

 1 of 46

AS
COMPUTER SCIENCE
(7516/1A/1B/1C/1D/1E)
Paper 1

Mark scheme

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 2 of 46

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the
relevant questions, by a panel of subject teachers. This mark scheme includes any amendments
made at the standardisation events which all associates participate in and is the scheme which
was used by them in this examination. The standardisation process ensures that the mark scheme
covers the students’ responses to questions and that every associate understands and applies it in
the same correct way. As preparation for standardisation each associate analyses a number of
students’ scripts: alternative answers not already covered by the mark scheme are discussed and
legislated for. If, after the standardisation process, associates encounter unusual answers which
have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed
and expanded on the basis of students’ reactions to a particular paper. Assumptions about future
mark schemes on the basis of one year’s document should be avoided; whilst the guiding
principles of assessment remain constant, details will change, depending on the content of a
particular examination paper.

Further copies of this Mark Scheme are available from http://www.aqa.org.uk/

http://www.aqa.org.uk/

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 3 of 46

COMPONENT NUMBER: Paper 1

COMPONENT NAME:

STATUS:

DATE: 7 Aug 2014

The following annotation is used in the mark scheme.

; - means a single mark
// - means alternative response
/ - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
NE - means not enough
I - means ignore
DPT - in some questions a specific error made by a candidate, if repeated, could result in the
 loss of more than one mark. The DPT label indicates that this mistake should only
 result in a candidate losing one mark, on the first occasion that the error is made.
 Provided that the answer remains understandable, subsequent marks should be awarded
 as if the error was not being repeated.

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 4 of 46

01 1 All marks AO3 (programming)

Python 2.6:

print "How far to count?"
HowFar = input()
while HowFar < 1:
 print "Not a valid number, please try again."
 HowFar = input()
for MyLoop in range(1,HowFar+1):
 if MyLoop%3 == 0 and MyLoop%5 == 0:
 print "FizzBuzz"
 elif MyLoop%3 == 0:
 print "Fizz"
 elif MyLoop%5 == 0:
 print "Buzz"
 else:
 print MyLoop

1 mark: Correct prompt "How far to count?" followed
by HowFar assigned value entered by user;
1 mark: WHILE loop has syntax allowed by the programming language
and correct condition for the termination of the loop;
1 mark: Correct prompt "Not a valid number, please try
again." followed by HowFar being assigned value entered by the
user (must be inside iteration structure);
1 mark: Correct syntax for the FOR loop using correct range
appropriate to language;
1 mark: Correct syntax for an IF statement, including a THEN and
ELSE/ELIF part;
1 mark: Correct syntax for MyLoop MOD 5 = 0 and MyLoop MOD
3 = 0 used in the IF statement(s);
1 mark: Correct output for cases in the selection structure where
MyLoop MOD 3 = 0 or MyLoop MOD 5 = 0 or both -
outputs "FizzBuzz", "Fizz" or "Buzz" correctly;
1 mark: Correct output (in the ELSE part of selection structure), when
MyLoop MOD 3 <> 0 and MyLoop MOD 5 <> 0 - outputs value
of MyLoop;

8

01 2 All marks AO3 (evaluate)

Info for examiners: must match code from 01.1, including prompts on
screen capture matching those in code. Code for 01.1 must be
sensible.

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 5 of 46

First Test

How far to count?
18
1
2
Fizz
4
Buzz
Fizz
7
8
Fizz
Buzz
11
Fizz
13
14
FizzBuzz
16
17
Fizz

Second Test

How far to count?
-1
Not a valid number, please try again.

Screenshot with user input of 18 and correct output and user input of -1
and correct output;

A. different formatting of output eg line breaks

01 3 Mark is for AO2 (analysis)

A FOR loop is used as it is to be repeated a known number of times;

1

01 4 All marks AO2 (analysis)

Example of input:
 [nothing input]
 [a string] for example: 12A

Method to prevent:
 can protect against by using a try,except structure // exception
 handling;
 test the input to see if digits only;

3

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 6 of 46

 convert string to integer and capture any exception;
 use a repeat/while structure // alter repeat/while to ask again
 until valid data input;

1 mark: Example of input
Max 2 marks: Description of how this can be protected against

01 5 All marks AO1 (understanding)

Use of indentation to separate out statement blocks;
Use of comments to annotate the program code;
Use of procedures / functions / sub-routines;
Use of constants;
Max 3, any from 4 above

 3

01 6 All marks AO2 (apply)

Input
string

Accepted by FSM?

aaab YES

abbab NO

bbbbba YES

1 mark: Two rows of table completed correctly;
OR
2 marks: All three rows of table completed correctly;
A. Alternative indicators for YES and NO

2

01 7 All marks AO2 (apply)

1 mark: a string containing zero or more (A. ‘any number of’) b
characters;
1 mark: and an odd amount of a characters;

N.E. all strings containing an odd number of characters

2

02 1 Mark is for AO1 (understanding)

Cavern // TrapPositions ;

1

02 2 Mark is for AO1 (understanding)

SetPositionOfItem // MakeMonsterMove;

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 7 of 46

02 3 Mark is for AO1 (understanding)

Count1 // Count2 // Choice;
(Python Only) NO_OF_TRAPS // N_S_DISTANCE //
W_E_DISTANCE;

1

02 4 Mark is for AO1 (understanding)

GetMainMenuChoice // GetNewRandomPosition //
SetPositionOfItem // SetUpGame //
SetUpTrainingGame // GetMove // CheckValidMove
// CheckIfSameCell // MoveFlask

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 8 of 46

02 5 All marks AO3 (analysis)

a nested loop is used as we need to repeat something inside a section
that is also repeating;
so that for each row we can loop through each column;
to work our way through the 2 dimensions of the cavern;
Count1 controls the rows of the display;
Count2 controls the columns of the display;

Max 3: Any 3 from above

3

02 6 All marks AO1 (understanding)

1 mark: Only need to change its value once//at the top of the program //
from one place only (for the new value to apply wherever it is used);
1 mark: Makes program code easier to understand;

2

02 7 All marks AO2 (analyse)

