

CS708 Lecture Notes

Visual Basic.NET Programming

Object-Oriented Programming

VB.NET Data Access Technologies

(Part II)

(Lecture Notes 4B)

Prof. Abel Angel Rodriguez

 2

SECTION I. .NET DATABASE ACCESS TECHNOLOGIES .. 3

1.0 Review of Application Architecture and Business Objects Data Access ... 3
1.1 Review of Application Architecture and Business Objects Data Access Requirements .. 3

1.2 Introduction to Data Access Technolgies ... 10
1.2 Introduction .. 10
1.3 What is a Data Source? .. 10

2.0 Microsoft’s Data Access Technologies.. 11
2.1 OLE DB ... 11
2.2 ADO.NET .. 11
2.3 ADO.NET OBJECT MODEL ... 11
2.4 Available ADO.NET Data Providers ... 16
2.5 Using ADO in a NutShell .. 18

3.0 Using ADO.NET in Your Applications .. 23
3.1 Data Access Using ADO.NET Library .. 23
3.2 The ADO.NET Connection Class .. 23
3.3 The ADO.NET Command Class .. 36
3.4 The ADO.NET DataReader Class.. 43
3.5 The ADO.NET Parameters Class ... 58

Summary – Using the Parameters Collection .. 72
3.6 SUMMARY – Data Access using OleDBDataReader, IN-LINE SQL & SQL SERVER Database ... 74

Examples 7 - Executing Non-Parameter SELECT Query (IN-LINE SQL) ... 75
Example 8 - Executing Parameterized SELECT Query ... 76
Example 9 - Executing SELECT Query that Return Multiple Records ... 77
Example 10 - Executing Parameterized UPDATE Query.. 78
Example 11 - Executing Parameterized INSERT Query ... 79
Example 12 - Executing Parameterized DELETE Query .. 80

4.0 Using ADO.NET DataSet Class .. 81
4.1 REVIEW OF Data Access Using DataReader Object ... 81
4.2 Data Access Using DataSet Object .. 81
4.3 DataAdapter Class ... 82

DataAdapter Class – Properties & Methods .. 83
Using the DataAdapter Class Object.. 83

4.4 DataSet Class ... 85
DataSet Class – Properties & Methods .. 88
Using the DataSet Class Object ... 88
Example 13 - Executing SELECT Query using DataSet that returns One or Multiple Records .. 88
Example 14 - Executing SELECT Query that Return TWO Tables using DataSet ... 91
Example 15 - SELECT Query that Return TWO Tables using DataSet (METHOD II) .. 94

 3

Section I. .NET Database Access Technologies

1.0 Review of Application Architecture and Business Objects Data Access

1.1 Review of Application Architecture and Business Objects Data Access Requirements

 Before we begin to understand the details of accessing a data source or database, lets review the basic application architecture and

business objects or classes data access requirements.

Review of Application Architecture
 The application architecture targeted for client/server applications is as follows:

 This architecture is design for the following client/server architectures:

 One-Tier Client/Server

 Two-Tier Client Server

 N-Tier Client/Server

 Web-based Client/Server

Data Access Design Objectives:
 Our objectives is to implement the Business Objects layers based on either the 3 Layer or 4 Layer architecture:

Presentation Layer/UI
- Forms & Module

- User Interface Code Only

 Business Object Layer
- Business Logic

- Processing Code

- Validation

- Data Access Code

Database Services Layer
(Database Management System)

Basic 3 Layer Architecture

Presentation Layer/UI
- Forms & Module

- User Interface Code Only

 Business Objects Layer
- Business Logic

- Processing Code

- Validation

Database Services Layer
(Database Management System)

Data Access Business Objects
- Data Access Code

Basic 4 Layer Architecture

Business Objects Layer

- Data Access Code

3 Layer Architecture Business Objects Layer

Business Objects Layer

Data Access BO Layer

- Data Access Code

4 Layer Architecture Business Objects Layers

 4

Implementing the Data Access Objectives:
 It is important to decide where to place the Data Access code or SQL Statements/Stored Procedure calls that will Load, update,

insert and delete the Objects to the database.

 Where to place the Data Access Code depends on the application architecture being used (3-Layer or 4 Layer).

 The following methods are available:

Method I – Business Objects Perform Their Own Data Access (Basic 3-Layered Architecture)

 This method is based on the 3-Layered application architecture:

 In this method it is the Business Objects that handle their own data access

 The Unanchored or Distributed Business Objects save, update, insert, & delete themselves to the database. They contain the

queries or stored procedure calls to interact with the database:

Advantages/Characteristics Disadvantages

 Simple. BO handle themselves

 Object is one package with everything we need,

thus we have full encapsulation.

 Not scalable for our multi-tiered Client/Server

architectures.

Example of using this Method:
 Supposed you were creating a client/server Banking Management System or (ATM) application. In this application the following

Business Object classes may be required:

 Employee Class – represents the employee and performs data access

 Customer Class – represents the customers and performs data access

 CheckingAccount Class – represents the checking account and performs data access

 SavingsAccount Class –represents the savings account and performs data access

 Note you need a total of 4 classes.

Business Objects Layer

- Data Access Code

3 Layer Architecture Business Objects Layer

Database

Business Object

UI
Data Access Methods

(SQL Statements)

(Stored Procedure Calls)

User Interface

Data Access
(DBMS)

 5

 For the ATM example, the diagram below illustrates the distributed architecture and data access hierarchy.

Presentation Layer/UI

 Forms, Modules & User Interface Code

Business Object Layer

 Employee

Class

Customer

Class

Checking

Account

Class

Savings

Account

Class

Database Services Layer

(DBMS)

 6

Method II – Data Access Business Objects Handle the Data Access

 This method is based on the 4-Layered Application Architecture Business Objects Layers:

 In this method the Business Object rely on another specialize Business Object to manage or save, update, insert & delete their

data access

 These Data Access Business Objects can be Anchored and contain the SQL Statements or Stored Procedures calls to interact

with the database:

Advantages/Characteristics Disadvantages

 Business Objects are light-weight. Less

complex since Data Access BOs contain queries

 Scalable. Fits our client/server architectures

 Object not one single package but broken up into

two separate classes.

 Will need one Data Access Object for every type of

business objects

 Business Object rely on Data Access BOs

 More complex to program

Example of using this Method:
 Supposed you were creating a client/server Banking Management System or (ATM) application. In this application the following

Business Object classes may be required:

 Employee Class – represents the employee

 Customer Class – represents the customers

 CheckingAccount Class – represents the checking account

 SavingsAccount Class –represents the savings account.

 Now you will need one Data Access Business Object Class for each of the Business Objects as follows:

 EmployeeDataAccess Class – performs data access for the Employee Class
 CustomerDataAccess Class – performs data access for the Customers Class

 CheckingAccountDataAccess Class – performs data access for the CheckingAccount Class.

 SavingsAccountDataAccess Class – performs data access for the SavingsAccount Class.

 Note you need a total of 8 classes.

Business Object

Database

UI

User Interface
Data Access

Data Access Business Object

Data Access Methods

(SQL Statements)

(Stored Procedure Calls)

(DBMS)

Business Objects Layer

Data Access BO Layer

- Data Access Code

4 Layer Architecture Business Objects Layers

 7

 For the ATM example, the diagram below illustrates the distributed architecture and data access hierarchy.

Presentation Layer/UI

 Forms, Modules & User Interface Code

Business Object Layer

 Employee

Class

Customer

Class

Checking

Account

Class

Savings

Account

Class

Database Services Layer

(DBMS)

Data Access Business Object Layer

 EmployeeDA

Class

CustomerDA

Class

Checking

AccountDA

Class

Savings

AccountDA

Class

 8

Method III – General Purpose DataPortal Layer Handle the Data Access (Common Practice)

 In this method the Business Object rely on a general DATAPORTAL Object or Layer to manage or save, update insert & delete

their data access

 The DATAPORTAL is usually Anchored and contain the SQL Statements or queries and interact with the database:

Advantages/Characteristics Disadvantages

 Business Objects are light-weight. Less

complex since DataPortal contains queries

 Scalable. Fits our client/server architectures

 Object partially a single package and

encapsulated

 One DataPortal for all BO objects.

 Could have a DataPortal for each type of
Database SQL, Oracle etc.

 No data access code in Business Objects.

 Business Objects will always rely on DataPortal

 Data portal will contain methods to handle each of

the individual business objects it will handle.

 Need to constantly modify DataPortal object by

adding new data access methods every time you add

a new class to the project.

Example of using this Method:
 Supposed you were creating a client/server Banking Management System or (ATM) application. In this application the following

Business Object classes may be required:

 Employee Class – represents the employee

 Customer Class – represents the customers

 CheckingAccount Class – represents the checking account

 SavingsAccount Class –represents the savings account.

 Now you will need one Data Access Business Object Class for each of the Business Objects as follows:

 DataPortal Class – performs data access for all Business Objects (Employee, Customer, CheckingAccount & SavingsAccount)

- The DataPortal Class will contain the following data access methods (Load, Update, Insert, Delete) for the

Employee Class
- The DataPortal Class will contain the following data access methods (Load, Update, Insert, Delete) for the

Customer Class
- The DataPortal Class will contain the following data access methods (Load, Update, Insert, Delete) for the

CheckingAccount Class
- The DataPortal Class will contain the following data access methods (Load, Update, Insert, Delete) for the

SavingsAccount Class

 Note you need a total of 4 Business classes and 1 DataPortal Class. Nevertheless, the DataPortal Class may contain 16 data

access methods, 4 for each class that requires its service.

 For the ATM example, the diagram below illustrates the distributed architecture and data access hierarchy.

#Region

"Public

Regular

Methods

Declarat

ions"

'*******

'Class

Regular

Methods.

Ex:

EditItem

(k,O),

EditItem

(x,y,z..

),

Print(X)

, etc.

#End

Region

Business Object

Database

UI

User Interface Data Access

DataPortal Object

Data Access Methods

(SQL Statements)

(Stored Procedure Calls)

(DBM

S)

 9

Presentation Layer/UI

 Forms, Modules & User Interface Code

Business Object Layer

 Employee

Class

Customer

Class

Checking

Account

Class

Savings

Account

Class

Database Services Layer

(DBMS)

Data Access Business Object Layer

Data Access Portal Class

 10

1.2 Introduction to Data Access Technolgies

1.2 Introduction

 Data Access Technologies refers to available methods or technologies that allow you to access a variety of data.

 These technologies allow us to use programs created in programming languages such as Visual Basic, C++, Java etc. to connect to

a Database & other Data Source.

1.3 What is a Data Source?

 When we think of a Database, we think of programs such as Access, Oracle & SQL Server.

 But there is much more to data than storing it in a Database. Think about email, word-processing, documents, spreadsheets,
graphics etc. These examples of data are stored in different format, which can be know or unknown to us.

Definitions of Data Source & Data Access Technologies
 Data Source - A source of data, that can be in a database or some other source

 Access Technologies - The technology that allows us to access this data, Data Source.

 Today's technologies offer a variety Data Source, for example:

 Raw Data taken from a text file

 Data from traditional Database Applications such as Oracle or MS SQL Server.

 Data formatted for direct access by proprietary programming languages or desktop databases like MS Access, MS Visual

Basic or MS FoxPro

 Data from Messaging Systems stores or Workflow Applications such as MS Exchange or Lotus Notes

 Data formatted for access by applications such as MS Excel, MS Outlook, Word Processing & many others

 Data from communication programs that identify all users logged onto a network.

 These applications will need data with different format and each application provides a different interface for manipulating its

data.

1.3 .NET Data Access Technologies
 There are many access technologies available, but we will briefly describe some, but concentrate on a few.

 The most common access technologies are:

 ADO.NET – Microsoft ActiveX Data Objects

 OLE DB – Microsoft‟s Object Linking and Embedding for Databases

 ODBC - Open Database Connectivity (Know standard. Used by Microsoft, Unix, etc.)

 11

2.0 Microsoft’s Data Access Technologies

2.1 OLE DB

 OLE DB is Microsoft's universal data access technology.

 OLE DB - Object Linking and Embedding for Databases

 OLE DB is a library or interface that allows transparent data access to a variety of data sources.
 On top of OLEDB Microsoft has created another layer to simplify using OLEDB, this layer is called ADO.NET.

2.2 ADO.NET

 ADO.NET is Microsoft latest technology for accessing data.
 ADO.NET is a set of libraries that are included in the Microsoft .NET Framework that help you communicate with various data

sources.

 ADO.NET is set of Objects derived from OLE DB, which allow your applications to connect to a variety of data sources.

 ADO will be the data access technology of choice for this course!

 ADO is a powerful library with many features and functionalities. There are many ways to use ADO. We will only cover some

of the basic features required to retrieve, delete, update and insert data to a database.

2.3 ADO.NET OBJECT MODEL

 To truly understand & program ADO, you need to understand the ADO Object Model.

 Basically ADO is divide into two separate Libraries:

 .NET Data Provider Component (Connected Objects) :
o The .NET Data Provider Objects communicate directly with your database to manage the connections,

transactions, retrieval and submittal of changes to the database.

o Since these objects directly communicate with the database and establishes a connection they are know as

connected objects.

o This library includes everything you need to access, store, modify, delete and manage data from a database.

Therefore you can perform all data Access using the objects in this library

 DataSet Component (Disconnected Objects) :
o The DataSet library objects are used as another mechanism to store the data retrieved from a database. But

these objects provide a more powerful data storage mechanism than what is offered in the Provider Object.

o Similar to the Provider Objects, these objects store data, but the data is disconnected from the database. That

means once is populated with data, the data is offline. This is a major performance benefit.

o The DataSet Objects provide a more complex and powerful storage mechanism, which stores the following

type of data:

- Data – Actual data or records from the database. No only can you store the result of a query or a table,

but you can store one or multiple tables from the database.

- Metadata – Description of the data such as the data type of the columns, properties, size etc.

- Relationship – Relationships between the tables retrieved from the database

o As you can see from the data being stored, these Objects can store one or more tables as well as the

database schema. You can actually store the entire database locally.

o You can also UPDATE, INSERT & DELETE in the DataSet and COMMIT TO DATABASE
o Therefore if desired, you can query the database once, get all the data you need, work with the data offline and

submit changes to the local DataSet. Once you are finished, you can then submit all changes to the main

database.

o This mechanism offers the benefit of instead of connection to a database many times, you can get it all locally,

work offline, and commit all changes when you are done. This is a big performance benefit.

o FULL SUPPORT FOR DATA BINDING! Data Binding allow us to bind or append data from table directly to

Form or WEB Controls, such as Text Box, ListBox, ComboBox etc.

 12

ADO Object Model

 Lets take a look at the ADO Object Model or architecture:

Database

.DataSet

DataTable Collection

DataTable Object

DataRowCollection

DataColumnCollection

Constraints Collection

DataRelation Collection

DataRelation Object

..NET Data Provider

Connection

DataAdapter

DataReader

Command

Parameters Collection

Parameter Object

DataAdapter Bridge

 13

 Another view of the ADO Object Model hierarchy:

Database

..NET Data Provider

Connection

DataAdapter

DataReader

Command

Parameter Object

Parameters Collection

.DataSet

DataSet

DataTable Collection

DataTable Object

DataRow Object

DataRow Collection

DataColumn

Object

DataColumn

Collection

Constraint Object

Constraint Collection

 DataRelation Collection

DataRelation Object

DataAdapter Bridge

 14

 The .NET Data Provider is composed of 5 major Objects. The objects descriptions is as follows:

.NET Data Provider Description
Data Provider Component Data Access Library containing the objects shown in the Provider diagram or

objects described in this table.

 ADO.NET Provider comes in different versions. The providers are as follows:

- ODBC provider: Connect to ODBC data sources etc.

- OLEDB Provider: Connect to Access, SQL Server & Oracle

- SQL Provider: Exclusively connect to SQL Server database

- ORACLE Provider: Exclusively connect to Oracle database

 This means that there are 4 versions of the architecture shown in diagrams or

classes addressed in this table. Four variations for different types of databases

Connection This object handles the connection to the data source.

 Here you specify the necessary software drivers, security settings and location of

the data source you are to connect to.

Command This object handles or executes the queries and stored procedures.

Parameter Collection This Collection Object resides inside the Command Object. It is a child object of

the Command Object

 This Collection stores object of type Parameter. Each parameter object represents

and stores a parameter to be passed to queries

Parameter These are the objects store by the ParameterCollection

 Object of this type are used to store QUERY PARAMTERS. Parameters are the
variables or values used in parameterized queries. For example:

SELECT * FROM Customer WHERE Customer_ID = @CustomerID

- Here the @CustomerID represents a value that can be passed from a Form

or variable etc.

DataAdapter This object acts as a bridge between the Providers and Database and the

disconnected object the DataSet.

 It fetches the results of queries and fills or populates the DataSet or a DataTable

Object so you can work with data offline. This is done via a method inside the

DataAdpater named Fill().

 The DataAdapter object actually exposes a number of properties from the

Command Object for Selecting, Updating, Inserting and Deleting data to the

database.

 The DataAdapter object populates tables into the DataSet or a DataTable Object

and also submits changes from the DataSet Object to the database. It is a bridge

between these two libraries.

DataReader This object has similar functionality as the DataSet objects and that is it stores the
result of a query.

