 }

 else

 {

 xChange = -1;

 }

 if (WarrenX != FoxX)

 {

 x = WarrenX + xChange;

 while(x != FoxX)

 {

 if (Landscape[x, FoxY].Terrain == 'R')

 {

 return true;

 }

 x += xChange;

 }

 }

 if (FoxY - WarrenY > 0)

 {

 yChange = 1;

 }

 else

 {

 yChange = -1;

 }

 if (WarrenY != FoxY)

 {

 y = WarrenY + yChange;

 while(y != FoxY)

 {

 if (Landscape[FoxX, y].Terrain == 'R')

9

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 35 of 47

 {

 return true;

 }

 y += yChange;

 }

 }

 return false;

}

12 2 private void FoxesEatRabbitsInWarren(int WarrenX, int WarrenY)

{

 int FoodConsumed;

 int PercentToEat;

 double Dist;

 int RabbitsToEat;

 int RabbitCountAtStartOfPeriod = Landscape[WarrenX,

WarrenY].Warren.GetRabbitCount();

 for (int FoxX = 0; FoxX < LandscapeSize; FoxX++)

 {

 for (int FoxY = 0; FoxY < LandscapeSize; FoxY++)

 {

 if (Landscape[FoxX, FoxY].Fox != null)

 {

 if (!CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY))

 {

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if (Dist <= 3.5)

 {

 PercentToEat = 20;

 }

 else if (Dist <= 7)

 {

 PercentToEat = 10;

 }

 else

 {

 PercentToEat = 0;

 }

 RabbitsToEat =

(int)Math.Round((double)(PercentToEat * RabbitCountAtStartOfPeriod

/ 100.0));

 FoodConsumed = Landscape[WarrenX,

WarrenY].Warren.EatRabbits(RabbitsToEat);

 Landscape[FoxX,

FoxY].Fox.GiveFood(FoodConsumed);

 if (ShowDetail)

 {

 Console.WriteLine(" " + FoodConsumed + "

rabbits eaten by fox at (" + FoxX + "," + FoxY + ").");

 }

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 36 of 47

 }

 }

 }

 }

}

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 37 of 47

Pascal

07 1 Example solution

var

 Text : string;

 LastChar : string;

 CountOfLastChar : integer;

 Count : integer;

begin

 write('Enter the text to compress: ');

 readln(Text);

 write('The compressed text is: ');

 LastChar := '';

 CountOfLastChar := 0;

 for Count := 1 to Length(Text) do

 begin

 if Text[Count] = LastChar then

 inc(CountOfLastChar)

 else

 begin

 if LastChar <> '' then

 write(LastChar, ' ', CountOfLastChar, ' ');

 LastChar := Text[Count];

 CountOfLastChar := 1;

 end;

 end;

 write(LastChar, ' ', CountOfLastChar, ' ');

 readln;

end.

12

09 1 repeat

 write(' Input ' , CoordinateName, ' coordinate: ');

 readln(Coordinate);

 if (Coordinate < 0) or (Coordinate >= LandscapeSize) then

 writeln('Coordinate is outside of landscape, please try

again.');

until (Coordinate >= 0) and (Coordinate < LandscapeSize);

4

10 1 Procedure Rabbit.CalculateNewAge();

 begin

 inherited;

 if Gender = Male then

 ProbabilityOfDeathOtherCauses :=

ProbabilityOfDeathOtherCauses * 1.5

 else

 if Age >= 2 then

 ProbabilityOfDeathOtherCauses :=

ProbabilityOfDeathOtherCauses + 0.05;

 end;

5

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 38 of 47

11 1 type

 Location = class

 public

 Fox : Fox;

 Warren : Warren;

 Terrain : char;

 constructor New(TerrainType : char);

 end;

constructor Location.New(TerrainType : char);

 begin

 Fox := nil;

 Warren := nil;

 Terrain := TerrainType;

 end;

