

CS608 Lecture Notes

Visual Basic.NET Programming

Object-Oriented Programming – Creating Custom Classes & Objects

(Part I)

(Lecture Notes 2A)

Prof. Abel Angel Rodriguez

 2

CHAPTER 5 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING .. 3

5.1 Components of an Object-Oriented Program ... 3
5.1.1 Understanding Classes & Objects ... 3

The Class.. 3
Objects ... 3
Properties or Attributes .. 3
Methods ... 3
Events ... 4

5.1.2 Creating Object-Oriented Programs .. 4

5.2 Object-Oriented Program Implementation – A Three Part Method... 5
5.2.1 Part I - Creating a Class .. 5

Class Components.. 5
Accessibility of the Class Components .. 5
General Rules for Assigning Accessibility ... 5
Creating a Class Module – A Step-by-Step Approach – Part I .. 6
Creating Data for the Class – Part II .. 8
Declaring Events for the Class – Part III .. 9
Creating Properties for the Class – Part IV (a) ... 10
Creating Read-Only & Write-Only Properties for the Class – Part IV (b) ... 13
Creating Class Methods – Part V ... 15
Constructor Method (Important Topic) – Part VI... 23
Raising or Triggering the Events of the Class – Part VI ... 28
Summary of Components for Creating a Class Module ... 29

5.2.2 Part II - Bringing a Class to Life by Creating Objects ... 30
Object Statement Declaration... 30

5.2.3 Part III - Using the Objects .. 34
SETTING or assigning Data to the Object’s Properties ... 34
GETTING or accessing Data from the Object’s Properties .. 35
Calling the Object’s Methods .. 36
Object to Object Interaction – Assigning One Object’s Reference to Another Object ... 37

5.3.2 Summary of Implementing Object-Oriented Programs .. 39

5.3 Additional Concepts in OOP .. 40
5.3.1 Introduction to Object-Oriented Related Statements .. 40

With Block Statement .. 40
5.3.2 Nothing Keyword .. 41
5.3.3 Termination and Cleanup (Destroying Objects) .. 41
5.3.4 Testing Objects Prior to using them in a Program (Optional Step) ... 43
5.3.5 Sample Program 1 – Class Test Program... 48

Creating and Testing a Person Class Using Console Application .. 48
5.3.6 CLASSROOM LABORATORY EXERCISE – Test Program ... 55

Creating and Testing an INVOICE Class Using Module-Driven Windows Application ... 55
5.3.5 Sample Program 2 – Working With Forms & Custom Objects (VERSION 1) ... 57

Form Driven Application – Small Business Application Using Person Class ... 57
5.3.6 Sample Program 3 – Working With Forms & Custom Objects (VERSION 2) ... 87

Form Driven Application – Small Business Application Using Person Class ... 87

 3

Chapter 5 Introduction to Object-Oriented Programming

5.1 Components of an Object-Oriented Program

5.1.1 Understanding Classes & Objects

 Real world objects have attributes or properties that define the objects.

 Also, real world objects are based on some mold or template.

 In Object-Oriented programming, the objects are based on a class or template. In this section we take a look at the

components that make up an Object-Oriented Program

The Class

 The mechanism VB.NET provides to implement Objects is the Class.

 A Class is a template or blueprint that defines what Object of the class look like.

 A Class is a plan or template that specifies what Data , Methods & Events will reside in objects

 The objects of the class contain data and the Methods (member functions & procedures) that operate on such data

 For example:

 We can have a Class called Automobile, and from this class, we can define the Properties, Methods and Events of this class.

 From this Automobile class we can create Objects of this class such as a Car Object, Truck Object, SUV Object etc.

Objects

 Think of Objects as a thing or a noun. Objects are the items that represent real-world entities, such as a person, place or thing in a

program.

 In a program an Object is a software representation of a real-world entity.

Objects - vs - Class

 The concept of a Class an Object can be very confusing. A Class is NOT an Object. An Object is not a Class

 DO NOT confuse a Class with the Objects, they are two different things.

 Objects are the manifestation or instance of a Class specification.

 A class IS NOT the object, but the template in which Objects will be created from!

 Think of the class as the architectural floor plan of a house, and the objects as the houses that are built from that

plan.

 Objects behave exactly as they were specified in the Class. No more, no less

Properties or Attributes

 Properties represent the Data of the Object.

 In reality, the Property is the way the outside world access the actual data directly.

 This is confusing; in reality, the property is not the data, but a vehicle to access the data. The actual data is private and cannot be

seen by the outside world, but to the outside world, the property is what they see as the data.

 For example a Car Class Object may have a color property, as well as a Make & Model property. But inside the Object, the

actual data may be private variables called carColor, carMake & carModel etc. but to the outside world, when they want to use the

data they see the property Color, Make & Model.

Methods

 Methods are actions that the Objects can take. Where Objects are the Nouns, Method are the verbs or actions of an Object.

 For example a Car Class Object can take the following actions: Start, Stop, Speed Up, Slow Down, turn left, turn right etc.

 Methods are Functions and Sub Procedures that you write to make the object do things or take some kind of action

 4

Events

 Events are actions taken upon the object by an outside force (User, Program code etc).

 Events or actions upon the object will automatically trigger specialized Methods known as Event-Handlers

 Do not confuse events with regular Methods. Events are the action taken by an outside source upon the object, while Methods are

action taken by the Object itself.

 Events & methods may work hand in hand, but they are two different things.

 This can be confusing. For example an Object such as a Car Object can have a method called Stop(). You can explicitly call

the Car.Stop() method to so the car will stop itself.

 Now suppose your Car Object also has a method called Drive(), and you can explicitly call the Car.Drive() method so the car

will drive.

 On the other hand, The Car Object can also have an Event programmed into it called OnCrash and lets supposed that we

program this event to trigger or raise during the Drive() method only if there is an accident.

 Now, in the event that the car is hit by another car or crashes during the execution of the Drive() method, the OnCrash event

will automatically trigger and an Event-handler Object_OnCrash() will appear in the Form the object was created in.

 When the OnCrash() event executes you can code in what ever you like inside this Event-Handler Object_OnCrash(). For

example you may want to put in a statement to call the Car.Stop() method to stop the car. Makes sense right? Here an Event

occurs, triggers the Event-handler, in the Event-Handler we call a Method.

 Confused yet?

5.1.2 Creating Object-Oriented Programs

 Object-Oriented Programs (OOP) are written based on the Class Objects and not on the functionality of the program

 The three steps required to creating an Object-Oriented Programs are shown below:

I. Create the class specification or Class Module

 Private Data, Properties & Methods

II. Create Object of the Class

III. Use the Object of the Class

 Write the program to manipulate, access or modify the objects

data & Call the Methods & and Trigger Events

 5

5.2 Object-Oriented Program Implementation – A Three Part Method

5.2.1 Part I - Creating a Class

Class Components

 The components, which make up a class are: 1) Data, 2) Property‟s, 3) Methods & 4)Events

 You are probably confused with the word Property & Data, it seems that the Properties & Data are the same thing? They are

NOT, lets look at the components definition:

1) Data: The variables & Data Structures (Arrays etc) or other Objects that hold the information or data we want to manipulate

and store. Usually a private variable

2) Property: Specialized procedures or routines whose sole purpose it to give you access to the private data inside the class, in

other words it is through these Property that you can modify and extract the private data of a Class Module. Through the

outside world, the data is represented via the Properties.

3) Methods: The functions/procedures that make the object of the class do things or take an action.

4) Events: Declaration of the action that when taken upon the object will trigger an Event-Handler Procedure

 Therefore in a Class, the variables store the Data while the Methods & Property are both procedures whose difference is that

Methods are called to make the Object do things or take an action upon the data, while Properties allow you set & get the

values of the private data directly.

Accessibility of the Class Components

 Accessibility refers to what type of access does the Data, Property or Method allows to the outside world.

 VB.NET Classes offer the following access characteristics:

 Public – Public or can be access by anyone outside of the class or to other objects

 Private – Private or accessible only to members of the class. No one from the outside world can see it or access it.

 Protected – Allows subclasses or inherited children to have direct access but only the children or derived classes. In

other words, public for children, private for everyone else.

 Friend – Accessible to classes in the same Assembly. An Assembly is a collection of project deployed together as an

application.

General Rules for Assigning Accessibility

 In order to implement the Data Encapsulation feature of an object there are rules that must be followed when creating classes.

 The rules are as follows:

 Private Data Variables: Variables declared using the Private keyword.

 Public Properties: Property procedures are declared using the Public keyword, so the outside world has access to the data.

 Public Methods: Methods procedures are declared using the Public keyword, so the outside world can execute them

 Public Events: Events are declared using the keyword Public.

 Protected Data Variables & Methods: Declare variables/methods as protected only when you want the inherited children to

have direct access.

 Note that Property & Methods can be Private as well, but this means they cannot be accessed outside the class and can only be

used internally in the class. There are circumstances where you want them to be private, more on this on later lectures.

 6

Creating a Class Module – A Step-by-Step Approach – Part I

 In order to create Object for your programs, you need to first create the object template or Class or Template.

 A Class is a template or blueprint that define what object of the class look like

 A Class is a plan or template that specifies what Properties, Methods and Events that will reside in objects

 The syntax for creating a class is as follows:

 „Class Header

Public Class ClassName

End Class

 Note that inside the body of a Class is where you find all properties, methods & event-procedures

for that object.

 Data Definitions

 Properties Definitions

 Methods

Example:

 Creating a Classes:

 Example 1 - Creating a Video Class:

Public Class Video

„Properties, Methods & Event-Procedures here

End Class

 Example 2 - Creating a class for a Form Object:

Public Class Form1

„Properties, Methods & Event-Procedures here

End Class

 7

 The actual steps required to create a class using the VB.NET IDE environment are as follows:

Step 1: If not yet created, create a New Project and if necessary the Forms, Controls, Program Code etc.

Step 2: In the Menu bar use Project | Add Class, and select the Class icon, give the class a Name and click Open:

Step 3: The Class code window will appear ready for you to begin to enter the program code:

 Also, a listing of the Class file will appear in the Solution Explorer Window
 Property Windows will display the Class Properties.

 8

Creating Data for the Class – Part II

 The top or declaration section of the Class Module is where the data variables are declared.

 These variables are usually declared private and therefore can only be seen by the code within the class.

 Note that this class data can be any of the following:

 Variables

 Data structures such as arrays etc..

 Other Objects such as Class Objects & Collections etc.

 Continuing our step by step approach, the syntax is as follows:

Step 4: In the Class Module Code Window enter the Private Data Variables:

 This is simply creating variables as you have done before:

Private VariableName As DataType

 In Example 1, we created the following private data for the clsInvoice Class:

 Regular variable such as string, and decimals.

 An object variable of the clsInvoiceItems class. This means objects of the INVOICE CLASS ALSO HAVE A CHILD

OBJECT NAME OBJINVOICEITEMS

 In Example 2, we created private data for the clsCustomer Class as follows:

 Regular variable such as string, integer & date.

 This class also contains declarations for two CHILD OBJECTS, one the objCreditCard Object is actually a POINTER TO A

clsCreditCard OBJECT not an object, yet. Eventually is expected that this pointer will point to a clsCreditCard object

 The second CHILD OBJECT is a full object of the clsInvoice class.

Example 1:
 Declaring private data members of the class:

Public Class clsInvoice
Private m_Name As String

Private m_Total As Decimal

Private m_SubTotal As Decimal

Const Private m_TAX As Decimal = 0.825

Private m_objInvoiceItems As New clsInvoiceItems ‘Class Object

End Class

Example 2:
 Declaring private data members of the class:

Public Class clsCustomer
Private m_FirstName As String

Private m_LastName As String

Private m_CustomerID As Integer

Private m_BirthDate As Date

Private m_objCreditCard As clsCreditCard ‘CreditCard Class POINTER

Private m_objInvoice As New clsInvoice ‘Invoice Class OBJECT

End Class

 9

Naming Convention for Private Data
 There are several naming conventions used today to name the data.

 As shown in the examples above, one popular convention uses m_ as a prefix to the private data name to indicate a module

level variable (variable only seen within the Class module)

 I will use this as well in most of my examples. In addition, for private data that are objects, I will also use a combination of the

m_ and the obj prefix as well, to indicate the variable is an object. This is not standard, but I like to be able to identify private

data that are object types right away.

Declaring Events for the Class – Part III

 The top or declaration section of the Class Module is where the declaration of the Events associated with this class is

declared.

 This will be covered in future lectures.

 Continuing our step by step approach, the syntax is as follows:

Step 5: In the Class Module make the declarations for the Events:

 Covered in future lecture:

 10

Creating Properties for the Class – Part IV (a)

 The Properties Procedures are the vehicles for the outside world to access the private data in the class.

 From the outside of the object, what the program sees is just the name of the property.

 The Property Procedure allows you to GET & SET the attributes or private data of the class.

 Normally you will need a property for each private data member!

 Continuing our step by step approach, the syntax is as follows:

Step 6: Create the Class Property Procedures

 Syntax for Public Property Procedures:

Public Property PropertyName () As DataTypeOfPrivateData

Get

 Return PrivateData

End Get

Set (ByVal VariableName As DataType)

 PrivateData = VariableName

End Set

End Property

 Note that using the Visual Studio ID, once you begin and type the header of the property and hit return, the remaining syntax

will appear automatically, you simple need to modify it. Let’s see how this works with an example:

1. Assuming we have the following Class with a m_Name private data:
Public Class clsPerson

 Private m_Name As String

End Class

2. Now we will create a public property for this private data.

3. First type the header of the property you want to create:

Public Class clsPerson

 Private m_Name As String

Public Property Name() As String

End Class

4. Hit the RETURN key and the following syntax appears automatically:

Public Class clsPerson

 Private m_Name As String

 Public Property Name() As String

 Get

 End Get

 Set(ByVal value As String)

 End Set

 End Property

End Class

 11

5. Now modify the property by adding the Get code to return the private data, and the SET code to modify the private data:

Public Class clsPerson

 Private m_Name As String

 Public Property Name() As String

 Get

 Return m_Name

 End Get

 Set(ByVal value As String)

 m_Name = value

 End Set

 End Property

End Class

 Since normally you have one property for every private data, it can be cumbersome to have to create all these properties. Using

this short-cut we can save some time during the creation of the properties.