 Except this Object is a Forward-Only, Read-Only stream of data that bypasses the

DataSet Object to directly communicate with the database.

 Read-Only – You can only read data, no updates or modification is supported

 Forward-Only – You can examine the results of a query one row at a time, when

you move forward to the next row the contents of the previous row are discarded.

 Supports minimal features, but is fast and lightweight.

 This OBJECT IS BEST FOR QUICK AND FAST DATA ACCESS and IDEAL

FOR OBJECT ORIENTED PROGRAMMING.

 15

 The DataSet structure contains 5 major Objects. The objects descriptions is as follows:

DataSet Description
DataSet Object Store the results of a query. Can also DELETE, UPDATE AND INSERT the

records in the DataSet and COMMIT to DATABASE.

 This object stores a collection of DataTable Objects and a Collection of

DataRelationship Objects.

 Each DataTable Object stores other collections and objects to manage the data

retrieved from the database.

 Each DataRelationship Object stores information concerning the relationship

between the tables, primary & foreign keys that link the tables etc.

 The explanation to the other collections and objects is listed below.

 Data from queries is stored in the DataSet object via the .NET Data Provider

DataAdapter Object Fill() method

DataTable This object lets you stores and examine the data returned from a query.

 The rows and columns returned from a query are stored in two Collections named

DataRow Collection and DataColumn Collection. Both of these child objects will

be described below.

 Data from queries is stored in the DataTable object via the .NET Data Provider

DataAdapter Object Fill() method.
 YOU CAN USE THE DATATABLE OBJECT DIRECTLY WITHOUT THE

DATASET IF DESIRED for simply database retrieval

 **Once data is fetched from the database and stored in the DataTable object, the

connection to the database is closed. You can then examine the content of the

DataTable object totally disconnected from the database without creating any

network traffic.

DataColumn Collection A collection storing DataColumn Objects. Each of these objects store information

about one Column in the table.

 Each DataColumn Object corresponds to one Column in the table.

 The DataColumn object DOES NOT store DATA! It only stores information

about the structure of the column or METADATA, such as data type, properties

size, format etc.

DataRow Collection A collection storing DataRow Objects. Each of these objects store information

about the Row in the table.

 Each DataRow Object corresponds to one Row in the table.

 The DataRow object STORES the actual DATA return from a query.

 You examine the content of each DataRow object in the collection to retrieve and
analyzed the data.

 You can use a For..Each..Next loop to iterate through the collection and access the

data.

Constraints Collection A collection storing Contraints Objects. Each of these objects store information

about the constraints or rules placed on columns or multiple columns in the table

stored in the DataSet.

DataRelation Collection A collection storing DataRelation Objects. Each of these objects store information

about the relationship between the tables.

 Also information about the primary & foreign keys that link the tables.

 In addition this object enforces referential integrity.

 16

2.4 Available ADO.NET Data Providers

 The previous section illustrated the object model diagram for ADO.NET and two tables describing each of the ADO.NET classes

 We now understand that ADO.NET is divided into two parts, the .NET PROVIDER and DATA SET:

I. ADO.NET DATA PROVIDER CLASSES:

 Connection

 Command

 Parameters Collection

 Data Adapter

 Data Reader

II. DATA SET CLASSES:

 DataTable Collection

 DataTable Classes

 DataRow Collection

 DataColumn Collection

 Constraint Collection
 DataRelation Collection

 NOTE THAT THE CLASS NAMES SHOWN FOR THE DATA PROVIDER (Connection, Command, Data Adapter & Data

Reader) ARE THE NOT THE ACTUAL NAMES OF THE DATA PROVIDER CLASSES!

 These are not the actual names for the objects that exist in the ADO.NET library.

 The ADO.NET DATA PROVIDER library is made up of several .NET Data Provider libraries, specifically tailored for different

databases in the market.

 Example of 4 such providers that ship with the .NET Framework are:

1. SQL Client – Contains all the ADO.NET libraries customized to connect to a Microsoft SQL Server database ONLY.

Best performance for SQL Server database access.

2. OleDB Client – Use for other databases that support OleDB such as Microsoft Access, Oracle, SQL Server as well, etc.

3. Oracle Client – Exclusively dedicated for Oracle databases only. Gives best performance if connecting to Oracle

database only.

4. ODBC Client – Exclusively dedicated for ODBC databases.

 What this means is that there are (Connection, Command, Data Adapter, & Data Reader classes for each of these ADO.NET

DATA PROVIDER.

 For each of the providers, a unique name is used for the classes as follows for the SQL, OLEDB & ORACLE CLIENTS:

1. SQL Client:

o SQLConnection

o SQLCommand

o SQLParameters

o SQLDataAdapter

o SQLDataReader

2. OleDBClient:

o OleDBConnection

o OleDBCommand

o OleDBParameters

o OleDBDataAdapter

o OleDBDataReader

3. OracleClient:

o OracleConnection

o OracleCommand

o OracleParameters

o OracleDataAdapter

o OracleDataReader

 Note that there is only one DataSet and DataTable Library used by ALL of the providers

 Note that you can purchase vendor specific providers

 IN SUMMARY, THE FIRST THING YOU NEED TO DO IS DECIDE WHICH PROVIDER TO USE WHEN CREATING

YOUR APPLICATION DATA ACCESS CODE.

 THIS WILL DEPEND ON THE DATABASE YOU ARE USING AND THE REQUIREMENTS

 ONCE THIS DECISION IS MADE, YOU CREATE THE CLASSES FOR THE SPECIFIC PROVIDER.

 17

 SQL, OLEDB & ORACLE Providers & DataSet architecture:

OLEDB Data Provider

OleDBConnection

OleDBDataAdapter

OleDBDataReader

OleDBCommand

OleDBParameters

OleDBParameter

SQL Data Provider

SQLConnection

SQLDataAdapter

SQLDataReader

SQLCommand

SQLParameters

SQLParameter

ORACLE Data Provider

OracleConnection

OracleDataAdapter

OracleDataReader

OracleCommand

OracleParameters

OracleParameter

.DataSet

DataTable Collection

DataTable Object

DataRowCollection

DataColumnCollection

Constraints Collection

DataRelation Collection

DataRelation Object

ORACLEDataAdapter Bridge

SQLDataAdapter Bridge

OLEDBDataAdapter Bridge

MS Access

SQL Server

Oracle

SQL Server

ORACLE

 18

2.5 Using ADO in a NutShell

Using the ADO.NET Library
 OK, we saw the ADO.NET Class Library. How do we use it?

 Well, these are classes, which means that Microsoft already created them for us, therefore following our OOP rules, we need to do

the following:

1. Create Objects of the ADO.NET classes

a. Import the ADO.NET libraries into your program

2. Read MSDN LIBRARY for description of Properties & methods of ADO.NET Classes

3. Use the Objects to perform data access:

a. Set & Get properties

b. Call methods

c. Etc.

Which Objects or Class do we use? In what order?
 But which Objects do we create first? How do I use the library?

 From the description of the library, we definitely need the following objects:

 Connection object – To establish the connection

 Command Object – To execute the query

 Command.Parameters Collection – To store parameters of a query. Note that this object resides inside the Command

Object

 Now we need to decide where we are going to store the results of a query, and the choices are:

Option 1: (DATAREADER)
 DataReader object:

- Fast, reliable storage

mechanism.

- Connected: Always

maintains a

connection with data

source.
- Forward-read only,

data is discarded

after reading it.

- Limited, but

recommended for

most data access

needs.

- IF YOU SIMPLY

RETURNING ONE

OR A FEW

RECORDS, THE

DATAREADER IS

IDEAL.

- FULL DATA

BINDING

SUPPORT

Option 2: (DATASET)
 DataAdapter object:

- Bridge to the DataSet or

DataTable Object. Manages the

operations performed on the

DataSet Object.

- Fills or populates the DataSet

Object with data.
- Updates or commits changes

within the DataSet Object to the

Data Source.

 DataSet object:

- Powerful, reliable storage

mechanism.

- Extensive functionality.

- Disconnected (Great for

performance).

- Can store entire tables, etc.

Recommended when you need to

store and manage large number of

records or tables.

- More complex to program!

- FULL DATA BINDING

SUPPORT

Option 3: (DATATABLE)
 DataAdapter object:

- Bridge to the DataSet or

DataTable Object. Manages the

operations performed on the

DataSet Object.

- Fills or populates the DataSet

Object with data.
- Updates or commits changes

within the DataTable Object to

the Data Source.

 DataTable object:

- If you need the features of a

DATASET, but simply returning a

table, you can also use a

DataTable Object by itself to

store your data off-line instead of

a DATASET. The DataSet is a

complex structure which takes up

resources, therefore for returning

only a table, you can use a

DATATABLE object only.

- FULL DATA BINDING

SUPPORT

 19

Putting it all together
 So, to use ADO.NET we will be doing the following:

Step 1: Decide Which Provider to Use:

 Options:

 SQL Client – Use this provider if the connections will always be to a Microsoft SQL Server database ONLY

 OleDB Client – Use this provider if you are connection to a Microsoft Access, Oracle, SQL Server, or other types

of data sources.

 Oracle Client – Exclusively dedicated for Oracle databases.

Step 2: Import the ADO.NET Data Provider library NAMESPACE

 For OLEDB Client Provider type, import the library:

Imports System.Data.OleDb 'OLEDB Data Provider

 For SQL CLIENT Provider type, import the library:

Imports System.Data.SQLClient SQL Data Provider

 For ORACLE CLIENT Provider type, import the library:

Imports System.Data.OracleClient Oracle Data Provider

Imports System.Data

Imports System.Data.OleDb 'OLEDB Provider

Step 3: Create ADO.NET Data Provider Objects & Use them by Calling Methods and Properties

 Create Objects of the following ADO.NET classes:

Option 1 – OLEDB Client

 OLEDBConnection

 OLEDBCommand

 OLEDBParameters

Option 2 – SQL Client

 SQLConnection

 SQLCommand

 SQLParameters

Option 3 – ORACLE Client

 ORACLEConnection

 ORACLECommand
 ORACLEParameters

 Use the Objects, by calling their properties and methods.

 Connection Object – Call methods/Properties to connect to database or data source of choice

 Command Object – Call methods/Properties to execute Query.

 Parameters Collection & Parameter Object – Call methods/Properties to prepare parameters passed to Queries
used by command object.

 20

Step 3: Decide which ADO.NET Object(s) to Store the Result of the Query & Call Methods/Properties to manage data.

1. Decide where to store your query results. The choice of implementation are as follows:

Option 1 – Data Access that

requires simple and fast Data

Access

 If the data access requires

simple, fast & reliable data

access, such as returning

ONE RECORD, returning

a few number of records,

we are not modifying or

making a lot of changes to

many tables, don‟t require

disconnected performance

etc.
 If you will simply retrieve

the data, use it and discard

it, then you should use this

option

 IDEAL FOR OBJECT-

ORIENTED

PROGRAMMING

 You will need the

following Object(s):

- DataReader Object

Option 2 – Data Access that returns

MULTIPLE TABLES, manage large

number of records, require off-

line/disconnected performance, etc.

 If the data access requires

management of a large number

of records, such as updating,

inserting, deleting etc., on many

tables. Then this option is best.

 For example if the part of the

application requires that the user

works with a lot of records or is

going to make bulk changes to a
large number of records, then

this option is best since it allows

you to store and modify large

number of records or tables

locally and commit them in one

step.

 This option requires more

complex programming.

 You will need the following

Object(s):

- DataAdapter object

- DataSet object

Option 3 – Data Access that returns

ONE TABLE, manage large number

of records, require off-

line/disconnected performance, etc.

 If the data access requirements

are the same as the DataSet, but

you are only returning ONE

TABLE, you can create ONE

DATASET object.

 For example if the part of the

application requires that the user

works with a lot of records or is

going to make bulk changes to a
large number of records, but

only one table is being returned,

this option is best.

 You will need the following

Object(s):

- DataAdapter object

- DataTable object

2. Import the ADO.NET Data component NAMESPACE:

Imports System.Data 'Required for DATASET & DATATABLE classes

 21

3. Once you have decided on where to store your data, either a DataReader, DataSet or single DataTable Object, you create

the objects and use the Object(), by calling properties and methods to retrieve/manage the stored data as follows:

Option 1 – DATAREADER
Object

 OLEDB Client provider

create:

- OLEDBDataReader
object

- Call methods/Properties

to retrieve and manage

the data

 SQL Client provider

create:

- SQLDataReader
object

- Call methods/Properties

to retrieve and manage

the data

Option 2 – DATASET Object

 OLEDB Client provider create:

1. OLEDBDataAdapter
object

- Call methods/Properties to

populate, update, Insert &

Delete records in DataSet.

In addition commit

changes to database

2. DataSet object

- Call methods/Properties to

retrieve and manage the

data

 SQL Client provider create:

1. SQLDataAdapter object

- Call methods/Properties to

populate, update, Insert &

Delete records in DataSet.

In addition commit

changes to database.

2. DataSet object

- Call methods/Properties to

retrieve and manage the
data

Option 2 – DATATABLE Object

 OLEDB Client provider create:

1. OLEDBDataAdapter object

- Call methods/Properties to

populate, update, Insert &

Delete records in DataTable.

In addition commit changes

to database

2. DataTable object
- Call methods/Properties to

retrieve and manage the data

 SQL Client provider create:

1. SQLDataAdapter object

- Call methods/Properties to

populate, update, Insert &

Delete records in DataSet. In

addition commit changes to

database.

2. DataTable object

- Call methods/Properties to

retrieve and manage the data

Final words & Summary
 For any of the data access options we need a connection, command, & parameters objects. But depending on which storage

mechanism we decide on, we either create a DataReader or DataAdapter/DataSet/DataTable objects.

 For fast and simple data access, using the DataReader to quickly store and retrieve our data is the way to go.

 For more complex data access such as working with many tables etc., the DataAdapter/DataSet objects is best.

 22

 The table below is a listing of the required ADO.NET Objects for OLEDB provider use:

 The table below is a final listing of the available ADO.NET Objects required for using the SQL Provider:

Option 1A – SQL Provider

Using DATAREADER

Option 1B – SQL Provider

using DATASET

Option 1C – SQL Provider

Using DATATABLE

- SQLConnection Object

- SQLCommand Object

- SQLParameters Collection

Object
- SQLDataReader Object

- SQLConnection Object

- SQLCommand Object

- SQLParameters Collection

Object
- SQLDataAdapter Object

- DataSet Object

- SQLConnection Object

- SQLCommand Object

- SQLDBParameters
Collection Object

- DataTable Object

 The table below is a listing of required objects for ORACLE client available in ADO.NET:

Option 2A – OLEDB Provider

Using DATAREADER

Option 2B – OLEDB Provider

using DATASET

Option 2C – OLEDB

Provider Using

DATATABLE

- OLEDBConnection Object

- OLEDBCommand Object

- OLEDBParameters
Collection Object

- OLEDBDataReader Object

- OLEDBConnection Object

- OLEDBCommand Object

- OLEDBParameters
Collection Object

- OLEDBDataAdapter
Object

- DataSet Object

- OLEDBConnection Object

- OLEDBCommand Object

- OLEDBParameters
Collection Object

- OLEDBDataAdapter
Object

- DataTable Object

Option 2A – ORACLE Provider

Using DATAREADER

Option 2B – ORACLE

Provider using DATASET

Option 2C – ORACLE

Provider Using

DATATABLE

- ORACLEConnection Object

- ORACLECommand Object

- ORACLEParameters
Collection Object

- ORACLEDataReader
Object

- ORACLEConnection
Object

- ORACLECommand
Object

- ORACLEParameters
Collection Object

- ORACLEDataAdapter
Object

- DataSet Object

- ORACLEConnection
Object

- ORACLECommand
Object

- ORACLEParameters
Collection Object

- ORACLEDataAdapter
Object

- DataTable Object

 23

3.0 Using ADO.NET in Your Applications

3.1 Data Access Using ADO.NET Library

 In this section I will demonstrate how to use the ADO.NET objects within our Class Objects to perform data access.

 Be aware that there are many ways to use the ADO.NET library objects. ADO.NET objects can indirectly call each other without

having to create them individually.

 In other words, you can create each of the 5 main ADO.NET objects to perform the data access, or with just creating a connection

object you can call methods that create command objects to handle the SQL command etc. So instead of creating 5 objects you

only needed to create one or a connection object and you were able to indirectly create a Command Objects, DataReader object
etc., all from within the Connection Object.

 The point here is that there are many ways to perform the data access using the ADO.NET model. I will show you one of them.

Approach to Learning Data Access in this Course
 The approach I am going to take is as follows:

 Select each of the required ADO.NET object; show a table with some of the properties and method available to this object.

 You can use the table as reference to build the code.

 Show the code required to perform the data access.

 In the following code, tables & examples, I will only show properties and methods for the OLEDB provider since in this

course we will be connection to both MS Access and SQL Server. Nevertheless, keep in mind that the SQL Server Data

Provider is available and each of these library or classes have properties and methods that are very similar in name to the

OLEDB, but are implemented differently to target an SQL Server Database.

3.2 The ADO.NET Connection Class

 We need a connection object to connect to a database. The table below again provides a description of the ADO.NET Connection

object:

.NET Data Provider Description
Connection This object handles the connection to the data source.

