Assembly language writing questions
All questions use the following instruction set, which is taken from the AQA specimen paper. Assume that all registers are 8 bit and that operand values are given in denary.
[image: ]



The following values have been loaded into an area of memory, and should be used in all questions.

	Address
	Contents

	41
	18

	42
	27

	43
	15

	44
	3

	45
	48



Write assembly language programs that perform the following tasks, using labels where appropriate:

Task 1:
· Load the value held in address 42 into R1
· Load the value 10 into R2
· Add the contents of R1 & R2, placing the result in R1
· Store the contents of R1 in memory address 46
· Halt











Task 2:
· Write a program that loads the contents of locations 41, 43 and 44 into R1, R2 & R3 respectively
· Add together the contents of R2 & R3, placing the result in R2
· Compare the values held in R1 & R2
· If the values are the same, place 10 in R3, otherwise place 20 in R3
· Halt










What value will be held in R3 after running the program?

Task 3:
· Write a program that loads the contents of locations 42, 43 and 44 into R1, R2 & R3 respectively
· Subtract the contents of R2 from R1, placing the result into R1
· Subtract the contents of R3 from R2, placing the result into R2
· Compare the contents of R1 & R2 and branch to a label ‘same’ if they are the same and ‘different’ if they are different.

Are the 2 values the same or different?


[bookmark: _GoBack]




Task 4:
· Load the value held in address 44 into R1
· Copy this value into R2
· Perform a logical shift left on R2 of 2 spaces leaving the result in R2
· Add the contents of R1 & R2, placing the result in R3
· Perform a logical AND on the contents of R1 & R2 and place the result in R4

What values will be held in R3 and R4?






Task 5:
· Load the value 10 into R1 and 0 into R2
· Set a label for a loop point
· Add 2 to the contents of R2
· Subtract 1 from the contents of R1
· Compare R1 with zero and jump to a halt if equal
· Else return to the loop point.







What should R2 hold at the end of the program?
image1.png
Instructions that can be used in AQA assembly language questions

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in register n
and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value in
register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.

CMP Rn, <operand2> Compare the value stored in register n with the value specified by
<operand2>.

B <label> Always branch to the instruction at position <label> in the
program.

B<condition> <label> Conditionally branch to the instruction at position <label> in the

program if the last comparison met the criteria specified by the
<condition>. Possible values for <condition> and their

meaning are:
* EQ: Equal to.
e NE: Not equal to.
e GT: Greater than.
e LT:Lessthan.

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value in
register n and the value specified by <operand2> and store the
result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and store the
result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical exclusive or (XOR) operation between
the value in register n and the value specified by <operand2>
and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value specified by
<operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the number of
bits specified by <operand2> and store the result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the number of
bits specified by <operand2> and store the result in register d.

HALT Stops the execution of the program.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending upon whether the first symbol is a
#oranR:

e # - Use the decimal value specified after the #, eg #25 means use the decimal value 25.
* Rm - Use the value stored in register m, eg R6 means use the value stored in register 6.

The available general purpose registers that the programmer can use are numbered 0 to 12.