3

11 2 for x := 0 to LandscapeSize - 1 do

 for y := 0 to LandscapeSize - 1 do

 if (x = 5) or (y = 2) then

 Landscape[x][y] := Location.New('R')

 else

 Landscape[x][y] := Location.New('L');

3

11 3 procedure Simulation.DrawLandscape();

 var

 x : integer;

 y : integer;

 begin

 writeln;

 writeln('TIME PERIOD: ', TimePeriod);

 writeln;

 write(' ');

 for x := 0 to LandscapeSize - 1 do

 begin

 write(' ');

 if x < 10 then

 write(' ');

 write(x, ' |');

 end;

 writeln;

 for x:=0 to LandscapeSize * 5 + 3 do //CHANGE MADE HERE

 write('-');

 writeln;

 for y := 0 to LandscapeSize - 1 do

 begin

 if y < 10 then

 write(' ');

 write(' ', y, '|');

 for x:= 0 to LandscapeSize - 1 do

 begin

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 39 of 47

 if not(self.Landscape[x][y].Warren = nil) then

 begin

 if self.Landscape[x][y].Warren.GetRabbitCount()

< 10 then

 write(' ');

 write(Landscape[x][y].Warren.GetRabbitCount());

 end

 else

 write(' ');

 if not(self.Landscape[x][y].fox = nil) then

 write('F')

 else

 write(' ');

 write(Landscape[x][y].Terrain);

 write('|');

 end;

 writeln;

 end;

 end;

11 4 procedure Simulation.CreateNewWarren();

 var

 x : integer;

 y : integer;

 begin

 repeat

 x := random(LandscapeSize);

 y := random(LandscapeSize);

 until (Landscape[x][y].Warren = Nil) and

(not(Landscape[x][y].Terrain = 'R'));

 if ShowDetail then

 writeln('New Warren at (', x, ',', y, ')');

 Landscape[x][y].Warren := Warren.New(Variability);

 inc(WarrenCount);

 end;

procedure Simulation.CreateNewFox();

 var

 x : integer;

 y : integer;

 begin

 randomize();

 repeat

 x := Random(LandscapeSize);

 y := Random(LandscapeSize);

 until (Landscape[x][y].fox = Nil) and

(not(Landscape[x][y].Terrain = 'R'));

 if ShowDetail then

 writeln(' New Fox at (',x, ',',y, ')');

 Landscape[x][y].Fox := Fox.New(Variability);

 inc(FoxCount);

 end;

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 40 of 47

12 1 function Simulation.CheckIfPathCrossesRiver(FoxX : integer; Foxy :

integer; WarrenX : integer; WarrenY : integer) : boolean;

 var

 xChange : integer;

 yChange : integer;

 x : integer;

 y : integer;

 Answer : boolean;

 begin

 Answer := False;

 if (FoxX - WarrenX) > 0 then

 xChange := 1

 else

 xChange := -1;

 if WarrenX <> FoxX then

 begin

 x := warrenX + xChange;

 if x <> FoxX then

 repeat

 if Landscape[x][FoxY].Terrain = 'R' then

 Answer := True;

 x := x + xChange;

 until x = FoxX;

 end;

 if (FoxY - WarrenY) > 0 then

 yChange := 1

 else

 yChange := -1;

 if WarrenY <> FoxY then

 begin

 y := WarrenY + yChange;

 if y <> FoxY then

 repeat

 if Landscape[FoxX][y].Terrain = 'R' then

 Answer := True;

 y := y + yChange;

 until y = FoxY;

 end;

 CheckIfPathCrossesRiver := Answer;

 end;

9

12 2 procedure Simulation.FoxesEatRabbitsInWarren(WarrenX : integer;

WarrenY : integer);

 var

 FoodConsumed : integer;

 PercentToEat : integer;

 Dist : double;

 RabbitsToEat : integer;

 RabbitCountAtStartOfPeriod : integer;

 FoxX : integer;

 FoxY : integer;

