
 Paper 1 V1.1 (FINAL DRAFT)

AS
COMPUTER SCIENCE
(7516/D)
Paper 1

Date Morning 1 hour 30 minutes

Materials
• For this paper you must have access to:

• a computer
• a printer
• appropriate software.

• An electronic version of the Skeleton Program and Data File.
• A hard copy of the Preliminary Material.

Instructions
• Type the information required on the front of your Electronic Answer Document.
• Enter your answers into the Electronic Answer Document.
• Answer all questions.
• Before the start of the examination make sure your centre number, candidate name and

candidate number are shown clearly in the footer of every page of your Electronic Answer
Document (not the front cover).

• Tie together all your printed Electronic Answer Document pages and hand them to the
invigilator.

Information
• The marks for questions are shown in brackets.
• The maximum mark for this paper is 75.
• No extra time is allowed for printing and collating.
• The question paper is divided into three sections.
• You are not allowed to use a calculator.

Advice
• You are advised to spend time on each section as follows:

Section A – 20 minutes
Section B – 20 minutes
Section C – 50 minutes.

• Save your work at regular intervals.

 SPECIMEN MATERIAL

2

 Paper 1 V1.1 (FINAL DRAFT)

Section A

You are advised to spend no more than 20 minutes on this section.

Enter your answers to Section A in your Electronic Answer Document.

You must save this document at regular intervals.

The question in this section asks you to write program code starting from a new
program/project/file.

• Save your program/project/file in its own folder/directory.
• You are advised to save your program at regular intervals.

Figure 1 contains the pseudo-code for a program to output a sequence according to
the ‘Fizz Buzz’ counting game.

 Figure 1

 OUTPUT "How far to count?"
 INPUT HowFar
 WHILE HowFar < 1
 OUTPUT "Not a valid number, please try again."
 INPUT HowFar
 ENDWHILE
 FOR MyLoop ← 1 TO HowFar
 IF MyLoop MOD 3 = 0 AND MyLoop MOD 5 = 0

 THEN
 OUTPUT "FizzBuzz"
 ELSE
 IF MyLoop MOD 3 = 0
 THEN
 OUTPUT "Fizz"
 ELSE
 IF MyLoop MOD 5 = 0
 THEN
 OUTPUT "Buzz"
 ELSE
 OUTPUT MyLoop
 ENDIF
 ENDIF
 ENDIF
 ENDFOR

0 1

3

 Paper 1 V1.1 (FINAL DRAFT) Turn over

What you need to do:

Write a program that implements the pseudo-code as shown in Figure 1.

Test the program by showing the result of entering a value of 18 when prompted by the
program.

Test the program by showing the result of entering a value of -1 when prompted by the
program.

Evidence that you need to provide
Include the following in your Electronic Answer Document.

Your PROGRAM SOURCE CODE for the pseudo-code in Figure 1.
 [8 marks]

SCREEN CAPTURE(S) for the tests conducted when a value of 18 is entered by
the user and when a value of -1 is entered by the user.

 [1 mark]

The main part of the program uses a FOR repetition structure.

Explain why a FOR repetition structure was chosen instead of a WHILE repetition
structure.

 [1 mark]

Even though a check has been performed to make sure that the variable HowFar
is greater than 1 there could be inputs that might cause the program to terminate
unexpectedly (crash).

Provide an example of an input that might cause the program to terminate and
describe a method that could be used to prevent this.

 [3 marks]

Question 1 continues on the next page

0 1 . 4

0 1 . 1

0 1 . 2

0 1 . 3

4

 Paper 1 V1.1 (FINAL DRAFT)

Programs written in a high level language are easier to understand and maintain
than programs written in a low level language.

The use of meaningful identifier names is one way in which high level languages
can be made easier to understand.

State three other features of high level languages that can make high level
language programs easier to understand.

 [3 marks]

The finite state machine (FSM) shown in Figure 2 recognises a language with an
alphabet of a and b.

 Figure 2

Input strings of a and aabba would be accepted by this FSM.

In Table 1 indicate whether each input string would be accepted or not accepted
by the FSM in Figure 2.

If an input string would be accepted write YES.
If an input string would not be accepted write NO.