Example 1: Property for regular private data member
 Declaring Property Procedures for a Name Property which allows access to a private string variable

m_Name. Note that the outside world sees only the Name of the property:

Public Class clsPerson
Private m_Name As String

Public Property Name () As String

Get

 Return m_Name

End Get

Set (ByVal Value As String)

 m_Name = Value

End Set

End Property

End Class

===

=

 Now from the outside world you can make the following statements assuming you created an object

named objEmployee of the Class clsPerson:

‘Example of Setting the object’s property:

objEmployee.Name = “Joe Smith”

‘Example of Getting the object’s property:

Dim strEmployeeName As String

strEmployeeName = objEmployee.Name

‘Example of displaying the object’s property using two different ways:

MessageBox.Show (“The Employee Name is “ & strEmployeeName)

MessageBox.Show (“The Employee Name is “ & objEmployee.Name)

 12

Example 2: Properties for Private Object Data
 Declaring Property Procedures for a CreditCard Property which allows access to a private Object

variable objCreditCard. We assume that this object variable is of the class clsCreditCard Class:

Public Class clsCustomer
Private m_FirstName As String

Private m_LastName As String

Private m_CustomerID As Integer

Private m_BirthDate As Date

Private m_objCreditCard As New clsCreditCard ‘Class Object

Public Property CreditCard () As clsCreditCard

Get

 Return m_objCreditCard

End Get

Set (ByVal Value As clsCreditCard)

 m_objCreditCard = Value

End Set

End Property

End Class

===

=

 Now from the outside world you can make the following statements assuming you created two objects

named objNewCreditCard and objCurrentCreditCard of the Class clsCreditCard and an Object

objCustomer of the clsCustomer Class:

‘Example of setting an object’s property that is an object as well:

objCustomer.CreditCard = objNewCreditCard

‘Example of Getting the object’s property:

objCurrentCreditCard = objCustomer.CreditCard

 13

Creating Read-Only & Write-Only Properties for the Class – Part IV (b)

Read-Only Properties
 There are times when we may want a property to be Read-Only or it cannot be changed.

 In this case we simply remove the Set portion of a Property Procedures.

 Continuing our step by step approach, the syntax is as follows:

Step 7: Create the Class Property Procedures

 Syntax for Public Read-Only Property Procedures:

Public Property PropertyName () As DataTypeOfPrivateData

Get

 Return PrivateData

End Get

End Property

Example 1: Read-Only Property
 Declaring Property Procedures for a Age Property which allows retrieval only of a private integer variable strAge:

Public Class clsPerson
Private m_Age As Integer

Public Property Age () As Integer

Get

 Return m_Age

End Get

End Property

End Class

==

 Now from the outside world you can make the following statements assuming you created an object named objEmployee of

the Class clsPerson and somewhere in the class the m_Age variable was populated with data:

‘Example of getting the object’s property:

Dim employeeAge As Integer

employeeAge = objEmployee.Age

MessageBox.Show (“The Employee Name is “ & employeeAge)

‘Another alternative:

MessageBox.Show (“The Employee Name is “ & objEmployee.Age)

‘Example of setting the object’s Read-Only property:

objEmployee.Age = 22 ‘#ERROR..THIS WILL GENERATE COMPILER ERROR - READ-ONLY!!

 14

Write-Only Properties
 There are times when we may want a property to be Write-Only or the value can be written, but not read.

 In this case we simply remove the Get portion of a Property Procedures.

 Continuing our step by step approach, the syntax is as follows:

Step 8: Create the Class Property Procedures

 Syntax for Public Write-Only Property Procedures:

Public Property PropertyName () As DataTypeOfPrivateData

Set (ByVal Value As DataType)

 PrivateData = Value

End Set

End Property

Example 1: Write-Only Property
 Declaring Property Procedures for a PinNumber Property which allows setting of a private integer variable strPinNum:

Public Class clsPerson
Private m_PinNumber As String

Public Property PinNumber () As String

Set (ByVal Value As String)

 m_PinNumber = Value

End Set

End Property

End Class

==

 Now from the outside world you can make the following statements assuming you created an object named objEmployee of

the Class clsPerson:

‘Example of Getting the object’s property:

Dim myPin As String

objEmployee.PinNumber = “1122r”

‘Example of getting the object’s Read-Only property & generating error:

myPin = objEmployee.PinNumber ‘#ERROR..GENERATE COMPILER ERROR - WRITE-ONLY!!

 15

Creating Class Methods – Part V

 The Class Methods make the object do or perform some action or task. Methods are usually public and as with any forms,

module etc, methods are composed of the following:

 Public Sub Procedures()

 Public Functions Procedures()

 Public Event-Handlers()

 Continuing our step by step approach, the syntax is as follows:

Step 9: Create Class Methods

 Use the syntax shown in previous notes for Public Sub Procedures and Function declarations.

Public Sub Procedure Methods with No Parameters:
 Syntax for Sub Procedure with no arguments:

 „Syntax for Sub Procedure with no arguments:

Public Sub ProcedureName ()

„Body Code goes here!

End Sub

Example 1:
 Declaring procedure to print the content of the person class:

Public Class clsPerson
Private m_Name As String

Private m_IDNumber As Integer

Public Sub PrintPerson ()

„code to print the person object goes here!

End Sub

End Class

===

==

 Assuming you created an object named objEmployee of the Class clsPerson, you can execute its PrintPerson() method so

the object can perform the action:

‘Example of calling the method:

objEmployee.PrintPerson()

 16

Example 2:
 Declaring a Sub Procedure to calculate the total charge for a customer. In this example it is assumed that the variables

being processed are private data variables of the class:

Public Class clsInvoice
Private m_Name As String

Private m_Total As Decimal

Private m_SubTotal As Decimal

Const Private m_TAX As Decimal = 0.825

Private m_objInvoiceItems As New clsInvoiceItems ‘Class Object

Public Sub CalculateTotal ()

m_Total = m_SubTotal + (m_SubTotal * m_TAX)

End Sub

End Class

===

 Assuming you created an object named objInvoice of the Class clsInvoice, you can execute its CalculateTotal() method so

the object can perform the action:

‘Example of calling the method:

objInvoice.CalculateTotal()

‘Example of calling the method, and getting the results of the calculation

assuming the clsInvoice Class has a Property named Total that can return the

value, we can make the following statement:

Dim decTotalCharges As Decimal

objInvoice.CalculateTotal()

decTotalCharges = objInvoice.Total

MessageBox.Show (“The total charges are “ & decTotalCharges)

 17

Public Sub Procedure Methods with Parameters:
 Syntax for Sub Procedure with arguments:

 „Syntax for Sub Procedure with argument list:

Public Sub ProcedureName (ByRef|ByVal variable As Type, ByRef|ByVal variable As Type…..)

„Body Code goes here!

End Sub

Example 1:
 Declaring a Sub Procedure to calculate the total charge for a customer. In this example the values for decTotal and decTax

are NOT part of the Class but are passed as argument to the method. The only internal private class data is the decSubTotal

variable. Note the pass-by-reference & pass-by-value:

Public Class clsInvoice
Private m_Name As String

Private m_SubTotal As Decimal

Private m_objInvoiceItems As New clsInvoiceItems ‘Class Object

Public Sub CalculateTotal (ByRef total As Decimal, ByVal m_Tax As Decimal)

m_Total = m_SubTotal + (m_SubTotal * m_Tax)

End Sub

End Class

==

 Assuming you created an object named objInvoice of the Class clsInvoice, you can execute its CalculateTotal() method so

the object can perform the action:

‘Example of calling the method:

Dim totalCharges, salesTax As Decimal

salesTax = 0.825

objInvoice.CalculateTotal(totalCharges, salesTax)

‘The decTotalCharges argument stores the total charge due to passed-by-reference

MessageBox.Show (“The Customer Total Charge is “ & totalCharges)

 18

Example 2:
 Declaring Sub Procedure that sets or overwrites the private data m_FirstName. These types of methods are called Setter

methods since they set the private data. Using setter methods are an alternative to using Property procedures. In this

course we will be using Property Procedures:

Public Class clsCustomer
Private m_FirstName As String

Private m_LastName As String

Private m_CustomerID As Integer

Private m_BirthDate As Date

Private m_objCreditCard As clsCreditCard ‘Class Object

Public Sub SetFirstName (ByVal fName As String)

m_FirstName = fName

End Sub

End Class

==

 Assuming you created an object named objBankCustomer of the Class clsCustomer, you can execute its SetFirstName()

method so the object can perform the action:

‘Example of calling the method:

objCustomer.SetFirstName(“Joe”)

‘Example of calling the method:

Dim fName As String

fName = “Joe”

objCustomer.SetFirstName(fName)

 19

Public Function Methods with No Parameters:
 Syntax for Function with no arguments:

 „Syntax for Function with no arguments:

Public Function FunctionName () As ReturnType

„Body Code goes here!

Return ReturnValue

End Function

Example 1:
 Declaring Function that gets or returns the private data strFirstName. These types of methods are called Getter methods

since they get the private data. Using Getter methods are an alternative to using Property procedures. In this course we

will be using Property Procedures:

Public Class clsCustomer
Private m_FirstName As String

Private m_LastName As String

Private m_IDNumber As Integer

Private m_BirthDate As Date

Private m_objCreditCard As New clsCreditCard ‘Class Object

Public Function GetFirstName () As String

Return m_FirstName

End Function

End Class

==

=

 Assuming you created an object named objBankCustomer of the Class clsCustomer, you can execute its GetFirstName()

method so the object can perform the action and return the strFirstName private data:

‘Example of calling the method:

Dim fName As String

fName = objCustomer.GetFirstName()

MessageBox.Show (“The Customer First Name is “ & fName)

‘Example of calling the method:

MessageBox.Show (“The Customer First Name is “ & objCustomer.GetFirstName())

 20

Example 2:
 Declaring Function to calculate the total charge for a customer and returns the total charge to the calling program. The

variables being processed are private data:

Public Class clsInvoice
Private m_Name As String

Private m_Total As Decimal

Private m_SubTotal As Decimal

Const Private m_TAX As Decimal = 0.825

Public Function CalculateTotal () As Decimal

m_Total = m_SubTotal + (m_SubTotal * m_TAX)

Return decTotal

End Function

End Class

===

==

 Assuming you created an object named objInvoice of the Class clsInvoice, you can execute its CalculateTotal() function

so the object can perform the action and return a value:

‘Example of calling the method:

Dim totalCharges As Decimal

totalCharges = objInvoice.CalculateTotal()

MessageBox.Show (“The total charges are “ & totalCharges)

‘Example of calling the method:

MessageBox.Show (“The total charges are “ & objInvoice.CalculateTotal())

 21

Public Function Methods with Parameters:
 Syntax for Function with arguments:

 „Syntax for Function with argument list:

Public Function FunctionName (ByRef|ByVal variable As Type, ByRef|ByVal variable As Type…) As ReturnType

„Body Code goes here!

Return ReturnValue

End Function

Example 1:
 Declaring a Sub Procedure to calculate the total charge for a customer. In this example the values for subTotal and Tax are NOT

part of the Class but are passed as argument to the method. The only internal private class data is the m_SubTotal variable.

Note the pass-by-value the default:

Public Class clsInvoice
Private m_Name As String

Private m_Total As Decimal

Public Function CalculateTotal (ByVal subTotal As Decimal, ByVal Tax As Deciaml) As Decimal

m_Total = subTotal + (subTotal * Tax)

Return m_Total

End Function

End Class

===

 Assuming you created an object named objInvoice of the Class clsInvoice, you can execute its CalculateTotal() function so the

object can perform the action and return a value:

‘Example of calling the Function with Arguments:

Dim totalCharges, subCharges, salesTax As Decimal

salesTax = 0.825

subCharges = 99.95

totalCharges = objInvoice.CalculateTotal(subCharges, salesTax)

MessageBox.Show (“The total charges are “ & totalCharges)

‘Example of calling the Function with Arguments:

MessageBox.Show (“The total charges are “ & _

 objInvoice.CalculateTotal(totalCharges, salesTax))

 22

Example 2:
 Declaring a Function in the employee’s class which authenticates an employee username & password. Employee Object contain

a Function that performs the authentication by comparing its internal username/password to values passed as arguments:

Public Class clsEmployee
Private m_FirstName As String

Private m_LastName As String

Private m_IDNumber As Integer

Private m_BirthDate As Date

Private m_UserName As String

Private m_PassWord As String

Public Function Authenticate (ByVal User As String, ByVal Pass As String) As Boolean

If m_UserName = User And m_PassWord = Pass Then

Return True

Else

Return False

End If

End Function

End Class

===

 Assuming you created an object named objEmployee of the Class clsEmployee, you can execute its Authenticate() function so the

object can perform the action and return the results of the authentication:

‘Example of calling the Function with Arguments:

Dim UserName, PassWord As String

Dim Access As Boolean

Dim objLoginForm As frmLogin

objLoginForm = New frmLogin()

‘Assuming we extract values from text boxes of a login form that is displayed

objLoginForm.ShowDialog()

strUserName = objLoginForm.txtUserName.Txt

strPassWord = objLoginForm.txtPassWord.Txt

Access = objEmployee.Authenticate(strUserName, strPassWord)

If Access Then

MessageBox.Show (“Access Granted”)

 Else

MessageBox.Show (“Access Denied”)

 End If

 23

Constructor Method (Important Topic) – Part VI

 The constructor method is a special method that is always invoked as an Object is created.

 What this means is that every time an object is created, this method is automatically executed, thus the name Constructor.

 This method will contain Initialization code or code that you want executed when the object is created. For example you may

want to initialize data with entry strings, 0 values, etc.

 The Constructor Method has the following characteristics:

 It is named Public Sub New()

 Automatically executes before any other methods are invoked in the class

 Only runs once for an object

 Doe not return a value

 Can contain parameters

 You can add any code that you wish to execute upon creation of the object

 Continuing our step by step approach, the syntax is as follows:

Step 10: Creating the Class Constructor:

Constructor Method with No Parameters(DEFAULT CONSTRUCTOR):
 Syntax for Constructor Procedure with no arguments:

 „Syntax for Constructor Method with no Parameters:

Public Sub New ()

„Initialization Code goes here!

End Sub

Example 1:
 Declaring a Constructor to initialize the private data members of the person class:

Public Class clsPerson
Private m_Name As String

Private m_IDNumber As Integer

Private m_BirthDate As Date

Public Sub New ()

m_Name = “”

m_IDNumber =0

m_BirthDate = #1/1/1900#

End Sub

End Class

===

 In this example we created an object named objEmployee of the Class clsPerson, we assume this object contain properties for

each of the private data above. The constructor will automatically execute upon creation of the object:

‘Assuming Object is created as follows:

Dim objEmployee As clsPerson = New clsPerson()

‘Viewing the content of an object after creation using properties:

MessageBox.Show (objEmployee.Name) ‘result is a blank

MessageBox.Show (objEmployee.IDNumber)’results 0

MessageBox.Show (objEmployee.BirthDate)’results 1/1/1900

 24

Constructor Methods with Parameters:
 A constructor method can contain a list of parameters that can be passed to the object.

 This is done by simply adding a parameter list to the header.

 This parameter list can be used for what ever functionality the programmer wants to implement, for example the values can be

used to initialize the private data members:

 Normally we want one parameter for each of the private data if we would like to be able to initialize all private data members.

 But again this is optional; we can create a parameter list just for those data variables we wish to initialize.

 Syntax for Constructor Procedure with arguments:

 Syntax for Constructor Method with Parameters:

Public Sub New (ByVal variable As Type, ByVal variable As Type…..)

„Body Code goes here!

