

CS608 Lecture Notes

Visual Basic.NET Programming

Introduction to visual Basic.NET

Review of VB.NET Basic Language Components

(Part II of IV)

(Lecture Notes 1B)

Prof. Abel Angel Rodriguez

 2

CHAPTER 3 PROGRAMMING FUNDAMENTALS ...3

3.1 Code Writing Basics (Syntax)...3
3.1.1 Visual Basics Code Statements...3
3.1.2 Introduction to Object-Oriented Related Statements ..4

3.2 VB.NET Language Components ..8
3.2.1 Introduction...8
3.2.2 Variables & Memory ..8

Memory Concepts..8
3.2.3 Reference Variables (Important Topic) ..14
3.2.4 Option Explicit & Option Strict..15

3.3 Mathematical Calculation...16
3.3.1 Arithmetic Operators..16
3.3.2 Comparison or Relational Operators..17
3.3.3 Boolean Operators ...18

3.4 Decision Making Statements...19
3.4.1 Introduction...19
3.4.2 If…Then Statement..19
3.4.3 If…Else Statement ...20
3.4.4 Nested If…Else Statement ...22
3.4.5 Select Case Statement ..23

3.5 Loops...24
3.5.1 Introduction...24
3.5.2 For..Next Loop...24
3.5.3 Do Loops..25

Do..Loop ..25
Do While… Loop ..25
Do Loop… While ..26
Do Until… Loop..26
Do Loop… Until..27

3.5.4 BRANCHING:..28

3.6 More Powerful Data Storage ..29
3.6.1 Arrays of Data...29
3.6.2 Multidimensional Arrays ..32

 3

Chapter 3 Programming Fundamentals

3.1 Code Writing Basics (Syntax)

3.1.1 Visual Basics Code Statements
 A Statement is simply an executable program instruction.
 A program is simply a list of Executable Statements that are created using the language code syntax

Assignment Statement (=)
 Assignment statement is used to assign values to a property of an object or variables
 The assignment statement operates from right to left.
 That is the Item appearing on the right-side of the equal sign is assigned to the Item on the left-side of the equal sign.
 Syntax:

 Item = Item

Remark or Comment Statement (‘)
 The Remark or Comment statement is used for documentation only. Comments are not executable statements.
 Good programming practice dictates that programmers use remarks to clarify and explain their code.
 Syntax:

 ‘Comment or Remark

Example:

 Graphical Controls using Dot Operator (.)

 Assigning a value to a Control Property (Run Time):

Object.Property = value
Example: lblTitle.text = “Terminator 3”

 Retrieving value from a Control Property (Run Time):

value = Object.Property
Example: value = lblTitle.text

 Assigning content of one control to another:

Object2.Property = Object1.Property
Example: lblTitle.text = txtName.text

Example:

 Comments

‘This Project was written by Joe Smith

‘This section of code repeats itself

 4

3.1.2 Introduction to Object-Oriented Related Statements
 Lets look at some additional object related statemet:

Class Statement Declaration
 A Class is a template or blueprint that define what object of the class look like
 A Class is a plan or template that specifies what Properties, Methods and Events that will reside in objects
 We will go into details on creating a class in the future, for now lets just look at the basic Syntax for declaring a class:

 Public Class ClassName

‘Class Body
 ‘Class code is entered inside class body

‘Properties, Methods & Event-Procedures here

 End Class

 Note that inside the body of a Class is where you find all properties, methods & event-procedures
for that object.

 If the class happens to be a Form Class, then all Control Objects placed in the Form will be

members of the Class and their code will reside inside the body as well.

Example:

 Creating a Classes:

 Example 1 - Creating a Video Class:

Public Class Video
‘Properties, Methods & Event-Procedures here

End Class

 Example 2 - Creating a class for a Form Object:

Public Class Form1
‘Properties, Methods & Event-Procedures here

End Class

 5

Object Statement Declaration
 Once we create a class, we need to then create objects of the class.
 We will cover creating class objects in details in later sections. For now we will look at on method as an introduction.
 Note that creating an object of the class is simply declaring a variable in addition to using the keyword New.
 Syntax:

 Dim| Public | Private ObjectName As ClassName = New ClassName()

Property & Method Statement Declaration
 Syntax for using an object Properties is based on the dot operator:

 Object. Property

 Syntax for using an object Methods uses the dot operator as well:

 Object. Method()

Example:

 Assuming we have previously defined a Class named clsCustomer. Creating a
Customer object of the class clsCustomer is as follows:

Dim objCustomer As clsCustomer = New clsCustomer

Example:

 Assuming we have previously created a Customer Object:

objCustomer.FirstName = “Joe”

Example:

 Assuming we have previously created a Customer Object:

objCustomer.PurchaseProduct()

 6

With Block Statement
 There are times when several code statements are being applied to the same Object.
 As we have already learned, the basic mechanism for accessing and setting Objects is the Dot (.) Operator. Using the Dot

Operator we listed the basic Object statement as follows:

‘Object basic Statements Using Dot Operator
Object.Property
Object.Method()
Object.Event()

 When several statements are being applied to the same object, the Object’s name will be repeated for every statement and it can

become redundant.
 For example, supposed we wanted to set the following properties to a Button Control named btnExit: text, Enable, TabStop, and

TabIndex. The code would be as follows:

btnExit.Text = “E&xit”
btnExit.Enable = True
btnExit.TabStop = True
btnExit.TabIndex = 1

 Note that the Control btnExit is repeated for every statement. In this case is not big deal, but when you need to populate many
properties on an Object as well as Method() etc., repeating the name of the control in each statement can become tedious.