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 41 of 47

 begin

 RabbitCountAtStartOfPeriod :=

Landscape[WarrenX][WarrenY].Warren.GetRabbitCount();

 for FoxX := 0 to LandscapeSize - 1 do

 for FoxY := 0 to LandscapeSize - 1 do

 if not(Landscape[FoxX][FoxY].fox = nil) then

 if not(CheckIfPathCrossesRiver(FoxX, Foxy, WarrenX,

WarrenY)) then

 begin

 Dist := DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if Dist <= 3.5 then

 PercentToEat := 20

 else if Dist <= 7 then

 PercentToEat := 10

 else

 PercentToEat := 0;

 RabbitsToEat := round(PercentToEat *

RabbitCountAtStartOfPeriod / 100);

 FoodConsumed :=

Landscape[WarrenX][WarrenY].Warren.EatRabbits(RabbitsToEat);

 Landscape[FoxX][FoxY].fox.GiveFood(FoodConsumed);

 if ShowDetail then

 writeln(' ', FoodConsumed, ' rabbits eaten by fox

at (', FoxX, ',', FoxY, ')');

 end;

 end;

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 42 of 47

Java

07 1 public static void main(String[] args)

{

 String Text;

 char LastChar;

 int CountOfLastChar;

 Console.print("Enter the text to compress: ");

 Text = Console.readLine();

 Console.print("The compressed text is: ");

 LastChar = ' ';

 CountOfLastChar = 0;

 for (int Count = 0; Count < Text.length(); Count++)

 {

 char CurrentChar = Text.charAt(Count);

 if(CurrentChar == LastChar)

 {

 CountOfLastChar += 1;

 }

 else

 {

 if (LastChar !=' ')

 {

 Console.print(LastChar + " " + CountOfLastChar + "

");

 }

 LastChar = CurrentChar;

 CountOfLastChar = 1;

 }

 }

 Console.print(LastChar + " " + CountOfLastChar + " ");

 Console.readLine();

}

12

09 1 private int InputCoordinate(char CoordinateName)

{

 int Coordinate;

 do

 {

 Coordinate = Console.readInteger(" Input " +

CoordinateName + " coordinate: ");

 if (Coordinate >= LandscapeSize || Coordinate < 0)

 {

 Console.println("Coordinate is outside of landscape,

please try again.");

 }

 }while (Coordinate >= LandscapeSize || Coordinate < 0);

 return Coordinate;

}

4

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 43 of 47

10 1 @Override

public void CalculateNewAge()

{

 super.CalculateNewAge();

 if (Gender == Genders.Male)

 {

 ProbabilityOfDeathOtherCauses *= 1.5;

 }

 else if(Age >= 2)

 {

 ProbabilityOfDeathOtherCauses += 0.05;

 }

}

5

11 1 class Location

{

 public Fox Fox;

 public Warren Warren;

 public char Terrain;

 public Location(char Terrain)

 {

 Fox = null;

 Warren = null;

 this.Terrain = Terrain;

 }

}

3

11 2 for(int x = 0 ; x < LandscapeSize; x++)

{

 for(int y = 0; y < LandscapeSize; y++)

 {

 if(x==5||y==2)

 {

 Landscape[x][y] = new Location('R');

 }

 else

 {

 Landscape[x][y] = new Location('L');

 }

 }

}

3

11 3 private void DrawLandscape()

{

 Console.println();

 Console.println("TIME PERIOD: " + TimePeriod);

 Console.println();

 Console.print(" ");

 for(int x = 0; x < LandscapeSize; x++)

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 44 of 47

 {

 Console.print(" ");

 if (x < 10)

 {

 Console.print(" ");

 }

 Console.print(x + " |");

 }

 Console.println();

 for(int x = 0; x < LandscapeSize * 5 + 4; x++) //Change made

here

 {

 Console.print("-");

 }

 Console.println();

 for(int y = 0; y < LandscapeSize; y++)

 {

 if(y < 10)

 {

 Console.print(" ");