End Sub

Example 2:
 Declaring a Constructor to initialize the private data members of the person class via arguments:

Public Class clsPerson
Private m_Name As String

Private m_IDNumber As Integer

Private m_BirthDate As Date

 „Constructor assigns parameters to each private data member

Public Sub New (ByVal Name As String, ByVal ID As Integer, ByVal BDate As Date)

m_Name = Name

m_IDNumber = ID

m_BirthDate = BDate

End Sub

End Class

===

 In this example we created an object named objEmployee of the Class clsPerson, we assume this object contain properties for

each of the private data above. The constructor will automatically execute upon creation of the object and parameters are passed

as argument during the creation:

‘Assuming Object is created as follows:

Dim objEmployee As clsPerson = New clsPerson(“Joe Smith”, 111, #12/12/1965#)

‘Viewing the content of an object after creation using properties:

MessageBox.Show (objEmployee.Name) ‘result is Joe Smith

MessageBox.Show (objEmployee.IDNumber)’results 111

MessageBox.Show (objEmployee.BirthDate)’results 12/12/1965

 25

Do we Assign Parameters Values to Private Data or Class Properties?

 In the previous example, we assigned the parameter variables directly to the private data as follows:

„Constructor assigns parameters to each private data member

Public Sub New (ByVal strNn As String, ByVal intID As Integer, ByVal dBDate As Date)

strName = strNn

intIDNumber = intID

dBirthDate = dBDate

End Sub

 This works just fine, but there is a better alternative that gives us more flexibility. That assigning the Constructor Parameters

to the Class Public Properties instead of the private data as follows:

„Constructor assigns parameters to Public Properties (We assume that Name, IDNumber & Birthdate are Property Procedures

Public Sub New (ByVal strNn As String, ByVal intID As Integer, ByVal dBDate As Date)

Name = strNn

IDNumber = intID

BirthDate = dBDate

End Sub

 Doing this gives us the flexibility to add code inside the Property Procedure that would allow us to validate or check the

values before assigning it to the private data. This process is known as Validation. More on this in future lecture

 Note that in example 3, in the Constructor, I use the ME keyword to identify the properties. This is optional, it would work

without the use of this keyword, but it makes reading and understanding the property call easier.

Example 3:
 Declaring a Constructor to initialize the private data members of the person class via arguments:

Public Class clsPerson
Private m_Name As String

Private m_IDNumber As Integer

Private m_BirthDate As Date

„Property Declarations

Public Property Name () As String

Get

 Return m_Name

End Get

Set (ByVal Value As String)

„Enter code here to validate or check value before it is assigned to private data

„Validation code here

„Now assign value to private data

m_Name = Value

End Set

End Property

„Other Property Declarations here for IDNumber & BirthDate….

 „Constructor assigns parameters to each private data member

Public Sub New (ByVal strNn As String, ByVal intID As Integer, ByVal dBDate As Date)

Me.Name = strNn

Me.IDNumber = intID

Me.BirthDate = dBDate

End Sub

 26

The Default Constructor:
 You don’t have to create a constructor for your class, but if you don’t, VB.NET will automatically create on for you in the

background. This Constructor is called the Default Constructor.

 The Default Constructor is a no-parameter constructor that is automatically created for you if you don’t create your own!

 This constructor does not do anything. It’s syntax is:

 „Syntax for Sub Procedure with no arguments:

Public Sub New ()

End Sub

 So keep in mind that if you create a class without a constructor, VB in the background will create this Default Constructor for

its use. This will be totally transparent to you.

Using a Parameterized Constructor and the Default Constructor:
 IMPORTANT! If you create a Parameterized Constructor Method inside your class, then when you create Objects of the

class, you must send data to each Object upon creation. You CANNOT create the object WITHOUT giving it data to

match each of the parameters!

 So what happens if you want to create an Object with data as argument and regular objects? In this case you would need to

add two Constructor Methods in the class, a Default Constructor or a standard No-Parameter Constructor and the

Parameterized Constructor.

 The syntax the same as before, just add both constructors to the class, the default, No-Parameter and the Parameterized:

 „Syntax for Constructor Method with no Parameters:

Public Sub New ()

„Initialization Code goes here! If NO Code is added it is then a Default Constructor

End Sub

 „Syntax for Sub Procedure with argument list:

Public Sub New (ByVal variable As Type, ByVal variable As Type…..)

„Body Code goes here!

End Sub

 GOING FORWARD, ALL CLASSES IN MY HWS, PROJECTS AND EXAMS SHOULD INCLUDE BOTH THE

DEFAULT AND PARAMETERIZED CONSTRUCTORS!

 27

Example 4:
 Declaring a Constructor to initialize the private data members of the person class via arguments:

Public Class clsPerson
Private m_Name As String

Private m_IDNumber As Integer

Private m_BirthDate As Date

Public Sub New ()

m_Name = “”

m_IDNumber = 0

m_BirthDate = #1/1/1900#

End Sub

Public Sub New (ByVal strNn As String, ByVal intID As Integer, ByVal dBDate As Date)

Me.Name = strNn

Me.IDNumber = intID

Me.BirthDate = dBDate

End Sub

End Class

===

 In this example we created an object named objEmployee of the Class clsPerson, we assume this object contain properties for

each of the private data above. The constructor will automatically execute upon creation of the object and parameters are passed

as argument during the creation:

‘Creating Objects with no Parameters and with Parameters:

Dim objEmployee1 As clsPerson = New clsPerson()

Dim objEmployee2 As clsPerson = New clsPerson(“Joe Smith”, 111, #12/12/1965#)

‘Viewing the content of the No-Paremeter object after creation using properties:

MessageBox.Show (objEmployee1.Name) ‘result is a blank

MessageBox.Show (objEmployee1.IDNumber)’results 0

MessageBox.Show (objEmployee1.BirthDate)’results 1/1/1900

‘Viewing the content of the Parameterized object after creation using properties:

MessageBox.Show (objEmployee2.Name) ‘results in a Joe Smith

MessageBox.Show (objEmployee2.IDNumber)’results 111

MessageBox.Show (objEmployee2.BirthDate)’results 12/12/1965

 28

Raising or Triggering the Events of the Class – Part VI

 At this point we can raise or trigger the events declared prior anywhere we want in the class:

 We will cover this in future lecture

Step 8: Raise or Trigger Events where desired

 Covered in future lecture.

 29

Summary of Components for Creating a Class Module

 To summarize, the steps required to build a class are:

1) Create the Class.

2) Declare the Private Variables, which hold the Data.

3) Declare the Events

4) Create a Property procedures for each variable declared.

5) Create the Methods or Procedures/Functions needed.

6) Create the Constructor Methods: Default and Parameterized

7) Raise any required Events anywhere in the class module where desired (More on this later)

ATTENTION!

 DISPLAYING FORMS OR MANIPULATING FORMS OR CALLING FORM

CONTROLS FROM WITHIN A CLASS MODULE IS NOT GOOD OOP

PRACTICE!

 THIS INCLUDES MESSAGEBOXES AS WELL. WE MEAN ANY USER-
INTERFACE CODE!!!!!

 SOME OF THE EXAMPLES IN THE NOTES AND CLASS MAY DISPLAY

FORMS OR MESSAGE BOXES FROM WITHIN THE CLASS METHODS

(PROCEDURE & FUNCTIONS). THIS WILL BE DONE ONLY FOR

TEACHING OR TESTING PURPOSE!

 UNDER NO CIRCUNSTANCE SHOULD YOU DISPLAY ANY FORMS OR

MESSAGEBOXES FROM WITHIN A CLASS IN EITHER YOU

HOMEWORK OR PROJECTS!

 UNLESS OTHERWISE INSTRUCTED!

 30

5.2.2 Part II - Bringing a Class to Life by Creating Objects

 So far we have create the Class or the template which will server as the mold for creating objects of the class.

 Keep in mind that creating a Class Module is actually creating a template. But there is more to it than that.

 When you create a Class Module, you are actually introducing a new data type into the program, so in addition to the built-in

data types such as string, integer, date etc. You will now have a new type based on the Class you create.

 In order to use a class we need to create an Object or an instance of the class.

Object Statement Declaration

 There are methods to create objects:

Method I (Simplest & Compact Method) – One statement POINTER & OBJECT Method:
 The first method is done in one step, where you declare the POINTER and create the OBJECT in one step using the keyword

New:

 Accessibility ObjectName As New ClassName()

Where Accessibility:

-Dim

 -Public

 -Private

 -Protected

 -Friend

Examples Using Method I:

 Assuming we have previously defined a Class named clsCustomer. Creating a Customer object of the class clsCustomer is as

follows:

Public objCustomer As New clsCustomer()

 Assuming we have previously defined a Class named clsInvoice. Creating Invoice objects is as follows:

Dim objInvoice As New clsInvoice()

 Assuming we have previously defined a Class named clsEmployee and that this class contains a Constructor Method that

initializes the class with data passed as arguments. Creating an Employee object with data is as follows:

Private objEmployee As New clsEmployee(“Joe”, 111, #12/12/1965#, “225 Flatbush Ave”)

 31

Method II – One Statement (Two Parts) POINTER & OBJECT Creation:
 The second method is done in one statement (one line of code) but involves two steps. You declare the reference variable and

assign it to the class object using the keyword New:

 Accessibility ObjectName As ClassName = New ClassName()

Where Accessiblity:

 -Public

 -Private

 -Protected

 -Friend

Examples Using Method II:

 Assuming we have previously defined a Class named clsCustomer:

Public objCustomer As clsCustomer = New clsCustomer()

 Assuming we have previously defined a Class named clsInvoice:

Private objInvoicer As clsInvoice = New clsInvoice()

 Assuming we have previously defined a Class named clsEmployee and that this class contains a Constructor Method that

initializes the class with data passed as arguments. Creating an Employee object with data is as follows:

Dim objEmployee As clsEmployee = New clsEmployee(“Joe”, 111, #12/12/1965#, “225 Flatbush Ave”)

 32

Method III (Most Flexible) – Two Statement Method: POINTER created first. OBJECT created inside a method

(Flexible/Preferred for Long-Lived Object):
 The third method requires a two statement process. This method is more flexible:

1. Declare the object variable in the declaration part of a module, form etc., in the program

2. Inside a Method (Procedure/Function) create the object by assigning the variable in step 1 to the class using the

keyword New

 „Declare POINTER to Objects of the Class type:

Accessibility ObjectName As ClassName

„Inside a Method Procedure CREATE THE ACTUAL OBJECT as follows(NOTE THAT THIS MUST BE DONE INSIDE A

METHOD:

 ObjectName = New ClassName()

Where Accessibility:

 -Dim

 -Public

 -Private

 -Protected

 -Friend

Examples Using Method III:

 Example 1, assuming we have previously defined a Class named clsCustomer and this class contains a default Constructor and

a parameterized Constructor that takes arguments to initialize the private data. The code to create objects of the clsCustomer

Class inside the Method Sub Main() is as follows:

 „In this example both the POINTER portion and OBJECT creation code are declared INSIDE A METHOD

Sub Main()

Dim objCustomer1 As clsCustomer

clsCustomer1 = New clsCustomer()

Dim objCustomer2 As clsCustomer

clsCustomer2 = New clsCustomer(“Mary Jones”, 444, #01/23/1972#)

End Sub

 Example 2, assuming we have previously defined a Class named clsCustomer. Now we want to create a Customer object inside

a Form, we would like the object to actually be created when the Form is loaded. The code is as follows inside the Form:

In this example POINTER code is declared OUTSIDE of the method, and OBJECT creation code is done INSIDE A METHOD

‘Declaration section of the Form

Option Explicit

Dim objCustomer As clsCustomer

„Object is actually created inside a Method or Event-handler etc.

Sub Form1_Load()
objCustomer = New clsCustomer()

End Sub

 33

 Using method III, we have the flexibility to create multiple objects using one declaration statement.

 This is done by having all the objects declaration as part of one statement, and having individual statements for each object

creation.

 Keep in mind that this works as long as the objects are of the same class.

 Lets look at the following example:

Examples Creating Multiple Instances of Objects using Method III:

 Assuming we have previously defined a Class named clsCustomer. Then we wan to create a Customer object inside the

Method Sub Main(), the code is as follows:

‘Declaration of Customer Objects in declaration portion

Public objCustomer1, objCustomer2, objCustomer3 As clsCustomer

Sub Main()

‘Creation or definition of Customer Objects inside a method

objCustomer1= New clsCustomer()

objCustomer2= New clsCustomer()

objCustomer3= New clsCustomer()

End Sub

 34

5.2.3 Part III - Using the Objects

 Once the objects are created we can now use them to implement the program.

SETTING or assigning Data to the Object’s Properties

 Use the Dot Operator to manipulate and assign values to the object.

 Syntax for assigning data to object via the Property:

 Object. Property = value

Assigning the Object with data that is also an Object (Object-to-Object Interaction)
 If the data being assigned to the Object is also an Object, then the assignment is done via the Object's Property as well.

 The syntax is the same as the regular data.

 Note that like any other variable, the Object being assigned must be of the same type as the object defined in the Property.

 Syntax:

 Object. Property = objObject

Example:

 Assuming we have previously created a Customer Object:

objCustomer.FirstName = “Joe”

objCustomer.LastName = “Smith”

Example:

 Assuming we have previously created the objects listed:

objCustomer.CreditCard = objCreditCard

objCustomer.Invoice = objInvoice

 35

GETTING or accessing Data from the Object’s Properties

 You retrieve values from the class Data via the Object's Property and the Dot Operator

 Syntax for accessing data from the object via the Property:

 Value = Object. Property

Accessing Object’s data that is also an Object (Object-to-Object Interaction)
 If the data being retrieved from the Object is also an Object, then the assignment is done via the Object's Property.

 The syntax is the same as the regular data.

 Note that in order to access an object data member, you need an object to receive it and the receiving object must be of the

same type as the property.

 Syntax:

 objObject = Object. Property

Example:

 Assuming we have previously created a Customer Object:

Dim strFName, strLName As String

strFName = objCustomer.FirstName

strLName = objCustomer.LastName

Example:

 Assuming we have previously created the objects listed:

objCreditCard = objCustomer.CreditCard

objInvoice = objCustomer.Invoice

 36

Calling the Object’s Methods

 Syntax for calling an object Methods uses the dot operator as well:

 Object. Method()

Examples:

Calling SUB Procedures with NO PARAMTERS

 Assuming we have previously created a Customer Object, we call a Sub Procedure from the Object:

objCustomer.PurchaseProduct()

 Assuming we have previously created an Invoice Object, we call a Sub Procedure from the Object:

objInvoice.Print()

Calling SUB Procedures WITH PARAMTERS

 Assuming we have previously created an login Form Object, we call a Sub Procedure which takes arguments:

objLoginForm.DisplayFormGetUserInfo(userName, passWord)

 Assuming we have previously created an Invoice Object, we call a Sub Procedure which takes arguments:

objInvoice.CalculateTotal(totalCharges, salesTax)

Calling FUNCTION Procedures with NO PARAMTERS

 Assuming we have previously created an Invoice Object, we call a Function to execute and return a value:

totalCharges = objInvoice.CalculateTotal()

Calling FUNCTION Procedures WITH PARAMTERS

 Assuming we have previously created an Invoice Object, we call a Function which takes arguments to execute and

return a value:

access = objEmployee.Authenticate(userName, passWord)

 37

Object to Object Interaction – Assigning One Object’s Reference to Another Object

 You can assign one object to another Object. Keep in mind that both objects must be of the same class.

 But this statement can be misleading. You may think that a COPY of one Object is being made to another, this is NOT THE

CASE!

 When you assign one object to another you are actually assigning REFERENCES or POINTERS!!!!!!