 Here you specify the necessary software drivers, security settings and location of

the data source you are to connect to.

 What I will do next is list a table with some of the important properties and methods of the Connection Class.

 Remember that the .NET Library comes equipped with a provider or library for the type of database you want to connect. As you

know there are two .NET Data Providers that ship with the .NET Framework, one for SQL Server (SQL Provider), the other for

MS Access, Oracle and other OLEDB compliant database (OLEDB Provider). Point here is that there are three to four

connection class available, one for SQL Server and the other for MS Access etc:

 SQL Client – Contains all the ADO.NET libraries to connect ONLY to SQL Server database:

o SQLConnection

 OleDBClient – Use to connect to SQL Server and other databases that support OleDB, such as Microsoft Access, Oracle etc.

o OleDBConnection

 OracleClient – Use to connect to SQL Server and other databases that support OleDB, such as Microsoft Access, Oracle etc.

o OracleConnection

 In my code, I will only show the OLEDB provider, nevertheless the SQL provider code is identical.

 24

Connection Class – Properties & Methods
 Table below lists some important properties, methods and constructor of the Connection Class:

Public Constructors

Constructore Description & Examples

OleDbConnection Constructors:

Default Constructor:

Public Sub New()

Parameterized Constructor passing connection

string:

Public Sub New(ByVal connectionString

As String)

 Overloaded. Initializes or creates a new instance or Object of the

OleDbConnection class via the default constructor. Example:

Dim objConn As New OleDbConnection()

 Parameterized constructor to pass a connection string when creating

object of this class. (More on this later). Example:

Dim objConn As New

OleDbConnection(strConn)

Public Properties

Property Description

ConnectionString Gets or sets the string used to open a database.
State Gets the current state of the connection. Connection state can be open or

closed.

 Value return is of a special type defined within the ADO.NET library. The

enumerated type called ConnectionState. Example of two values of this type

is:

- ConnectionState.Open

- ConnectionState.Closed

 You can test the State Property of a Connection Object against these value to

verify if a connection is open. For example:

If objConnection.State <> ConnectionState.Open Then

 ‘go ahead and open the connection since

 ‘it’s not already opened

End If

Public Methods

Method Description

Open Opens a database connection with the property settings specified

by the ConnectionString.
Close Closes the connection to the data source. This is the preferred

method of closing any open connection.
CreateCommand Creates and returns an Command object associated with the

Connection. We can create a Command Object here if we like.
Dispose Releases the resources

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassctortopic.htm
ms-help://MS.VSCC.2003/MS.MSDNQTR.2003APR.1033/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassconnectionstringtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassstatetopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassconnectionstringtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassconnectionstringtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassconnectionstringtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassopentopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassconnectionstringtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassclosetopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclasscreatecommandtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemcomponentmodelcomponentclassdisposetopic.htm

 25

 In the table below I will list some of the Exceptions that are raised when we use the connection object. You can use Try-Catch-

Block statement to trap for these exceptions:

Exception Handling

Exceptions Class Description

OleDBException Exception object that catch connection-level errors that occur

while trying to open a connection.

 Note that this class is for the OLEDB provider. If you were

using the SQL or Oracle provider the class you would need

is:

SQLException

OracleException

InvalidOperationException This is a general Exception object to trap when the database

connection is already open.

Using the Connection Object
 Steps to add code to use the Connection Object in your applications:

Step 1: Verify that the ADO.NET Data Provider NAMESPACE are imported into your code

 For OLEDB Client Provider type, import the library:

Imports System.Data

Imports System.Data.OleDb 'OLEDB Provider

 For SQL CLIENT Provider type, import the library:

Imports System.Data

 Imports System.Data.SQLClient SQL Data Provider

Step 2: Prepare a Connection String

Dynamic Connection String

 In the next step you will need to use a connection string. So I will briefly explain how to do this now.

 A connection string is a text string which contains CONNECTION INFORMATION required to connect to a database, such as

SERVER NAME, DATABASE NAME, PATH ETC.

 A connection string varied base on database types, SQL Server, MS Access and Oracle.

 A connection string uses a SETTING=VALUE pair combinations separated by a semicolon as follows:

Setting1 =Value1;Setting2=Value2;Setting3=Value3……”

 Assuming you create a variable strConn to store the connection string, the syntax is as follows:

strConn = Setting1 = Value1;Setting2=Value2;Setting3=Value3……”

 The Settings and Values will be different and will depend on the following:

o Which .NET Provider you have chosen: SQL Client, OleDB Client or Oracle Client.

o The technology such as device drivers etc.

o Type of data you are connection to

o Whether you want security such as username & password in the string or a reference to a file containing the

encrypted username & password etc.

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassclosetopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassclosetopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassclosetopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclasscreatecommandtopic.htm

 26

 You will need to read the documentation in order to determine the various settings and values. Nevertheless the SYNTAX OR

RULE for a particular provider is the same, therefore you can simply copy paste a connection string and modify it to your

preference.

Microsoft ACCESS OLEDB Connection String SYNTAX:

 In this section we describe the Connection String Syntax for MS ACCESS & SQL SERVER:

 The VALUES of the Connection String SETTINGS are:

SETTING VALUE DESCRIPTION EXAMPLE

 Provider OleDBClient provider Driver Microsoft.Jet.OleDB.4.0;Data

 Data Source Path to MDB file C:\CS708\DB\video.mdb

 User ID [Optional] Username required for security DBHRUser01

 Password

[Optional] Password required for security DBPassword01

 The OleDBClient .NET provider connection syntax to an Access Database:

 The connection string syntax with security is as follows:

Provider = Provider_Name;Data Source=Database Path;

User ID=Username;Password=Password

 The connection string syntax without security:

Provider = Provider_Name;Data Source=Database Path

 In most cases just the Provider and Data Source settings/value are required for a connection string. Example of a

connection string that connects to an MS Access 2000 database without security:

Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\CS708\DB\video.mdb

 Example of a connection string that connects to an MS Access 2000 database with security:

Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\CS708\DB\video.mdb;

User=DBHRUser01;Password=DBPassword01

 27

Microsoft SQL SERVER OLEDB Connection String SYNTAX:

 The database connection syntax for an SQL SERVER varied depending on which type of Authentication feature we implement.

The options are as follows:

1. Windows Authentication:
 Applications connecting to the database are authenticated via Windows Network Operating System, or WINDOWS

ACTIVE DIRECTORY

 In the Windows Authentication Mode, access is granted based on a security token assigned during successful

domain (or local server) logon by a Windows account, which subsequently requests access to SQL Server resources

 In Windows Authentication Mode ONLY WINDOWS ACCOUNTS can be granted login rights in SQL Server.

 The Windows Administrators use ACTIVE DIRECTORY USERS & COMPUTERS to CREATE

USERACCOUNTS (Username/Password) which can authenticate to the SQL SERVER.

 The Database Administrators must configure SQL server to use Windows Authentication and give permission to

the Windows Account.

 This method has many advantages; one is that you can grant access to the SQL SERVER to all members of a

WINDOWS GROUP.

 RECOMMENDED BEST PRACTICE!!! Does not required username & password in the connection string.

PREFERED METHOD OF AUTHENTICATE FOR SECURITY CONPLIANCE!!!!

2. Mixed Mode (Database Authentication & Windows Authentication):
 Applications connecting to the database are authenticated via WINDOWS ACTIVE DIRECTORY or DATABASE

SECURITY Mechanism

Database Authentication:

 Users connected to the database are authenticated via a Username/Password passed in the connection string.

 The Database Administrator uses the SQL SERVER Security Console and create a User Account

(Username/Password) to authenticate the connection.

 Verification of credentials stored and maintained by the SQL Server

 SECURITY RISK PASSING USERNAME & PASSWORD in connection string. You can encrypt the string, but

nevertheless there are security risks.

Windows Authentication:
 This mode supports windows authentication as well.

 28

I. DATABASE AUTHENTICATION Connection String SYNTAX:
 The VALUES of the Connection String SETTINGS for OLEDB SQL SERVER are:

SETTING DESCRIPTION VALUE EXAMPLES

 Provider SQLOLEDB provider Driver SQLOLEDB

 Data Source Name of SERVER where database resides.

 If using SQL SERVER 2005 EXPRESS, syntax:

ServerName\SQLEXPRESS

 AppServer01

 AppServer01\SQLEXPRESS

 Database (or

Initial Catalog)

Name of DATABASE HRDatabase

 User ID Username required for database authentication security Username

 Password

Password required for database authentication security Passord

OLEDB CLIENT:
 The OLEDB Client .NET provider connection syntax to an SQL Server Database:

 The connection string handles the connection to the data source and it's syntax is as follows:

Provider = Provider;Data Source=ServerName;Database=DatabaseName;User ID=Username;Password=Password

 Example of a connection string that connects to an SQL Server Database with security:

Provider=SQLOLEDB;DataSource=AppServer01;Database=HRDatabase;User

ID=Username;Password=Password

 Second syntax using “Initial Catalog” instead of “Database”:

Provider = Provider;Data Source=ServerName;Database=Initial Catalog;User ID=Username;Password=Password

 Example of a connection string using Initial Catalog:

Provider=SQLOLEDB;DataSource=AppServer01;Initial Catalog=HRDatabase;User

ID=Username;Password=Password

 OLEDB Client SQL SERVER EXPRESS connection string syntax:

Provider = Provider;Data Source=ServerName\SQLEXPRESS;Database=DatabaseName;

User ID=Username;Password=Password

 Example of a connection string that connects to an SQL Server Database with security:

Provider=SQLOLEDB;DataSource=AppServer01\SQLEXPRESS;Database=HRDatabase;User

ID=Username;Password=Password

 29

SQL CLIENT:
 The SQL Client .NET provider connection syntax to an SQL Server Database:

 The connection string handles the connection to the data source and it's syntax is as follows:

Data Source=ServerName;Database=DatabaseName;User ID=Usename;Password=Password

 Example of a connection string that connects to an SQL Server Database:

DataSource=AppServer01;Database=HRDatabase;User ID=Username;Password=Password

 Second syntax using “Initial Catalog” instead of “Database”:

Data Source=ServerName;Database=Initial Catalog;User ID=Username;Password=Password

 Example of a connection string using Initial Catalog:

 Second example using “Initial Catalog” instead of “Database”:

DataSource=AppServer01;Initial Catalog=HRDatabase;User ID=sa;Password=DBPassword

 SQL SERVER EXPRESS The connection string syntax:

Data Source=ServerName\SQLEXPRESS;Database=DatabaseName;User ID=Username;Password=Password

 Example of a connection string that connects to an SQL Server Database with security:

DataSource=AppServer01\SQLEXPRESS;Database=HRDatabase;User

ID=Username;Password=Password

 30

II. WINDOWS AUTHENTICATION Connection String SYNTAX:
 The VALUES of the Connection String SETTINGS for OLEDB SQL SERVER are:

SETTING DESCRIPTION VALUE EXAMPLES

 Provider SQLOLEDB provider Driver SQLOLEDB

 Data Source Name of SERVER where database resides.

 If using SQL SERVER 2005 EXPRESS, syntax:

ServerName\SQLEXPRESS

 AppServer01

 AppServer01\SQLEXPRESS

 Database (or

Initial Catalog)

Name of DATABASE HRDatabase

 Integrated

Security

 When TRUE or SSPI, Windows account credentials

used for authentication (SSPI recommended)

 When FALSE, User ID & Password specified in

connection string

SSPI

OLEDB CLIENT:

 The OLEDB Client .NET provider connection syntax for SQL Server WINDOWS AUTHENTICATAION:

 Syntax for OLEDB connection string with Windows Authentication:

Provider = Provider;Data Source=ServerName;Database=DatabaseName;Integrated Security=SecurityType

 Example of an OLEDB connection string that connects to an SQL Server Database with Windows Authentication:

Provider=SQLOLEDB;Data Source=AppServer01;Database=HRDatabase;Integrated

Security=SSPI

 Second syntax using “Initial Catalog” instead of “Database”:

Provider = Provider_Name;Data Source=ServerName;Database=Initial Catalog;Integrated Security=SecurityType

 Example of a connection string using Initial Catalog:

Provider=SQLOLEDB;Data Source=AppServer01;Initial Catalog=HRDatabase;Integrated

Security=SSPI

 OLEDB Client SQL SERVER EXPRESS connection string syntax:

Provider = Provider;Data Source=ServerName\SQLEXPRESS;Database=DatabaseName;

Integrated Security=SecurityType

 Example of a connection string that connects to an SQL Server Database with security:

"Provider=SQLOLEDB;DataSource=AppServer01\SQLEXPRESS;Database=HRDatabase;

Integrated Security=SSPI

 31

SQL CLIENT:
 The SQL Client .NET provider connection syntax for SQL Server WINDOWS AUTHENTICATAION:

 Syntax for SQL Client connection string with Windows Authentication:

Data Source=ServerName;Database=DatabaseName;Integrated Security=SecurityType

 Example of an OLEDB connection string that connects to an SQL Server Database with Windows Authentication:

Data Source=AppServer01;Database=HRDatabase;Integrated Security=SSPI

 Second syntax using “Initial Catalog” instead of “Database”:

Data Source=ServerName;Database=Initial Catalog;Integrated Security=SecurityType

 Example of a connection string using Initial Catalog:

Data Source=AppServer01;Initial Catalog=HRDatabase;Integrated Security=SSPI

 SQL Client SQL SERVER EXPRESS connection string syntax:

Data Source=ServerName\SQLEXPRESS;Database=DatabaseName;Integrated Security=SecurityType

 Example of a connection string that connects to an SQL Server Database with security:

DataSource=AppServer01\SQLEXPRESS;Database=HRDatabase; Integrated Security=SSPI

 32

Step 3: Declare the Connection Object, Connection String & Opening the Connection
 In your code window, modules, routines create the connection string, connection object & assign the string to the object.

 Remember that the .NET Library comes equipped with a provider or library for OLE DB Client, SQL Client and Oracle Client

version of this Class:

 OleDBClient – OleDBConnection

 SQL Client – SQLConnection

 Oracle Client – OracleConnection

 My sample code will focus on OLE DB.

 ADO.NET provides several methods to implement assigning a connection string to a connection object. I will list two methods:

Method I – Creating Connection Object using Default Constructor:
 In this method we will use the properties and methods in the CONNECTION Object

 We will perform the following steps:

1. Create the connection string

2. Create the Connection object using Default Constructor

3. Use Connection Object ConnectionString property to assign the connection string to the Connection Object.

4. Open the Connection

5. Perform Data Access HERE……Use other ADO.NET object to execute queries and retrieve data etc.

6. Close the connection

7. Dispose of the connection

8. Destroy the connection object

 Code is as follows:

'Step 1-Create Connection string

Dim strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\DB\video.mdb"

'Step 2-Create Connection object using Defalut Constructor

Dim objConn As New OleDbConnection()

'Step 3-Assign Connection String to Connection object ConnectionString Property

objConn.ConnectionString = strConn

'Step 4-Open the Connection

objConn.Open()

‘Perform Data Access here, such as creating command, DataReader or DataSet etc.…….

'Step X-When finished with the Data Access, Close the Connection

objConn.Close()

'Step Y-It is a good idea to dispose or release all memory associated with the connection

object when finished.

objConn.Dispose()

'Step Z-Finally, destroy the object.

objConn = Nothing

 33

Method II – Using the Parameterized Constructor:
 In this method we will simplify the code by using the Connection Object’s Parameterized Constructor.

 The constructor contains the necessary code to automatically assign the Connection String to the ConnectionString Property.

 We perform the following steps:

1. Create the connection string

2. Create the Connection object, pass the Connection String as argument to the Constructor.

3. Open the Connection

4. Perform Data Access……Use other ADO.NET object to execute queries and retrieve data etc.
5. Close the connection

6. Dispose of the connection

7. Destroy the connection object

'Step 1-Create Connection string

Dim strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\DB\video.mdb"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Open the Connection

objConn.Open()

‘Perform Data Access here, such as creating command, DataReader or DataSet etc.…….

'Step X-When finished with the Data Access, Close the Connection

objConn.Close()

'Step Y-It is a good idea to dispose or release all memory associated with the connection

object when finished.

objConn.Dispose()

'Step Z-Finally, destroy the object.

objConn = Nothing

 Note that using this method we save one step!

Method III – (BEST PRACTICE!) Using the Exceptions:
 Now we demonstrate using Exception handling using Try-Catch block to trap errors generated by the Connection Object.

 We will enclose the connection open statement within Try-Catch blocks to trap for the possible connection errors:

 We perform the following steps:

1. Create the connection string
2. Create the Connection object, pass the Connection String as argument to the Constructor.

3. Begin trapping errors

4. Open the Connection

5. Catch connection related exceptions

6. Catch open connection exception

7. End trapping section

8. Perform Data Access……Use other ADO.NET object to execute queries and retrieve data etc.

9. Close the connection

10. Dispose of the connection

11. Destroy the connection object

 34

'Step 1-Create Connection string

Dim strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\DB\video.mdb"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Begin Error Trapping via Try statement

Try

'Step 4-Open the Connection

objConn.Open()

‘Perform Data Access here, such as creating command, DataReader or DataSet etc.…….