1 mark: (Command inside loop) randomly chooses coordinates to place
item at;
1 mark: The condition checks that no other item has already been
placed at the selected coordinates // the location is empty;
1 mark: The while loop is required to repeat the coordinate selection
until an empty location is found // to keep choosing coordinates if the
location found is not empty;

3

02 8 All marks AO2 (analyse)

1 mark: If the monster moves into the flask cell and the flask is not
moved elsewhere it will not be there when the monster moves away
from this cell;
1 mark: You can’t have two items in any cell;
1 mark: By swapping the monster and the flask cells we can ensure
that the flask stays in the cavern;

3

02 9 All marks AO2 (analyse)

1 mark: Even though the monster usually makes 2 moves the player
might be eaten on the first of the two moves;
1 mark: A while loop allows us to complete 2 moves when necessary
but exit on the first move if the player is eaten;

2

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 9 of 46

02 10 All marks AO2 (understanding)

Easier reuse of routines in other programs;
Routine can be included in a library;
Helps to make the program code more understandable;
Ensures that the routine is self-contained // routine is independent of
the rest of the program;
(global variables use memory while a program is running) but local
variables use memory for only part of the time a program is running;
reduces possibility of undesirable side effects;
using global variables makes a program harder to debug;

Max 2: Any 2 from above

2

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 10 of 46

03 1 1 mark for AO3 (design) and 3 marks for AO3 (programming)

AO3 (design) – 1 mark:

Note that AO3 (design) mark is for selecting appropriate techniques to
use to solve the problem, so should be credited whether the syntax of
programming language statements is correct or not and regardless of
whether the solution works.

1 mark: Identification of correct logical conditions required to determine
if the player attempts to move North from the northern end of the cabin;

AO3 (programming) – 3 marks:

Note that AO3 (programming) marks are for programming and so
should only be awarded for syntactically correct code that performs its
required function.

1 mark: Selection statement with two correct conditions;

1 mark: Value of False returned correctly by the function if illegal
north move is made;
R. if a value of False will always be returned by the function
R. if all north moves will return False
R. if all moves when PlayerPosition.NoOfCellsSouth is in
row 1 will return False

1 mark: Value of True returned correctly by the function if legal north
move is made;

A. Answers which combine all the checks for a valid move into one
selection statement

Python 2.6:

def CheckValidMove(PlayerPosition,Direction):
 ValidMove = True
 if not (Direction in ['N','S','W','E','M']):
 ValidMove = False
 if PlayerPosition.NoOfCellsSouth == 0 and
Direction == 'N':
 ValidMove = False
 return ValidMove

4

03 2 Mark is for AO3 (programming)

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 11 of 46

Python 2.6:

...
MoveDirection = ''
DisplayCavern(Cavern, MonsterAwake)
while not (Eaten or FlaskFound or (MoveDirection
== 'M')):
 ValidMove = False
 while not ValidMove:
 DisplayMoveOptions()
 MoveDirection = GetMove()
 ValidMove =
CheckValidMove(PlayerPosition, MoveDirection)
 if not ValidMove:
 print "That is not a valid move,
please try again."
 if MoveDirection != 'M':
...

1 mark: Selection structure with correct condition that displays the
correct message under the correct circumstances;

03 3 Mark is for AO3 (evaluate)

Info for examiner: Must match code from 03.1 and 03.2, including
prompts on screen capture matching those in code. Code
for 03.1 and 03.2 must be sensible.

Please enter your choice:
1

|*| | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

Enter N to move NORTH
Enter E to move EAST

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 12 of 46

Enter S to move SOUTH
Enter W to move WEST
Enter M to return to the Main Menu

N

That is not a valid move, please try again.

Screen capture(s) showing correct cavern state with a player at the
northern end of the cavern (top line). 'N' being entered at prompt,
followed by correct error message being displayed ;

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 13 of 46

04 1 1 mark for AO3 (design) and 7 marks for AO3 (programming)

Mark Scheme

Level Description Mark

Range
4 A line of reasoning has been followed to arrive at

a logically structured working or almost fully
working programmed solution. The score is
updated correctly as a result of all four described
triggers. At the end of the game the required
message is displayed in at least one of the two
circumstances. To award eight marks, the code
must perform exactly as required in the question.
It is evident from the program code that the code
has been designed appropriately to ensure that
the task is achieved.

7-8

3 There is evidence that a line of reasoning has
been followed to produce a logically structured
subroutine that works correctly in most cases but
with some omissions (e.g. the score may not be
updated correctly in one of the four cases or the
message that is displayed may not match the
question). It is evident from the program code
that it has been designed appropriately to update
the score correctly in most circumstances.

5-6

2 There is evidence that a line of reasoning has
been partially followed as the score is updated
correctly as a result of at least two of the listed
triggers. The correct message is not displayed.
There is not enough evidence that a line of
reasoning has been followed to award a mark for
the design of the solution.

3-4

1 A variable has been used to store the score and
there is an attempt to modify this as a result of at
least one of the four listed triggers. This
modification may not be in exactly the right place
and the value to change the score by may be
incorrect, but it should be possible to see that it
was intended to be linked to a particular trigger.
To award two marks instead of one, some of the
code must be syntactically correct. There is
insufficient evidence to suggest that a line of
reasoning has been followed or that the solution
has been designed.

1-2

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 14 of 46

Guidance

Evidence of AO3 (design) - 1 point:

Evidence of design to look for in responses:

• Identifying the correct locations in the program code to change
the score at. To be credited for this point, the correct location
for at least three of the four changes must be identified, but the
amount that Score is changed by could be incorrect, as could
the syntax.

Note that AO3 (design) point is for selecting appropriate techniques to
use to solve the problem, so should be credited whether the syntax of
programming language statements is correct or not and regardless of
whether the solution works.

Evidence of AO3 (programming) – 7 points:

Evidence of programming to look for in responses:

• Score is assigned the value 0 – before the first repetition
structure in PlayGame

• Score is incremented by 10 after a valid player move
• Score is incremented by 50 when the flask is found
• Score is decreased by 10 when a trap is activated
• Score is decreased by 50 when eaten by the monster
• Correct message displayed with Score if player wins
• Correct message displayed with Score if player loses

Note that AO3 (programming) points are for programming and so
should only be awarded for syntactically correct code.