Copy your answer in Table 1 into the Electronic Answer Document.

Table 1

Input string Accepted by FSM?

aaab

abbab

bbbbba

 [2 marks]

In words, describe the language (set of strings) that would be accepted by this
FSM shown in Figure 2.

[2 marks]
END OF SECTION A

0 1 . 5

0 1 . 6

0 1 . 7

5

 Paper 1 V1.1 (FINAL DRAFT) Turn over

There are no questions printed on this page

Turn over for Section B

6

 Paper 1 V1.1 (FINAL DRAFT)

Section B

You are advised to spend no more than 20 minutes on this section.

Enter your answers to Section B in your Electronic Answer Document.

You must save this document at regular intervals.

These questions refer to the Preliminary Material and require you to load the Skeleton

Program, but do not require any additional programming.

Refer either to the Preliminary Material issued with this question paper or your electronic copy.

 State the name of an identifier for:

an array or list variable

[1 mark]

a user-defined subroutine that has four parameters
[1 mark]

a variable that is used to store a whole number.
[1 mark]

a user-defined subroutine that returns one or more values.
[1 mark]

Look at the repetition structures in the DisplayCavern subroutine.

Explain the need for a nested FOR loop and the role of the Count1 and Count2
variables.

[3 marks]

Look at the ResetCavern subroutine.

Why has a named constant been used instead of the numeric value 5?

[2 marks]

0 2 . 5

0 2 . 3

0 2 . 1

0 2 . 2

0 2 . 6

0 2

0 2 . 4

7

 Paper 1 V1.1 (FINAL DRAFT) Turn over

Look at the SetPositionOfItem subroutine.

Describe the purpose of the iterative loop and the command within it in this
subroutine.

[3 marks]

Look at the MakeMonsterMove subroutine.

Describe why it is necessary to check if the monster moves into the same cell as
the flask and how any problem caused by this is solved by the Skeleton Program.

 [3 marks]

Look at the PlayGame subroutine.

Explain why a FOR loop has not been used as the iterative structure to complete
the two moves for the monster.

 [2 marks]

The subroutines in the Skeleton Program avoid the use of global variables: they
use local variables and parameter passing instead.

State two reasons why subroutines should, ideally, not use global variables.

 [2 marks]

END OF SECTION B

 Turn to page 9 for Section C

0 2 . 8

0 2 . 9

0 2 . 1 0

0 2 . 7

8

 Paper 1 V1.1 (FINAL DRAFT)

There are no questions printed on this page

9

 Paper 1 V1.1 (FINAL DRAFT) Turn over

Section C

You are advised to spend no more than 50 minutes on this section.

Enter your answers to Section C in your Electronic Answer Document.

You must save this document at regular intervals.

These questions require you to load the Skeleton Program and to make programming changes

to it.

 This question refers to the subroutines CheckValidMove and PlayGame.

The Skeleton Program currently does not make all the checks needed to ensure
that the move entered by a player is an allowed move. It should not be possible to
make a move that takes a player outside the 7x5 cavern grid.

The Skeleton Program is to be adapted so that it prevents a player from moving
north if they are at the northern end of the cavern.

The subroutine CheckValidMove needs to be adapted so that it returns a value
of False if a player attempts to move north when they are at the northern end of
the cavern.

The subroutine PlayGame is to be adapted so that it displays an error message
to the user if an illegal move is entered. The message should state "That is
not a valid move, please try again.".

Evidence that you need to provide
Include the following in your Electronic Answer Document.

Your amended PROGRAM SOURCE CODE for the subroutine
CheckValidMove.

 [4 marks]

Your amended PROGRAM SOURCE CODE for the subroutine PlayGame.

 [1 mark]

SCREEN CAPTURE(S) for a test run showing a player trying to move north when
they are at the northern end of the cavern.

 [1 mark]

0 3 . 1

0 3 . 2

0 3 . 3

0 3

10

 Paper 1 V1.1 (FINAL DRAFT)

 This question refers to the PlayGame subroutine and will extend the functionality
of the game.

A scoring system is to be implemented as a game of MONSTER! is played. A
variable called Score will be used to store the current score of each player.