'Step 5-Trap for all connection related exceptions

Catch objOleDbExError As OleDbException

'Step 6-Handle error accordingly. If this is within a class, you may have to

‘raise or throw and exception, or from a form, simply display a message box Example:

MessageBox.Show (objOleDbExError.Message)

'Step 7-Trap for the Open Connection exception

Catch objInvalidEx As InvalidOperationException

'Step 8-Handle error accordingly. If this is within a class, you may have to

‘raise or throw and exception, or from a form, simply display a message box Example:

MessageBox.Show (objInvalidEx.Message)

'Step 9-End Error trapping

Finally

 'Step X-When finished with the Data Access, Close the Connection

 objConn.Close()

 'Step Y-It is a good idea to dispose or release all memory associated with the

 'connection object when finished.

 objConn.Dispose()

 'Step Z-Finally, destroy the object.

 objConn = Nothing

 End Try

 35

Method IV – Testing for an open connection using State Property:
 You can also us the Connection Object State Property to verify if a connection is already open as follows:

'Step 1-Create Connection string

Dim strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\DB\video.mdb"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Begin Error Trapping via Try statement

Try

'Step 4-Open the Connection

If objConn.State <> ConnectionState.Open Then

'Step 4-Open the Connection

objConn.Open()

‘Perform Data Access here, such as creating command, DataReader or DataSet etc.…….

Else

'Step 6-Handle accordingly. Throw an exception if you are inside a class, call a

message box etc. Example:

MessageBox.Show (“Connection Already open”)

End If

'Step 5-Trap for all connection related exceptions

Catch objOleDbExError As OleDbException

'Step 6-Handle error accordingly. If this is within a class, you may have to

raise or throw and exception, or from a form, simply display a message box Example:

MessageBox.Show (objOleDbExError.Message)

'Step 9-End Error trapping

Finally

 'Step X-When finished with the Data Access, Close the Connection

 objConn.Close()

 'Step Y-It is a good idea to dispose or release all memory associated with the

 'connection object when finished.

 objConn.Dispose()

 'Step Z-Finally, destroy the object.

 objConn = Nothing

 End Try

 36

3.3 The ADO.NET Command Class

 The ADO.NET Command Class performs the following functions:

.NET Data Provider Description
Command This object handles or executes the queries and stored procedures.

 As previously, we will list the properties and methods of this class.

 The .NET Library comes equipped with a Command Class for OLE DB Client, SQL Client and Oracle Client version of this

Class:

 OleDBClient – OleDBCommand

 SQL Client – SQLCommand

 Oracle Client – OracleCommand

 My sample code will focus on OLE DB.

Command Class – Properties & Methods
 Table below lists some important properties, methods and constructor of the Command Class:

Public Constructors

OleDbCommand Constructors:

Default Constructor:

Public Sub New()

Parameterized Constructors passing Query String:

Public Sub New(ByVal cmdText As String)

Parameterized Constructors passing Query String &

Connection Object:

Public Sub New(ByVal cmdText As String,

ByVal connection As OleDbConnection)

 Overloaded. Initializes or creates a new instance or Object of the

OleDbCommand class. Example using default:

Dim objCmd As New OleDbCommand()

 Parameterized constructor can pass a query string when creating an

object of this class, so object already contains the query and we

don‟t have to call it‟s property to set it. Example:

Dim objCmd As New OleDbCommand(strSQL)

 Parameterized constructor can pass a query string & connection

object, therefore the object already will have a connection when

created. Example:
Dim objCmd As New OleDbCommand(strSQL,

objConn)

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclassctortopic.htm
ms-help://MS.VSCC.2003/MS.MSDNQTR.2003APR.1033/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC.2003/MS.MSDNQTR.2003APR.1033/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC.2003/MS.MSDNQTR.2003APR.1033/cpref/html/frlrfsystemdataoledboledbconnectionclasstopic.htm

 37

Public Properties

Property Description

CommandText Gets or sets the SQL statement or stored procedure to execute at the data

source.

 The SQL Query string or stored procedure name is assigned to this property

CommandType Gets or sets a value indicating how the CommandText property is

interpreted.

 This property dictates whether the value of the CommandText is a text SQL

Statement or a Stored Procedure.

 Value set by this property follow a special enumerated type defined within the

ADO.NET library. The enumerated type is called CommandType. Example

of three values of this type is:

 CommandType.Text – (Default Value) Indicates the SQL Statement or

query is a full text In-Line SQL Statement

 CommandType.StoredProcedure– Indicates the SQL Statement or

Query is a stored procedure is to be executed

 CommandType.TableDirect– Indicates the Query contains the NAME

of the TABLE from which data will be retrieved.

 You can test the State Property of a Connection Object against these value to

verify if a connection is open. For example:

„Executes an SQL Query

objCom.CommandType = CommandType.Text

„Executes a stored procedure

objCom.CommandType = CommandType.StoredProcedure

ConnectionString Gets or sets the Connection object to be used by this instance of the Command

object.
Parameters Gets the OleDbParameterCollection.

 This collection stores the unknown variables or parameters of a query. More

on this in later section.

Transaction Gets or sets the transaction in which the OleDbCommand executes.

Public Methods

Method Description

ExecuteNonQuery Executes ACTION QUERIES or SQL statement, such as

UPDATE, INSERT AND DELETE against the Connection

 Returns the number of rows affected.

ExecuteReader Executes SELECT queries to STORE IN DATAREADER

OBJECT.
 Method internally builds an OleDbDataReader object and

returns it.

 This method is only used when using a DataReader object to

store the results of a query.

ExecuteScalar Executes the query, and returns the first column of the first row in

the result set returned by the query. Extra columns or rows are

ignored.

Dispose Releases the resources
Cancel Attempts to cancel the execution of the Command object.

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclasscommandtexttopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclasscommandtypetopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclasscommandtexttopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclasscommandtexttopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassconnectionstringtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassconnectionstringtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassconnectionstringtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclassconnectionstringtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbconnectionclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclassparameterstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbparametercollectionclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclasstransactiontopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclassexecutenonquerytopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclassconnectiontopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclassexecutereadertopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclassexecutescalartopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemcomponentmodelcomponentclassdisposetopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbcommandclasscanceltopic.htm

 38

Using the Command Class Object
 Steps to add code to use the Command Object in your applications:

Step 1: Verify that the ADO.NET Provider and Data mechanism are imported into your code

 For OLEDB Client Provider type, import the library:

Imports System.Data

Imports System.Data.OleDb 'OLEDB Provider

 For SQL CLIENT Provider type, import the library:

Imports System.Data

 Imports System.Data.SQLClient SQL Data Provider

Pre-Step 2: Preparing the SQL String
 The SQL String contains the Query or Stored Procedure to be executed.

IN-LINE SQL Query:
 In-line SQL refers to actual SQL Queries embedded within your code.

 The complete SQL query string is compiled and part of your program. For example:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = 111"

 IN-LINE have the following advantages and disadvantages:

Advantages Disadvantages

 Queries are easier to implement

 SQL Statement resides within your application

 No need to learn any specific Database

Management System special languages, such as

Store Procedures etc.
 Connection string can be kept in an external file,

so changes can only be made in one location.

 Creating a complex query can result in errors

building the actual string in VB.NET due to the

concatenation of the query, commas, punctuation,

special characters etc (, & “”)

 Bad for performance. Complete SQL statement is
sent to the Database via the network.

 More processing in client, this closer to FAT-

CLIENT systems.

 POOR FOR SECURITY.

 NOT BEST PRACTICE!!!!!!

 In this pre-step, I will show you how to create your IN-LINE SQL string.

 You need to create the SQL query correctly. Since you are using VB code, you need to create it as a string. In addition you will

need to use concatenation symbols such as & to create your query.

 Lets look at the following examples:

Example 1:
 Supposed you want to execute the following query with the literal value being an INTEGER assigned in the WHERE

clause:

SELECT * FROM Customer WHERE Customer_ID = 111

 You need to simply assign this string to a variable as follows:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = 111"

 39

Example 2:
 Now the value assigned in the WHERE Clause is an INTEGER value but within a parameter contained within a variable

say intID, then you will need to create the string using the PARAMETER as follows:

 'Assume somewhere in your program the following statement is made:

 Dim intID As Integer = 111

 'Else where the In-line query string is being created using a parameter

 Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =" & intID

 Creating this string in VB is pretty easy with no issues since inside the variable strSQL, the complete string looks as
follows:

"SELECT * FROM Customer WHERE Customer_ID = 111"

Example 3:
 Supposed now that the literal value being assigned to the WHERE Clause is a string. This changes things since as you

know you need to enclose string within quotes or („) or double quotes depending on the database. Lets look at the query

we want to execute assuming Microsoft Access Database:

SELECT * FROM Customer WHERE Customer_ID = „111‟

 You need to create the string as follows:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = „111‟"

 Again this was a simple string to build in VB

Example 4:
 Supposed now that the value being assigned to the WHERE Clause is a string within a variable. The value is stored in a

String Variable say strID or a TEXTBOX etc and can be unknown. Now things get a bit complicated.

 You will need to use the & operator to build the string including the characters (double quotes (“)) required to enclosed

the string value. The query will look as follows:

 'Assume somewhere in your program

 'The variable is assigned the following string:

 Dim strID As String = "111"

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = „" & strID & "‟"

 Note that we needed to build our string and take into account the (‟) character required to enclosed any string in a

Microsoft Access or SQL Server Query

 Building these kinds of strings can become very complex and prone to syntax errors.

 Note that using the Parameter Object of ADO.NET Provider will eliminate having to

create these complex VB.NET String code to build our queries. The Parameter object

takes care of these details

 40

Step 3: Declare the Command Object, Create Query String, and Assign Connection Object
 Now we proceed by creating a Command Object to handle our Query and execution.

 Again ADO.NET provides several methods to implement this and I will list three methods:

Creating and Preparing the Command Object

Method I – Creating Command Object using Default Constructor
 In this method we will use the properties and methods in the COMMAND Object

1. Create the SQL query string

2. Create the Command Object using Default Constructor

3. Then use Connection Object CommandText property to assign the SQL string to the Command Object.

4. Assign the previously created connection object to the command object.

'Step 1-Create SQL string. We assume here that the variable intID contains the ID

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =" & intID

'Step 2-Create Command object

Dim objCmd As New OleDbCommand()

'Step 3-Assign SQL string to CommandObject.CommandText Property

objCmd.CommandText = strSQL

'Step 4-Assign the Connection Object

objCmd.Connection = objConn

'Step X-Execute the query.

 „This step will be shown in sections to follow.

'Step Y-It is a good idea to dispose or release all memory associated with the object.

objCmd.Dispose()

'Step Z-Finally, destroy the object.

objCmd = Nothing

Method II – Creating Command Object Using Parameterized Constructor:
 In this method we will simplify the code by using the Command Object‟s Parameterized Constructor assign the SQL string.

 The constructor contains the necessary code to automatically assign the SQL string to it‟s CommandText Property. Steps:

1. Create the SQL query string

2. Create the Command Object; pass the SQL string as arguments to the Constructor.

'Step 1-Create SQL string. We assume here that the variable intID contains the ID

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =" & intID

'Step 2-Create Command object, pass string as arguments

Dim objCmd As New OleDbCommand(strSQL)

'Step 3-Assign the Connection Object

objCmd.Connection = objConn

'Step X-Execute the query.

 „This step will be shown in sections to follow.

'Step Y-It is a good idea to dispose or release all memory associated with the object.

objCmd.Dispose()

'Step Z-Finally, destroy the object.

objCmd = Nothing

 Note that using this method we eliminate one step.

 41

Method III – Creating Command Object Using Parameterized Constructor for Query String & Connection object:
 In this method we will simplify the code by using the Command Object‟s Constructor assign the SQL string and the

connection object.

 The constructor contains the necessary code to automatically assign the Connection Object and the SQL string.

 We perform the following steps:

1. Create the SQL query string

2. Create the Command Object; pass the SQL string and Connection Object as arguments to the Constructor.

'Step 1-Create SQL string. We assume here that the variable intID contains the ID

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =" & intID

'Step 2-Create Command object, pass string and connection object as arguments

Dim objCmd As New OleDbCommand(strSQL, objConn)

'Step X-Execute the query.

 „This step will be shown in sections to follow.

'Step Y-It is a good idea to dispose or release all memory associated with the object.

objCmd.Dispose()

'Step Z-Finally, destroy the object.

objCmd = Nothing

 Note that using this method we save two steps.

Executing Queries and Storing Results in a DATAREADER

 Executing a query will depend on where you want the query results to be placed.

 As you have learned, the results can be placed in a DataReader Object, DataSet or the DataTable Object via the DataAdapter

Object.

 In this section we will concentrate on the DATAREADER Object. The DataSet and DataTable options will be discussed in later

lecture.

 Depending on which object will manage the data, you would use on of the three FUNCTION Methods for executing queries:

ExecuteReader(), ExecuteNonQuery() and Execute Scalar().

 Note that in order to explain these methods, we need to create other objects such

as DataReader object. The details to the DataReader Object will be explained in

it’s own section, for now we will get a preview of using the DataReader object

Executing the Query and Storing results in the DataReader Object.
 If you are going to use a DataReader Object to store the results, than you would use the ExecuteReader() Method.

 Steps:

Method I:
 In this method we will execute the query using the COMMAND Object methods and assign the result to a DATAREADER

Object:

1. Because the result of the ExecuteReader() FUNCTION returns a DataReader POINTER, create a reference to a

DATAREADER Object. Note that we only create a reference. The keyword NEW is NOT USED, this is a POINTER

ONLY!
2. Execute the query using the Command Object ExecutreReader() method and assign the results to the DATAREADER

Object. Note that the ExecuteReader() method returns a DataReader Object, that is why you need to pointer reference.

'Step 1-Create DATAREADER object

Dim objDR As OleDbDataReader

'Step 2-Execute query and assign results to DataReader object

objDR = objCmd.ExecuteReader

 42

Method II:
 Of course we can do this all in one step to save some code:

1. Create a reference to a DATAREADER Object assign the execution of the query using the Command Object

ExecutreReader() method.

'Step 1-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

 Now you need to extract the data stored in the DataReader Object. We will see this

when explaining the DataReader Object.

Executing a Non-Row Returning Query (Action Queries)

 Non-Row returning queries or action queries are queries that modify the database, such as UPDATE, INSERT & DELETE

queries.

 Examples of these queries are:

 Delete Query with hard-coded values:

 Dim strSQL As String = "DELETE FROM Customers WHERE Customer_ID = 111"

 Queries with variables containing integers:

 Dim strSQL As String = "DELETE FROM Customers WHERE Customer_ID = " & intID

 The COMMAND Object contains a method named ExecuteNonQuery() that you will use for these types of queries.

 The ExecuteNonQuery() FUNCTION returns the number of rows affected by the action.

 You can create a variable to store this data and use it as you see fit.

1. Create a variable to store the return integer number of rows affected by the action query.

2. Execute the query using the Command Object ExecutreNoQuery() method.

'Step 1-Create variable to store number of rows affected

Dim intRowsAffected As Integer

'Step 2-Execute query and assign results to DataReader object

intRowsAffected = objCmd.ExecuteNonQuery

 You can test the variable storing the number of rows affected to verify that the

correct rows were modified.

 43

3.4 The ADO.NET DataReader Class

 The ADO.NET DataReader Class performs the following functions:

.NET Data Provider Description
DataReader This object has similar functionality as the DataSet objects and that is it stores the

result of a query.

 Except this Object is a Forward-Only, Read-Only stream of data that directly

communicate with the database.

 Read-Only – You can only read data, no updates or modification is supported

 Forward-Only – You can examine the results of a query one row at a time, when

you move forward to the next row the contents of the previous row are discarded.

 Supports minimal features, but is fast and lightweight.

 As previously, we will list the properties and methods of this class.

 Again the .NET Library comes equipped with a provider or library for SQL Server and OLE DB:

 The .NET Library comes equipped with a Command Class for OLE DB Client, SQL Client and Oracle Client:

 OleDBClient – OleDBDataReader

 SQL Client – SQLDataReader

 Oracle Client – OracleDataReader

 My sample code will focus on OLE DB.

DataReader Class – Properties & Methods
 Table below lists some important properties, methods of the DataReader Class. Note that the DataReader Class has NO

Constructor since we only create a reference of it not an object:

Public Properties

Property Description

Item

Getting data from column by index:

Overloads Public Property Item(ByVal index
As Integer) As Object

Getting data from column by String or Column

name:

Overloads Public Property

Item(ByVal name As String) As

Object

 Gets the value of a column in the result set

 You use this property to get the data resulted from the query and stored in the

DataReader object. The data is retrieved by column. Each call to this

property will return the data stored in the cell of the column specified

 You can specified the column by index, 0, 1, 2 etc. Example extracting the
data in the first column:

intIDNumber = objDR.Item(0)

 You can specified the column by string using the name of the column.

Example extracting the data in the first column:

intIDNumber = objDR.Item("Customer_ID")

HasRows Returns a Boolean value (True/False) indicating whether the DataReader

Objects contains one or more rows.

 True indicates there are rows, false indicates empty or no rows returned.

FieldCount Gets the number of columns in the current row

RecordsAffected Gets the number of rows changed, inserted, or deleted by execution of the

SQL statement.