 The content of one object IS NOT COPIED to another but simply ONE POINTER POINTS TO THE OTHER!

 Therefore assigning the content of one object to another is simply having a pointer point to the same object that the other is

pointing to.

 Here are some characteristics:

 Assigning an object to another with the = sign, means point to where the object is pointing to

 As the pointer points to this new object, the original object where the pointer was pointing to, is destroyed if there are no

other references or pointers to it.

 The Syntax is the as follows:

 ObjObject1 = objObject2

Example 1:

 Assuming we have previously created the objects shown below:

objCurrentCustomer = objCustomer

 The resultant interaction looks as follows:

 Another example:

objTempInvoice = objInvoice

objInvoice

objTempInvoice

objCustomer

objCurrentCustomer

 38

Example 2:

 Assuming we have the following declarations:

‘Declare reference or POINTER variable,

but do not create object.

Dim objCurrentCustomer As clsCustomer

‘Declare and Create an Object

Dim objCustomer As clsCustomer

objCustomer = New clsCustomer()

‘Assign the references

objCurrentCustomer = objCustomer

objCurrentCustomer

objCustomer

objCustomer

objCurrentCustomer

 39

5.3.2 Summary of Implementing Object-Oriented Programs

 An Object-Oriented Program(OOP) is a program that is written based on the Objects that are the protagonist of the program.

The primary focus is not what the program does or functionality but of who are the members or participant of the program

 In other words, the Class Modules are created first, then the Objects of the Classes , finally the program is written to use the

objects created

 In summary, the three steps required to creating an Object-Oriented Programs are shown below:

I. Create the class specification or Class Module

 Private Data/Properties/Methods/Events

II. Create Object of the Class

 Available Syntax:

 One Statement Compact Method:

- Dim TheObjectPointer As New Class

 One Statement Two parts:

- Dim TheObjectPointer As Class = New Class

 Two statements:

- 1) Declaration section or inside a method:

o Dim TheObjectPointer As Class

- 2) Inside a method

o TheObjectPointer = New Class

III. Use the Object of the Class

 Write the program to manipulate, access or modify the objects

data & Call the Methods:

 Set Properties

 Get Properties

 Call Methods

 Trigger Events

 Program Event-Handlers generated by Object

 Object-to-Object interactions:
- Object1 = Object2

- Object1.Property = Object2

- Object1 = Object2.Property

- Object1.Method(Object2)

- Object2 = Object1.Method()

- Etc.

 40

5.3 Additional Concepts in OOP

5.3.1 Introduction to Object-Oriented Related Statements

 Lets look at some additional object related statemet:

With Block Statement

 There are times when several code statements are being applied to the same Object.

 Visual Basics provides a statement that allows us to group of block a set of code that pertains to an Object.

 This statement is called the With/End With Statement. This statement works in conjunction with the Dot Operator as well.

 The syntax is as follows:

„With Block Statement

With ObjectName

 .Property or Method

 .Property or Method

 .etc…

End With

 All statements residing in the body of the With Statement before the End With relate to the Object named on the With header.

Example:

 Using the With/End With Statement:

 Example 1 – Assigning value to button:

With btnExit

.Text = “E&xit”

.Enable = True

.TabStop = True

.TabIndex = 1

End With

 Example 2 – Assigning value to a Customer Object and execute methods:

With Customer

.FirstName = “Joe”

.LastName = “Smith”

.IDNumber = 111

.BirthDate = 12/12/65

.RentVideo() „Calling Method of Object

End With

 Example 3 – Retrieving values from Customer Object:

With Customer

t = .FirstName

Value2 = .LastName”

.IDNumber

.BirthDate

.RentVideo() „Calling Method of Object

End With

 41

5.3.2 Nothing Keyword

 VB.NET offers a statement that allows you to have object pointers point to a NULL or a NO-VALUE setting

 The syntax is as follows:

Object = Nothing

 The Nothing Keyword, dissociate an OBJECT POINTER from pointing to any object.

 By default when you create a POINTER, it is pointing to Nothing.

5.3.3 Termination and Cleanup (Destroying Objects)

 In VB.NET Objects are created and used. Often we use an object and no longer needed or reference to an object is removed.

 Here is a previous simple example of objects that are no longer needed or have not reference:

Example 1:

 Assuming we have the following declarations:

‘Declare reference or POINTER variable,

but do not create object.

Dim objCustomer1 As New clsCustomer(“Joe”, 111, #1/23/1978#)

Dim objCustomer2 As New clsCustomer(“Mary”, 444, #05/10/1965#)

‘Assign the references

objCustomer1 = objCustomer2

‘Note that the Joe object no longer has reference

“Joe”

111
1/23/1978

objCustomer1

“Mary”

444
5/10/1965

objCustomer2

“Mary”

444
5/10/1969

objCustomer2
“Joe”

111
1/23/1978

objCustomer1

 42

 Termination or Cleanup means destroying an object.

 Destroying an Object means that memory and resources being consumed by the Object are reclaimed and given back to the

Operating System (OS) when there are NO References to the object (No pointer pointing to it).

Garbage Collection
 VB.NET provides a mechanism call garbage collection that automatically terminates and reclaims unused Objects.

 We will not go into the details in this lecture, but the Garbage Collection mechanism is automatic and when it sees an object

without a reference (pointer) it will reclaim it.

 Garbage Collection runs automatically and the run time is determined by VB. We don’t have control of the time when the

garbage collection runs.

 However there are options available to the programmer for giving instructions to the Garbage Collector.

 At this time, I will not cover this material in my notes. Student is welcome to seek other sources of reference on this topic.

 43

5.3.4 Testing Objects Prior to using them in a Program (Optional Step)

Testing Overview
 The main idea behind Object-Oriented Programs is to create the Objects which are the protagonist of the program first, and

then you would write the program to manipulate these Objects.

 But in order to produce robust or error-free program, it’s a good idea to first test the object, in a test program, prior to using it

in a complete program.

 This is done by writing a small test or driver program to test the Object’s basic functionality (Properties/Methods). Once the

functionality of the class is tested, then we use the class in the real or intended program.

 Note that writing this test program is not mandatory. Sometimes programmers get lazy and choose to simply write the full

program they intended to write in the first place, but think of the implication. You write a class, and then use it in a full blow

program and you start having problems. You don’t know if your problems are due to the objects you created or the program

you are writing to use the objects. Eventually you start suspecting the Object and have to test it separately anyway. On the

other hand, if you had tested your objects with a test program prior to using them, then you know that any errors you

encounter in your program you would know that they are not due to the Object since the Object was tested prior to use.

Unit Testing of Objects (Driver Program)
 After the Class is created, it’s a good idea to test the class by writing a small test driver program. This program will consist of

the following components:

 Class Module – The Class Module templates you created for your program

 Standard Module – A Programming Code Window to enter code to test all possible functionality of Objects

 The program can be written using a Console Application or a Module-Driven Windows Application or Form-Driven.

Choice depends on the class you will test. A console application or a Module-Driven Windows application is the simplest.

Since we want to just test, it makes no sense to create forms to test the class.

 The steps are as follows:

Step 1: Start a new Console Application or Module-Driven Windows Application.

Step 2: Add a Class & Class File to the project. Code in the Property Let, Property Get, Property Set, Methods and Events

Step 3: In the Main Module, Create an Object

 Create an Object for testing using the methods shown previously. Create objects that use each Constructor (DEFAULT &

PARAMETERIZED)

Dim Object1 As New Class()

Dim Object2 As New Class(value1, value2, value3 etc.,)

Option Explicit

Public Class ClassName

 „ Private Data declarations…..

„ Public Property declarations…

„ Public Methods declarations…

End Class

 44

Step 4: Test and Validate the Constructors

 At this point, is a good idea to test and verify if the CONSTRUCTORS (DEFAULT & PARAMETERIZED) are correctly

working.

 This is done by simply displaying the content of the properties of each object and verify if the constructor settings are valid

 This can be done in two ways:

1) GET the properties of each object and display them, if results shown match the constructor setting, test is OK, otherwise

the constructors are not working and you need to debug and fix the problem. Syntax example:

„Testing Default Object Constructor

Console.WriteLine(Object1.FirstName)

Console.WriteLine(Object1.IDNum)

Console.WriteLine(Object1.BirthDate)

„Testing Parameterized Object Constructor

Console.WriteLine(Object2.FirstName)

Console.WriteLine(Object2.IDNum)

Console.WriteLine(Object2.BirthDate

2) If the object has an internal method that displays the data such as a Print() or anything else, call that method.

Object1.Print()

Object2.Print()

Step 5: In the Module Code Window, Enter Code to test every Property of the Object

 The idea now is to create an Object and test every Property of the Object.

 Is a good idea to test the SET part first, then GET, if you GET what you SET then you are OK, otherwise something is wrong

and you need to test each individually.

Testing Setting each Property
 To test the Set Property is simple, just assign each property a value

 For example if the object has the following properties String property: FirstName, Integer property IDNum & Date property

BirthDate, then simply assign a hard coded value as follows:

Object1.FirstName = “Joe”

Object1.IDNum = 111

Object1.BirthDate = #12/12/65#

 At this point, we don’t know if the SET is ok, we need to view the data of the object via the properties and verify if these

values are stored. One way to do it is to test the GET at this point.

 45

Testing Get Part of a Property
 To test the Get Portion, just access the value that each property returns.

 This requires additional steps depending on the data being returned by the properties.

 There are two methods to doing this:

Method I – Create variables to store the values returned by the property Get

1) Create variables to store the values returned by every property, make sure the data types are the same as the values

returned by the property.

 For example if the object has the following properties: String property FirstName, Integer property IDNum &

Date property BirthDate, to test simply assign the values of these properties to variables of the same type as

follows:

Dim sVariable As String

Dim nVariable As Integer

Dim dVariable As Date

sVariable = Object1.FirstName

nVariable = Object1.IDNum

dVariable = Object1.BirthDate

2) Display the content of each variable using a a Console.WriteLine Statement in order to see if the values being returned

are valid.

 Now display the content of the variables using a Console.WriteLine:

Console.WriteLine(sVariable)

Console.WriteLine(nVariable)

Console.WriteLine(dVariable)

 If the values you see are the values you assign with the Set Properties, then the Properties procedures are good,

since you were able to display values that were assigned & retrieved, otherwise there is a problem which needs

fixing.

Method II – (Simplest) Display the values directly from the Get Properties unto a Message Box

1) This method requires no variables, simply display the content of each Property directly from the Object as follows:

Console.WriteLine(Object1.FirstName)

Console.WriteLine(Object1.IDNum)

Console.WriteLine(Object1.BirthDate)

 Again if the values displays are identical to those assigned previously, then the Object is good, otherwise fix the

errors until the values display = values added.

 46

Step 6: In the Module Code Window, Enter Code to test every Method of the Object

Testing Methods
 Note that testing the Properties is easy, all you need to do is assign & retrieve values into the Object, but executing the

methods may prove a challenging depending on what action the method is to perform.

 For example, if a method is called DisplayName and calling it displays the FirstName data member, there is no problem

testing since the result is a message box or Console.WriteLine statement displaying the name, but if the method is called

SendEmail and calling it sends out an email that involves many systems and other complex programming code, then you really

cannot test this Method at this point since it’s dependent on many other things.

 To test methods simply call the method with the required arguments. For example:

objObject.Method1

objObject.Method2 arg1

objObject.Method3 arg1, arg2 ….

Step 6: Test any Events Triggered by the Object

 At this point you will test any Events & Event-Handlers that are triggered by the Object.

 This is done as follows:

1) Generate the event-handler outside of the object

2) Program the Event-Handler, a simple test is to display a message box from the event-handler

3) Run the program and execute the ACTION AGAINST THE OBJECT that will trigger the event

4) If the message box or code that was entered in the event-handler executes than event mechanism is working.

 47

The Complete Test Program
 In the Standard Module screen enter the following code:

Step 1: Start a new Console Application or Module-Driven Windows Application.

Step 2: Add a Class & Class File to the project. Code in the Property Let, Property Get, Property Set, Methods and Events

Step 3-6: Add code to Create Objects, Test Property, Methods and Events

 In this example I will use a Module-Driven Windows Application. You can also use a console application simply replace the

MessageBox.Show with Console.Writeline()

 Option Explicit ON

 Option Strict ON

„Step 3: Create the Object for testing:

 Object1 As New Class()

Object2 As New Class(value1, value2, value3, etc.,)

„Step 4: Test the constructors:

„Method 1: Display content of objects via GETTING PROPERTIES

Console.WriteLine(Object1.Property1 & Object1.Property2 & Object1.Property3)

Console.WriteLine(Object2.Property1 & Object2.Property2 & Object2.Property3)

„Method 2: Call internal method if available to display the data

Object1.Print()

Object2.Print()

„Step 5A: Test each Property SET by assigning appropriate values:

Object1.Property1 = value

Object1.Property2 = value

Object1.Property3 = value

….

„Step 5B Option 1 - Test each Property GET

„Method 1(a) - Create variables of correct type to store the content of each Property Get:

Dim variable1 As Type

Dim variable2 As Type

 Dim variable3 As Type

„Method 1(b) – Get each using variables:

variable1 = Object1.Property1

variable2 = Object1.Property2

variable3 = Object1.Property3

„Method 1(c): Dislay the content of each variable to verify that values were stored:

MessageBox.Show (variable1 & variable2 & variable3)

„Step 5B: Option 2 – Alternate option to test each Property GET

„Method 1I - Alternate simpler option by displaying each object property directly:

MessageBox.Show (Object1.Property1 & Object1.Property2 & Object1.Property3)

„Step 6: Test each Method (If Possible) the object should perform the action dictated by the methods:

objObject.Method1

objObject.Method2 arg1

objObject.Method3 arg1, arg2 …

….

 48

5.3.5 Sample Program 1 – Class Test Program

Creating and Testing a Person Class Using Console Application

Problem statement:

 Using a Console Application, create a Person Class. This class can be used to create objects with information of a Person

such as name, id, and birth date, address & phone number. Also the class should contain a method that will print the object’s

information. Using the Console Application, write a simple driver program to test the class. This test program will be used to

create objects using default & Parameterized Constructors as well as testing each Property and Methods.

Class Requirements

 The class contains the following data, properties & methods members

Class Person Member Data:

 Name: Type String

 IDNumber: Type Integer.

 BirthDate: Date

 Address: Type String

 Phone: Type String

Class Member Properties & Methods:

 Let & Get Properties for each data member.