Example Solution - Python 2.6

def PlayGame(Cavern, TrapPositions,
MonsterPosition, PlayerPosition, FlaskPosition,
MonsterAwake):
 Score = 0
 Eaten = False
 FlaskFound = False
 MoveDirection = ''
 DisplayCavern(Cavern, MonsterAwake)
 while not (Eaten or FlaskFound or

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 15 of 46

(MoveDirection == 'M')):
 ValidMove = False
 while not ValidMove:
 DisplayMoveOptions()
 MoveDirection = GetMove()
 ValidMove =
CheckValidMove(PlayerPosition, MoveDirection)
 if not ValidMove:

 print "That is not a valid move,
please try again."

 if MoveDirection != 'M':
 Score = Score + 10
 MakeMove(Cavern, MoveDirection,
PlayerPosition)
 DisplayCavern(Cavern, MonsterAwake)
 FlaskFound =
CheckIfSameCell(PlayerPosition, FlaskPosition)
 if FlaskFound:
 DisplayWonGameMessage()
 Score = Score + 50
 print "Your score was: ",Score
 Eaten = CheckIfSameCell(MonsterPosition,
PlayerPosition)
 if not MonsterAwake.Is and not FlaskFound
and not Eaten:
 MonsterAwake.Is =
CheckIfSameCell(PlayerPosition,
TrapPositions[0])
 if not MonsterAwake.Is:
 MonsterAwake.Is =
CheckIfSameCell(PlayerPosition,
TrapPositions[1])
 if MonsterAwake.Is:
 DisplayTrapMessage()
 Score = Score - 10
 DisplayCavern(Cavern, MonsterAwake)
 if MonsterAwake.Is and not Eaten and not
FlaskFound:
 Count = 0
 while Count < 2 and not Eaten:
 MakeMonsterMove(Cavern,
MonsterPosition, FlaskPosition, PlayerPosition)
 Eaten =
CheckIfSameCell(MonsterPosition,
PlayerPosition)

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 16 of 46

 print ''
 raw_input("Press Enter key to
continue")
 DisplayCavern(Cavern, MonsterAwake)
 Count += 1
 if Eaten:
 DisplayLostGameMessage()
 Score = Score - 50
 print "Your score was: ",Score

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 17 of 46

04 2 One mark for AO3 (evaluate)

Info for examiner: Must match code from 04.1, including prompts on
screen capture matching those in code. Code for 04.1
must be sensible.

E

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |M| |*| |

Well Done! You have found the flask containing
the Styxian potion.
You have won the game of MONSTER!

Your score was: 70

1 mark: Screen capture(s) showing correct cavern state followed by
message ‘Your score was: 70’;

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 18 of 46

05 1 3 marks for AO3 (design) and 9 marks for AO3 (programming)

Mark Scheme

Level Description Mark

Range
4 A line of reasoning has been followed to arrive

at a logically structured working or almost fully
working programmed solution that is efficient
and makes use of nested loops to iterate
through the required cells in the array to test for
the presence of both traps. A formal interface is
used to pass at least some of the required data
into and out of the subroutine. All of the
appropriate design decisions have been taken.

10-12

3 There is evidence that a line of reasoning has
been followed to produce a logically structured
subroutine that either works correctly in most
cases (e.g. some cells may be missed from the
checks or only one trap may be checked for) or
works correctly in all cases but is not efficient
(e.g. multiple IF statements used instead of
nested loops). A formal subroutine interface
may or may not have been used. The solution
demonstrates good design work as most of the
correct design decisions have been taken.

7-9

2 A subroutine has been created and some
appropriate, syntactically correct programming
language statements have been written. There
is evidence that a line of reasoning has been
partially followed as although the subroutine
may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working
solution. There is evidence of some appropriate
design work as the response recognises at
least one appropriate technique that could be
used by a working solution, regardless of
whether this has been implemented correctly.

4-6

1 A subroutine has been created and some
appropriate programming language statements
have been written but there is no evidence that
a line of reasoning has been followed to arrive
at a working solution. The statements written
may or may not be syntactically correct and the
subroutine will have very little or none of the

1-3

12

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 19 of 46

required functionality. It is unlikely that any of
the key design elements of the task have been
recognised.

Guidance

Evidence of AO3 (design) - 3 points:

Evidence of design to look for in responses:

• Identifying that the use of nested loops is the most efficient way to

solve this problem
• Identifying that the appropriate technique to use to solve the

problem is to set the value of a flag to an initial value and then
change this if a trap is found

• Identifying that there are two traps, both of which must be checked
for

Note that AO3 (design) points are for selecting appropriate techniques
to use to solve the problem, so should be credited whether the syntax
of programming language statements is correct or not and regardless
of whether the solution works.

Evidence of AO3 (programming) – 9 points:

Evidence of programming to look for in responses:

• TrapDetector subroutine created – with begin and end of
subroutine

• TrapPositions and PlayerPosition passed as
parameters to the TrapDetector subroutine

• True/False returned by subroutine
• Initial value of flag set to keep track of whether trap detected
• Use of one loop to iterate through some of the cells
• Use of nested loops to iterate through all of the cells
• Selection statement to check for Trap1 in a specific cell
• Selection statement to check for Trap2 in a specific cell
• Value of flag changes if a trap detected

Less efficient solutions may use multiple IF statements instead of
loops to check the required cells.

Note that AO3 (programming) points are for programming and so
should only be awarded for syntactically correct code.