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassitemtopic.htm
ms-help://MS.VSCC.2003/MS.MSDNQTR.2003APR.1033/cpref/html/frlrfsystemint32classtopic.htm
ms-help://MS.VSCC.2003/MS.MSDNQTR.2003APR.1033/cpref/html/frlrfsystemobjectclasstopic.htm
ms-help://MS.VSCC.2003/MS.MSDNQTR.2003APR.1033/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC.2003/MS.MSDNQTR.2003APR.1033/cpref/html/frlrfsystemobjectclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassrecordsaffectedtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassfieldcounttopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassrecordsaffectedtopic.htm

 44

Basic Public Methods

Method Description

Read Advances the OleDbDataReader to the next record.

 You use this method to navigate from record to record within

the DataReader Object

NextResult Used when executing multiple queries. Multiple or batch

SQL Statements return multiple tables into a DataReader.

Advances the data reader to the next result or table.

Close Close the DataReader Object.

Special Public Methods to Read Native Data Types from DataReader

 The ITEM PROPERTY is used to extract data from the DataReader as is. We don‟t know what data is being returned. The

DATAREADER class provides specific method to retrieve the data in the specific native mode of the database. The table below

lists these GETXXX() methods that return the data in a specific data type. Note that NO DATA CONVERTION IS DONE BY

THESE METHODS SO, DON‟T GET CONFUSED AND THINK IT CONVERTS THE DATA. They simply return it as the

native type of the data in database and gives better performance internally. THE VARIABLE WAITING FOR THE DATA HAS
TO BE IN THE CORRECT TYPE. CONVERTION MAY BE REQUIRED TO MATCH THE TARGET DATA TYPE

 Examples:

txtAge.Text = CStr(objDR.GetInt32(5)) „Integer data being returned, but must

 „be converted to string for text box

txtBirthDate.Text = CStr(objDR.GetDateTime(2)) „DateTime returned, converted

„to string for text box

Method Description

GetBoolean Gets the value of the specified column INDEX as a Boolean.

GetByte Gets the value of the specified column INDEX as a byte.

GetChar Gets the value of the specified column INDEX as a character.

GetDateTime Gets the value of the specified column INDEX as a DateTime

object.

GetDecimal Gets the value of the specified column INDEX as a Decimal

object.

GetDouble Gets the value of the specified column INDEX as a double-

precision floating point number.

GetFloat Gets the value of the specified column INDEX as a single-

precision floating point number.

GetGuid Gets the value of the specified column INDEX as a globally-

unique identifier (GUID).

GetInt16 Gets the value of the specified column INDEX as a 16-bit signed

integer.

GetInt32 Gets the value of the specified column INDEX as a 32-bit signed

integer.

GetInt64 Gets the value of the specified column INDEX as a 64-bit signed

integer.

GetName Given the INDEX of a column, it Gets the name of the specified

column.

GetOrdinal Gets the column INDEX, given the name of the column.

GetString Gets the value of the specified column INDEX as a string.

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassreadtopic.htm
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassnextresulttopic.asp
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassclosetopic.htm
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetbooleantopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetbytetopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetchartopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetdatetimetopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdatetimeclasstopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetdecimaltopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdecimalclasstopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetdoubletopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetfloattopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetguidtopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetint16topic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetint32topic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetint64topic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetnametopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetordinaltopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassgetstringtopic.asp

 45

Using the DataReader Class Object
 We got a taste of how to use the DataReader object in the previous section. The DataReader Object works in conjunction with

the Command Object as we saw in the previous section.

 The job of the DataReader object is to store the results of a query. As you recall, the results of an SQL query is a table.

Therefore after execution of a query, the data stored inside the DataReader object is in the form of a table.

 Using the DataReader Object involves the following:

 Store the results of the execution of a query carried out by the Command Object

 Navigate from record to record, extracting the data via the Read() method and Item Property.

 Closing the Reader when done.

Review of Steps to Execute the Query and Assign Results to DataReader

 Steps to add code to use the DataReader Object in your applications are as follows:

Step 1: Verify that the ADO.NET Provider and Data mechanism are imported into your code

Imports System.Data

Imports System.Data.OleDb 'OLEDB Provider

Step 2: Create Connection Object & Command Object & associated properties and methods

'Step 1-Create Connection string

Dim strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\DB\video.mdb"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Open the Connection

objConn.Open()

'Step 4-Create SQL string. We assume here that the variable intID contains the ID

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =" & intID

'Step 5-Create Command object, pass string and connection object as arguments

Dim objCmd As New OleDbCommand(strSQL, objConn)

Step 3: Declare the DataReader POINTER, and Store data from a query execution via Command Object
 There are two methods to declaring and using the DataReader object to store the result of a query:

Method I:
 In this method we will execute the query using the COMMAND Object methods and assign the result to a DATAREADER

Object:

1. The ExecutreReader() function returns a DATAREADER POINTER. Therefore, create a reference or POINTER to a

DATAREADER Object. Note that we only create a reference. The keyword NEW is NOT used because we DON‟T

CREATE A DATAREADER OBJECT but a DATAREADER POINTER!

2. Execute the query using the Command Object ExecutreReader() function and assign the results to the DATAREADER

Object. Note that the ExecuteReader() method returns a DataReader Object.

'Step 6-Declare DATAREADER object Reference Only

Dim objDR As OleDbDataReader

'Step 7-Execute query and assign results to DataReader object

objDR = objCmd.ExecuteReader

 46

Method II:
 Of course we can do this all in one step to save some code:

1. Create a reference to a DATAREADER Object assign the execution of the query using the Command Object

ExecutreReader() method.

'Step 6-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

Extracting Data From DataReader

Step 4: Extracting the Data from the DataReader Object
 Now that we have the data inside the DataReader Object in the form of a table. We need to extract it.

 To do this, we need the combination of the following:

1. HasRows property to determine if the query returned data

2. Read() Method to navigate from row to row

3. Now we have a choice of Properties of Methods to get the data out of the DataReader:

i. Item property to extract the data within a row, by column.

- Option 1 – Takes Column NAME as argument and returns the data

- Option 2 (BEST PRACTICE) – Takes the Column INDEX as argument and returns the data. This

method has better performance and recommended when using the Item Property

 BEST PRACTICE!
ii. GetXXX(INDEX) methods to extract the data within a row, by column INDEX

- Takes and INDEX as argument and returns the native data type of the data

Example of Query that returns one Record Only
 The following example is for a query returns only one record.
 We will show two options, one using column names, the other using column index to extract the data

Method I: Using Column Names
 In this method we will follow the steps listed above, but we will use the name of the columns on the resulting table to extract

the data. when using the Item property:

1. We create the DataReader Object and execute the query.

2. Test to verify that there are records to extract

3. Navigate through the records using Read() method and extract the data using the Item property.

4. Close the DataReader

5. Dispose of the DataReader

'Step 1-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

'Step 2-Test to make sure there is data in the DataReader Object

If objDR.HasRows Then

'Step 3-Call Read() Method to point and read the first record

objDR.Read()

'Step 3b-Extract data from a row. Use Item property to get the column data

'Note that the name of the column of the database table is used

intIDNumber = objDR.Item("Customer_ID")

 strName = objDR.Item("Name")

 dBirthDate = objDR.Item("BirthDate")

 strAddress = objDR.Item("Address")

 strPhone = objDR.Item("PhoneNumber")

 47

 'Step 3c-Now that you have the data for a record or row, do what you want

 'with the data, pass it to methods, display it, assign it etc.

 'Process(intIDNumber, strName, dBirthDate, strAddress, strPhone)

Else

 MessageBox.Show("No Customers found")

End If

'Step 4-Close object.

objDR.Close()

'Step 5-Destroy the object.

objDR = Nothing

'Step XYZ-You need to close and Dispose of the connection and command objects.

'Step Y-It is a good idea to dispose or release all memory associated with the object.

objCmd.Dispose()

'Step Z-Finally, destroy the object.

objCmd = Nothing

Method II: Using Index numbers (BEST PRACTICE) FASTER PERFORMANCE!
 In this method the steps are the same, but we use a more efficient way of extracting the data using the Item property. Instead

of using the names of the columns on the resulting table, we use an Index from 0 to objRec.FieldCount – 1 property.

 Using index instead of the column names is actually more efficient and offers better for performance.

1. We create the DataReader Object and execute the query.

2. Test to verify that there are records to extract

3. Navigate through the records using Read() method and extract the data using the Item property.

4. Close the DataReader

5. Dispose of the DataReader

'Step 1-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

'Step 2-Test to make sure there is data in the DataReader Object

If objDR.HasRows Then

'Step 3-Navigate through the DataReader Object by reading row-by-row

'Step 3-Call Read() Method to point and read the first record

objDR.Read()

'Step 3b-Extract data from a row. Use Item property to get the column data

'Note that we are using index numbers starting from 0 for each column.

intIDNumber = objDR.Item(0)

 strName = objDR.Item(1)

 dBirthDate = objDR.Item(2)

 strAddress = objDR.Item(3)

 strPhone = objDR.Item(4)

 'Step 3c-Now that you have the data for a record or row, do what you want

 'with the data, pass it to methods, display it, assign it etc.

 'Process(intIDNumber, strName, dBirthDate, strAddress, strPhone)

Else

 MessageBox.Show("No Customers found")

End If

 48

'Step 4-Close object.

objDR.Close()

'Step 5-Destroy the object.

objDR = Nothing

'Step Y-It is a good idea to dispose or release all memory associated with the object.

objCmd.Dispose()

'Step Z-Finally, destroy the object.

objCmd = Nothing

Method IIi: Using Index numbers with OPTION STRICT ON!
 If Option Strict = ON, then we need to convert t the data type of the data being return from the database:

'Step 1-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

'Step 2-Test to make sure there is data in the DataReader Object

If objDR.HasRows Then

'Step 3-Navigate through the DataReader Object by reading row-by-row

'Step 3-Call Read() Method to point and read the first record

objDR.Read()

'Step 3b-Extract data from a row. Use Item property to get the column data

'Note that we are using index numbers starting from 0 for each column.

 intIDNumber = CInt(objDR.Item(0))

 strName = CStr(objDR.Item(1))

 dBirthDate = CDate(objDR.Item(2))

 strAddress = CStr(objDR.Item(3))

 strPhone = CStr(objDR.Item(4))

 'Step 3c-Now that you have the data for a record or row, do what you want

 'with the data, pass it to methods, display it, assign it etc.

 'Process(intIDNumber, strName, dBirthDate, strAddress, strPhone)

Else

 MessageBox.Show("No Customers found")

End If

'Step 4-Close object.

objDR.Close()

'Step 5-Destroy the object.

objDR = Nothing

'Step Y-It is a good idea to dispose or release all memory associated with the object.

objCmd.Dispose()

'Step Z-Finally, destroy the object.

objCmd = Nothing

 49

Method II: Using GETXXX() FUNCTIONS (BEST PRACTICE & RECOMMENDED)
 Using the ITEM PROPERTY has the disadvantage that we need to CONVERT THE DATATYPE USING data conversion

methods such as CStr(), CInt() etc.

 The DataReader provides GETXXX() methods that return the native data types already converted.

 As with the Item Property, we use an Index from 0 to objRec.FieldCount – 1 as argument to the Methods.

 The steps are the same as the previous examples, but this time we use the GETXXX() methods to extract data.

'Step 1-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

'Step 2-Test to make sure there is data in the DataReader Object

If objDR.HasRows Then

'Step 3-Navigate through the DataReader Object by reading row-by-row

'Step 3-Call Read() Method to point and read the first record

objDR.Read()

'Step 3b-Extract data from a row. Use Item property to get the column data

'Note that we are using index numbers starting from 0 for each column.

 intIDNumber = objDR.GetValue(0) 'Must use GetValue for MS Access Number type

 strName = objDR.GetString(1)

 dBirthDate = objDR.GetDateTime(2)

 strAddress = objDR.GetString(3)

 strPhone = objDR.GetString(4)

 'Step 3c-Now that you have the data for a record or row, do what you want

 'with the data, pass it to methods, display it, assign it etc.

 'Process(intIDNumber, strName, dBirthDate, strAddress, strPhone)

Else

 MessageBox.Show("No Customers found")

End If

'Step 4-Close object.

objDR.Close()

'Step 5-Destroy the object.

objDR = Nothing

'Step Y-It is a good idea to dispose or release all memory associated with the object.

objCmd.Dispose()

'Step Z-Finally, destroy the object.

objCmd = Nothing

 50

Example of Query that returns many Records
 The following example is for a query returns ONE or MORE records.

 The results or table is store in the DataReader

 In this case we need to navigate through each of the records stored in the DataReader.

 Again we will show examples of using column names, column index or GETXXX() functions to extract the data

Method I: Using Column Names
 In this method we will follow the steps listed above, but we will use the name of the columns on the resulting table to extract

the data. when using the Item property:

'Step 1-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

'Step 2-Test to make sure there is data in the DataReader Object

If objDR.HasRows Then

'Step 3-Navigate through the DataReader Object calling Read() method and read row-by-row

While objDR.Read()

 'Step 3b-Extract data from a row. Use Item property to get the column data

 'Note that the name of the column of the database table is used

 intIDNumber = CInt(objDR.Item("Customer_ID"))

 strName = CStr(objDR.Item("Name"))

 dBirthDate = CDate(objDR.Item("BirthDate"))

 strAddress = CStr(objDR.Item("Address"))

 strPhone = CStr(objDR.Item("PhoneNumber"))

 'Step 3c-Now that you have the data for a record or row, do what you want

 'with the data, pass it to methods, display it, assign it etc.

 MessageBox.Show(intIDNumber & strName & dBirthDate & strAddress & strPhone)

 End While

Else

 MessageBox.Show("No Customers found")

End If

'Step XYZ-You need to close and Dispose of the connection and command objects.

'Step 4-Close object.

objDR.Close()

'Step 5-Destroy the object.

objDR = Nothing

'Step Y-It is a good idea to dispose or release all memory associated with the object.

objCmd.Dispose()

'Step Z-Finally, destroy the object.

objCmd = Nothing

 51

Method II: Using Index numbers
 In this example again we use the INDEX number as argument to the Item property. Instead of using the names of the

columns.

'Step 1-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

'Step 2-Test to make sure there is data in the DataReader Object

If objDR.HasRows Then

'Step 3-Navigate through the DataReader Object by reading row-by-row

While objDR.Read()

 'Step 3b-Extract data from a row. Use Item Property to get the column data

 'Note that the name of the column of the database table is used

 intIDNumber = CInt(objDR.Item(0))

 strName = CStr(objDR.Item(1))

 dBirthDate = CDate(objDR.Item(2))

 strAddress = CStr(objDR.Item(3))

 strPhone = CStr(objDR.Item(4))

 'Step 3c-Now that you have the data for a record or row, do what you want

 'with the data, pass it to methods, display it, assign it etc.

 MessageBox.Show(intIDNumber & strName & dBirthDate & strAddress & strPhone)

 End While

Else

 MessageBox.Show("No Customers found")

End If

'Step XYZ-You need to close and Dispose of the connection and command objects.

'Step 4-Close object.

objDR.Close()

'Step 5-Destroy the object.

objDR = Nothing

'Step Y-It is a good idea to dispose or release all memory associated with the object.

objCmd.Dispose()

'Step Z-Finally, destroy the object.

objCmd = Nothing

 52

Method III: Using GETXXX() FUNCTIONS
 In this example again we use the GETXXX() functions provided by the DataReader using INDEX number as argument to

return the data from a record:

'Step 1-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

'Step 2-Test to make sure there is data in the DataReader Object

If objDR.HasRows Then

'Step 3-Navigate through the DataReader Object by reading row-by-row

While objDR.Read()

 'Step 3b-Extract data from a row. Use Item Property to get the column data

 'Note that the name of the column of the database table is used

 intIDNumber = objDR.GetValue(0) 'Must use GetValue for MS Access Number type

 strName = objDR.GetString(1)

 dBirthDate = objDR.GetDateTime(2)

 strAddress = objDR.GetString(3)

 strPhone = objDR.GetString(4)

 'Step 3c-Now that you have the data for a record or row, do what you want

 'with the data, pass it to methods, display it, assign it etc.

 MessageBox.Show(intIDNumber & strName & dBirthDate & strAddress & strPhone)

 End While

Else

 MessageBox.Show("No Customers found")

End If

'Step XYZ-You need to close and Dispose of the connection and command objects.