 Visual Basics provides a statement that allows us to group of block a set of code that pertains to an Object.
 This statement is called the With/End With Statement. This statement works in conjunction with the Dot Operator as well.
 The syntax is as follows:

‘With Block Statement
With ObjectName
 .Property or Method
 .Property or Method
 .etc…

End With

 All statements residing in the body of the With Statement before the End With relate to the Object named on the With header.

 7

Example:

 Using the With/End With Statement:

 Example 1 – Assigning value to button:
With btnExit

.Text = “E&xit”

.Enable = True

.TabStop = True

.TabIndex = 1
End With

 Example 2 – Assigning value to a Customer Object and execute methods:
With Customer

.FirstName = “Joe”

.LastName = “Smith”

.IDNumber = 111

.BirthDate = 12/12/65

.RentVideo() ‘Calling Method of Object
End With

 Example 3 – Retrieving values from Customer Object:

With Customer
t = .FirstName
Value2 = .LastName”
.IDNumber
.BirthDate
.RentVideo() ‘Calling Method of Object

End With

 8

3.2 VB.NET Language Components

3.2.1 Introduction
 Programming Language tools and components refers to the items and components that make up the language syntax (rules)

required for us to write code.
 Program code is usually composed of :

1) Data: The variables or data structures that a program requires to perform the processing
2) Methods: Actions taken by an Object
3) Events: Actions taken upon the Object by the User
4) Controls: Controls Objects such as Text boxes, Buttons, Listboxex, Label, etc.
5) Programming Language Elements: Decision-making statement, looping & branching.

3.2.2 Variables & Memory
 All programming languages provide mechanism for a programmer to store a variety of different types of data or information as

well as the different format this data can be as.
 In addition programming languages provide more sophisticated data storage mechanism for more complex data storage. This is

known as a Data Structures.
 Data Structure: A mechanism or structure for storing simple and complex data
 The simplest Mechanism provided by a programming language for data storage is the Variable

 Variables are memory locations that are assigned a name.
 Every variable has:

1. Name: A variable can be any name, as long as is not a reserved word or special words used by the language
2. Type: The type of data the variable holds, for example integer, character, decimal point numbers, etc,.
3. Size: The number of bytes or binary numbers that it hold in memory.
4. Value: The actual data value assigned to the variable.

Memory Concepts

 Variables are stored in particular places in the computer’s memory.
 The data stored in memory is stored in a unit called Byte. A Byte is an 8 bit binary number. Example : 10011100
 When a variable is given a value that value is actually stored in the memory location set aside for that variable name.
 Values placed in a memory location, replaces the previous value that was stored there. The previous value is destroyed.

 TotalAmount

100

 9

Declarations and Definitions
 Using Variables is a two step process:

1. Declaration: Introduces the variable name into a program
2. Definition: Memory is actually created or reserved for the variable
3. Initialize: Populate a variable with data

 Variables are declared in the following locations:

 Forms header or top of form code section
 Inside Class Modules & Standard Modules
 Inside Methods & Event-Handlers

 The declaring of a variable includes the name, type of data that is stored, size of the data stored and its access visibility or who

can see it (Scope).
 The basic variable Declaration Syntax:

‘Basic variable declaration syntax
Access_Visibility name As Type

Where:
- Access_Visibility: Dim, Public or Private
- Name: Name of variable or memory location
- Type: The type of data stored in this memory location

VB.NET Primitive Data Types
 When variables are declared and created, you need to specify the type of data that the variable will store.
 VB.NET contains nine Primitive Data Types. They are called primitive because they are the basic data types and are part of the

VB.NET language NOT the Framework Library (More on this later)
 The basic Primitive Data Types for VB are listed in the table below:

 Data Type Storage in Bytes Used for

Byte

1 0 to 255 binary data

Short

2 Small integers in the range of -32,768 to 32,767

Integer

4 Whole numbers in the range -2,147,483,648 to
2,147,483,647

Numeric with no
Decimals

Long

8 Large whole numbers

Single

4 Single-Precision floating point numbers with 6
digits of accuracy

Double 8 Double-Precision floating point numbers with 14
digits of accuracy

Numeric with
Decimals

Decimal

16 Decimal Fractions, such as dollars and cents

Boolean

2 True or False values Other

Char

2 Single character

Dim <Name> As <Type>

Example:
Dim sAccountName As String
Dim Count As Integer

Data type

Access
Visibility or
Size

 10

 IMPORTANT! Note that with the primitive Data Types when you declare a variables you are also defining it. In other

words, with primitive data types, the declaration & definitions are done in one step during the declaration:

 Access Name As Type

Naming Conventions for Primitive Data Types
 There is a naming convention that has been adopted for naming variables in Visual Basics.NET
 The rule is that the variable name should be prefixed by a three letter characters of the variables data type
 The table below lists the prefixes for the variable naming convention:

Prefix Data Type
bln Boolean
dec Decimal
dbl Double-Precision floating point
sng Single-Precision floating point
int Integer
lng Long Integer

Examples of Declaring and Assigning Variables
 The following are examples or declaring, initializing and assigning variables:

 You can assign or retrieve values to variables:

Example:

 Example 1: Declaring a Integer variable

Dim intCount As Integer

 Example 2: Declaring a Decimal variable
Dim decTotalAmount As Decimal

 Example 3: Declaring a Boolean variable
Dim blnAcccessGranted As Boolean

Example:

 Example 1: Declaring and assigning values to string variables

Dim intCount As Integer
Dim decTotalAmount As Decimal
Dim intTotalCount As Integer

intCount = 150
decTotalAmount = 350.00

 Example 2: Accessing value from one variable to another

intTotalCount = intCount

 Example 1: Declaring and assigning values in one step

Dim intCount As Integer = 150

 11

Constant Variables
 Constant variables hold their value indefinitely. Constant variable cannot be changed.
 Constant variable syntax:

‘Basic variable declaration syntax
Conts name As Type = value

 Examples:

Const <Name> As Datatype = Value
==
Example:
Const SIZE As Integer = 10

Example:

 Example 1: Declaring a Constant Interger variable

Const inMaxCount As Integer = 10

 Example 2: Declaring a Constant Decimal variable
Dim decSales_Tax_Rate As double = 8.25

 12

Scope (Visibility) & Lifetime
 Lifetime: refers to how long the variable lives while the program is running.
 Visibility or Scope: refers to who can see and access the variable.
 The scope of the variables declared in Visual Basics.NET fall in the following category:

 Global variables – Accessible and visible by the entire project

- These variables are declared at the declaration section of Forms and Module & Classes. (more on this in future
lectures)

 Modular-Level variables – Accessible from all procedures of a Forms (Can be seen by all code inside a Form including

Methods & Event-Procedures)
- Variables that need to be seen by all code in a Form or Standard Module or Class Module.
- Module-Level variables are declared using Dim, Const, or Private
- These variables are declared in the Declaration Section of a Form
- Naming convention for Module Level variables is that you append the prefix letter m or m_ before the name of the

variable.
Example: Dim m_decTotalPay As Decimal
or
Example: Dim mdecTotalPay As Decimal

 Local variables – Only seen within the a Method or Procedure (Method Procedure or Event-Procedure) in which it was

declared
- Variables declared inside Procedures are Local
- Local variables are declared using Dim

Variable Access/Visibility Indicator
 When declaring variables you can use the specified Dim, Public or Private
 Dim: Means Dimension or specifies that memory is to be reserved. Use this statement when creating most local or module level

variables that should only be seen from with Forms & Procedures.

 Public: is code that is accessible throughout the entire program or application. A variable declared to be public can be seen by
the entire project. Declare variable using public when you want the variable to be accessible from anywhere within the project

 Private Code: is code that is accessible only within the Object (Form or Module) in which it was created. Declare variables as

Private only when you don’t want the entire project to see the variable.

 The table below shows the lifetime and visibility of variables:

Declaration used Where it is declared Lifetime (how long it lives) Visibility or Scope (who can access)
Dim Header of Form As long as program runs Any code on the form only
Private Header of Form As long as program runs Any code on the form only
Public Header of Form As long as program runs Any code anywhere on the project,

provided the variable is prefixed with
the form name: ex: Form.variablename

Dim Header of Module As long as program runs Any code on the Module
Private Header of Module As long as program runs Any code on the Module
Public Header of Module As long as program runs Any code anywhere on the project

Dim Procedure, function or

Event-Handler
As long as routine runs Only code in routine

 13

Converting Data Types
 When using variables, there are situations where we need to convert from one data type to another.
 For example supposed we are performing calculations with variables whose data type is Integer, but we want the result of the

calculation to be a string data type. In this case we need to convert the result of the calculation from Integer to String.
 The process of converting one data type to another is also known as Casting.