 The Method Print(), which displays the Persons data

HOW IT'S DONE:

Part I – Create The Class:

Step 1: Start a new Console Application project and set the Module's properties as shown in table below:

Object Property Value

Module.vb FileName modPerson.vb

 Object Name Module modPerson

 49

Step 2: Add a Class to the Project and set the Class properties as shown in table below:

Object Property Value

Class Module 1

File Name

clsPerson.vb

Step 3: In the Class Module code window enter the code for the private data:

Option Explicit On

Option Strict On

Public Class clsPerson

 '***

 'Class Data or Variable declarations

 Private m_Name As String

 Private m_IDNumber As Integer

 Private m_BirthDate As Date

 Private m_Address As String

 Private m_Phone As String

 50

Step 4: In the Class Module code window enter the code for public Properties:

 '***

 'Property Procedures

 Public Property Name() As String

 Get

 Return m_Name

 End Get

 Set(ByVal Value As String)

 m_Name = Value

 End Set

 End Property

 Public Property IDNumber() As Integer

 Get

 Return m_IDNumber

 End Get

 Set(ByVal Value As Integer)

 m_IDNumber = Value

 End Set

 End Property

 Public Property BirthDate() As Date

 Get

 Return m_BirthDate

 End Get

 Set(ByVal Value As Date)

 m_BirthDate = Value

 End Set

 End Property

 Public Property Address() As String

 Get

 Return m_Address

 End Get

 Set(ByVal Value As String)

 m_Address = Value

 End Set

 End Property

 Public Property Phone() As String

 Get

 Return m_Phone

 End Get

 Set(ByVal Value As String)

 m_Phone = Value

 End Set

 End Property

 51

Step 5: In the Class Module code window enter the code for Constructor Methods (Non-Parameter and/or Parameterized):

 '***

 'Class Constructor Methods

 'Default Constructor

 Public Sub New()

 'Note that private data members are being initialized

 m_Name = ""

 m_IDNumber = 0

 m_BirthDate = #1/1/1900#

 m_Address = ""

 m_Phone = "(000)-000-0000"

 End Sub

 'Parameterized Constructor

 Public Sub New(ByVal Name As String, ByVal IDNum As Integer, ByVal BDate As Date, _

 ByVal Address As String, ByVal Phone As String)

 'Note that as example we are NOT using the private data but

 'the Property Procedures instead when setting the data via the constructor

 Me.Name = Name

 Me.IDNumber = IDNum

 Me.BirthDate = BDate

 Me.Address = Address

 Me.Phone = Phone

 End Sub

 52

Step 6: In the Class Module code window enter the code for the PrintPerson Method:

 NOTE THAT ALTHOUGH WE ARE DISPLAYING ITEMS IN THE

SCREEN FROM A METHOD INSIDE THE CLASS, THIS IS ONLY

FOR TEACHING OR TESTING PURPOSED.

 YOU SHOULD NOT DISPLAY MESSAGES OR PERFORM SCREEN

OR USER INTERFACE TRANSACTIONS FROM WITHIN A CLASS

IN YOUR HW OR PROJECTS.

 '***

 '***

 'Class Methods

 '***

 'Author of base class allows sub classes to overide Print()

 'If they want to, it is not mandatory

 Public Overridable Sub Print()

 'Display object Content

 Console.WriteLine(m_Name & ", " & m_IDNumber & ", " & _

 m_BirthDate & ", " & m_Address & ", " & m_Phone)

 End Sub

End Class

 53

Part II & III – Create The Object and Use it:

Step 7: In the Module File Sub Main() Procedure enter code to Create and Use the Object, this is know as a driver program:

Option Explicit On

Option Strict On

Module TestModule

 Sub Main()

 'Step 1a-Create an DEFAULT Object

 Dim objPerson1 As clsPerson

 objPerson1 = New clsPerson

 'Step 1b-Create PARAMETERIZED Object with arguments

 Dim objPerson2 As clsPerson

 objPerson2 = New clsPerson("Mary Jones", 444, #1/22/1973#, _

 "100 Brooklyn Ave.", "718-260-5555")

 'Step2-TEST CONSTRUCTORS by Calling an Object Print() method

 'immediately after creation of objects

 objPerson1.Print()

 objPerson2.Print()

 'Step 3-Test SET Properties

 With objPerson1

 .Name = "Joe Smith"

 .IDNumber = 111

 .BirthDate = #12/12/1965#

 .Address = "100 Flatbush Ave Brooklyn, NY 10016"

 .Phone = "718-555-5454"

 End With

 'Step 4-Test GET Properties by displaying content of objects

 Console.WriteLine()

 Console.WriteLine()

 Console.WriteLine("Person1 Object's Data is:")

 Console.WriteLine(objPerson1.Name)

 Console.WriteLine(objPerson1.IDNumber)

 Console.WriteLine(objPerson1.BirthDate)

 Console.WriteLine(objPerson1.Address)

 Console.WriteLine(objPerson1.Phone)

 'Step 5-Testing Methods. Actually we already tested the methods earlier

 objPerson2.Print()

 End Sub

End Module

 54

Step 7: Compile & Run the program:

 55

5.3.6 CLASSROOM LABORATORY EXERCISE – Test Program

Creating and Testing an INVOICE Class Using Module-Driven Windows Application

Problem statement:

 Using a Module-Driven Windows Application, create an Invoice Class. This class has the following characteristics:

 Invoice class represents an business transaction invoice object.

 Contain data such as company information (Company name et.,), customer information (Name, ID etc) and

transaction information (Total, tax etc.).

 Class contain the required method that will allow invoice objects to perform transactions such as tax calculations,

total charges calculations etc.

 Other program requirements:

 Using a Module-Driven Windows Application, without a FORM!, write a simple driver program to test the class.

This test program will be used to create objects using default & Parameterized Constructors as well as testing each

Property and Methods.

 In your program, OPTION STRICT and OPTION EXPLICITS should be set to ON in all your code modules

 DO NOT CREATE A FORM TO TEST YOUR CLASS! USE A STANDARD MODULE OBJECT.

I. Class Requirements
 The class contains the following data, properties & methods members

Class Person Member Data:

Class Member Properties & Methods:

 Create the required Properties for each data member. DECIDE IF ANY DATE MEMBER REQUIRES A PROPERTY OR

NOT

 Create the following class methods:

1. Default Constructor – Initializes the values to default. Select appropriate defaults (Use your imagination)

2. Parameterized constructor – Allow the creation of objects that will initialize attributes of the class with

EXTERNAL DATA, with the following EXCEPTIONS: SubTotal, TotalTax, Total. Do not include these values in

the parameter list of the constructor!!!

3. Sub Procedure Print() – Displays Invoice data using a Message Box! Data should be displayed as a COMMA-

DELIMITED STRING

4. Function CalculateTotal() – When called returns the total charges for this Invoice Transaction. This value is

calculated as follows:

Total = SubTotal + (SubTotal * STATE_TAX)

Data Member Data Member

CompanyName: Type String TransactionDate: Type Date

CompanyPhone: Type String SubTotal: Type Decimal

CompanyAddress: Type String TotalTax: Type Decimal

InvoiceID: Type Integer Total: Type Decimal

CustomerName: Type String StateTax: Constant Decimal (8.25%)

CustomerID: Type Integer

CustomerAddress: Type String

CustomerPhone: Type String

 56

5. Sub Procedure CalculateSubTotal(Parmeter1, Parameter2) – Calculates the sub total price of the Invoice based

on the number of items purchased and the price of the items. The methods parameters and calculation formula are as

follows:

- By Value Parameter 1: NumberOfItemsPurchased

- By Value Parameter 2: ItemPrice

- Formula:

SubTotal = SubTotal + (NumberOfItemsPurchased * ItemPrice)

II. Module & Program Requirements
 The module requirements are as follows:

1. Test constructors

2. Test or validate the data mechanism

3. Test all methods

III. Required Results
 Submit the following information:

a. A printed output - Printed results of test. (You can use MS Paint and copy/paste from the
screen if necessary)

b. A printed copy of the class code
c. A printed copy of the module code
d. All documents must have your name and ID printed with the code

e. Submit all documents include your name

 57

5.3.5 Sample Program 2 – Working With Forms & Custom Objects (VERSION 1)

Form Driven Application – Small Business Application Using Person Class

Problem statement:
 Using a Form Driven Application (Startup Object = Form) we will demonstrate various methods of working with forms and

custom objects. This example creates several forms for Data Entry, and Displaying Customer Information as well as the

Manager information for a small business.

 NOTE that we will implement this application ONLY USING WHAT WE HAVE LEARNED UP TO THIS POINT.

Nevertheless, it will truly test our understanding of OBJECTS AND CLASSES up to this point.

 This example is for TEACHING PURPOSE ONLY! A true Customer Management application will use more advance .NET

components which will make creating this application more practical.

Application Architecture Introduction (Separating Interface from Implementation)

 We will also begin to INTRODUCE THE class to proper application programming ARCHITECTURE and FORMATS

adhering to BEST PRACTICE by making all attempts to SEPARATE INTERFACE from IMPLEMENTATION.

 What we mean is we SEPARATE USER-INTERFACE CODE with PROCESSING. This is done as follows:

 User-interface code or the code in the FORMS will contain NO PROCESSING CODE!

 FORMS will only contain User-Interface code or code to interact with USER ONLY!

 FORM code includes MESSAGE BOXES, UI CONTROLS manipulation, getting data from user, displaying data to user.

 All PROCESSING CODE will reside in the MODULE INSIDE PROCESSING METHODS!

 PROCESSING METHODS IN MODULE will be CALLED BY THE FORMS TO DO THE WORK!

 PROCESSING MODULE will contain LITTLE or NO FORM CODE! SUCH AS CALLS to FORMS OR FORM

CONTROLS

 FORM CODE WILL INTERACT WITH USER AND CALL PROCESSING METHODS IN MODULE TO DO THE

WORK!

 WE WILL SHOW TWO VERSION OF THIS PROGRAM. THE FIRST VERSION, contains a BUG or ISSUE!

 I discuss the BUG at the end of this example. IN THE SECOND VERSION, WE WILL RESOLVE THIS BUG!

Re-using Objects

 We will also review the OOP concept of Reusability by reusing the Person Class from the previous Console Application

Example #1. As in Example 1, this class will be used to create objects with information of a Customer such as name, id, and

birth date, address & phone number. Also the class should contain a method that will print the Customer’s information. The

only modification we will make in the Person Class is in the PrintPerson() Method. From previous Console Application

example, this method called the Console.WriteLine() method. We will change these calls to a MessageBox.Show for a

Windows Application.

Form, & Module Requirements

 The main or driver program will utilize several forms. A Main Form as a startup point to invoke the Customer Management

& Customer Information Forms. Each one of these Forms will perform their function and manage the objects created in the

program.

 In addition the program will contain a Module where several global public Objects will reside that represent a SIMMULATED

DATABASE OF CUSTOMER OBJECTS.

 58

Additional Requirements

 This Example will demonstrate the following topics:

 Windows Form-Driven Application Example

 Creating Classes,

 Reusing Classes from previous programs

 Creating, initializing Objects

 Using Objects as follows:

o (Set, Get, Calling methods, triggering Form Object event-handlers, & programming Form objects event-handlers)

o Working with Objects & Forms

o Global Objects in a Module

o Assigning Object Reference to one another (Object to Object Interaction)

Class Requirements
 The class contains the following data, properties & methods members

Class Person Member Data:

 Name: Type String

 IDNumber: Type Integer.

 BirthDate: Date

 Address: Type String

 Phone: Type String

Class Member Properties & Methods:

 Set & Get Properties for each data member.

 The Method PrintPerson(), which displays the Persons data

Form Requirements
 The application will contains the following Forms:

 frmMainForm: Portal to navigate to other Forms

 frmCustomerManagement: Form contains controls to Search, Add, Edit, Delete, Print and & Print all Customers

 frmManagerInformation: Form contains controls to display the Manager’s information

 Note that the Forms will create any necessary FORM-LEVEL Objects & Form Event-Handlers that respond to user

interactions.

Module Requirements

 The application will contains one Module with the following requirements:

 modMainModule: Module to contain the following:

o 5 Global Objects POINTERS of the Person Class. These 5 POINTERS are to be populated by the program with

PERSON OBJECTS which represent the Customer DATABASE

o One Global OBJECT of the person class. This object is created with data using the PARAMETERIZED

CONSTRUCTOR and represents the company’s manager.

o The following PROCESSING METHODS:

 Sub Initialize() – Creates 5 PERSON OBJECTS with data and assigns them to the 5 POINTERS in

database.

 Function Search(ID) – Search database (5 Object) for the object whose ID is the parameter. RETURNS a

POINTER to the object found or returns a NOTHING if not found.

 Function Add(OBJECT POINTER) – Searches database (5 Objects) for a NULL POINTER and has it

POINT to the Object Pointer pass as Parameter. Returns a TRUE if empty pointer found, else FALSE

 Function Remove(ID) – Search database (5 Object) for the object whose ID is the parameter. REMOVES

by setting POINTER to NOTHING. RETURNS a TRUE if found or returns FALSE otherwise.

 Function Print(ID) – Search database (5 Object) for the object whose ID is the parameter. Calls PRINT()

method of object. RETURNS a TRUE if found or returns FALSE otherwise.

 Sub PrintALL() – Search database and calls PRINT() method of EACH OBJECT in database.

 59

HOW IT'S DONE:

Part I – Create The Class:

Step 1: Start a new Windows Application. By default the program will behave as a Form Driven Application:

Object Property Value

Project Name CustomerFormWinApp

 Startup Object Form1

Step 2: Prepare to Reuse the Person Class from Previous Console Application, by Copying the File from previous

Application Folder to the Folder of this Windows Application Project

1. Using Windows Explorer, navigate to the Folder of the previous example Console Application Sample Program 1.

2. Copy/Paste the file clsPerson.vb to this Project folder

Step 3: Add the Class to the Project

1. In the Project Menu, select Add| Existing Item… and navigate to the project folder

2. Select the clsPerson.vb File and click OK

3. The class is now part of the project and ready to be Reused!

 60

Step 4: In the Class Module code window enter the code for the private data:

Step 5: In the Class Module code window enter the code for public Properties:

Option Explicit On

Option Strict On

Public Class clsPerson

 '***

 'Class Data or Variable declarations

 Private m_Name As String

 Private m_IDNumber As Integer

 Private m_BirthDate As Date

 Private m_Address As String

 Private m_Phone As String

 'Property Procedures

 Public Property Name() As String

 Get

 Return m_Name

 End Get

 Set(ByVal Value As String)

 m_Name = Value

 End Set

 End Property

 Public Property IDNumber() As Integer

 Get

 Return m_IDNumber

 End Get

 Set(ByVal Value As Integer)

 m_IDNumber = Value

 End Set

 End Property

 Public Property BirthDate() As Date

 Get

 Return m_BirthDate

 End Get

 Set(ByVal Value As Date)

 m_BirthDate = Value

 End Set

 End Property

 Public Property Address() As String

 Get

 Return m_Address

 End Get

 Set(ByVal Value As String)

 m_Address = Value

 End Set

 End Property

 Public Property Phone() As String

 Get

 Return m_Phone

 End Get

 Set(ByVal Value As String)

 m_Phone = Value

 End Set

 End Property

 61

Step 6: In the Class Module code window enter the code for Constructor Methods (Non-Parameter and/or Parameterized):

Step 7: MODIFY the Print() method by replacing the Console.Writeline with MessageBox.Show statement:

 NOTE THAT THIS CLASS CONTAINS A USER-INTERFACE CODE VIA A MESSAGE BOX. THIS IS ONLY

FOR TEACHING PURPOSE!!

 YOU SHOULD NOT DISPLAY ANY MESSAGE BOXEX OR USER-INTERFACE CODE FROM WITHIN A

CLASS IN HWS AND PROJECTS UNLESS OTHERWISE INSTRUCTED!!