'Step 4-Close object.

objDR.Close()

'Step 5-Destroy the object.

objDR = Nothing

'Step Y-It is a good idea to dispose or release all memory associated with the object.

objCmd.Dispose()

'Step Z-Finally, destroy the object.

objCmd = Nothing

 53

Summary of Data Access Code – Query Without Using Paramters (MS ACCESS DATABASE)

 At this point, we have all the data access code we need to execute a query without a parameter

 These are queries of the following types:

 Query with hard-coded values:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = 111"

 Queries with variables containing integers:

 'Else where the In-line query string is being created using a parameter

 Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =" & intID

 Queries with hard-coded value strings:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = „111‟"

 Queries with variables containing strings B

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = „" & strID & "‟"

Data Access Query without Exception Handling
 The data access code with NO Try-Catch:

'Step 1-Create Connection string

Dim strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\DB\video.mdb"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Open the Connection

objConn.Open()

'Step 4-Create SQL string. We assume here that the variable intID contains the ID

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =" & txtIDNum

'Step 5-Create Command object, pass string and connection object as arguments

Dim objCmd As New OleDbCommand(strSQL, objConn)

'Step 6-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

'Step 7-Test to make sure there is data in the DataReader Object

If objDR.HasRows Then

'Step 8a-Call Read() Method to point and read the first record

objDR.Read()

'Step 8b-Extract data from a row. Use Item method to get the column data

 intIDNumber = CInt(objDR.Item(0))

 strName = CStr(objDR.Item(1))

 dBirthDate = CDate(objDR.Item(2))

 strAddress = CStr(objDR.Item(3))

 strPhone = CStr(objDR.Item(4))

 'Step 8c-Now that you have the data for a record or row, do what you want

 MessageBox.Show(intIDNumber & strName & dBirthDate & strAddress & strPhone)

 54

Else

'Step 9-No data returned, Record not found. Do what you want here!

 MessageBox.Show("No Customers found")

End If

'Step 10-Teminate Command Object

objCmd.Dispose()

objCmd = Nothing
'Step 11- Teminate DataReader Object.

objDR.Close()
objDR = Nothing

'Step 12-Terminate the Connection Object

objConn.Close()
objConn.Dispose()

objConn = Nothing

Data Access Query with TRY-CATCH Exception Handling (BEST PRACTICE)
 The data access code with Try-Catch:

'Step 1-Create Connection string

Dim strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\DB\video.mdb"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Begin Error Trapping via Try statement

Try

 'Step 4-Open the Connection

 objConn.Open()

 'Step 5-Create SQL string. Variable txtIDNum contains the ID

 Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =" & txtIDNum

 'Step 6-Create Command object, pass string and connection object arguments

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 'Step 7-Create DATAREADER object & Execute Query

 Dim objDR As OleDbDataReader = objCmd.ExecuteReader

 'Step 8-Test to make sure there is data in the DataReader Object

 If objDR.HasRows Then

 'Step 8a-Call Read() Method to point and read first record

 objDR.Read()

 'Step 8b-Extract data from a row.

 intIDNumber = CInt(objDR.Item(0))

 strName = CStr(objDR.Item(1))

 dBirthDate = CDate(objDR.Item(2))

 strAddress = CStr(objDR.Item(3))

 strPhone = CStr(objDR.Item(4))

 'Step 8c- you have the data for a record or row, do what you want

 MessageBox.Show(intIDNumber & strName & dBirthDate & strAddress & strPhone)

 55

 Else

 'Step 9-No data returned, Record not found. Do what you want here!

 MessageBox.Show("No Customers found")

 End If

 'Step 10-Teminate Command Object

 objCmd.Dispose()

 objCmd = Nothing

 'Step 11- Teminate DataReader Object.

 objDR.Close()

 objDR = Nothing

'Step 12-Trap for all connection related exceptions

Catch objOleDbExError As OleDbException

'Step 13-Handle error accordingly. If this is within a class, you may have to

'throw and exception, or from a form, display a message box etc. Example:

 MessageBox.Show(objOleDbExError.Message)

 'Step 14-Trap for the Open Connection exception

Catch objInvalidEx As InvalidOperationException

'Step 15-Handle error accordingly. If this is within a class, you may have to

'throw and exception, or from a form, simply display a message box Example:

 MessageBox.Show(objInvalidEx.Message)

 'Step 16-End Error trapping

Finally

 'Step 17-Terminate the Connection Object

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

End Try

 56

Summary of Data Access Code For Action Queries Without Using Paramters (MS ACCESS)

 Now let‟s summarize the code required to execute an action query. These are UPDATE, DELETE & INSERT queries.

 These queries return no value, nevertheless, the ADA.NET Command Object method will return the number of ROWS

AFFECTED.

 Examples of these queries are:

 Delete Query with hard-coded values:

 Dim strSQL As String = "DELETE FROM Customers WHERE Customer_ID = 111"

 Queries with variables containing integers:

 Dim strSQL As String = "DELETE FROM Customers WHERE Customer_ID = " & intID

Action Query with Try-Catch
 The data access code with Try-Catch:

'Step 1-Create Connection, assign Connection to string & open it

Dim strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\DB\video.mdb"

Dim objConn As New OleDbConnection(strConn)

'Step 2-Begin Error Trapping via Try statement

Try

 objConn.Open()

 'Step 3-Create Command, Query, assing query, and assign connection

 Dim strSQL As String = "DELETE FROM Customers WHERE Customer_ID = " & strIDNum

 'Step 4-Create Command object, pass string and connection object arguments

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 'Step 5-Execute Non-Row Query Test result and throw exception if failed

 Dim intRecordsAffected As Long = objCmd.ExecuteNonQuery()

 If intRecordsAffected <> 1 Then

 'Step 6-take appropriate action

 MessageBox.Show("Error INSERTING Record")

 End If

 'Step X-Terminate Command Object

 objCmd.Dispose()

 objCmd = Nothing

'Step 7-Trap for all connection related exceptions

Catch objOleDbExError As OleDbException

'Step 13-Handle error accordingly. If this is within a class

'throw and exception, or from a form, simply display a message box Example:

 essageBox.Show(objOleDbExError.Message)

 'Step 8-Trap for the Open Connection exception

Catch objInvalidEx As InvalidOperationException

'Step 9-Handle error accordingly. If this is within a class

'throw and exception, or from a form, simply display a message box Example:

 MessageBox.Show(objInvalidEx.Message)

 57

'Step 10-End Error trapping

Finally

 'Step Y-Terminate the Connection Object

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

End Try

 58

3.5 The ADO.NET Parameters Class

 The ADO.NET Parameters Collection Class resides inside the Command Object and performs the following functions:

.NET Data Provider Description
Parameter Collection This Collection Object resides inside the Command Object. It is a child object of

the Command Object

 This Collection stores object of type Parameter. Each parameter object represents

and stores a parameter to be passed to queries

Parameter These are the objects store by the ParameterCollection

 Object of this type are used to store QUERY PARAMTERS. Parameters are the

variables or values used in parameterized queries. For example:

SELECT * FROM Customer WHERE Customer_ID = @CustomerID

- Here the @CustomerID represents a value that can be passed from a Form

or variable etc.

 Each Parameter Object represents a parameter, which is passed into the query.

 Again, remember that the .NET Library comes equipped with a provider or library for SQL Server and OLE DB, so we will have
the following classes available to us depending on which database we want to use:

 OleDBClient – OleDBParameterCollection & OleDBParameter

 SQL Client – SQLParameterCollection & SQLParameter

 Oracle Client – OracleParameterCollection & OracleParameter

 Object Model structure:

Command

Parameter Object

Parameters Collection

 59

OLEDBParameter Collection Class – Properties & Methods
 The OleDBParemterCollection Class is a collection class of the ILIST Collection type or INDEX based collection. This is

similar to the ARRAYLIST Collection:

 This collection stores objects of the OleDBParameter Class.

 Table below lists some important properties, methods of the OleDBParemterCollection Class:

Public Properties

Property Description

Item

 Gets or sets the OleDbParameter with a specified attribute

Count Gets the number of OleDbParameter objects in the collection.

Public Methods

Method Description

Add

Overloaded version of ADD, takes Name & Data Type:

Overloads Public Function Add(String, OleDbType) As
OleDbParameter

Overloaded version of ADD, takes Name, Data Type &

Size:

Overloads Public Function Add(String, OleDbType,

Integer) As OleDbParameter

 Adds an OleDbParameter to the OleDbParameterCollection.

 Example of the first OVERLOADED VERSIONS OF ADD:

objCmd.Parameters.Add("@Customer_ID",

OleDbType.Integer)

 Example of the second OVERLOADED VERSIONS OF ADD:

objCmd.Parameters.Add("@Customer_ID",

OleDbType.Integer,20)

Remove Removes the specified OleDbParameter from the collection

Contains Gets a value indicating whether an OleDbParameter exists in the

collection

Clear Removes all items from the collection.

Parameters Collection

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassitemtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassrecordsaffectedtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassreadtopic.htm
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbparametercollectionclassaddtopic4.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbparametercollectionclassaddtopic4.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbparametercollectionclassaddtopic5.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbparametercollectionclassaddtopic5.asp
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassreadtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassreadtopic.htm
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemdataoledboledbdatareaderclassnextresulttopic.asp

 60

OLEDBParameter Class – Properties & Methods
 Tthe OleDBParemeter Class is a child of OleDBParemterCollection. Objects of this class contain the storage mechanism

(Properties) to store parameters passed to queries. Each Parameter Object represents one query parameter:

 Table below lists some important properties & methods of the OleDBParemeter Class:

Public Properties

Property Description

OleDBType

 Gets or sets the OleDbType or DATA Type of the parameter. IMPORTANT

PROPERTY!

 This property takes values of a specialize ENUMERATED TYPE.

 SEE TABLE BELOW FOR A LISTING OF THE AVAILABLE

ENUMERATED DATA TYPE FORMATS used by this PROPERTY.

ParamterName

 Gets or sets the name of the OleDbParameter

Value Gets or sets the value of the parameter. IMPORTANT PROPERTY

Size

 Gets or sets the maximum size, in bytes, of the data within the column

Public Methods

Method Description

For our DATA ACCESS NEEDS, we don’t need at this time

the methods provided by this class.

Parameter Object

Parameters Collection

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassitemtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassitemtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassrecordsaffectedtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdatareaderclassrecordsaffectedtopic.htm

 61

OleDBType Enumerated Type Members
 The OleDBType Property GETs or SETs the Data Type of the Parameter.

 This Property contains an Enumerated Data Structure storing a list of Data Type identifiers

 The Data Type is based on the following table:

Members

Member name Description
Binary A stream of binary data (DBTYPE_BYTES). This maps to an

Array of type Byte.
Boolean A Boolean value (DBTYPE_BOOL). This maps to Boolean.
Char A character string (DBTYPE_STR). This maps to String.
Currency A currency value ranging from -2

63
 (or -

922,337,203,685,477.5808) to 2
63

 -1 (or

+922,337,203,685,477.5807). This maps to Decimal.
Date Date data, stored as a double (DBTYPE_DATE). This maps to

DateTime.
Decimal A fixed precision and scale numeric value between -10

38
 -1 and

10
38

 -1 (DBTYPE_DECIMAL). This maps to Decimal.
Double A floating point number within the range of -1.79E +308 through

1.79E +308 (DBTYPE_R8). This maps to Double.
Guid A globally unique identifier (or GUID) (DBTYPE_GUID). This

maps to Guid.
Integer A 32-bit signed integer (DBTYPE_I4). This maps to Int32.
LongVarChar A long string value (OleDbParameter only). This maps to String.
LongVarWChar A long null-terminated Unicode string value (OleDbParameter

only). This maps to String.
Numeric An exact numeric value with a fixed precision and scale

(DBTYPE_NUMERIC). This maps to Decimal.
Single A floating point number within the range of -3.40E +38 through

3.40E +38 (DBTYPE_R4). This maps to Single.
VarChar A variable-length stream of non-Unicode characters

(OleDbParameter only). This maps to String.
Variant A special data type that can contain numeric, string, binary, or

date data, as well as the special values Empty and Null

(DBTYPE_VARIANT). This type is assumed if no other is

specified. This maps to Object.
VarNumeric A variable-length numeric value (OleDbParameter only). This

maps to Decimal.

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemarrayclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystembyteclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystembooleanclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdecimalclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdatetimeclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdecimalclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdoubleclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemguidclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemint32classtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbparameterclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbparameterclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdecimalclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemsingleclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbparameterclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemobjectclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbparameterclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdecimalclasstopic.htm

 62

Using the OleDBParameterCollection Object & OleDbParameter Object
 OK, now let‟s learn to use the ParemeterCollection. Like any collection we will be adding parameter objects using the ADD()

method, getting Parameter objects using the ITEM PROPERTY etc.

 N

 The job of the DataReader object is to store the results of a query. As you recall, the results of an SQL query is a table.

Therefore after execution of a query, the data stored inside the DataReader object is in the form of a table.

What is a Parameter and Understanding the Parameters Collection

What is a Parameter
 The Parameters Collection stores the PARAMTER Objects that are passed to queries. But, what are the parameters?

 To understand this, we need to go back and look at how queries are created and put together as a string in VB.NET. Let‟s look

at the examples we used earlier in the Command Object section.

 The first example is a straight forward query where the value being searched is coded into the query:

Example 1:
 Supposed you want to execute the following query:

SELECT * FROM Customer WHERE Customer_ID = 111

 Note that the value 111 is hard-coded into the query and is a constant. This mean every time this query is executed, it

will only affect the user whose ID = 111.

 Creating the string in VB.NET to be executed by the Command Object looks as follows:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = 111"

Example 2:
 In reality applications are not just written for one user, but for any user. You want to be able to search information for

any user whose ID is passed via a Form or control.

 The value that is sent to the query is unknown and is usually contained within a variable say intID, for example the query
string would look as follows:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =" & intID

 The variable intID, is a PARAMETER passed to the query.

 63

Example 3:
 Supposed now that the value is a string. This changes things since as you know you need to enclose string within single

quotes or („) depending on the database. For Microsoft Access & SQL Server Databases a string has to be enclosed in

single quotes. For example, the following query contains a hard-coded value string:

SELECT * FROM Customer WHERE Customer_ID = ‘111’

 You need to create the string as follows:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = „111‟"

 Again there are no issues creating this string. This is a simple statement

Example 4:
 Now assuming the value is a string, but the value is unknown and is contained within a variable say intID, then things

get a bit complicated and difficult to create the string.

 You will need to use the & keyword to build the string including the characters required to enclosed the string value.

The string will look as follows:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = „" & intID & "‟"

 Note that we needed to build our string and take into account the („) character required to enclosed any string in a

Microsoft Access Query. Creating these strings can get complicated, messy and prone to errors.

Example 5:
 To show how complex creating the string can be, let‟s look at the string required for an INSERT statement for a

customer.

 The INSERT statement has the following syntax:

 Using the Customer example, if we wanted to add a new customer to the CUSTOMER table the query will look as

follows in when executed from the Database:

 Creating this string in VB.NET will required the following complex string:

Dim strSQL As String

strSQL = "INSERT INTO Customer(Customer_ID, LastName, FirstName, BirthDate,

Address,Gender, PhoneNumber)" _

& "VALUES (" & intIDNumber & ",'" & strLastName & "','" & strFirstName & "',#" _

& dBirthDate & "#,'" & strAddress & "','" & strGender & "','" & strPhone & "')"

 IMPORTANT! Note the complexity of creating this string. You need to make sure that all the single quotes and other

required syntax characters are properly handled in the string. The possibility for errors here are very high. Imagine if

the table contained many columns etc. The string would be quite complex to build!

 This is where the PARAMTER COLLECTION AND PARAMTER OBJECTS COME IN HANDY!!

 Using the PARAMTERS COLLECTION, we DON’T NEED TO CREATE COMPLEX VB STRINGS.

INSERT INTO Table Name (column1, column2, column3, column n)

VALUES (value1, value2, value3, value n)

INSERT INTO Customer (Customer_ID, LastName, FirstName, BirthDate, Address, Gender, PhoneNumber)

VALUES (111, ‘Smith’, ‘Joe’, #12/12/1965#,’333 Jay Street’,’M’,’718 260 5555’)

 64

Understanding the Parameters Collection

 Using the Parameters Collection, we can avoid having to worry about creating such complex string when passing parameters to

queries.

 In order to understand the Parameter Collection we first need to understand the object stored by the Collection, that is the

OleDBParemeter Object.

 The OleDBParemeter objects stores the necessary information for each parameter.

 The important properties to this Class are follows:

 ParameterName

 Value

 OleDBType – Data Type that the parameter represents
 Size of data type

 The Parameters Collection stores each of the OleDBParemeter objects. Since it is a collection, it had the methods and

properties such as:

 Item

 Count

 Add

 Remove

 Etc.

 The diagram below illustrates this concept:

USING QUERY MARKERS to FORMAT QUERIES
 To use the Parameters Collection, you need to use special QUERY MARKERS to represent each of the parameters in the query.

 There are two markers:

 ?

 @COLUMNNAME

 Which markers you use depends on the following factors:

 Which Data Provider you are using: OLEDB PROVIDER or SQL CLIENT PROVIDER

 Which type of query IN-LINE QUERY OR STORED PROCEDURE

 Database: SQL Server, Oracle or MS Access

 The rules are as follows:

Name

Value

Data Type

Size

Parameters Collection

Name

Value

Data Type

Size

Name

Value

Data Type

Size

Name

Value

Data Type

Size

Name

Value

Data Type

Size

1 2 3 4 5

 65

Provider Database Query Type Database Query

Marker

Example

OLEDB Provider SQL Server In-Line SQL SQL Server ? Select * From Customer

WHERE Customer_ID = ?