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 20 of 46

Example Solution - Python 2.6

def TrapDetector(TrapPositions,
PlayerPosition):
 TrapFound = False
 for Count1 in
range(PlayerPosition.NoOfCellsSouth-
1,PlayerPosition.NoOfCellsSouth+2):
 for Count2 in
range(PlayerPosition.NoOfCellsEast-
1,PlayerPosition.NoOfCellsEast+2):
 if TrapPositions[0].NoOfCellsEast ==
Count2 and TrapPositions[0].NoOfCellsSouth ==
Count1:
 TrapFound = True
 if TrapPositions[1].NoOfCellsEast ==
Count2 and TrapPositions[1].NoOfCellsSouth ==
Count1:
 TrapFound = True
 return TrapFound

05 2 Mark if for AO3 (programming)

Python 2.6:

 if MoveDirection != 'M':
 MakeMove(Cavern, MoveDirection,
PlayerPosition)
 DisplayCavern(Cavern, MonsterAwake)
 if TrapDetector(TrapPositions,
PlayerPosition):
 print "Trap detected"
 else:
 print "No trap detected"
 FlaskFound =
CheckIfSameCell(PlayerPosition, FlaskPosition)
 if FlaskFound:
 DisplayWonGameMessage()
 Eaten = CheckIfSameCell(MonsterPosition,
PlayerPosition)

Marking:

1 mark: Call to TrapDetector subroutine in correct place and
message displayed in correct circumstances;

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 21 of 46

05 3

Mark is for AO3 (evaluate)

Info for examiner: Must match code from 05.1 and 05.2, including
prompts on screen capture matching those in code. Code
for 05.1 and 05.2 must be sensible.

W

| | | | | | | |

| | | | | | | |

| | | |*| | | |

| | | | | | | |

| | | | | | | |

Trap detected

S

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |*| | | |

| | | | | | | |

Trap detected

W

| | | | | | | |

| | | | | | | |

| | | | | | | |

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 22 of 46

| | |*| | | | |

| | | | | | | |

No trap detected

1 mark: Screen capture(s) for all three tests cases, showing correct
cavern states followed by correct messages;

05 4 All marks AO2 (analyse)

Cavern:

1 mark: Cavern variable will need a symbol to represent rock // use 'R'
to represent rock in the cavern variable;

ResetCavern: Max 2 marks: any 2 from:

When looking at the outer cells;
randomly select if cell is to be rock;
mark this cell as rock using a set symbol;

CheckValidMove: Max 2 marks: any 2 from:

Alter function to pass in cavern parameter;
Check if move will take player into a cell that is rock;
if so return False;

5

05 5 All marks AO3 (evaluate)

The whole cavern might end up being rock;
There might be insufficient spaces to place all the items in;
The player might be trapped (surrounded by rock);
The monster might be trapped (surrounded by rock);
The flask might be inaccessible;

Max 2, any 2 from 4 above

2

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 23 of 46

C#

01 1 int HowFar;

int MyLoop;
Console.WriteLine("How far to count?");
HowFar = int.Parse(Console.ReadLine());
while (HowFar < 1)
{
 Console.WriteLine("Not a valid number, please
try again.");
 HowFar = int.Parse(Console.ReadLine());
}
for (MyLoop = 1; MyLoop < HowFar+1; MyLoop++)
{
 if (MyLoop % 3 == 0 && MyLoop % 5 == 0)
 {
 Console.WriteLine("FizzBuzz");
 }
 else
 {
 if (MyLoop % 3 == 0)
 {
 Console.WriteLine("Fizz");
 }
 else
 {
 if (MyLoop % 5 == 0)
 {
 Console.WriteLine("Buzz");
 }
 else
 Console.WriteLine(MyLoop);
}

8

03 1 public static Boolean CheckValidMove(CellReference

PlayerPosition, char Direction)
8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 24 of 46

{
 ValidMove = true;
 if (!(Direction == 'N' || Direction == 'S' ||
 Direction == 'W' || Direction == 'E' ||
 Direction
== 'M'))
 {
 ValidMove = false;
 }
 if (PlayerPosition.NoOfCellsSouth == 0 &&
Direction == 'N')
 {
 ValidMove = false;
 }
 return ValidMove;
}

03 2

MoveDirection = '';
DisplayCavern(Cavern, MonsterAwake);
while (!(Eaten || FlaskFound || MoveDirection ==
'M'))
{
 ValidMove = false;
 while (!ValidMove)
 {
 DisplayMoveOptions();
 MoveDirection = GetMove();
 ValidMove = CheckValidMove(PlayerPosition,
MoveDirection);
 if (!ValidMove)
 {
 Console.WriteLine("That is not a valid
move, please try again.");
 }
 }
 if (MoveDirection != 'M')
 {
..........

8

04 1 public static void PlayGame(char[,] Cavern,

CellRefence[] TrapPositions, CellReference
MonsterPosition, CellReference PlayerPosition,
CellReference FlaskPosition, Boolean MonsterAwake)

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 25 of 46

{
 int Score = 0;
 Boolean Eaten = false;
 Boolean FlaskFound = false;
 char MoveDirection = '';
 DisplayCavern(Cavern, MonsterAwake);
 while (!(Eaten || FlaskFound || (MoveDirection ==
'M'))
 {
 ValidMove = false;
 while (!ValidMove)
 {
 DisplayMoveOptions();
 MoveDirection = GetMove();
 ValidMove = CheckValidMove(PlayerPosition,
MoveDirection);
 if (!ValidMove)
 {
 Console.WriteLine("That is not a valid
move, please try again.");
 }
 }
 if (MoveDirection != 'M')
 {
 Score = Score + 10;
 MakeMove(Cavern, MoveDirection,
PlayerPosition);
 DisplayCavern(Cavern, MonsterAwake);
 FlaskFound = CheckIfSameCell(PlayerPosition,
FlaskPosition);
 if (FlaskFound)
 {
 DisplayWonGameMessage();
 Score = Score + 50;
 Console.WriteLine("Your score was: " +
Score);
 }
 Eaten = CheckIfSameCell(MonsterPosition,
PlayerPosition);
 if (!MonsterAwakes && !FlaskFound && !Eaten)
 {
 MonsterAwake =
CheckIfSameCell(PlayerPosition, TrapPositions[0]);
 if (!MonsterAwake)
 {
 MonsterAwake =
CheckIfSameCell(PlayerPosition, TrapPositions[1]);
 }
 if (MonsterAwake)