 '***

 'Class Constructor Methods

 'Default Constructor

 Public Sub New()

 'Note that private data members are being initialized

 m_Name = ""

 m_IDNumber = 0

 m_BirthDate = #1/1/1900#

 m_Address = ""

 m_Phone = "(000)-000-0000"

 End Sub

 'Parameterized Constructor

 Public Sub New(ByVal Name As String, ByVal IDNum As Integer, ByVal BDate As Date, _

 ByVal Address As String, ByVal Phone As String)

 'Note that as example we are NOT using the private data but

 'the Property Procedures instead when setting the data via the constructor

 Me.Name = Name

 Me.IDNumber = IDNum

 Me.BirthDate = BDate

 Me.Address = Address

 Me.Phone = Phone

 End Sub

 '***

 '***

 'Class Methods

 '***

 'Author of base class allows sub classes to overide Print()

 'If they want to, it is not mandatory

 Public Overridable Sub Print()

 'Display object Content

 MessageBox.Show(m_Name & ", " & m_IDNumber & ", " & _

 m_BirthDate & ", " & m_Address & ", " & m_Phone)

 End Sub

End Class

 62

Part II & III – Create & Use The Objects (The User Interface Code)

Standard Module:

Step 7: Add a Module to the Project and set its properties as show in table below:

Object Property Value

Module Name MainModule

 Text MainModule

Step 8: Add Module GLOBAL declarations:

 In the module, we will declare 5 clsPerson OBJECT POINTERS. These POINTERS will eventually point to objects which

will represent our simulated DATABASE OF CUSTOMERS!

 In addition we create one complete OBJECT using parameterized constructor with data. This object represents a business

employee manager.

Option Explicit On

Option Strict On

Module MainModule

'**

' GLOBAL VARIABLES & OBJECT DECLARATIONS SECTION

'**

'Declare 5 POINTERS to Customer Object (REPRESENT OUR SIMMULATED DATABASE)

Public objCustomer1, objCustomer2, objCustomer3, objCustomer4, objCustomer5 As clsPerson

'Declare & Create Public Object representing THE MANAGER employee, initialized with Data

Public objManager As clsPerson = New clsPerson("Alex Rod", 777, #12/12/1971#, _

 "192 East 8th, Brooklyn", "718-434-6677")

 63

Step 9: Add Module INITIALIZE() Method declarations:

 Mow we begin to add PROCESSING METHODS TO THE MODULE that will do the work for the FORMS.

 The first method we implement is the INITIALIZE() method. This sub procedure creates 5 OBJECTS of the PERSON

CLASS and assigns them to the 5 GLOBAL POINTERS.

 At this point the simulated DATABASE OF CUSTOMERS is not POPULATED WITH OBJECTS!

 '**

 ' METHOD DECLARATIONS

 '**

 ''' <summary>

 ''' Intended to execute at the start of the program. Can be used to perform

 ''' any initialization. In this case, to populate EACH POINTER with OBJECT at

 ''' start of the program. We are simply populating the database with data.

 ''' </summary>

 ''' <remarks></remarks>

 Public Sub Initialize()

 'Create objects and initialize with data via paremterized constructor

 objCustomer1 = New clsPerson("Joe", 111, #12/12/1965#, "111 Jay Street", _

 "718-434-5544")

 objCustomer2 = New clsPerson("Angel", 222, #1/4/1972#, "222 Flatbush Ave", _

 "718-234-5524")

 objCustomer3 = New clsPerson("Sam", 333, #9/21/1960#, "333 Dekalb Ave", _

 "718-890-3422")

 objCustomer4 = New clsPerson("Mary", 444, #7/4/1970#, "444 Jay Street", _

 "718-444-1122")

 objCustomer5 = New clsPerson("Nancy", 555, #12/12/1965#, "555 Flatlands Ave", _

 "718-434-9876")

 End Sub

 64

Step 10: Create SEARCH(ID) FUNCTION declarations:

 Purpose of this method is to search the database (5 Customer OBJECTS) for the object whose ID is parameter and return a

POINTER to the object

 How it works:

 Nested ElseIf statement is used

 During each ElseIf, the OBJECT’S IDNUMBER PROPERTY is tested against the ID parameter (PROPERTY = ID?), if

a match is found or TRUE, the code inside the body of the If statement is executed.

 This code simply RETURNS the POINTER to the OBJECT. REMEMBER, THE RETURN KEYWORD ALSO EXITS

THE METHOD.

 If a match (PROPERTY = ID?) is not found or FALSE, then you simply skip the OBJECT and go to the next ElseIf.

 This process repeats itself until the last ELSE is found, at this point a NOTHING is returned since we searched the

database did not find the object.

 '**

 ''' <summary>

 ''' Function Searches the database for POINTER to object whose ID is a parameter

 ''' Interrogates object for the ID, when found Returns POINTER to OBJECT and EXITS!

 ''' </summary>

 ''' <param name="IDNum"></param>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Function Search(ByVal IDNum As Integer) As clsPerson

 'Step 1-Search for object with ID

 If objCustomer1.IDNumber = IDNum Then

 'Step 2-Return Pointer to object and EXIT

 Return objCustomer1

 ElseIf objCustomer2.IDNumber = IDNum Then

 Return objCustomer2

 ElseIf objCustomer3.IDNumber = IDNum Then

 Return objCustomer3

 ElseIf objCustomer4.IDNumber = IDNum Then

 Return objCustomer4

 ElseIf objCustomer5.IDNumber = IDNum Then

 Return objCustomer5

 Else

 'Not found

 Return Nothing

 End If

 End Function

 65

Step 11: Create ADD(object) FUNCTION declarations:

 Purpose of this method is to ADD a new Customer to the database (5 Customer OBJECTS). True is returned if successful,

False if no EMPTY OR NULL POINTERS ARE AVAILABLE.

 How it works:

 Nested ElseIf statement are used to ask EACH POINTER if is pointing to a NOTHING OR NULL.

 During each ElseIf, if the POINTER IS NOTHING then parameter DATABASE POINTER is assigned to PARAMETER

POINTER, thus adding the object to database.

 A TRUE is returned and function EXITS.

 ONLY AFTER ALL DATABASE POINTERS ARE TESTED AND NO NULLS ARE FOUND is a FALSE

RETURNED.

 '**

 ''' <summary>

 ''' Function Adds NEW objects passed as parameter to database.

 ''' Searches for the FIRST nothing or empty POINTER and adds object to that POINTER.

 ''' Returns a TRUE When OBJECT added OR FALSE when no empty POINTERS and EXITS!!

 ''' </summary>

 ''' <param name="objE"></param>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Function Add(ByVal objE As clsPerson) As Boolean

 'Step 1-Ask if object is NULL

 If objCustomer1 Is Nothing Then

 'Step 2-If NULL, database POINTER = Paramter POINTER

 objCustomer1 = objE

 'Step 3-Return success & EXIT

 Return True

 ElseIf objCustomer2 Is Nothing Then

 objCustomer2 = objE

 Return True

 ElseIf objCustomer3 Is Nothing Then

 objCustomer3 = objE

 Return True

 ElseIf objCustomer4 Is Nothing Then

 objCustomer4 = objE

 Return True

 ElseIf objCustomer5 Is Nothing Then

 objCustomer5 = objE

 Return True

 Else

 'No space available

 Return False

 End If

 End Function

 66

Step 12: Create REMOVE(ID) FUNCTION declarations:

 This method begins to search the database (5 Customer OBJECTS) for the object whose ID is parameter. Once found it

removes object from the database. Returns a TRUE if successful and FALSE if object is NOT FOUND.

 How it works:

 Again, nested ElseIf statement are used

 During each ElseIf, the OBJECT’S IDNUMBER PROPERTY is tested against the ID parameter (PROPERTY = ID?), if

a match is found or TRUE, the code inside the body of the If statement is executed.

 This code simply SETS THE DATABASE POINTER TO NOTHING, thus removing the object it is pointing to.

 A TRUE is returned & function EXITS, when a match and deletion is made. Otherwise if all DATABASE POINTERS

are tested and a match is NOT FOUND, then a FALSE is returned and function EXITS.

 '**

 ''' <summary>

 ''' Function Removes object from database by searching for OBJECT whose ID is

 ''' a parameter. Interrogates each the object for the ID.

 ''' When found, Removes object by setting POINTER TO NOTHING

 ''' Returns a TRUE When removed, FALSE when OBJECT not found and EXITS Function!

 ''' </summary>

 ''' <param name="IDNum"></param>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Function Remove(ByVal IDNum As Integer) As Boolean

 'Step 1-Search for object with ID

 If objCustomer1.IDNumber = IDNum Then

 'Step 2-When found set to nothing

 objCustomer1 = Nothing

 'Step 3-Return OK & EXIT

 Return True

 ElseIf objCustomer2.IDNumber = IDNum Then

 objCustomer2 = Nothing

 Return True

 ElseIf objCustomer3.IDNumber = IDNum Then

 objCustomer3 = Nothing

 Return True

 ElseIf objCustomer4.IDNumber = IDNum Then

 objCustomer4 = Nothing

 Return True

 ElseIf objCustomer5.IDNumber = IDNum Then

 objCustomer5 = Nothing

 Return True

 Else

 'Return FALSE & EXIT

 Return False

 End If

 End Function

 67

Step 13: Create PRINT(ID) FUNCTION declarations:

 Purpose of this method is to search the database (5 Customer OBJECTS) for the object whose ID is parameter. Once found it

CALLS PRINT() METHOD of OBJECT. Returns a TRUE if successful and FALSE if object is NOT FOUND.

 How it works:

 Again, nested ElseIf statement are used

 During each ElseIf, the OBJECT’S IDNUMBER PROPERTY is tested against the ID parameter (PROPERTY = ID?), if

a match is found or TRUE, the code inside the body of the If statement is executed.

 This code simply CALLS THE PRINT() METHOD to execute, thus having the OBJECT PRINT ITSELF.

 A TRUE is returned & function EXITS, when a match and method calling is done. Otherwise if all OBJECS are tested

and NO MATCH IS FOUND, then a FALSE is returned and function EXITS.

 '**

 ''' <summary>

 ''' Function Prints object by searching for OBJECT whose ID is a parameter

 ''' Interrogates each object for the ID.

 ''' When found, CALLS the PRINT() METHOD in the object

 ''' Returns a TRUE When printed OR FALSE when OBJECT not found and EXITS!

 ''' </summary>

 ''' <param name="IDNum"></param>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Function Print(ByVal IDNum As Integer) As Boolean

 'Step 2-Search for object with ID

 If objCustomer1.IDNumber = IDNum Then

 'Step 3-When found set to nothing

 objCustomer1.Print()

 'Step 4-Return OK

 Return True

 ElseIf objCustomer2.IDNumber = IDNum Then

 objCustomer2.Print()

 Return True

 ElseIf objCustomer3.IDNumber = IDNum Then

 objCustomer3.Print()

 Return True

 ElseIf objCustomer4.IDNumber = IDNum Then

 objCustomer4.Print()

 Return True

 ElseIf objCustomer5.IDNumber = IDNum Then

 objCustomer5.Print()

 Return True

 Else

 'Return False Not found

 Return False

 End If

 End Function

 68

Step 14: Create PRINTALL() SUB declarations:

 Purpose of this SUB method is to simply call EACH DATABASE OBJECT’S (5 Customer OBJECTS) PRINT() method,

thus printing ALL OBJECTS.

 How it works:

 Calls each DATABASE OBJECT’S PRINT() METHOD.

 '**

 ''' <summary>

 ''' Prints all objects in database by CALLING each object's PRINT() METHOD

 ''' </summary>

 ''' <remarks></remarks>

 Public Sub PrintAll()

 objCustomer1.Print()

 objCustomer2.Print()

 objCustomer3.Print()

 objCustomer4.Print()

 objCustomer5.Print()

 End Sub End Function

 69

Step 15: RENAME Form1 to frmMainForm. Set the controls as shown in figure below:

Object Property Value

Form1 Name frmMainForm

 Text Main Form

Step 16: Since this is a Windows Form-Driven Windows Application, the Startup Object will be set to frmMainForm:

 70

Step 17: Main Form, FORM-LEVEL DECLARATIONS AND LOAD EVENT:

Step 18: Main Form CustomerManagement_Click Event:

 '**

 ''' <summary>

 ''' Click Event creates object of Customer Management Form

 ''' Calls METHOD in Form OBJECT so object can show itself

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnCustomerManagement_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnCustomerManagement.Click

 'Step 1-Create object of Customer Management Form

 Dim objCustomerManagementForm As New frmCustomerManagement

 'Step 2-Display Customer Management Form

 objCustomerManagementForm.ShowDialog()

End Sub

Option Explicit On

Option Strict On

Public Class frmMainForm

 '**

 ' EVENT-HANDLER DECLARATIONS SECTION

 '**

 '**

 ''' <summary>

 ''' Calls Initialize() method in MODULE to LOAD OBJECTS to each pointer in database.

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub frmMainForm_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 'Perform initialization by calling Module.Initialize() method

 Initialize()

End Sub

 71

Step 19: Main Form MANAGER BUTTON CLICK EVENT:

Step 20: Main Form Exit_Click Event:

 '**

 ''' <summary>

 ''' Event-handler calls Form Close() method to close the Form.

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnExit.Click

 'Step 1-Close yourself

 Me.Close()

End Sub

End Class

 '**

 ''' <summary>

 ''' Click Event creates object of the Manager Information Form

 ''' Calls METHOD in Form OBJECT so object can show itself

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnManager_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnManager.Click

 'Step 1-Create object of Employee Management Form

 Dim objManagerInformationForm As New frmManagerInformation

 'Step 2-Display Employee Management Form

 objManagerInformationForm.ShowDialog()

End Sub

 72

Step 21: Create the Customer Management Form and add the controls shown below:

Object Property Value

Form2 Name frmCustomerManagement

 Text Customer Management

Step 22 FORM-LEVEL DECLARATIONS & OBJECT POINTER:

Step 23 FORM LOAD EVENT:

Option Explicit On

Option Strict On

Public Class frmCustomerManagement

 '**

 ' FORM-LEVEL VARIABLES & OBJECT DECLARATIONS SECTION

 '**

 'Module-level Object POINTER Declaration

 Private objCustomer As clsPerson

 '**

 ' EVENT-HANDLER DECLARATIONS SECTION

 '**

 ''' <summary>

 ''' Form_Load event. Create object and popoulate Form controls

 ''' With object's default values

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub frmCustomerManagement_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 'Create Form-Level Object

 objCustomer = New clsPerson

 'Populate Form Controls with Object's DEFAULT data

 With objCustomer

 txtName.Text = .Name

 txtIDNumber.Text = CStr(.IDNumber)

 txtBirthDate.Text = CStr(.BirthDate)

 txtAddress.Text = .Address

 txtPhone.Text = .Phone

 End With

End Sub

 73

Step 24 Add code to the GET CLICK EVENT:

 '**

 ''' <summary>

 ''' Calls Search method of module to search database for object

 ''' whose ID is passed as argument. Returns a pointer to the object

 ''' found, else returns a Nothing.