Using Built-In Conversion Functions

 A Function is a Method that performs an action and returns a value.
 The main idea of a Function is that it perform some process but it RETURNS A VALUE or answer.
 We will be covering methods and functions in more details later in the course.
 Visual Basics provides a set of conversion function to convert the various data types:

Function Conversion
CInt(ExpressionToConvert) Convert expression to Integer
CStr(ExpressionToConvert) Convert expression to String
CDec(ExpressionToConvert) Convert expression to Decimal
CDate(ExpressionToConvert) Convert expression to Date
CShort(ExpressionToConvert) Convert expression to Short
CBool(ExpressionToConvert) Convert expression to Boolean
CDbl(ExpressionToConvert) Convert expression to Double

Example:

 Example 1: Converting string value into integer

intQuantity = CInt(“30”) ‘note that “30” is a string and not a number

 Example 2: Converting string value in TextBox into integer(Usually the case)

intQuantity = CInt(txtQuantity.Text) ‘The content inside the textbox, a string is converted to an integer number

 Example 3: Converting string value in TextBox into Decimal

decPrice = CDec(txtPrice.Text) ‘The content inside the textbox, a string is converted to a Decimal number

 Example 4: Converting Integer into Decimal

decDollars = CDec(intDollars) ‘The content of the integer variable intDollars is converted to Decimal

 14

3.2.3 Reference Variables (Important Topic)
 There are actually two types of variables, Primitive and Reference Variables.
 Reference variables are declared with the data type of a Class.

 Access Name As ClassName

 Reference variables Point to an instance or Object of the class.
 The keyword here is Point!
 A Reference Variable contains no data it is actually what is called a POINTER or Reference Pointer to a Class Object. In reality

what is stored in a Reference Variable is a Memory Address of the Object it is pointing to.
 The Object itself has no name; the name of the object is represented by the reference variable that points to it.
 This is sometimes a difficult concept to grasp. This is best understood by seeing a diagram.
 Reference variable its represented as follows:

 Note that the Reference Variable contains a Pointer or a memory address to the object it points to.
 So what we have here in reality is a memory location that has a name and contains an address to a memory location of an Object.
 For a better understanding lets look at an example, suppose we have the following reference variable declaration of an Object of

the Class clsCustomer:

Dim objCustomer As clsCustomer

 The pictorial diagram is as follows:

 For those who still have problem understanding this concept, here is a more realistic representation, here we assume that the
number 1456 is an address of the starting memory location of an object:

 Note that the content of the variable objCustomer is an address 1456 or a pointer to that location. What ever operations you
perform on the variable objCustomer, you are actually performing to the object whose address is 1456. This is called
indirect access.

 IMPORTANT! Note that when creating reference variables, the Declaration & Definition are two separate steps

Reference Variable

Object

objCustomer
Customer
Object

1456

objCustomer
Customer
Object

1456

 15

3.2.4 Option Explicit & Option Strict
 VB provides two options that can significantly change the behavior of the editor and the compiler. These two options are Option

Explicit & Option Strict.

Option Explicit
 When Option Explicit is OFF, you can create and use variables without declaring them. In other words you simply add your

variables to a program without declaring them:
 When Option Explicit is ON, you MUST declare every variable using the declaration syntax prior to using them.

Example with Option Explicit ON:
Dim Z As Integer
Dim X As Integer
Dim Y As Integer

Z = X + Y

 With Option Explicit ON, you need to declare the variables before using them

Example with Option Explicit OFF:
Z = X + Y

 With Option Explicit OFF, you don’t need to declare the variables before using them, simply use variables as is. No need to
declare them.

 Option Explicit OFF is not good programming practice and is inefficient since the compiler does not know the type of size of
the variables and simple chooses more memory than required for variables.

Option Strict
 When Option Strict is ON, the VB.NET language becomes a strong-typed language like C++, Java & C#. Strong-Typed means

that the compiler is very strict on how you use the data type. Integer variables must be manipulated with integer variables etc.
 When Option Strict is OFF, the compiler is not as strict when it comes to manipulating an assigning variable of different data

types.

Example with Option Strict OFF:
Dim intValue As Integer
Dim decValue As Decimal

decValue = 100.50

intValue = decValue

 Integer variable is assigned to a decimal variable. With Option Strict OFF this is allowed.

Example with Option Strict ON:
Dim intValue As Integer
Dim strValue As String

Dim intValue As Integer
Dim decValue As Decimal

decValue = 100.50

intValue = decValue ‘”ERROR” - Compiler Error. This will not be allowed

‘Correct code:
IntValue = CInt(decValue) ‘ Decimal value must first be converted to integer

 Note that with Option Strict ON, you cannot assign variables of different data types. You will need to convert these
variables to the correct data type prior to assigning.

 16

3.3 Mathematical Calculation

3.3.1 Arithmetic Operators
 Visual Basics.Net provides several Mathematical language components to enable you to program mathematical processes.
 The basic arithmetic operators available in VB are summarize in the following table:

Operator Name Example Behavior

+ Addition X + Y Adds x and y

- Subtraction X - Y Subtracts y from x

* Multiplication X * Y Multiplies x and y

/ Division X / Y Divides x by y and returns a
floating-point result

Mod Modulo X Mod Y Divides x by y and returns the
remainder

^ Exponetiation X ^ Y Raises x to the power of y

- Negation -X Negates y

Example:

 Example 1: Adding three Integer variables and assigning it to another variable

Dim intX As Integer
Dim intY As Integer
Dim intZ As Integer
Dim intResults As Integer

intResults = intX + intY + intZ

 Example 2: Multiplying the three numbers declared in example 1

intResults = intX * intY * intZ

 17

Arithmetic Math Class
 In addition to the mathematical operators, VB.NET includes a Math Class in the Standard Library which contain methods to

accomplish task such as exponentiation, rounding, and numerous other tasks.
 The following table lists some of the Methods supplied by the Math Class:

Class Method Description

Pow(x,y) Returns the value of x raised to the power of y
Round(x, n) Returns x rounded to the n decimal

Math

Sqrt(x) Returns the square root of x

3.3.2 Comparison or Relational Operators
 A relational operator compares two variables. The two variables can be any of the built-in data types such as Integer, Decimal,

Single, Double etc.
 The comparison involves relationships such as equal to, less than, and greater than. The result of the comparison is either TRUE

or FALSE.
 Again, the results of comparing these operators are True & False, for example if you compare the following statement: 5 > 8, the

result is either True or False. Also the comparison of the following variables and value, Sum1 = 5 is either True or False, not
assigning the value 5 to Sum1, but comparing the variable Sum1 with the number 5.

 Comparison operators are used in if/else and loop statements as we will see later.

 The complete list of VB Comparison operators:

Operator Meaning Examples
> Greater than decAmount > decBalance
< Less than intSales < 1000
= Equality decIncomeTax = decSalesTax
<> Not equal to intAge <> 40
>= Greater than or equal to intQuantity >=500
<= Less than or equal to CInt(txtQuantity.Text) <= 500

 18

3.3.3 Boolean Operators
 Logical operators allow you to combine Boolean (true/false) expressions.
 The basic logical operators in VB.NET are:

Operator Syntax Behavior Examples & Explanation

And Expr1 And Expr2 Returns TRUE only and only
if both expressions are TRUE

chkUnder18.Checked =True AND
strMovie = “Adult”
Explanation:
- Only when the checkbox is checked
or True and the strMovie variable is
equal to “Adult” will this entire
statement be TRUE: True And True
results in TRUE. Any other
combination will yield FALSE

Or Expr1 Or Expr2 Returns TRUE if Expr1 or
Expr2 (or both) are TRUE

intSum = 100 OR decTax = 8.25

Explanation:
- When either of the statement are
true the results of the entire
expression will be True. Only when
both of these expressions False will
the result be False.

NOt Not Expr Returns the inverse of the
Expression. Returns TRUE if
Expr is FALSE and FALSE if
the Expr is TRUE

Dim blnResults As Boolean

blnResults = True

NOT Results

Explanation:
- The result of the NOT Results
statement is False, since the NOT
inverts it and the inverse of a True is
False and visa versa.

 19

3.4 Decision Making Statements

3.4.1 Introduction
 In programming decision making statements allow you to take different action when a condition is either true of false.
 You use decision making statements to evaluate a condition and if the condition is true a single or group of statements are

executed otherwise another single or group of statement is executed.

3.4.2 If…Then Statement
 An If Statement a question or condition is asked, if the answer is Yes or TRUE, one of more instructions are executed, otherwise

if the answer is NO or FALSE, the flow of the program continues as normal with the next sequential statement.
 The flow chart to such a structure looks as follows:

 The Pseudo-Code to the If/Else Decision Structure is as follows:

If condition is True Then
Process Step(s) 1

End If

Example
 For example, suppose the passing grade on an exam is 60, and we needed a program to determine and print this fact. Part of the

algorithm can say:
 Part of the algorithm pseudo-code would say:

 If student’s grade is greater than or equal to 60 Then
 Print “passed”

End If

 The flow chart illustrating this concept is:

Process
Step(s)

Is Condition
True

NO

YES

Print “passed”
Grade >= 60

false

true

 20

 VB.NET Syntax:

3.4.3 If…Else Statement
 In an If/Else Decision Structure, a question is asked, if the answer is Yes or TRUE, one of more instructions are

executed,otherwise if the answer is NO or FALSE, then another set of instructions are executed.
 The flow chart to such a structure looks as follows:

 The Pseudo-Code to the If/Else Decision Structure is as follows:

If condition is True Then
Process Step(s) 1

Else
Process Step(s) 2

End If

Example
 Suppose we needed a program that determined whether a passing grade on an exam is a 60 or grater, and we wanted to print

whether an exam passed or failed.
 Part of the algorithm pseudo-code would say:

If student’s grade is greater than or equal to 60 Then

Print “passed”
Else

Print “Failed”
End If

 The flow chart illustrating this concept is:

Declaration:
If <Boolean expression> Then
…
…
End If
==
Example:
If Password.Text = 111 Then
 MsgBox "Access Granted"
 Unload Form1
End If

Process
Step(s)

Is Condition
True

NO YES

Process
Step(s)

Print “failed” Print “passed”

Grade >= 60

false true

 21

 VB.NET Syntax:

Declaration:
If <Boolean expression> Then
…
…
Else
…
…
End If
==
Example:
If Password.Text = 111 Then
 MsgBox "Access Granted"
 Unload Form1
Else
 MsgBox "Access Denied - Please try again"
End If

 22

3.4.4 Nested If…Else Statement
 The if/else statements can be nested, in other words we can place if/else statements within if/else statements.
 The flow chart to such a structure looks as follows:

 The Pseudo-Code to the If/Else Decision Structure is as follows:

If condition is True Then
Process Step(s) 1

Else if Condition is True Then
Process Step(s) 2

Else if Condition is True Then

Process Step(s) 3

Else

Process Step(s) 4

End If

Process
Step(s) 4

Process
Step(s) 1

Is Condition
True

NO YES

Process
Step(s) 2

Is Condition
True

NO YES

Process
Step(s) 3

Is Condition
True

NO YES

 23

 Note If.. Then.. Else statements can be nested.

3.4.5 Select Case Statement
 Case Statement is another method of implementing nested if/else. But is a more readable and flexible method. Syntax:

Declaration:
If <Boolean expression> Then
…
ElseIf
…
ElseIf
..
Else
..
End If
==
Example:
If Password.Text = 111 Then
 MsgBox "Access Granted"
 Unload Form1
ElseIf Password.Text = 222 Then
 MsgBox "Access Granted"
 Unload Form1
ElseIf Password.Text = 333 Then
 MsgBox "Access Granted"
 Unload Form1
Else
 MsgBox "Access Denied - Please try again"
End If

Declaration:
Select Case <expression>
 Case <expression>

[Statements]
 Case <expression>

[Statements]
 Case <expression>

[Statements]
 Case Else

[Statements]
End Select
==
Example:
Select Case Password
 Case 111
 MsgBox "Access Granted"
 Unload Form1
 Case 222

MsgBox "Access Granted"
Unload Form1

 Case 333, 123, 456
MsgBox "Access Granted"
Unload Form1

 Case 444 To 600
 MsgBox "Access Granted"
 Unload Form1
 Case Else

 MsgBox "Access Denied - Please try again"
End Select

 24

3.5 Loops

3.5.1 Introduction
 Loop structures allow you to repeat a block of code.
 A repetition structure or loop, causes a section of your program to be repeated a certain number of times. The repetition

continues while a condition is TRUE. When the condition is FALSE the loop ends and control passes to the statement
following the loop

 One very important factor in a loop structure is that there must be some code and value within the processing Step(s)

that must set the condition to the loop to FALSE otherwise the loop will loop forever (Infinite Loop). This is most
cases in undesirable.

 There are situation in programming where we do want the loop to loop forever. But such situations will not be covered in
this course.

 The flow chart to a Loop Structure looks as follows:

3.5.2 For..Next Loop
 The For..Next loop executes a section of code (body of loop) a fixed number of times.
 It is usually used when you know, before entering the loop, how many times you want to execute the code.
 Syntax:

Declaration:
For CounterVariable = Start To End

[Statements]
[Statements]

Next CounterVariable

For CounterVariable = Start To End [Step step]

[Statements]
[Exit For] 'Causes loop to end prematurely
[Statements]

Next CounterVariable

==
Example:
For nIndex = 1 To 10

Form1.Print " This Text is repeated 10 Times"
Next nIndex
--
For nIndex = 1 To 100 Step 50

Sum = Sum + 1
Next nIndex
--
For nIndex = 1 To 100

Sum = Sum + 1
If nIndex = 50 Then
 Exit For
End If

Next nIndex

Process
Statements

 Condition
True?

NO

YES

 25

3.5.3 Do Loops

Do..Loop, Do..Loop While & Do..Loop Until
 The Do-While loops repeatedly executes a section of code (body of loop) until some condition within the body of the loop is

satisfied.
 How do we know when to use a Do-While loop in our program? Ans: When you don’t know how many repetitions are required

or how many times to loop.
 There are 3 types of Do-While loops

1) Do..Loop: Those that loop forever
2) Do While… Loop or Do…Loop While: Those that run while a condition is being met
3) Do..Until Loop or Do…Loop Until: Those that run until a condition is met

Do..Loop

 The Do..Loop loops forever
 Syntax:

Do While… Loop

 The DoWhile… Loop executes a section of code (body of loop) while a condition is being met.
 The condition is a Boolean expression that first is tested, and if the condition is TRUE the body of the loop executed.
 NOTE that there must be a condition inside the body of the loop that needs to satisfy the Boolean expression to FALSE in

order to terminate the loop.
 Syntax:

Declaration:
Do

[Statements]
[Exit Do] ''Optional Causes loop to end prematurely

 [Statements]
Loop
===
Example:
Do

Form1.Print " This Text is repeated Forever"
Loop

--
Do

Form1.Print " This Text is repeated Forever"
….
If value = 50 Then 'loop will terminate when condition is met
 Exit Do
End If

L

Declaration:
Do While <Boolean Expression>

[Statements]
[Exit Do] 'Optional Causes loop to end prematurely

 [Statements]
Loop
===
Example:
Do While Sum < 100

Sum = Sum + 1 'Condition terminates the loop when sum =100
Loop

--
Do While Sum < 100

Sum = Sum + 1
If Sum = 50 Then 'loop will terminate when condition is met
 Exit Do
End If

 26

Do Loop… While

 The Do Loop… While is the same as the Do While… Loop with the exception that the test condition is done after the body
of the loop not at the beginning.