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 26 of 46

 {
 DisplayTrapMessage();
 Score = Score – 10;
 DisplayCavern(Cavern, MonsterAwake);
 }
 }
 if (MonsterAwake && !Eaten && !FlaskFound)
 {
 Count = 0;
 while (Count < 2 && !Eaten)
 {
 MakeMonsterMove(Cavern, MonsterPosition,
FlaskPosition, PlayerPosition);
 Eaten = CheckIfSameCell(MonsterPosition,
PlayerPosition);
 Console.WriteLine();
 Console.ReadLine("Press Enter key to
continue");
 DisplayCavern(Cavern, MonsterAwake);
 Count = Count + 1;
 }
 }
 if (Eaten)
 {
 DisplayLostGameMessage();
 Score = Score – 50;
 Console.WriteLine("Your score was: " +
Score);
 }
 }
 }
}

05 1 public static Boolean TrapDetector(CellReference[]

TrapPositions, CellReference PlayerPosition)
{
 Boolean TrapFound = false;
 int Count1;
 int Count2;
 for (Count1 = PlayerPosition.NoOfCellsSouth - 1;
Count1 < PlayerPosition.NoOfCellsSouth + 2;
Count1++)
 {
 for (Count2 = PlayerPosition.NoOfCellsEast –
1; Count2 < PlayerPosition.NoOfCellsEast + 2;
Count2++)
 {
 if (TrapPositions[0].NoOfCellsEast ==

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 27 of 46

Count2 && TrapPositions[0].NoOfCellsSouth == Count1)
 {
 TrapFound = true;
 }
 if (TrapPositions[1].NoOfCellsEast ==
Count2 && TrapPositions[1].NoOfCellsSouth == Count1)
 {
 TrapFound = true;
 }
 }
 }
 return TrapFound;
}

05 2 if (MoveDirection != 'M')

 {
 MakeMove(Cavern, MoveDirection,
PlayerPosition);
 DisplayCavern(Cavern, MonsterAwake);
 if (TrapDetector(TrapPositions,
PlayerPosition))
 {
 Console.WriteLine("Trap detected");
 }
 else
 {
 Console.WriteLine("No trap detected");
 }
 FlaskFound = CheckIfSameCell(PlayerPosition,
FlaskPosition);
 if (FlaskFound)
 {
 DisplayWonGameMessage();
 }
 Eaten = CheckIfSameCell(MonsterPosition,
PlayerPosition);
 }

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 28 of 46

Java

01 1 int howFar;

int myLoop;
Scanner in = new Scanner(System.in);
System.out.println("How far to count?");
System.out.println("Enter i Value: ");
howFar = in.nextInt();
while (howFar < 1)
{
 System.out.println("Not a valid number, please
try again.");
 howFar = in.nextInt();
}
for (myLoop = 1; myLoop < howFar+1; myLoop++)
{
 if (myLoop % 3 == 0 && myLoop % 5 == 0)
 {
 System.out.println("FizzBuzz");
 }
 else
 {
 if (myLoop % 3 == 0)
 {
 System.out.println("Fizz");
 }
 else
 {
 if (myLoop % 5 == 0)
 {
 System.out.println("Buzz");
 }
 else
 System.out.println(myLoop);
 }
 }
}

If students use the AQAConsole module, a possible solution :

int howFar;
int myLoop;
console.println("How far to count?");
howFar = console.readInteger();
while (howFar < 1)
{
 console.println("Not a valid number, please try
again.");
 howFar = console.readInteger());

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 29 of 46

}
for (myLoop = 1; myLoop < howFar+1; myLoop++)
{
 if (myLoop % 3 == 0 && myLoop % 5 == 0)
 {
 console.println("FizzBuzz");
 }
 else
 {
 if (myLoop % 3 == 0)
 {
 console.println("Fizz");
 }
 else
 {
 if (myLoop % 5 == 0)
 {
 console.println("Buzz");
 }
 else
 console.println(myLoop);
 }
 }
}

03 1 public boolean checkValidMove(CellReference

playerPosition, char direction)
{
 validMove = true;
 if (!(direction == 'N' || direction == 'S' ||
 direction == 'W' || direction == 'E' ||
 direction
== 'M'))
 {
 validMove = false;
 }
 if (playerPosition.noOfCellsSouth == 0 &&
direction == 'N')
 {
 validMove = false;
 }
 return validMove;
}

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 30 of 46

03 2
moveDirection = '';
displayCavern(cavern, monsterAwake);
while (!(eaten || flaskFound || moveDirection ==
'M'))
{
 validMove = false;
 while (!validMove)
 {
 displayMoveOptions();
 moveDirection = getMove();
 validMove = checkValidMove(playerPosition,
moveDirection);
 if (!validMove)
 {
 console.println("That is not a valid
move, please try again.");
 }
 }
 if (moveDirection != 'M')
 {
..........

8

04 1 public void playGame(char[][] cavern, CellRefence[]

trapPositions, CellReference monsterPosition,
CellReference playerPosition, CellReference
flaskPosition, boolean monsterAwake)
{
 int score = 0;
 boolean eaten = false;
 boolean flaskFound = false;
 char moveDirection = '';
 displayCavern(cavern, monsterAwake);
 while (!(eaten || flaskFound || (moveDirection ==
'M'))
 {
 validMove = false;
 while (!validMove)
 {
 displayMoveOptions();
 moveDirection = getMove();
 validMove = checkValidMove(playerPosition,
moveDirection);
 if (!validMove)
 {
 console.println("That is not a valid move,
please try again.");
 }

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 31 of 46

 }
 if (moveDirection != 'M')
 {
 score = score + 10;
 makeMove(cavern, moveDirection,
playerPosition);
 displayCavern(cavern, monsterAwake);
 flaskFound = checkIfSameCell(playerPosition,
flaskPosition);
 if (flaskFound)
 {
 displayWonGameMessage();
 score = score + 50;
 console.println("Your score was: " + Score);
 }
 eaten = checkIfSameCell(monsterPosition,
playerPosition);
 if (!monsterAwakes && !flaskFound && !eaten)
 {
 monsterAwake =
checkIfSameCell(playerPosition, trapPositions[0]);
 if (!monsterAwake)
 {
 monsterAwake =
checkIfSameCell(playerPosition, trapPositions[1]);
 }
 if (monsterAwake)
 {
 displayTrapMessage();
 score = score – 10;
 displayCavern(cavern, monsterAwake);
 }
 }
 if (monsterAwake && !eaten && !flaskFound)
 {
 count = 0;
 while (count < 2 && !eaten)
 {
 makeMonsterMove(cavern, monsterPosition,
flaskPosition, playerPosition);
 eaten = checkIfSameCell(monsterPosition,
playerPosition);
 console.println();
 console.readLine("Press Enter key to
continue");
 displayCavern(cavern, monsterAwake);
 count = count + 1;
 }
 }