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnGet_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnGet.Click

 'Step 1-Call Overloaded Search(ID) to search for object that match ID

 'Return pointer to object found.

 objCustomer = Search(CInt(txtIDNumber.Text.Trim))

 'Step 2-If result of search is Nothing, then display customer is not found

 If objCustomer Is Nothing Then

 MessageBox.Show("Customer Not Found")

 'Step 3-Clear all controls

 txtName.Text = ""

 txtIDNumber.Text = ""

 txtBirthDate.Text = ""

 txtAddress.Text = ""

 txtPhone.Text = ""

 Else

 'Step 4-Then Data is extracted from customer object & placed on textboxes

 With objCustomer

 txtName.Text = .Name

 txtIDNumber.Text = CStr(.IDNumber)

 txtBirthDate.Text = CStr(.BirthDate)

 txtAddress.Text = .Address

 txtPhone.Text = .Phone

 End With

 End If

End Sub

 74

Step 25 ADD code for the ADD CLICK EVENT:

 '**

 ''' <summary>

 ''' Calls Module Add method to Add a new object to the object database

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnAdd_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnAdd.Click

 'Step 1-Create New Object (OBJECT MUST BE A NEW OBJECT)

 objCustomer = New clsPerson

 'Step 2-Populate Form Level Object with Data from Controls

 With objCustomer

 .Name = txtName.Text.Trim

 .IDNumber = CInt(txtIDNumber.Text.Trim)

 .BirthDate = CDate(txtBirthDate.Text.Trim)

 .Address = txtAddress.Text.Trim

 .Phone = txtPhone.Text.Trim

 End With

 'Step 3-Call Add method to add new Customer to database

 Dim result As Boolean = Add(objCustomer)

 'Step 4-Test results & prompt user

 If result Then

 MessageBox.Show("Custome Added Successfully")

 Else

 MessageBox.Show("Database Full")

 End If

End Sub

 75

Step 26 Add code to the EDIT CLICK EVENT:

 '**

 ''' <summary>

 ''' Calls Module Search method to search database for object whose ID

 ''' is passed as argument and return its pointer and sets the object's

 ''' Properties with data from Form controls.

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnEdit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnEdit.Click

 'Step 1-Call Overloaded GetItem(ID) to search for object that match ID

 objCustomer = Search(CInt(txtIDNumber.Text.Trim))

 'Step 2-If result of search is Nothing, then display customer is not found

 If objCustomer Is Nothing Then

 'Step 3-Inform user customer not in database

 MessageBox.Show("Customer Not Found")

 Else

 'Step 4-Populate Form Level POINTER with Data from Controls, EXCEPT THE IDNUMBER

 'What you do to the pointer, you are doing to the object in our Database.

 With objCustomer

 .Name = txtName.Text.Trim

 .BirthDate = CDate(txtBirthDate.Text.Trim)

 .Address = txtAddress.Text.Trim

 .Phone = txtPhone.Text.Trim

 End With

 End If

End Sub

 76

Step 27 Add code for the DELETE CLICK EVENT:

Step 28 Add code for the PRINT CLICK EVENT:

 '**

 ''' <summary>

 ''' Calls Module Remove method to delete the object from the database

 ''' based on ID or key

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnDelete.Click

 'Step 1-Call Add method to add new Customer to database

 Dim result As Boolean = Remove(CInt(txtIDNumber.Text.Trim))

 'Step 2-Test results & promt user

 If result Then

 MessageBox.Show("Customer Deleted")

 Else

 MessageBox.Show("Customer Not Found!")

 End If

End Sub

 '**

 ''' <summary>

 ''' Calls module Print method to print the object's properties

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnPrint_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnPrint.Click

 'Step 1-Call Add method to add new Customer to database

 Dim result As Boolean = Print(CInt(txtIDNumber.Text.Trim))

 'Step 2-Test results & promt user

 If result <> True Then

 MessageBox.Show("Customer Not Found!")

 End If

End Sub

 77

Step 29 Add code for the PRINT ALL CLICK EVENT:

Step 30 Add code for the EXIT CLICK EVENT:

 '**

 ''' <summary>

 ''' Calls Module PrintAll method to print all the objects in database

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnPrintAll_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnPrintAll.Click

 'Step 1-Call PrintAll method in module

 PrintAll()

End Sub

 '**

 ''' <summary>

 ''' Closes the Form

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnExit.Click

 Me.Close()

End Sub

 78

Step 31 Create the MANAGER INFORMATION FORM and add the controls shown below:

Object Property Value

Form4 Name frmManagerInformationForm

 Text Manager Information Form

Step 32 FORM-LEVEL DECLARATIONS & OBJECT POINTER:

Option Explicit On

Option Strict On

Public Class frmManagerInformation

 '**

 ' FORM-LEVEL VARIABLES & OBJECT DECLARATIONS SECTION

 '**

 'Module-level Object POINTER Declaration

 Private objEmployee As clsPerson

 79

Step 33 FORM LOAD EVENT:

Step 34 Add code to the PRINT CLICK EVENT:

 '**

 ''' <summary>

 ''' Event-handler call PRINT() METHOD of Form-Level object. Indirectly it is

 ''' actually calling PRINT() METHOD of MANAGER OBJECT IN MODULE

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnPrint_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnPrint.Click

 'Tell object to print itself

 objEmployee.Print()

End Sub

 '**

 ' EVENT-HANDLER DECLARATIONS SECTION

 '**

 '**

 ''' <summary>

 ''' Event-handler when form is displayed. Form-Level POINTER, points to

 ''' MODULE MANAGER OBJECT POINTER. Manipulation of Form-Level pointer affect

 ''' MODULE MANAGER OBJECT.

 ''' Populates Form Textboxes with DATA from Form-Level POINTER or MANAGER OBJECT

 ''' in MODULE

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub frmManagerInformation_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 'Form-Level Object POINTER points to MANAGER OBJECT

 objEmployee = objManager

 'Populate Form Controls with Object's data

 With objEmployee

 txtName.Text = .Name

 txtIDNumber.Text = CStr(.IDNumber)

 txtBirthDate.Text = CStr(.BirthDate)

 txtAddress.Text = .Address

 txtPhone.Text = .Phone

 End With

End Sub

 80

Step 35 Add code to the PRINT CLICK EVENT:

 '**

 ''' <summary>

 ''' Event-handler calls Form Close() method to close the Form.

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnExit.Click

 'Close yourself (Form)

 Me.Close()

End Sub

End Class

 81

Step 36: BUILD & RUN APPLICATION

Test 1, 2 & 3 – Displaying Main & Manager Information Form. Also Clicking PRINT BUTTON:

RESULTS OF TESTS 1 – 3:

 Main Form displayed successfully.

 Clicking the MANAGER INFORMATION BUTTON invoked the Manager Information Form

 Clicking PRINT BUTTON displayed the Manager’s Information.

Test 4 – Displaying Main & Customer Management Form:

Test 5 & 6 – Enter 111 in ID text box and Click GET button to search database for Customer. Then Click PRINT

button to display Customer’s data:

 82

Test 7 & 8 – Enter 555 in ID text box and Click GET button to search database for Customer. Then Click PRINT

button to display Customer’s data:

Test 9 – Enter 123 in ID text box and Click GET button to search database for Customer THAT DOES NOT

EXIST IN DATABASE:

RESULTS OF TESTS 4 – 9:

 We proved that Customer Form displayed properly.

 We searched for the first customer (111) and the last (555) and we successfully found the Customers

 We also successfully Tested PRINTING A CUSTOMER.

 We also tested for a Customer that DOES NOT EXIST and we got the correct response, a message box and

the FORM was CLEARED!

 So we can now assume SEARCHING & PRINTING A CUSTOMER ARE BOTH WORKING.

 83

Test 10 – Enter 222 in ID text box and Click GET button to search database for Customer. MODIFY THE NAME,

BIRTH DATE, ADDRESS, & PHONE fields. Then CLICK EDIT BUTTON to modify each PROPERTY:

Test 11 & 12 – Enter 111 in ID NUMBER text box and Click GET button to search database and display Customer

111 data. Then Enter 222 in ID NUMBER text box and Click GET button to search database for Customer 222

and VERIFY that DATA WAS MODIFIED for Customer 222:

RESULTS OF TESTS 10 – 12:

 We proved that we can MOIDIFY a Customer, by changing a Customer’s data, saving the record and then

retrieving it again to prove that data was changed.

Test 13 – Click the PRINTALL BUTTON. You should have a Message Box for each OBJECT IN DATABASE:

 84

Test 14 – Enter NEW Customer data in the Form’s controls to ADD a NEW CUSTOMER, as shown in screen

below. Click ADD BUTTON. Note the resultant Message Box that DATABASE IS FULL:

RESULTS OF TESTS 13 & 14:

 In Test 13 we tested the PRINTALL functionality. All Customers were printed.

 In Test 14 we ATTEMPTED TO ADD A NEW CUSTOMER AND FAILED because DATABASE WAS

FULL. This is expected since there are no EMPTY or NULL POINTERS AVAILABLE AT THIS TIME.

Test 15– Enter 456 in ID text box and CLICK the DELETE BUTTON, to delete this record. Note the resultant

Message Box that customer was NOT FOUND as expected:

Test 16 – Enter 333 in ID text box and Click GET button to search database for Customer 333. Now CLICK the

DELETE BUTTON, to delete this record. Note the resultant Message Box that customer was removed:

 85

Test 17 – Again, enter NEW Customer data in the Form’s controls to ADD a NEW CUSTOMER, as shown in

screen below. Click ADD BUTTON. Note the resultant Message Box that Customer was added successfully:

RESULTS OF TESTS 15-17:

 In Test 15 we attempted to DELETE A CUSTOMER THAT DOES NOT EXIST IN DATABASE. The

program responded successfully by displaying that CUSTOMER WAS NOT FOUND.

 In Test 16 we CREATED AN EMPTY SPACE IN DATABASE BY DELETING CUSTOMER 333. Now

we have room in database and should be able to ADD ONE CUSTOMER TO DATABASE TO TEST

ADD.

 In Test 17 WE WERE ABLE TO ADD A NEW CUSTOMER TO DATABASE SINCE ONE NULL

POINTER WAS AVAILABLE.

EXPOSING THE BUG IN THE PROGRAM

 We now exposed the BUG that exists in the program by deleting another Customer and searching or verifying the Customer

does not exist!

Test 18 – Enter 444 in ID text box and Click GET button to search database for Customer 444. Now CLICK the

DELETE BUTTON, to delete this record. Note the resultant Message Box that customer was removed:

 86

Test 19 – Enter 444 in ID text box and Click GET button to search database for Customer 444 to verify that it was

REMOVED. THE RESULT IS THAT THE PROGRAM CRASHES AND THE FOLLOWING EXCEPTION IS

RAISED:

 RESULTS OF TESTS 18 &19:

 In Test 18 WE DELETED CUSTOMER 444.

 In Test 19 we then attempted to SEARCH THE DATABASE for this Customer 444 to verify that it was

REMOVED.

 At this point the program CRASHED AND WE RAISED AN EXECPTION.

 A matter of fact, with the EXCEPTION OF ADD operation, any operation we would have executed in the

program such as GET, EDIT, REMOVE, PRINT & PRINT ALL would have CRASHED THE

PROGRAM!

 WHY DID THE PROGRAM CRASH OR EXCEPTION RAISED? WHAT IS THE PROBLEM??????.

 SEE THE MESSAGE LISTED IN THE EXCEPTION FOR A CLUE!!!!!

 87

5.3.6 Sample Program 3 – Working With Forms & Custom Objects (VERSION 2)

Form Driven Application – Small Business Application Using Person Class

Problem statement:
 UPGRADE VERSION 1 TO TAKE INTO ACCOUNT THE BUG OR ISSUE WITH VERSION 1.

 The basic requirements are the same as the previous version 1, but we need to modify the program to take into account the

issue found in version 1.

Issue with Version 1:
 In VERSION 1 we found that when we DELETED A CUSTOMER AND ATTEMPTED TO SEARCH, REMOVE, EDIT ,

PRINT, & PRINTALL THE PROGRAM CRASHED!!!.

 WHY?

 ONCE WE REMOVED AN OBJECT, WE WERE LEFT WITH A POINTER POINTING TO NULL OR NOTHING!!!

 BECAUSE OF THIS EVERY TIME WE ATTEMPTED TO QUERY OR ACCESS A PROPERTY OR CALL A

METHOD IN THE POINTER THE PROGRAM CRASHED BECAUSE WE CANNOT MANIPULATE OR

ACCESS A POINTER WITH A NULL OR NOTHING!!!!!

Solution to Version 1 BUG:
 To resolve the problem WE NEED TO TEST FOR A NOTHING OR NULL PRIOR TO ATTEMPTING TO QUERY OR

MANIPULATE A PROPERTY OR METHOD IN A POINTER.

 As you can notice the MESSAGE DISPLAYED BY THE EXCEPTION stated the following:

 Check to determine if the object is a NULL before calling the METHOD!!

 Therefore every time we attempt to WORK WITH AN OBJECT POINTER, we need to VERIFY IF OBJECT IS NOT

EMPTY OR NULL!!

 You can use the following code to TEST POINTER prior to manipulation:

 'Step 1-Ask POINTER if NOT POINTING to NOTHING OR NULL

 If Not (objCustomer1 Is Nothing) Then

'MANIPULATE OBJECT IN BODY OF IF

 End If

 WHAT IS BEING DONE HERE IS THAT YOU ARE ONLY ACCESSING THE POINTER IF IS NOT POINTING TO

NOTHING!!

 THIS IS REVERSE LOGIC, normally we would say “IF POINTER IS NOTHING DON’T ACCESS”, the REVERSE

LOGIC is “IF POINTER IS NOT NOTHING, ACCESS”, note that both of these statements accomplish the same thing a

POINTER IS ONLY MANIPULATED IF IS NOT POINTING TO A NOTHING OR NULL!

Application Architecture & OBJECT MODEL Requirements:

 Same as VERSION 1. Same class, same architecture.

Form Requirements

 Same as VERSION 1.

Module Requirements

 IS IN THE MODULE THAT CHANGES WILL TAKE PLACE! This is where we find the PROCESSING METHOD THAT

DO THE WORK AND WHERE MANIPULATION OF THE DATABASE POINTERS TAKE PLACE.

 We need to MODIFY THE PROCESSING METHOD TO SKIP OR AVOID THE DATABASE POINTERS THAT ARE

NOTHING!!!

 Because of this the IMPLEMENTATION of the PROCESSING METHODS WILL CHANGE.

 88

HOW IT'S DONE:

Part I – Modify the Module as follows:

Standard Module:

Step 1: Add a Module to the Project and set its properties as show in table below:

Object Property Value

Module Name MainModule

 Text MainModule

Step 8: Add Module GLOBAL declarations (SAME AS VERSION 1):

 In the module, we will declare 5 clsPerson OBJECT POINTERS. These POINTERS will eventually point to objects which

will represent our simulated DATABASE OF CUSTOMERS!

 In addition we create one complete OBJECT using parameterized constructor with data. This object represents a business

employee manager.