 This guarantees that the body of the loop is executed at least ONCE!
 Syntax:

Do Until… Loop

 The DoWhile… Loop executes a section of code (body of loop) until a condition or Boolean expression is met or TRUE.
The loop will execute indefinitely and stop only until the condition is met.

 Again, NOTE that there must be a condition inside the body of the loop that needs to satisfy the Boolean expression to
FALSE in order to terminate the loop.

 Syntax:

Declaration:
Do

[Statements]
[Exit Do] 'Optional Causes loop to end prematurely

 [Statements]
Loop While <Boolean Expression>
===
Example:
Do

Sum = Sum + 1 'Condition terminates the loop when sum =100
Loop While Sum < 100

--
Do

Sum = Sum + 1
If Sum = 50 Then 'loop will terminate when condition is met
 Exit Do
End If

Declaration:
Do Until <Boolean Expression>

[Statements]
[Exit Do] 'Optional Causes loop to end prematurely

 [Statements]
Loop
===
Example:
Do Until sPassword = "slick"

sPassword = InputBox$ ("Enter the password and click OK")
Loop

--
Do Until sPassword = "slick"

sPassword = InputBox$ ("Enter the password and click OK")

If sPassword = "Quit" Then
 Exit Do 'loop will terminate when condition is met
End If

Loop

 27

Do Loop… Until
 The Do Loop… Until is the same as the Do Until… Loop with the exception that the test condition is done after the body of

the loop not at the beginning.
 This guarantees that the body of the loop is executed at least ONCE!
 Syntax:

Declaration:
Do

[Statements]
[Exit Do] 'Optional Causes loop to end prematurely

 [Statements]
Loop Until <Boolean Expression>
===
Example:
Do

sPassword = InputBox$ ("Enter the password and click OK")

Loop Until sPassword = "slick"

--
Do

sPassword = InputBox$ ("Enter the password and click OK")

If sPassword = "Quit" Then
 Exit Do 'loop will terminate when condition is met
End If

Loop Until sPassword = "slick"

 28

3.5.4 BRANCHING:
 Branching is when the program code jumps from one statement to another statement.

GoTo Statement, On Error & Labels
 The GoTo statement is normally used with an associated label or a name you assign to a section of code.
 GoTo allows you to branch or Jump to a different location within a procedure or method, which happens to be where the label is

located.
 The Problems with GoTo is that if used too much, your code could start looking like a real mess with branches all over the place.

This is known as "spaghetti code".
 In VB, the GoTo statement is commonly used with the On Error Statement when coding error handlers or routines in your

program. Error handling routines are code you add to your program to branch or jump on errors to another location in the
program identified by a label.

 Use GoTo with care!
 Syntax:

Declaration:
GoTo <Label>
…
…]
<Label>:
… 'Section of code that GoTo Statement will jump to

--
On Error GoTo <Label>
…
…]
<Label>:
…

===
Example:
Private Sub A_SubProcedure()

GoTo AccountingSection
…
…]
AccountingSection:
… 'Section of code that GoTo Statement will jump to
…
End Sub

--
Private Sub A_SubProcedure()

On Error GoTo ErrorHandler
…
…]
ErrorHandler:
… 'Section of code that GoTo Statement will jump to
…

 29

3.6 More Powerful Data Storage
 So far we have learned the simplest data structure which is the variable.
 But the variable simply is one memory location. Supposed we needed to store data in multiple memory locations?
 Now let’s look at some more sophisticated mechanism provided by VB.NET to store complex data formats.

3.6.1 Arrays of Data
 An Arrays is a list data of a single data type.
 The data items grouped in an array can be of any of the data type listed.
 Arrays are a simply a consecutive group of memory locations that have the same name, type and the following characteristics:
 Each item in an array is called an element.
 An array has a fix size, which determines the number of elements
 Arrays are accessed by index numbers, which specifies the location of each element in the array.

 Visual Basic gives you the ability to create two types of arrays:
 Static Arrays: an array of fixed size.
 Dynamic Arrays: An array of variable length that is can be changed during run time.

Static One-Dimensional Arrays

 Static Array declaration syntax:

 Array Diagram:

 Note that the number within the parentheses is 1-SIZE of the array
 Note how the array has 10 memory cells and begins with an index = 0.