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 32 of 46

 if (eaten)
 {
 displayLostGameMessage();
 score = score – 50;
 console.println("Your score was: " + Score);
 }
 }
 }
}

05 1 public boolean trapDetector(CellReference[]

trapPositions, CellReference playerPosition)
{
 boolean trapFound = false;
 int count1;
 int count2;
 for (count1 = playerPosition.noOfCellsSouth - 1;
count1 < playerPosition.noOfCellsSouth + 2;
count1++)
 {
 for (count2 = playerPosition.noOfCellsEast –
1; count2 < playerPosition.noOfCellsEast + 2;
count2++)
 {
 if (trapPositions[0].noOfCellsEast ==
count2 && trapPositions[0].noOfCellsSouth == count1)
 {
 trapFound = true;
 }
 if (trapPositions[1].noOfCellsEast ==
count2 && trapPositions[1].noOfCellsSouth == count1)
 {
 trapFound = true;
 }
 }
 }
 return trapFound;
}

8

05 2 if (moveDirection != 'M')

 {
 makeMove(cavern, moveDirection,
playerPosition);
 displayCavern(cavern, monsterAwake);

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 33 of 46

 if (trapDetector(trapPositions,
playerPosition))
 {
 console.println("Trap detected");
 }
 else
 {
 console.println("No trap detected");
 }
 flaskFound = checkIfSameCell(playerPosition,
flaskPosition);
 if (flaskFound)
 {
 displayWonGameMessage();
 }
 eaten = checkIfSameCell(monsterPosition,
playerPosition);
 }

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 34 of 46

Pascal

01 1 program FizzBuzz(input,output);

var
 HowFar,MyLoop : Integer;

begin
 writeln('How far to count?');
 readln(HowFar);
 while HowFar < 1 Do
 readln(HowFar);
 for MyLoop := 1 to HowFar do
 begin
 if (MyLoop Mod 3 = 0) And (MyLoop Mod 5 = 0)
then
 writeln('FizzBuzz')
 else if MyLoop Mod 3 = 0 then
 writeln('Fizz')
 else if MyLoop Mod 5 = 0 then
 writeln('Buzz')
 else writeln(MyLoop);
 end;

end.

8

03 1 Function CheckValidMove(PlayerPosition :

TCellReference; Direction : Char) : Boolean;
 Var
 ValidMove : Boolean;
 Begin
 ValidMove := True;
 If Not (Direction In ['N','S','W','E','M'])
 Then ValidMove := False;
 If (PlayerPosition.NoOfCellsSouth = 1) And
(Direction = 'N')
 Then ValidMove := False;
 CheckValidMove := ValidMove;
 End;

8

03 2 DisplayCavern(Cavern, MonsterAwake);

 Repeat
 Repeat
 DisplayMoveOptions;
 MoveDirection := GetMove;
 ValidMove := CheckValidMove(PlayerPosition,
MoveDirection);

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 35 of 46

 If not(ValidMove)
 Then writeln('That is not a valid move,
please try again.');
 Until ValidMove;
 If MoveDirection <> 'M'
 Then
 Begin

04 1 Procedure PlayGame(Var Cavern : TCavern;

TrapPositions : TTrapPositions; Var MonsterPosition,
PlayerPosition,
 FlaskPosition : TCellReference; Var MonsterAwake :
Boolean);
 Var
 Count : Integer;
 Eaten : Boolean;
 FlaskFound : Boolean;
 MoveDirection : Char;
 ValidMove : Boolean;
 Score : Integer;
 Begin
 Score := 0;
 Eaten:= False;
 FlaskFound := False;
 DisplayCavern(Cavern, MonsterAwake);
 Repeat
 Repeat
 DisplayMoveOptions;
 MoveDirection := GetMove;
 ValidMove := CheckValidMove(PlayerPosition,
MoveDirection);
 If not(ValidMove)
 Then writeln('That is not a valid move,
please try again.');
 Until ValidMove;
 If MoveDirection <> 'M'
 Then
 Begin
 Score := Score + 10;
 MakeMove(Cavern, MoveDirection,
PlayerPosition);
 DisplayCavern(Cavern, MonsterAwake);
 FlaskFound :=
CheckIfSameCell(PlayerPosition, FlaskPosition);
 If FlaskFound
 Then
 Begin
 DisplayWonGameMessage;

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 36 of 46

 Score := Score + 50;
 writeln('Your score was: ',Score);
 End;
 Eaten :=
CheckIfSameCell(MonsterPosition, PlayerPosition);
 If Not MonsterAwake And Not FlaskFound
And Not Eaten
 Then
 Begin
 MonsterAwake :=
CheckIfSameCell(PlayerPosition, TrapPositions[1]);
 If Not MonsterAwake
 Then MonsterAwake :=
CheckIfSameCell(PlayerPosition, TrapPositions[2]);
 If MonsterAwake
 Then
 Begin
 DisplayTrapMessage;
 Score := Score - 10;
 DisplayCavern(Cavern,
MonsterAwake);
 End;
 End;
 If MonsterAwake And Not Eaten And Not
FlaskFound
 Then
 Begin
 Count := 0;
 Repeat
 MakeMonsterMove(Cavern,
MonsterPosition, FlaskPosition, PlayerPosition);
 Eaten :=
CheckIfSameCell(MonsterPosition, PlayerPosition);
 Writeln;
 Writeln('Press Enter key to
continue');
 Readln;
 DisplayCavern(Cavern,
MonsterAwake);
 Count := Count + 1;
 Until (Count = 2) Or Eaten;
 End;
 If Eaten
 Then
 Begin
 DisplayLostGameMessage;
 Score := Score - 50;
 writeln('Your score was:
',Score);