Stored Procedure SQL Server @ColumnName Select * From Customer

WHERE Customer_ID =

@Customer_ID

MS Access In-Line SQL MS Access ? or

@ColumnName

Select * From Customer

WHERE Customer_ID = ?

or

Select * From Customer

WHERE Customer_ID =

@Customer_ID

Stored Procedure MS Access @ColumnName Select * From Customer

WHERE Customer_ID =

@Customer_ID

SQL Provider SQL Server In-Line SQL SQL Server @ColumnName Select * From Customer

WHERE Customer_ID =

@Customer_ID

Stored Procedure SQL Server @ColumnName Select * From Customer

WHERE Customer_ID =

@Customer_ID

 66

Example Using OLEDB Provider & SQL SERVER Database
 For example in the SELECT query used earlier using IN-LINE QUERY:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = „" & strIDNum & "‟"

 We replace the variable intID with the marker ?:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = ?”

 Note that we don‟t have to worry about the formatting of the single quotes etc.

 If we were using STORED PROCEDURES, then we would use a named parameter and it would look as follows:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = @CustomerID”

 Let‟s look at the INSERT query. This is what it would look like without the Paremeter Class:

Dim strSQL As String

strSQL = "INSERT INTO Customer(Customer_ID, LastName, FirstName, BirthDate,

Address,Gender, PhoneNumber)" _

 & "VALUES (" & intIDNumber & ",'" & strLastName & "','" & strFirstName & "',#" _

 & dBirthDate & "#,'" & strAddress & "','" & strGender & "','" & strPhone & "')"

 Using the maker ?, the query looks as follows:

Dim strSQL As String

strSQL = "INSERT INTO Customer(Customer_ID, LastName, FirstName, BirthDate,

Address,Gender, PhoneNumber)" _

& "VALUES (?,?,?,?,?,?,?)"

 Using the maker @, the query looks as follows:

Dim strSQL As String

strSQL = "INSERT INTO Customer(Customer_ID, LastName, FirstName, BirthDate,

Address,Gender, PhoneNumber)" _

& "VALUES (@Customer_ID,@LastName,@FirstName,@BirthDate, @Address, @Gender,

@PhoneNumber)"

 Notice how much simpler these strings are compare to the one without using the Parameters Collection. Less chance for

errors.

 67

Using the Parameters Collection
 Now we know the components of the Parameters collection:

 OleDBParameter Object – Object stored inside the collection. Represents a Parameter. Contains the following

IMPORTANT properties:

o Name

o Value

o Data Type that the parameter represents

o Size of data type

 Methods of the Parameters Collection:

o Item – Important Property!
o Count

o Add – Important Method!
o Remove

o Etc.

 We also know that we need to Format the Query using the marker ? or @COLUMNNAME.

 Next we need to know how to put it together.

 The Parameters Collection will contain an oleDBParameter object that represents each of the parameters in the query. This

means that each of the oleDBParameter objects is mapped to each of the parameters in the query.

 You need the do the following steps:

1. FORMAT THE SQL STATEMENT USING THE ? OR @COLUMN_NAME MARKERS:

 Option 1 for IN-LINE SQL: "SELECT * FROM Customer WHERE Customer_ID = ?”

 Option 2 for STORED PROCEDURES: "SELECT * FROM Customer WHERE Customer_ID =

@CustomerID”

2. Create the COMMAND OBJECT

3. Use the Command Object CommandType property to tell the Command Object that you will be executing a TEXT query,

stored procedure or TableDirect. Text is the default.

4. Call COMMAND.PARAMTERS.Add(Name,DataType, Sizet) method to add to the collection each required parameter
object as follows:

 NO NEED TO CREATE A PARAMETER OBJECTS, YOU CAN DO IT ALL VIA THE COLLECTION

ADD Method ONLY.

 The ADD() METHOD of the Collection, accepts parameters data and creates the PARAMTER OBJECT

INTERNALLY.

 In the ADD method, you provide the arguments that will SET the following PROPERTIES of the internally

created PARAMETER OBJECT:

- Name (Can be any name, common practice is to use the COLUMN_NAME

- Data Type

- SIZE (OPTIONAL)

 Examples:
objCmd.Parameters.Add("@Customer_ID", OleDbType.Integer)

objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar,20)

 IMPORTANT! You will need a Collection.ADD() method for every single PARAMTER MARKER in

the query
 IMPORTANT!! The PARAMETER OBJECTS via the ADD() method, MUST BE ADDED IN THE

ORDER IN WHICH THEY ARE LOCATED IN THE SQL STATEMENT!
 Note that the VALUE PROPERTY of the PARAMETER OBJECT will be set using the COLLECTION ITEM

PROPERTY (Shown below)

5. Set the VALUE PROPERTY of EACH oleDBParemeter object (calls to ADD) using the

COMMAND.PARAMETERS.ITEM(KEY) PROPERTY to the VARIABLE representing the marker:

 objCmd.Parameters.Item("@Customer_ID").Value = intID.

 68

Parameters Collection ADD Method in detail
 The most important method of the Parameters Collection is the ADD() method.

 The Add() method is used to add each of the parameters needed.

 This method is overloaded and can take several arguments. I will show a typical implementation:

Public Function Add(ByVal parameterName As String, ByVal Type As OleDbType)

- ParemeterName: Column name or name of parameter.

- Type: Data Type. Must use one of the oleDBType Enumerator type

Public Function Add(ByVal parameterName As String, ByVal Type As OleDbType, ByVal Size

As Integer)

- ParemeterName: Column name or name of parameter. This can be any name, but we will use the @COLUMNNAME

for this name

- Type: Data Type. Must use one of the oleDBType Enumerator type

- Size: Size of data in database

 The table below is a snapshot of the listing of these data type you must choose. Note that this appears automatically in the

Editing window. So there is no need to memorize this table:

Members

Member name Description
Binary A stream of binary data (DBTYPE_BYTES). This maps to an

Array of type Byte.
Boolean A Boolean value (DBTYPE_BOOL). This maps to Boolean.
Char A character string (DBTYPE_STR). This maps to String.
Currency A currency value ranging from -2

63
 (or -

922,337,203,685,477.5808) to 2
63

 -1 (or

+922,337,203,685,477.5807). This maps to Decimal.
Date Date data, stored as a double (DBTYPE_DATE). This maps to

DateTime.
Decimal A fixed precision and scale numeric value between -10

38
 -1 and

10
38

 -1 (DBTYPE_DECIMAL). This maps to Decimal.
Double A floating point number within the range of -1.79E +308 through

1.79E +308 (DBTYPE_R8). This maps to Double.
Guid A globally unique identifier (or GUID) (DBTYPE_GUID). This

maps to Guid.
Integer A 32-bit signed integer (DBTYPE_I4). This maps to Int32.
LongVarChar A long string value (OleDbParameter only). This maps to String.
LongVarWChar A long null-terminated Unicode string value (OleDbParameter

only). This maps to String.
Numeric An exact numeric value with a fixed precision and scale

(DBTYPE_NUMERIC). This maps to Decimal.
Single A floating point number within the range of -3.40E +38 through

3.40E +38 (DBTYPE_R4). This maps to Single.

VarChar A variable-length stream of non-Unicode characters

(OleDbParameter only). This maps to String.
Variant A special data type that can contain numeric, string, binary, or

date data, as well as the special values Empty and Null

(DBTYPE_VARIANT). This type is assumed if no other is

specified. This maps to Object.
VarNumeric A variable-length numeric value (OleDbParameter only). This

maps to Decimal.

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbtypeclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbtypeclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbtypeclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemarrayclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystembyteclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystembooleanclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdecimalclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdatetimeclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdecimalclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdoubleclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemguidclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemint32classtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbparameterclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbparameterclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdecimalclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemsingleclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbparameterclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemstringclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemobjectclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbparameterclasstopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdecimalclasstopic.htm

 69

 To use the ADD() method in our code simply call the parameter collection and call ADD(). Remember that the Parameters

collection is a member of the command object.

 For example, supposed we have the following query string with the ? marker:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = ?”

 The call to ADD() method of the parameters collection to queries using the ? marker is:

 'Calling the Parameters collection Add method to add a parameter and type:

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar)

 Example using @COLUMNNAME Marker the query looks as follows:

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = @Customer_ID”

 The call to ADD() method of the Parameters Collection object to map @COLUMNNAME this marker:

 'Calling the Parameters collection Add method to add a parameter and type:

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar)

 Note that the SAME PARAMTER NAME @Customer_ID can be used for both Marker type ? or @COLUMNNAME

SETTING THE VALUE OF THE PARAMTER OBJECT: Parameters Collection ITEM Property and the

OleDBParemeter Object VALUE Property
 The next important steps are the ITEM Property of the Parameters Collection, and the VALUE Property of the

oleDBParameter object stored inside the Collection.

 We need to modify the parameter just added with the ADD method. Therefore we need the Item property to find the

parameter and set its VALUE property.

 We use the ITEM property passing the unique key or name given to the parameter to find the oleDBParameter object.

 Then we call the oleDBParameter Object‟s VALUE property and set it to the variable that will map to the marker ?

 This is what the code looks like for MS ACCESS OR SQL SERVER:

 'Setting the Value property of the parameter object

 objCmd.Parameters.Item("@Customer_ID").Value = strID

 This code can be shorten by COMBINING THE ADD METHOD AND ITEM PROPERTY using a one step method

(PREFERRED SYNTAX):

 'Add and setting the value in one step and type:

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = strID

 Syntax with SIZE property included:

 'Add and setting the value in one step and type:

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar, 20).Value = strID

 70

Putting it all together
 So the steps are:

1. Format the QUERY USING MARKERS ? or @COLUMNNAME

2. For each MARKER PARAMTER IN QUERY, add a call to the ParameterCollection.Add() method in the order in which

they are found in the query. You must indicate a name or the parameter such as @COLUMNNAME, data type, & Size.

 IMPORTANT! The order of the ADD statements MUST match the order in which the parameters are listed

in the query, otherwise the query will NOT work.

3. Repeat for every parameter

QUERIES WITH ? MARKERS:
 Again, supposed we have the following query, with the marker ? that represents say a variable name intID:

 Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = ?”

 The complete code to add and prepare one parameter is as follows:

 'Calling the Parameters collection Add method to add a parameter Object and type:

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar)

 'Setting the Value property of the parameter object

 objCmd.Parameters.Item("@Customer_ID").Value = strID

 This code can be shorten to the following form in one step:

 'Add and setting the value in one step and type:

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = strID

 IMPORTANT! You will need one of these code statement for every parameter in your query

QUERIES WITH @COLUMNNAME MARKERS:
 Again, supposed we have the following query, with the marker @COLUMNNAME that represents say a variable name intID:

 Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =

 @Customer_ID”

 The complete code to add and prepare one parameter is as follows:

'Calling the Parameters collection Add method to add a parameter Object and type:

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar)

 'Setting the Value property of the parameter object

 objCmd.Parameters.Item("@Customer_ID").Value = strID

 This code can be shorten to the following form in one step (PREFERRED SYNTAX):

 'Add and setting the value in one step and type:

 objCmd.Parameters.Add("@Customer_ID", OleDbType.Integer).Value = strID

 IMPORTANT! You will need one of these code statement for every parameter in your query

 71

Example 6:

 Let‟s look at another example. Suppose we want to implement the INSERT query from earlier example. we saw that the if we

do NOT use parameters the complex string we need to process would look as follows:

Dim strSQL As String

strSQL = "INSERT INTO Customer(Customer_ID, LastName, FirstName, BirthDate,

Address,Gender, PhoneNumber)" _

 & "VALUES (" & intIDNumber & ",'" & strLastName & "','" & strFirstName & "',#" _

 & dBirthDate & "#,'" & strAddress & "','" & strGender & "','" & strPhone & "')"

QUERY with ? MARKERS:
 Using the marker ?, we DON‟T need such complex string, we simply use ? as follows:

Dim strSQL As String

strSQL = "INSERT INTO Customer(Customer_ID, LastName, FirstName, BirthDate,

Address,Gender, PhoneNumber)" _

& "VALUES (?,?,?,?,?,?,?)"

 Add parameters to the Parameters Collection. REMEMBER THAT THE ORDER MUST BE THE SAME AS IT APPEARS IN
THE QUERY:

 'Add Paramter to Pareameters Collection and set value for each parameter

 objCmd.Parameters.Add("Customer_ID", OleDbType.Integer)

 objCmd.Parameters.Item("Customer_ID").Value = intIDNumber

 'Short Syntax

 objCmd.Parameters.Add("LastName", OleDbType.Char).Value = strLastName

 objCmd.Parameters.Add("FirstName", OleDbType.Char).Value = strFirstName

 objCmd.Parameters.Add("BirthDate", OleDbType.Date).Value = dBirthDate

 objCmd.Parameters.Add("Address", OleDbType.Char).Value = strAddress

 objCmd.Parameters.Add("Gender", OleDbType.Char).Value = strGender

 objCmd.Parameters.Add("PhoneNumber", OleDbType.Char).Value = strPhone

QUERIES with @COLUMNAME MARKERS:
 Using the marker @ColunnName:

Dim strSQL As String

strSQL = "INSERT INTO Customer(Customer_ID, LastName, FirstName, BirthDate,

Address,Gender, PhoneNumber)" _

& "VALUES

(@Customer_ID,@LastName,@FirstName,@BirthDate,@Address,@Gender,@PhoneNumber)"

 Add parameters to the Parameters Collection. REMEMBER THAT THE ORDER MUST BE THE SAME AS IT APPEARS IN

THE QUERY:

 'Add Paramter to Pareameters Collection and set value for each parameter

 objCmd.Parameters.Add("@Customer_ID", OleDbType.Integer).Value = intIDNumber

 objCmd.Parameters.Add("@LastName", OleDbType.Char).Value = strLastName

 objCmd.Parameters.Add("@FirstName", OleDbType.Char).Value = strFirstName

 objCmd.Parameters.Add("@BirthDate", OleDbType.Date).Value = dBirthDate

 objCmd.Parameters.Add("@Address", OleDbType.Char).Value = strAddress

 objCmd.Parameters.Add("@Gender", OleDbType.Char).Value = strGender

 objCmd.Parameters.Add("@PhoneNumber", OleDbType.Char).Value = strPhone

 72

Summary – Using the Parameters Collection

 To use the Parameters Collection, you need to use special markers to represent the parameters. The markers as follows:

 Microsoft Access Only: Use a question mark (?)

 SQL Server & Microsoft Access: Use named parameters using the @ColumnName symbol – Ex. @CustomerID

 Since the second marker syntax can be used for both SQL Server and MS Access, creating our parameterized query using this

marker makes our program scalable. We will use this syntax throughout my examples.

 IMPORTANT! The order of the parameter statements MUST be the same as they appear in the Query. Otherwise

the query will NOT work. This can be tricky since executing the query with the wrong order may not yield an

exception, thus you may think the query worked when it did not.

 Steps to use the Parameters Collection Class in your applications:

Step 1: We create the Connection Object OLEDB PROVIDER

MS Access:
'Step 1-Create Connection string

Dim strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\DB\video.mdb"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Open the Connection

objConn.Open()

MS SQL Server:
'Step 1-Create Connection string

Dim strConn As String = "Provider=SQLOLDB;Data Source=Server01;Database =NYCTCDB;User

ID=sa;Password=password"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Open the Connection

objConn.Open()

Step 2: Create the Query and use a Symbol ? or @ to represent the parameters

FOR ? PARAMETER MARKERS:
 We use the marker ? character as a place holder for the Parameters instead of a variable in the query

'Step 4-Create SQL string. Use a ? as a place holder for the value of the ID

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = ?”

 73

FOR @COLUMNNAME PARAMETER MARKERS:
 We use the marker @ColumnName character as a place holder for the Parameters instead of a variable in the query

'Step 4-Create SQL string. Use a ? as a place holder for the value of the ID

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = @Customer_ID”

Step 3: Create the Command Object and initialize it with connection and query

 Create the command object. Use any of the methods shown previously

'Step 5-Create Command object, pass Query string and connection object as arguments

Dim objCmd As New OleDbCommand(strSQL, objConn)

Step 4: Use the Parameters Collection. Call the ADD() method & Set the Value to the Parameter Object to the variable

 Call Add() and set value

FOR ? & @COLUMNNAME PARAMETER MARKERS:
'Step 6-Add Parameter to Collection and Set Value to variable

objCmd.Parameters.Add("Customer_ID", OleDbType.Integer).Value = intID

FOR ? & @COLUMNNAME PARAMETER MARKERS:
'Step 6-Add Parameter to Collection and Set Value to variable

objCmd.Parameters.Add("@Customer_ID", OleDbType.Integer).Value = intID

Step 5: Repeat Step 4 for every Parameter in QUERY in the order in which they appear

 Repeat Step 4

 74

3.6 SUMMARY – Data Access using OleDBDataReader, IN-LINE SQL & SQL SERVER Database

 In the previous sections, we analyzed and learned how to use ADO.NET Data Provider to perform data access.

 Our examples so far have targeted MS ACCESS database.

 Now, let‟s summarize all the code required to perform data access using the following requirements:
1. DataReader as our storage mechanism to store the results of the query.

2. We will use Microsoft SQL Server 2005 EXPRESS

3. Use the following CUSTOMER table in a database named smallbusinesDB for our summary code:

4. use DATABASE AUTHENTICATION in the examples to connect to the SQL database

5. We will also set OPTION STRICT ON in our code so that proper data type conversion is done

6. We will use the following set of variables to store our RECORD from the database:

 strIDNumber

 strName

 dBirthDate

 strAddress

 strPhone

 intAge

7. We will also NOT IMPLEMENT EXCEPTIONS AT THIS TIME

 The following examples cover the various data access functionalities such as select, insert, update and delete, etc.