Option Explicit On

Option Strict On

Module MainModule

'**

' GLOBAL VARIABLES & OBJECT DECLARATIONS SECTION

'**

'Declare 5 POINTERS to Customer Object (REPRESENT OUR SIMMULATED DATABASE)

Public objCustomer1, objCustomer2, objCustomer3, objCustomer4, objCustomer5 As clsPerson

'Declare & Create Public Object representing THE MANAGER employee, initialized with Data

Public objManager As clsPerson = New clsPerson("Alex Rod", 777, #12/12/1971#, _

 "192 East 8th, Brooklyn", "718-434-6677")

 89

Step 2: Add Module INITIALIZE() Method declarations (SAME AS VERSION 1):

 Mow we begin to add PROCESSING METHODS TO THE MODULE that will do the work for the FORMS.

 The first method we implement is the INITIALIZE() method. This sub procedure creates 5 OBJECTS of the PERSON

CLASS and assigns them to the 5 GLOBAL POINTERS.

 At this point the simulated DATABASE OF CUSTOMERS is not POPULATED WITH OBJECTS!

 '**

 ' METHOD DECLARATIONS

 '**

 ''' <summary>

 ''' Intended to execute at the start of the program. Can be used to perform

 ''' any initialization. In this case, to populate EACH POINTER with OBJECT at

 ''' start of the program. We are simply populating the database with data.

 ''' </summary>

 ''' <remarks></remarks>

 Public Sub Initialize()

 'Create objects and initialize with data via paremterized constructor

 objCustomer1 = New clsPerson("Joe", 111, #12/12/1965#, "111 Jay Street", _

 "718-434-5544")

 objCustomer2 = New clsPerson("Angel", 222, #1/4/1972#, "222 Flatbush Ave", _

 "718-234-5524")

 objCustomer3 = New clsPerson("Sam", 333, #9/21/1960#, "333 Dekalb Ave", _

 "718-890-3422")

 objCustomer4 = New clsPerson("Mary", 444, #7/4/1970#, "444 Jay Street", _

 "718-444-1122")

 objCustomer5 = New clsPerson("Nancy", 555, #12/12/1965#, "555 Flatlands Ave", _

 "718-434-9876")

 End Sub

 90

Step 3: MODIFY SEARCH(ID) FUNCTION declarations:

 In this version, BEFORE INTERROGATING EACH POINTER we VERIFY AND SKIP the empty OR NULL POINTERS

 How it works:

 Individual If Not (objCustomer1 Is Nothing) Then declarations are used to TEST EACH OBJECT

PRIOR TO MANIPULATION

 Then ANOTHER IF statement is used to TEST the OBJECT’S IDNUMBER PROPERTY against the ID NUMBER

PROPERTY (PROPERTY = ID?), if a match is found THE PROPER RESPONSE IS RETURNED AND PROGRAM

EXITED.

 This process is repeated for every object in DATABASE.

 '**

 ''' <summary>

 ''' Function Searches the database for POINTER to object whose ID is a parameter

 ''' Skips the empty or NULL pointers before interrogating the object for the ID.

 ''' Returns POINTER to OBJECT and EXITS!

 ''' </summary>

 ''' <param name="IDNum"></param>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Function Search(ByVal IDNum As Integer) As clsPerson

 'Step 1-Ask POINTER1 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer1 Is Nothing) Then

 'Step 2-Search for object with ID

 If objCustomer1.IDNumber = IDNum Then

 'Step 3-If so, Return pointer to object & EXIT

 Return objCustomer1

 End If

 End If

 'Ask POINTER2 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer2 Is Nothing) Then

 If objCustomer2.IDNumber = IDNum Then

 Return objCustomer2

 End If

 End If

 'Ask POINTER3 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer3 Is Nothing) Then

 If objCustomer3.IDNumber = IDNum Then

 Return objCustomer3

 End If

 End If

 'Ask POINTER4 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer4 Is Nothing) Then

 If objCustomer4.IDNumber = IDNum Then

 Return objCustomer4

 End If

 End If

 'Ask POINTER5 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer5 Is Nothing) Then

 If objCustomer5.IDNumber = IDNum Then

 Return objCustomer5

 End If

 End If

 'Did not find object in search return a nothing

 Return Nothing

 End Function

 91

Step 4: Create ADD(object) FUNCTION declarations:

 THERE IS NO CHANGE REQUIRED IN THIS METHOD.

 THIS IS BECAUSE THIS METHOD IS ACTUALLY SEARHCING FOR A NULL OR NOTHING IN ORDER TO ADD A

NEW OBJECT.

 How it works:

 Nested ElseIf statement are used to ask EACH POINTER if is pointing to a NOTHING OR NULL.

 During each ElseIf, if the POINTER IS NOTHING then parameter DATABASE POINTER is assigned to PARAMETER

POINTER, thus adding the object to database.

 A TRUE is returned and function EXITS.

 ONLY AFTER ALL DATABASE POINTERS ARE TESTED AND NO NULLS ARE FOUND is a FALSE

RETURNED.

 '**

 ''' <summary>

 ''' Function Adds NEW objects passed as parameter to database.

 ''' Searches for the FIRST nothing or empty POINTER and adds object to that POINTER.

 ''' Returns a TRUE When OBJECT added OR FALSE when no empty POINTERS and EXITS!!

 ''' </summary>

 ''' <param name="objE"></param>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Function Add(ByVal objE As clsPerson) As Boolean

 'Step 1-Ask if object is NULL

 If objCustomer1 Is Nothing Then

 'Step 2-If NULL, database POINTER = Paramter POINTER

 objCustomer1 = objE

 'Step 3-Return success & EXIT

 Return True

 ElseIf objCustomer2 Is Nothing Then

 objCustomer2 = objE

 Return True

 ElseIf objCustomer3 Is Nothing Then

 objCustomer3 = objE

 Return True

 ElseIf objCustomer4 Is Nothing Then

 objCustomer4 = objE

 Return True

 ElseIf objCustomer5 Is Nothing Then

 objCustomer5 = objE

 Return True

 Else

 'No space available

 Return False

 End If

 End Function

 92

Step 5: Create REMOVE(ID) FUNCTION declarations:

 In this version, BEFORE INTERROGATING EACH POINTER we VERIFY AND SKIP the empty OR NULL POINTERS

 How it works:

 Individual If Not (objCustomer1 Is Nothing) Then declarations are used to TEST EACH OBJECT

 Then ANOTHER IF statement is used to TEST the OBJECT’S IDNUMBER PROPERTY against the ID NUMBER

PROPERTY (PROPERTY = ID?), if a match is found THE OBJECT IS REMOVED AND PROPER RESPONSE IS

RETURNED AND PROGRAM EXITED.

 '**

 ''' <summary>

 ''' Function Removes object from database by searching for OBJECT whose ID

 ''' is a parameter. Skips the empty pointers before interrogating the

 ''' object for the ID. When found, Removes object by setting POINTER TO NOTHING

 ''' Returns a TRUE When removed OR FALSE when OBJECT not found and EXITS!

 ''' </summary>

 Public Function Remove(ByVal IDNum As Integer) As Boolean

 'Ask POINTER1 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer1 Is Nothing) Then

 'Step 2-Search for object with ID

 If objCustomer1.IDNumber = IDNum Then

 'Step 3-When found set to nothing

 objCustomer1 = Nothing

 'Step 4-Return OK & EXIT

 Return True

 End If

 End If

 'Ask POINTER2 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer2 Is Nothing) Then

 If objCustomer2.IDNumber = IDNum Then

 objCustomer2 = Nothing

 Return True

 End If

 End If

 'Ask POINTER3 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer3 Is Nothing) Then

 If objCustomer3.IDNumber = IDNum Then

 objCustomer3 = Nothing

 Return True

 End If

 End If

 'Ask POINTER4 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer4 Is Nothing) Then

 If objCustomer4.IDNumber = IDNum Then

 objCustomer4 = Nothing

 Return True

 End If

 End If

 'Ask POINTER5 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer5 Is Nothing) Then

 If objCustomer5.IDNumber = IDNum Then

 objCustomer5 = Nothing

 Return True

 End If

 End If

 'Did not find object in search return a nothing

 Return False

 End Function

 93

Step 6: Create PRINT(ID) FUNCTION declarations:

 In this version, BEFORE INTERROGATING EACH POINTER we VERIFY AND SKIP the empty OR NULL POINTERS

 How it works:

 Individual If Not (objCustomer1 Is Nothing) Then declarations are used to TEST EACH OBJECT

 Then ANOTHER IF statement is used to TEST the OBJECT’S IDNUMBER PROPERTY against the ID NUMBER

PROPERTY (PROPERTY = ID?), if a match is found THE OBJECT PRINT() METHOD IS CALLED AND PROPER

RESPONSE IS RETURNED AND PROGRAM EXITED.

 '**

 ''' <summary>

 ''' Function Prints object by searching for OBJECT whose ID is a parameter

 ''' Skips the empty pointers before interrogating the object for the ID.

 ''' When found, CALLS the PRINT() METHOD in the object

 ''' Returns a TRUE When printed OR FALSE when OBJECT not found and EXITS!

 ''' </summary>

 Public Function Print(ByVal IDNum As Integer) As Boolean

 'Ask POINTER1 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer1 Is Nothing) Then

 'Step 1-Search for object with ID

 If objCustomer1.IDNumber = IDNum Then

 'Step 2-Call Object's Print Method

 objCustomer1.Print()

 'Step 3-Return OK & EXIT

 Return True

 End If

 End If

 'Ask POINTER2 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer2 Is Nothing) Then

 If objCustomer2.IDNumber = IDNum Then

 objCustomer2.Print()

 Return True

 End If

 End If

 'Ask POINTER2 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer3 Is Nothing) Then

 If objCustomer3.IDNumber = IDNum Then

 objCustomer3.Print()

 Return True

 End If

 End If

 'Ask POINTER2 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer4 Is Nothing) Then

 If objCustomer4.IDNumber = IDNum Then

 objCustomer4.Print()

 Return True

 End If

 End If

 'Ask POINTER2 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer5 Is Nothing) Then

 If objCustomer5.IDNumber = IDNum Then

 objCustomer5.Print()

 Return True

 End If

 End If

 'Did not find object in search return a nothing

 Return False

 End Function

 94

Step 7: Create PRINTALL() SUB declarations:

 In this version, BEFORE INTERROGATING EACH POINTER we VERIFY AND SKIP the empty OR NULL POINTERS

 How it works:

 Individual If Not (objCustomer1 Is Nothing) Then declarations are used to TEST EACH OBJECT FOR

NOTHING.

 PRINT METHOD IS CALLED INSIDE THIS IF STATEMENT.

 '**

 ''' <summary>

 ''' Sub Prints all objects in database by CALLING each object's PRINT() METHOD

 ''' Skips the empty pointers before CALLING the METHOD.

 ''' </summary>

 ''' <remarks></remarks>

 Public Sub PrintAll()

 'Ask POINTER1 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer1 Is Nothing) Then

 'Step 2-Call Object's Print Method

 objCustomer1.Print()

 End If

 'Ask POINTER2 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer2 Is Nothing) Then

 objCustomer2.Print()

 End If

 'Ask POINTER3 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer3 Is Nothing) Then

 objCustomer3.Print()

 End If

 'Ask POINTER4 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer4 Is Nothing) Then

 objCustomer4.Print()

 End If

 'Ask POINTER5 is NOT POINTING to NOTHING OR NULL

 If Not (objCustomer5 Is Nothing) Then

 objCustomer5.Print()

 End If

 End Sub

End Module

 95

Step 8: BUILD & RUN APPLICATION

TESTING THE BUG ONCE AGAIN IN THE PROGRAM

 Let’s test once again the BUG and see if the program crashes!

Test 1 – Enter 444 in ID text box and Click GET button to search database for Customer 444. Now CLICK the

DELETE BUTTON, to delete this record. Note the resultant Message Box that customer was removed:

Test 2 – Enter 444 in ID text box and Click GET button to search database for Customer 444 to verify that it was

REMOVED. THE RESULT IS THAT THE PROGRAM INFORMS THE USER THAT THE CUSTOMER

WAS REMOVED:

 ISSUE WITH BUG WAS RESOLVED!!!

 96

Homework Assignment 3

 This program is an upgrade to Homework Assignment 2. Read and follow each of the following requirements. You will be graded

based on all requirements being met.

 Copy HW2 to another Folder and rename it to HW3, including solution, project etc.

 Open the project and add the following Class and requirements:

Class Requirements:

I. ADD A CLASS MODULE and Create an Employee Class, this class should have the following Class requirements:

1) Private Data Members

 UserName – String

 Password – String

 JobTitle - String

2) Create the necessary Properties

3) Create a Default Constructor & Parameterized Constructor

4) Create the following Methods inside the class:

 Function: Authenticate (Arg1, Arg2)

- Parameter Arguments: This function should take two parameter arguments ByValue representing the

Username & Password.

- Process: Compares each of the parameters values to the private username & password variables and returns a

TRUE if both of these values match, otherwise it returns a FALSE.

II. (OPTIONAL BUT HIGHLY RECOMENDED)Write a simple test driver program to test this class. In a Console Application,

simply create one object and test each of the properties and methods, similar to Example in your notes.

Form & Module Requirements:

III. Modify your project to create objects of the clsEmployee class and use them. Re-use the Login Program in HW #2 as follows:

Login Form:

1) The login form should keep all functionality from HW #2. The only exception is in the GetUserInfoDisplayForm(u,p), the

password parameter should now be a STRING, based on the Employee Class Password being a String. Modify method

accordingly.

Standard Module:

2) DELETE the UsernameDatabase & PasswordDatabase Arrays, which simulated our database or storage of employees.

3) In the Module create 5 individual Public EMPLOYEE Objects. These objects are now simulating the database of

employees. Do not use any list or arrays etc! ONLY 5 individual single objects.

4) Create a Sub procedure named Initialize() that will populate the 5 public objects as follows: (Joe,111, Manager), (Angel,

222, Director), (Sam,333,Office Assistant), (Mary,444,Vice President), (Nancy,555,Secretary). This method must be

called from Main() to populate the objects with data prior to any authentication or login method calls.

5) SUB MAIN() –THE CODE IN SUB MAIN SHOULD NOT CHANGE from HW2, THE ONLY EXCEPTION IS THAT

YOU WILL NEED TO CALL Initialize() METHOD to populate the 5 OBJECTS prior to any processing in SUB MAIN().

6) In the Sub Main() procedure, keep the code from HW2 to control the program: loop, message box etc.

7) MODIFY ANY VARIABLE OR PARAMTER THAT USES PASSWORD FROM AN INTEGER TO STRING!

8) Note that most of the modifications will take place inside the Authenticate Method of the Module as shown below:

Module Authenticate Method:

9) IMPORTANT! Note that in HW2, you created a function named Authenticate() in the MODULE, keep this function as

part of your program in the module. Do not confuse this module-level Authenticate with the internal Object.Authenticate()

of the Employee Objects.

10) The main Authenticate() should SEARCH DATABASE and call each of the 5 object’s internal Authenticate() to verify

authenticity. The object’s Object.Authenticate() Will RETURN a TRUE or FALSE results to the module Authenticate(),

and the module Authenticate() should then return a TRUE or FALSE results to Sub Main(). Therefore, you will have two

Authenticate() functions, one in the Module and one inside the class. DO NOT CONFUSE THEM, IT IS NOT THE

SAME!

11) The Module Authenticate parameter syntax in the header, needs to be modify to reflect a password of String data type

 Due in two classes!