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 37 of 46

 end;
 End;
 Until Eaten Or FlaskFound Or (MoveDirection =
'M');
 End;

05 1 Function TrapDetector(TrapPositions :

TTrapPositions;PlayerPosition :
TCellReference):Boolean;
 Var
 TrapFound : Boolean;
 Count1, Count2 : Integer;
 Begin
 TrapFound := False;
 For Count1 := PlayerPosition.NoOfCellsSouth - 1
To PlayerPosition.NoOfCellsSouth + 1 Do
 For Count2 := PlayerPosition.NoOfCellsEast - 1
To PlayerPosition.NoOfCellsEast + 1 Do
 Begin
 If (TrapPositions[1].NoOfCellsEast =
Count2) And (TrapPositions[1].NoOfCellsSouth =
Count1)
 Then TrapFound := True ;
 If (TrapPositions[2].NoOfCellsEast =
Count2) And (TrapPositions[2].NoOfCellsSouth =
Count1)
 Then TrapFound := True;
 End;
 TrapDetector := TrapFound;
 End;

8

05 2 Score := Score + 10;

 MakeMove(Cavern, MoveDirection,
PlayerPosition);
 DisplayCavern(Cavern, MonsterAwake);
 If TrapDetector(TrapPositions,
PlayerPosition)
 Then writeln('Trap detected')
 Else writeln('No trap detected');
 FlaskFound :=
CheckIfSameCell(PlayerPosition, FlaskPosition);
 If FlaskFound
 Then

8

VB.NET

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 38 of 46

01 1 Module Module1

 Sub Main()
 Dim HowFar As Integer
 Dim MyLoop As Integer
 Console.WriteLine("How far to count?")
 HowFar = Console.ReadLine()
 While HowFar < 1
 Console.WriteLine("Not a valid number,
please try again.")
 HowFar = Console.ReadLine()
 End While
 For MyLoop = 1 To HowFar
 If MyLoop Mod 3 = 0 And MyLoop Mod 5 = 0
Then
 Console.WriteLine("FizzBuzz")
 ElseIf MyLoop Mod 3 = 0 Then
 Console.WriteLine("Fizz")
 ElseIf MyLoop Mod 5 = 0 Then
 Console.WriteLine("Buzz")
 Else
 Console.WriteLine(MyLoop)
 End If
 Next
 Console.ReadLine()
 End Sub

End Module

8

03 1 Function CheckValidMove(ByVal PlayerPosition As

CellReference, ByVal Direction As Char) As Boolean
 Dim ValidMove As Boolean
 ValidMove = True
 If Not (Direction = "N" Or Direction = "S"
Or Direction = "W" Or Direction = "E" Or Direction =
"M") Then
 ValidMove = False
 End If
 If PlayerPosition.NoOfCellsSouth = 1 And
Direction = "N" Then
 ValidMove = False
 End If
 CheckValidMove = ValidMove
 End Function

8

03 2 Eaten = False

 FlaskFound = False
 DisplayCavern(Cavern, MonsterAwake)

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 39 of 46

 Do
 Do
 DisplayMoveOptions()
 MoveDirection = GetMove()
 ValidMove =
CheckValidMove(PlayerPosition, MoveDirection)
 If Not (ValidMove) Then
 Console.WriteLine("That is not a
valid move, please try again.")
 End If
 Loop Until ValidMove
 If MoveDirection <> "M" Then
 MakeMove(Cavern, MoveDirection,
PlayerPosition)

04 1 Sub PlayGame(ByRef Cavern(,) As Char, ByVal

TrapPositions() As CellReference, ByRef
MonsterPosition As CellReference, ByRef
PlayerPosition As CellReference, ByRef FlaskPosition
As CellReference, ByRef MonsterAwake As Boolean)
 Dim Count As Integer
 Dim Eaten As Boolean
 Dim FlaskFound As Boolean
 Dim MoveDirection As Char
 Dim ValidMove As Boolean
 Dim Score As Integer
 Score = 0
 Eaten = False
 FlaskFound = False
 DisplayCavern(Cavern, MonsterAwake)
 Do
 Do
 DisplayMoveOptions()
 MoveDirection = GetMove()
 ValidMove =
CheckValidMove(PlayerPosition, MoveDirection)
 If Not (ValidMove) Then
 Console.WriteLine("That is not a
valid move, please try again.")
 End If
 Loop Until ValidMove
 If MoveDirection <> "M" Then
 Score = Score + 10
 MakeMove(Cavern, MoveDirection,
PlayerPosition)
 DisplayCavern(Cavern, MonsterAwake)
 FlaskFound =
CheckIfSameCell(PlayerPosition, FlaskPosition)
 If FlaskFound Then
 DisplayWonGameMessage()

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 40 of 46

 Score = Score + 50
 Console.WriteLine("Your score
was: " & Score)
 End If
 Eaten =
CheckIfSameCell(MonsterPosition, PlayerPosition)
 If Not MonsterAwake And Not
FlaskFound And Not Eaten Then
 MonsterAwake =
CheckIfSameCell(PlayerPosition, TrapPositions(1))
 If Not MonsterAwake Then
 MonsterAwake =
CheckIfSameCell(PlayerPosition, TrapPositions(2))
 End If
 If MonsterAwake Then
 DisplayTrapMessage()
 Score = Score - 10
 DisplayCavern(Cavern,
MonsterAwake)
 End If
 End If
 If MonsterAwake And Not Eaten And
Not FlaskFound Then
 Count = 0
 Do
 MakeMonsterMove(Cavern,
MonsterPosition, FlaskPosition, PlayerPosition)
 Eaten =
CheckIfSameCell(MonsterPosition, PlayerPosition)
 Console.WriteLine()
 Console.WriteLine("Press
Enter key to continue")
 Console.ReadLine()
 DisplayCavern(Cavern,
MonsterAwake)
 Count = Count + 1
 Loop Until Count = 2 Or Eaten
 End If
 If Eaten Then
 DisplayLostGameMessage()
 Score = Score - 50
 Console.WriteLine("Your score
was: " & Score)
 End If
 End If
 Loop Until Eaten Or FlaskFound Or
MoveDirection = "M"
 End Sub