 }

 Console.print(" " + y + "|");

 for(int x = 0; x < LandscapeSize; x++)

 {

 if (Landscape[x][y].Warren != null)

 {

 if (Landscape[x][y].Warren.GetRabbitCount() < 10

)

 {

 Console.print(" ");

 }

Console.print(Landscape[x][y].Warren.GetRabbitCount());

 }

 else

 {

 Console.print(" ");

 }

 if (Landscape[x][y].Fox != null)

 {

 Console.print("F");

 }

 else

 {

 Console.print(" ");

 }

 Console.print(Landscape[x][y].Terrain);

 Console.print("|");

 }

 Console.println();

 }

}

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 45 of 47

11 4 private void CreateNewWarren()

{

 int x;

 int y;

 do

 {

 x = Rnd.nextInt(LandscapeSize);

 y = Rnd.nextInt(LandscapeSize);

 } while (Landscape[x][y].Warren != null ||

Landscape[x][y].Terrain == 'R');

 if (ShowDetail)

 {

 Console.println("New Warren at (" + x + "," + y + ")");

 }

 Landscape[x][y].Warren = new Warren(Variability);

 WarrenCount += 1;

}

private void CreateNewFox()

{

 int x;

 int y;

 do

 {

 x = Rnd.nextInt(LandscapeSize);

 y = Rnd.nextInt(LandscapeSize);

 }while (Landscape[x][y].Fox != null || Landscape[x][y].Terrain

== 'R');

 if (ShowDetail)

 {

 Console.println(" New Fox at (" + x + "," + y + ")");

 }

 Landscape[x][y].Fox = new Fox(Variability);

 FoxCount += 1;

}

3

12 1 private boolean CheckIfPathCrossesRiver(int FoxX, int FoxY, int

WarrenX, int WarrenY)

{

 int xChange, yChange;

 if (FoxX-WarrenX > 0)

 {

 xChange = 1;

 }

 else

 {

 xChange = -1;

 }

 if (WarrenX != FoxX)

 {

 for (int x = WarrenX + xChange; x != FoxX; x = x +

xChange)

9

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 46 of 47

 {

 if (Landscape[x][FoxY].Terrain == 'R')

 {

 return true;

 }

 }

 }

 if (FoxY - WarrenY > 0)

 {

 yChange = 1;

 }

 else

 {

 yChange = -1;

 }

 if (WarrenY != FoxY)

 {

 for (int y = WarrenY + yChange; y != FoxY; y = y +

yChange)

 {

 if (Landscape[FoxX][y].Terrain == 'R')

 {

 return true;

 }

 }

 }

 return false;

}

12 2 private void FoxesEatRabbitsInWarren(int WarrenX, int WarrenY)

{

 int FoodConsumed;

 int PercentToEat;

 double Dist;

 int RabbitsToEat;

 int RabbitCountAtStartOfPeriod =

Landscape[WarrenX][WarrenY].Warren.GetRabbitCount();

 for(int FoxX = 0; FoxX < LandscapeSize; FoxX++)

 {

 for(int FoxY = 0; FoxY < LandscapeSize; FoxY++)

 {

 if (Landscape[FoxX][FoxY].Fox != null)

 {

 if (!CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY))

 {

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if (Dist <= 3.5)

 {

 PercentToEat = 20;

 }

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE PAPER 1 – 7517/1 – JUNE 2017

 47 of 47

 else if (Dist <= 7)

 {

 PercentToEat = 10;

 }

 else

 {

 PercentToEat = 0;

 }

 RabbitsToEat =

(int)(Math.round((double)(PercentToEat *

RabbitCountAtStartOfPeriod / 100)));

 FoodConsumed =

Landscape[WarrenX][WarrenY].Warren.EatRabbits(RabbitsToEat);

Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsumed);

 if (ShowDetail)

 {

 Console.println(" " + FoodConsumed + "

rabbits eaten by fox at (" + FoxX + "," + FoxY + ").");

 }

 }

 }

 }

 }

}