 Array Declaration:
Dim <Name> (Size) As <Type>

Public <Name>(Size) As <Type>
Private <Name>(Size) As <Type>
==
Example:
Dim Data (9) As Integer ‘10 element array
Public data (9) As Single ’10 element array
Private MyArray (10) As Integer ’11 elements array

Data(0)

Data(1)

Data(2)

Data(3)

Data(4)

Data(5)

Data(6)

Data(7)

Data(8)

Data(9)

Data

Elements
Index

 30

Populating Individual Array Elements
 When you populate data to an array you do via the name of the array and the index. Syntax:

ArrayName(index) = value

 Assuming we have the following array declaration:

Dim data(9) As Integer

 Here are some examples of populating elements of the array:

Data(0) = 31 ‘adds the integer 2 to the location of index 0
Data(5) = 6 ‘adds the integer 6 to the location of index 5

Data(j) = 31; ‘j is variable storing index value, if j=2, data[2] will be assigned 31

Data(j + k) =12; ‘if j=2 and k=4, data[6] is assign 12;

Accessing Individual Array Elements
 When you access or retrieve data from an array you do via the name of the array and the index. Syntax:

value = ArrayName(index)

 Assuming we have the following array declaration and that the array is populated with the data shown in diagram below:

Dim data(9) As Integer

 Here are some examples of accessing data from the array assuming we have a variable declared named myIntVar:

myIntVar = data(0) ‘retrieves the item in location 0; value 31 is assign to variable
myIntVar = data(j) ‘j is variable storing index value, if j=2, variable = 31
myIntVar = data(j + k) ‘if j=2 and k=4, data[6], variable is assign 12

31

28

31

30

30

6

12

8

20

15

data[0]

data[1]

data[2]

data[3]

data[4]

data[5]

data[6]

data[7]

data[8]

data[9]

data

 31

Initializing Arrays
 You can give values to each array element when the array is created as follows
 Syntax:

Dim <Name> () As <Type> = { value1, value2, ……}

 Example declaration and results:

int data() As Integer = {31, 28, 31, 30, 30, 6,12, 8, 20,15 }

Populating All the Array Elements
 To populate all values of an array in one pass, you need to assign the values in each element consecutively. This is done usually

by using a loop.
 The For..Next Loop is a excellent mechanism to use with arrays since we know the number of iterations or size of array:

For i = 0 to MAXSIZE

Data(i) = intTestScore

Next

Accessing All Array Elements
 You can extract or access all elements of array also using the For loop as follows:

For i = 0 to MAXSIZE

intTestScore = data(i)

Next

31

28

31

30

30

6

12

8

20

15

data[0]

data[1]

data[2]

data[3]

data[4]

data[5]

data[6]

data[7]

data[8]

data[9]

data

 32

3.6.2 Multidimensional Arrays
 In VB.Net arrays can have multiple dimensions.
 Multidimensional arrays are used to represent tables of values arranged in rows and columns.

 In multidimensional arrays we need to specify two subscripts in order to identify an element of the array, one for the row and the
other for the column. For example in the above table element (1, 2) contains the value 8, where row =1 and column = 2.

 The diagram above is and example of a two-dimensional array since it has only two dimensions or subscripts.

 Syntax for declaring a two dimensional array:

Dim <Name> (row, column) As <Type>

 Example:
 int scoreboard (3)(5) ‘This declaration is represented by the table above

 Multidimensional arrays can also be initialized when defined by using braces to group each Row

int data (,) = { {31, 28, 31, 30, 30},{ 6, 12, 8, 20, 15}, {22, 16, 45, 37,20} }

 Multidimensional arrays must be displayed or populated using the same methods as single dimensional arrays, except that we
must use nested loops, one outer loop for the Column and the inner loop for the Rows

 The syntax, assuming we have declared a variable named Col and a variable name Row, the following declaration:

 Dim <Name> (COL_SIZE, ROW_SIZE) As <Type>

For Col = 0 to COL_SIZE

For Row = 0 to ROW_SIZE

value = Name(Row, Col) ‘perform required operation here!

Next

Next

31 28 31 30 30

6 12 8 20 15

Columns

0

0

1

1

22 16 45 37 20 2

4 3 2

Rows

 33

Homework # B
 Problem statement.

Develop a class-averaging program that will process the average of a list of grades stored in a list.

Algorithm:

1. Problem: Calculate and display the grade-point average for a class. Grades are kept on a list.
2. Discussion: The grade-point average equals the sum of all the grades divided by the number of students.

Therefore we need to get each grade and as we do so, add the value to a running total or accumulation of all the
grades. This means repetition or loop. Also we need to keep count of the total number of students. At the end
we should have a Total Grade and a Total count of students. At this point all we need to do is divide the Total
Grade by the Total Student Count and we get the grade point average.

3. Input: Student Grades obtained from a list of Grades. Values in list are as follow: 80, 79, 100, 95, 45, 55, 75,

93, 100, 100.
4. Processing: 1) The Sum of all the Grades; 2) The count or number of grades; 3) Calculate the average = Total

Sum of Grade/Grade Count
5. Output: The Grade-Point Average

Required Results:

1. Create an Algorithm for this problem
2. Create a Console Application and implement this problem. Write a user friendly application. This means the

output should display information to the user that makes sense.