05 1 Function TrapDetector(ByVal TrapPositions() As

CellReference, ByVal PlayerPosition As
8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 41 of 46

CellReference) As Boolean
 Dim TrapFound As Boolean
 TrapFound = False
 Dim Count1, Count2 As Integer
 For Count1 = PlayerPosition.NoOfCellsSouth -
1 To PlayerPosition.NoOfCellsSouth + 1
 For Count2 =
PlayerPosition.NoOfCellsEast - 1 To
PlayerPosition.NoOfCellsEast + 1
 If TrapPositions(1).NoOfCellsEast =
Count2 And TrapPositions(1).NoOfCellsSouth = Count1
Then
 TrapFound = True
 End If
 If TrapPositions(2).NoOfCellsEast =
Count2 And TrapPositions(2).NoOfCellsSouth = Count1
Then
 TrapFound = True
 End If
 Next
 Next
 TrapDetector = TrapFound

 End Function

05 2 If MoveDirection <> "M" Then

 Score = Score + 10
 MakeMove(Cavern, MoveDirection,
PlayerPosition)
 DisplayCavern(Cavern, MonsterAwake)
 If TrapDetector(TrapPositions,
PlayerPosition) Then
 Console.WriteLine("Trap
detected")
 Else
 Console.WriteLine("No trap
detected")
 End If
 FlaskFound =
CheckIfSameCell(PlayerPosition, FlaskPosition)
 If FlaskFound Then

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 42 of 46

Python 3

01 1 print ("How far to count?")

HowFar = int(input())
while HowFar < 1:
 print ("Not a valid number, please try again.")
 HowFar = int(input())
 for MyLoop in range(1,HowFar+1):
 if MyLoop%3 == 0 and MyLoop%5 == 0:
 print ("FizzBuzz")
 elif MyLoop%3 == 0:
 print ("Fizz")
 elif MyLoop%5 == 0:
 print ("Buzz")
 else:
 print (MyLoop)

8

03 1 def CheckValidMove(PlayerPosition,Direction):

 ValidMove = True
 if not (Direction in ['N','S','W','E','M']):
 ValidMove = False
 if PlayerPosition.NoOfCellsSouth == 0 and
Direction == 'N':
 ValidMove = False
 return ValidMove

8

03 2 while not ValidMove:

 DisplayMoveOptions()
 MoveDirection = GetMove()
 ValidMove = CheckValidMove(PlayerPosition,
MoveDirection)
 if not (ValidMove):
 print('That is not a valid move, please
try again.')
 if MoveDirection != 'M':

8

04 1 def PlayGame(Cavern, TrapPositions, MonsterPosition,

PlayerPosition, FlaskPosition, MonsterAwake):
 Score = 0
 Eaten = False
 FlaskFound = False
 MoveDirection = ''
 DisplayCavern(Cavern, MonsterAwake)
 while not (Eaten or FlaskFound or (MoveDirection
== 'M')):

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 43 of 46

 ValidMove = False

 while not ValidMove:
 DisplayMoveOptions()
 MoveDirection = GetMove()
 ValidMove = CheckValidMove(PlayerPosition,
MoveDirection)
 if not (ValidMove):
 print('That is not a valid move, please
try again.')
 if MoveDirection != 'M':
 Score = Score + 10
 MakeMove(Cavern, MoveDirection,
PlayerPosition)
 DisplayCavern(Cavern, MonsterAwake)
 FlaskFound = CheckIfSameCell(PlayerPosition,
FlaskPosition)
 if FlaskFound:
 DisplayWonGameMessage()
 Score = Score + 50
 print('Your score was:',Score)
 Eaten = CheckIfSameCell(MonsterPosition,
PlayerPosition)
 if not MonsterAwake.Is and not FlaskFound and
not Eaten:
 MonsterAwake.Is =
CheckIfSameCell(PlayerPosition, TrapPositions[1])
 if not MonsterAwake.Is:
 MonsterAwake.Is =
CheckIfSameCell(PlayerPosition, TrapPositions[2])
 if MonsterAwake.Is:
 DisplayTrapMessage()
 Score = Score - 10
 DisplayCavern(Cavern, MonsterAwake)
 if MonsterAwake.Is and not Eaten and not
FlaskFound:
 Count = 0
 while Count < 2 and not Eaten:
 MakeMonsterMove(Cavern, MonsterPosition,
FlaskPosition, PlayerPosition)
 Eaten = CheckIfSameCell(MonsterPosition,
PlayerPosition)
 print('')
 input('Press Enter key to continue')
 DisplayCavern(Cavern, MonsterAwake)
 Count += 1
 if Eaten:
 DisplayLostGameMessage()
 Score = Score - 50

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 44 of 46

 print('Your score was:',Score)

05 1 def TrapDetector(TrapPositions,PlayerPosition):

 TrapFound = False
 for Count1 in
range(PlayerPosition.NoOfCellsSouth-
1,PlayerPosition.NoOfCellsSouth+2):
 for Count2 in
range(PlayerPosition.NoOfCellsEast-
1,PlayerPosition.NoOfCellsEast+2):
 if TrapPositions[0].NoOfCellsEast == Count2
and TrapPositions[0].NoOfCellsSouth == Count1:
 TrapFound = True
 if TrapPositions[1].NoOfCellsEast == Count2
and TrapPositions[1].NoOfCellsSouth == Count1:
 TrapFound = True
 return TrapFound

8

05 2 if MoveDirection != 'M':

 Score = Score + 10
 MakeMove(Cavern, MoveDirection,
PlayerPosition)
 DisplayCavern(Cavern, MonsterAwake)
 if TrapDetector(TrapPositions,PlayerPosition):
 print('Trap detected')
 else:
 print('No trap detected')
 FlaskFound = CheckIfSameCell(PlayerPosition,
FlaskPosition)
 if FlaskFound:

8

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 45 of 46

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1A/1B/1C/1D/1E – SPECIMEN

 46 of 46

Copyright © 2014 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy
any material that is acknowledged to a third party, even for internal use within the centre.

	AS