The final score will be displayed to the user at the end of the game. At the end of
the game, either the player will have found the flask or the player will have been
eaten by the monster.

The final score should be displayed with the message "Your score was: Y"
where Y is the value of Score.

The scoring system will be based upon the following:

• each valid move by the player is +10 points
• finding the flask is +50 points
• setting off a trap is -10 points
• being killed by the monster is -50 points.

Task 1
Adapt the Skeleton Program so that the scoring system described above is
implemented, with the value of Score being updated as indicated and the required
message being displayed at the end of a game.

Task 2
Test that the changes you have made work by conducting the following test:

• play the training game
• move south
• move south
• move east.

Evidence that you need to provide
Include the following in your Electronic Answer Document.

Your amended PROGRAM SOURCE CODE for the subroutine PlayGame and (if
relevant) the PROGRAM SOURCE CODE for any other subroutine(s) you have
amended.

 [8 marks]

SCREEN CAPTURE(S) showing the required test.

 [1 mark]

0 4 . 1

0 4 . 2

0 4

11

 Paper 1 V1.1 (FINAL DRAFT) Turn over

 This question will extend the functionality of the game.

The player will now have access to a close-range trap detector. After making a
directional move in the cavern, the trap detector will perform a sweep of the
neighbouring cells and report back if a trap is detected. Unfortunately, the detector
can only detect the presence of a trap in a neighbouring cell, and not which
individual cell the trap is in.

In Figure 3 the shaded cells show the cells that would be scanned by the trap
detector if the player were in the cell marked P1 or P2. The trap detector cannot
scan outside the cavern.

Figure 3

 P1

 P2

Task 1
Create a new subroutine, TrapDetector, that, when given the current location
of the player, returns True if a trap is in a neighbouring cell and False if there is
no trap in a neighbouring cell.

When creating this subroutine you should ensure that your solution is efficiently
coded.

Task 2
Modify the PlayGame subroutine so that after the player moves and the new state
of the cavern is displayed:
• the message ‘Trap detected’ is displayed if there is a trap in any

neighbouring cell.
• the message ‘No trap detected’ is displayed if there are no traps in

any neighbouring cell.

Task 3
Test that your program works by loading the training game and showing that:
• a trap is detected after the player’s first move, west
• a trap is detected after the player’s second move, south
• a trap is not detected after the player’s third move, west.

0 5

12

 Paper 1 V1.1 (FINAL DRAFT)

Evidence that you need to provide
Include the following in your Electronic Answer Document.

Your PROGRAM SOURCE CODE for the subroutine TrapDetector.
[12 marks]

Your amended PROGRAM SOURCE CODE for the subroutine PlayGame.

[1 mark]

SCREEN CAPTURE(S) showing the required sequence of tests being carried out,
with the trap detected message being displayed after each of the first two moves
and the trap not detected message being displayed after the third move.

 [1 mark]

The game of MONSTER!, as represented by the Skeleton Program, is to be
extended so that the cavern generated is not rectangular. The outer cells, shaded
in Figure 4, will be randomly selected to be either rock or normal space when a
new game starts. A cell that contains rock cannot be entered by the monster or
player.

Figure 4

Describe changes that could be made to the Skeleton Program to achieve this.

In your answer you should ensure that you discuss changes to the data held in the
Cavern variable and how the subroutines ResetCavern and CheckValidMove
will need to be altered.

You are not expected to actually make the changes.

 [5 marks]

A request has been made that the layout of the whole cavern should be more
random. It has been suggested that all of the cells should be made a random
choice between rock and normal space during setup.

Identify two problems that might occur with the MONSTER! game if this suggestion
was made to the program.

 [2 marks]

END OF QUESTIONS

0 5 . 1

0 5 . 2

0 5 . 3

0 5 . 4

0 5 . 5

13

 Paper 1 V1.1 (FINAL DRAFT)

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

14

 Paper 1 V1.1 (FINAL DRAFT)

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

Acknowledgement of copyright holders and publishers

Permission to reproduce all copyright material has been applied for. In some cases, efforts
to contact copyright holders have been unsuccessful and AQA will be happy to rectify any
omissions of acknowledgements in future papers if notified.

Copyright © 2014 AQA and its licensors. All rights reserved.