 75

Examples 7 - Executing Non-Parameter SELECT Query (IN-LINE SQL)

 Problem Statement:

 Execute a query to return the record from the Customer Table of an Access Database for the customers whose ID Number is

entered in a Form using the text box txtIDNum. Don‟t use the parameters collection. Display the results in a message box.

'Step 1-Create Connection string

Dim strConn As String = "Provider=SQLOLEDB;Data Source=SATURN12\SQLEXPRESS;" & _

 "Database=smallbusinessdb;User ID=dbuser01;Password=dbpassword01"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Open the Connection

objConn.Open()

'Step 4-Create SQL string. We assume here that the variable intID contains the ID

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID =" & txtIDNum

'Step 5-Create Command object, pass string and connection object as arguments

Dim objCmd As New OleDbCommand(strSQL, objConn)

'Step 6-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

'Step 7-Test to make sure there is data in the DataReader Object

If objDR.HasRows Then

'Step 8a-Call Read() Method to point and read the first record

objDR.Read()

'Step 8b-Extract data from a row. Use Item method to get the column data

 strIDNumber = CStr(objDR.Item(0))

 strName = CStr(objDR.Item(1))

 dBirthDate = CDate(objDR.Item(2))

 strAddress = CStr(objDR.Item(3))

 strPhone = CStr(objDR.Item(4))

 intAge = CInt(objDR.Item(5))

 'Step 8c-Now that you have the data for a record or row, do what you want

 MessageBox.Show(strIDNumber & strName & dBirthDate & strAddress & strPhone & intAge)

Else

'Step 9-No data returned, Record not found. Do what you want here!

 MessageBox.Show("No Customers found")

End If

'Step 10-Teminate Command Object

objCmd.Dispose()
objCmd = Nothing
'Step 11- Teminate DataReader Object.

objDR.Close()
objDR = Nothing

'Step 12-Terminate the Connection Object

objConn.Close()

objConn.Dispose()
objConn = Nothing

 76

Example 8 - Executing Parameterized SELECT Query

 Problem Statement:

 Execute a query to return the record from the Customer Table of an Access Database for the customers whose ID Number is

entered in a Form using the text box txtIDNum. User the Parameters Collection to manage the parameters. Display the

results in a message box.

'Step 1-Create Connection string

Dim strConn As String = "Provider=SQLOLEDB;Data Source=SATURN12\SQLEXPRESS;" & _

 "Database=smallbusinessdb;User ID=dbuser01;Password=dbpassword01"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Open the Connection

objConn.Open()

'Step 4-Create SQL string. We assume here that the variable intID contains the ID

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = ?"

'Step 5-Create Command object, pass string and connection object as arguments

Dim objCmd As New OleDbCommand(strSQL, objConn)

'Step 6-Add Parameter to Collection & Set Value to variable storing data

objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = txtIDNum.txt

'Step 7-Create DATAREADER object & Execute Query

Dim objDR As OleDbDataReader = objCmd.ExecuteReader

'Step 8-Test to make sure there is data in the DataReader Object

If objDR.HasRows Then

'Step 9a-Call Read() Method to point and read the first record

objDR.Read()

'Step 9b-Extract data from a row. Use Item method to get the column data

 strIDNumber = CStr(objDR.Item(0))

 strName = CStr(objDR.Item(1))

 dBirthDate = CDate(objDR.Item(2))

 strAddress = CStr(objDR.Item(3))

 strPhone = CStr(objDR.Item(4))

 intAge = CInt(objDR.Item(5))

 'Step 9c-Now that you have the data for a record or row, do what you want

 MessageBox.Show(strIDNumber & strName & dBirthDate & strAddress & strPhone & intAge)

Else

'Step 10-No data returned, Record not found. Do what you want here!

 MessageBox.Show("No Customers found")

End If

'Step 11-Teminate Command Object

objCmd.Dispose()
objCmd = Nothing

'Step 12- Teminate DataReader Object.

objDR.Close()

objDR = Nothing
'Step 13-Terminate the Connection Object

objConn.Close()
objConn.Dispose()

objConn = Nothing

 77

Example 9 - Executing SELECT Query that Return Multiple Records

 Problem Statement:

 Execute a query to return more than one record from the Customer Table of an Access Database. User the Parameters

Collection to manage the parameters.

'Step 1-Creates Connection Object, assigns connection string

Dim strConn As String = "Provider=SQLOLEDB;Data Source=SATURN12\SQLEXPRESS;" & _

 "Database=smallbusinessdb;User ID=dbuser01;Password=dbpassword01"

Dim objConn As New OleDbConnection(strConn)

objConn.Open()

 'Step 2-Create SQL string

 Dim strSQL As String = "SELECT * FROM Customers"

 'Step 3-Create Command object, pass string and connection object as arguments

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 'Step 4-Create DATAREADER object & Execute Query

 Dim objDR As OleDbDataReader = objCmd.ExecuteReader

 'Step 5-Test to make sure there is data in the DataReader Object

 If objDR.HasRows Then

 'Step 6-Iterate through DataReader one record at a time.

 Do While objDR.Read

'Step 7-Extract data from a row. Use Item method to get the column data

 strIDNumber = CStr(objDR.Item(0))

 strName = CStr(objDR.Item(1))

 dBirthDate = CDate(objDR.Item(2))

 strAddress = CStr(objDR.Item(3))

 strPhone = CStr(objDR.Item(4))

 intAge = CInt(objDR.Item(5))

 'Step 8-Now that you have the data for a record or row, do what you want

 MessageBox.Show(strIDNumber & strName & dBirthDate & strAddress & strPhone & intAge)

 Loop

 Else

 'Step 9-No data returned, Record not found. Do what you want here!

 MessageBox.Show("No Customers found")

 End If

 'Step X-Terminate Command Object

 objCmd.Dispose()

 objCmd = Nothing

 'Step Y- Terminate DataReader Object.

 objDR.Close()

 objDR = Nothing

 'Step Z-Terminate the Connection Object

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

 78

Example 10 - Executing Parameterized UPDATE Query

 Problem Statement:

 Execute a query to UPDATE a record in the Customer Table of an Access Database for the customers whose ID Number is

entered in a Form using the text box txtIDNum. The values modified are obtained from the Form as well. Display whether

the UPDATE failed using a message box.

'Step 1-Create Connection & open it. Alternate Syntax

Dim strConn As String = "Provider=SQLOLEDB;Data Source=SATURN12\SQLEXPRESS;" & _

 "Database=smallbusinessdb;User ID=dbuser01;Password=dbpassword01"

Dim objConn As New OleDbConnection(strConn)

objConn.Open()

 'Step 2-Create Query and use Parameter Markers

 strSQL = "UPDATE Customer SET Customer_Name=?, Customer_BDate=?," & _

 "Customer_Address=?,Customer_Phone=?," & _

 "Customer_Age=? " & _

 "WHERE Customer_ID=?"

 'Step 3-Create Command object, pass string and connection object as arguments

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 'Step 4-Add Parameter to Collection & Set Value

 objCmd.Parameters.Add("@Customer_Name", OleDbType.VarChar).Value = strName

 objCmd.Parameters.Add("@Customer_BDate", OleDbType.Date).Value = dBirthDate

 objCmd.Parameters.Add("@Customer_Address", OleDbType.VarChar).Value = strAddress

 objCmd.Parameters.Add("@Customer_Phone", OleDbType.VarChar).Value = strPhone

 objCmd.Parameters.Add("@Customer_Age", OleDbType.Integer).Value = intAge

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = strIDNumber

 'Step 5-Execute Non-Row Query Test result and throw exception if failed

 Dim intRecordsAffected As Long = objCmd.ExecuteNonQuery()

 'Step 6-Test result and throw exception if failed

 If intRecordsAffected <> 1 Then

 MessageBox.Show("Error Updating Record")

 End If

 'Step X-Terminate Command Object

 objCmd.Dispose()

 objCmd = Nothing

 'Step Y-Terminate the Connection Object

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

 79

Example 11 - Executing Parameterized INSERT Query

 Problem Statement:

 Execute a query to INSERT a NEW record in the Customer Table of an Access Database. The values added are obtained

from the Form. Display whether the INSERT was successful using a message box.

'Step 1-Create Connection, assign Connection to string & open it

Dim strConn As String = "Provider=SQLOLEDB;Data Source=SATURN12\SQLEXPRESS;" & _

 "Database=smallbusinessdb;User ID=dbuser01;Password=dbpassword01"

Dim objConn As New OleDbConnection(strConn)

objConn.Open()

 'Step 2-Create Query and use Parameter Markers

 strSQL = "INSERT INTO Customer(Customer_ID,Customer_Name," & _

 "Customer_BDate," & _

 "Customer_Address," & _

 "Customer_Phone,Customer_Age)" & _

 "VALUES(?,?,?,?,?,?)"

 'Step 3-Create Command object, pass string and connection object as arguments

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 'Step 4-Add Paramter to Pareameters Collection and set value for each parameter

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = strIDNumber

 objCmd.Parameters.Add("@Customer_Name", OleDbType.VarChar).Value = strName

 objCmd.Parameters.Add("@Customer_BDate", OleDbType.Date).Value = dBirthDate

 objCmd.Parameters.Add("@Customer_Address", OleDbType.VarChar).Value = strAddress

 objCmd.Parameters.Add("@Customer_Phone", OleDbType.VarChar).Value = strPhone

 objCmd.Parameters.Add("@Customer_Age", OleDbType.Integer).Value = intAge

 'Step 5-Execute Non-Row Query Test result and throw exception if failed

 Dim intRecordsAffected As Long = objCmd.ExecuteNonQuery()

 If intRecordsAffected <> 1 Then

 MessageBox.Show("Error INSERTING Record")

 End If

 'Step X-Terminate Command Object

 objCmd.Dispose()

 objCmd = Nothing

 'Step Y-Terminate the Connection Object

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

 80

Example 12 - Executing Parameterized DELETE Query

 Problem Statement:

 Execute a query to DELETE a record in the Customer Table of an Access Database for the customers whose ID Number is

entered in a Form using the text box txtIDNum. Display whether the UPDATE failed using a message box.

'Step 1-Create Connection, assign Connection to string & open it

Dim strConn As String = "Provider=SQLOLEDB;Data Source=SATURN12\SQLEXPRESS;" & _

 "Database=smallbusinessdb;User ID=dbuser01;Password=dbpassword01"

Dim objConn As New OleDbConnection(strConn)

objConn.Open()

 'Step 2-Create Command, Query, assing query, and assign connection

 Dim strSQL As String = "DELETE FROM Customer WHERE Customer_ID = ?"

 'Step 3-Create Command object, pass string and connection object as arguments

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 'Step 4-Add Parameter to Collection & Set Value

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = strIDNumber

 'Step 5-Execute Non-Row Query Test result and throw exception if failed

 Dim intRecordsAffected As Long = objCmd.ExecuteNonQuery()

 If intRecordsAffected <> 1 Then

 MessageBox.Show("Error INSERTING Record")

 End If

 'Step X-Terminate Command Object

 objCmd.Dispose()

 objCmd = Nothing

 'Step Y-Terminate the Connection Object

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

 81

4.0 Using ADO.NET DataSet Class

4.1 REVIEW OF Data Access Using DataReader Object

 In the previous section we went over the ADO.NET Classes required to perform Data Access using the DataReader Object to

store the results of a query.

 To execute SELECT Queries we needed the following objects:

o Connection object – Establish connection

o Command Object – Execute Query
 [Optional] Parameters Collection – Better management of query parameters

o DataReader Object – Store the results of the query

 To execute INSERT, UPDATE & DELETE Queries we need the following objects only:

o Connection object – Establish connection

o Command Object – Execute Query

 [Optional] Parameters Collection – Better management of query parameters

 The main point here is that for select queries we can store our results in a DataReader Objects, if we wanted a fast and simple

way to perform data access.

 Now we will look at a more powerful mechanism to store the results of a query by using the DataSet Class.

 Using a DataSet Object provides the feature of Disconnected Data Access, which is one of the new ADO.NET most recognized

features

4.2 Data Access Using DataSet Object

 In this section we will look at storing the results of a SELECT query using the DataSet Object.

 The objects required will be as follows:

o Connection object – Establish connection

o Command Object – Execute Query

 [Optional] Parameters Collection – Better management of query parameters

o DataAdapter – Bridge to DataSet object. Executes query via Command Object and Populates or fills the DataSet

o DataSet Object – Store results of the query. Modify & update records. Update database with updated values etc.

..NET Data Provider

Connection

DataAdapter

DataReader

Command

Parameter

.DataSet

DataRelation

DataTable Collection

DataRowCollection

DataColumnCollecti

on

Constraints

DataView

Database

DataAdapter Bridge

 82

4.3 DataAdapter Class

 The ADO.NET DataAdapter Class performs the following functions:

.NET Data Provider Description
DataAdapter This object acts as a bridge between the Database and the disconnected object the

DataSet.

 It fetches the results of queries and fills or populates the DataSet Object so you can

work with data offline. This is done via a method inside the DataAdpater named

Fill().

 The DataAdapter object actually exposes a number of properties from the

Command Object for Selecting, Updating, Inserting and Deleting data to the

database.

 The DataAdapter object populates tables into the DataSet Object and also submits

changes from the DataSet Object to the database. It is a bridge between these two

libraries.

 Remember that the .NET Library comes equipped with a provider or library for SQL Server and OLE DB, so we will have the
following classes available to us depending on which database we want to use:

I. SQL Client – Contains all the ADO.NET libraries to connect ONLY to SQL Server database:

a. SQLDataAdapter

II. OleDBClient – Use for other databases other than SQL Server that support OleDB, such as Microsoft Access, Oracle etc.

a. OleDBDataAdapter

 My sample code will focus on OLE DB.

 83

DataAdapter Class – Properties & Methods

 Table below lists some important properties, methods and constructor of the DataAdapter Class:

Public Constructors

OleDbDataAdapter Constructor Overloaded. Initializes a new instance of the OleDbDataAdapter class.
 You can actually pass a query string when creating an object of this class.

In addition you can pass a connection or a command object. In short,

there are several constructor methods available.

Public Properties

Property Description

SelectCommand Gets or sets an SQL statement or stored procedure used to select records in

the data source.

 You can also assign a Command Object with the query to this parameter as

well.

Public Methods

Method Description

Fill

OleDbDataAdapter.Fill (DataSet)

OleDbDataAdapter.Fill (DataTable)

OleDbDataAdapter.Fill (DataSet, String)

 Populates the DataSet Object with records, or tables resulting from the query.

Adds or refreshes rows in the DataSet to match those in the data source using the

DataSet name, and creates a DataTable named "Table."

Adds or refreshes rows in a specified range in the DataSet to match those in the

data source using the DataSet, DataTable, and IDataReader names.

Adds or refreshes rows in the DataSet to match those in the data source using the

DataSet and DataTable names.

Dispose Releases the memory.

Using the DataAdapter Class Object

 The DataAdapter object acts as a bridge between the disconnected and the connected halves of the ADO.NET object model. It

can do the following:

 DataAdapter pulls data from the database and populates the DataSet Object.
 DataAdapter can take updates from your DataSet and submit them to the database.

 DataAdpater works with disconnected data in the DataSet, after it fills the DataSet.

 Note that we assume that at this point you have already created your Connection and Command Objects as shown previously.

 Steps to add code to use the DataAdapter Object in your applications are as follows:

Step 1: Verify that the ADO.NET Provider and Data mechanism are imported into your code

Imports System.Data

Imports System.Data.OleDb 'OLEDB Provider

Step 2: We assume that you have already created the Connection and Command objects

 Connection object already created and opened.
 Command object already created

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdataadapterclassctortopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdataadapterclassselectcommandtopic.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemdataoledboledbdataadapterclassfilltopic.htm
http://msdn2.microsoft.com/en-us/library/zxkb3c3d.aspx
http://msdn2.microsoft.com/en-us/library/905keexk.aspx
http://msdn2.microsoft.com/en-us/library/y4b211hz.aspx
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfsystemcomponentmodelcomponentclassdisposetopic.htm

 84

'Step 1-Create Connection and open

Dim strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;Data Source=C:\DB\video.mdb"

Dim objConn As New OleDbConnection(strConn)

objConn.Open()

'Step 4-Create SQL string. We assume here that the variable intID contains the ID

Dim strSQL As String = "SELECT * FROM Customers

'Step 5-Create Command object, pass string and connection object as arguments

Dim objCmd As New OleDbCommand(strSQL, objConn)

Step 3: Create the Data Adapter Object & Initializing with Command Object

 Now we proceed by creating a DataAdapter Object.

'Step 6-Create DataAdpater object

Dim objDA As New OleDbDataAdapter(objCmd)

Step 4: Execute Query and Populate DataSet Object. Use Fill() method

 In order to demonstrate the use of the DataAdapter, we need to also use a DataSet object.

 We will use some basic properties and methods of the DataSet Object to explain the DataAdapter object, but details on DataSet

object will be explain in the DataSet object section.

 In this step we will call the DataAdapter.Fill() method to populate the DataSet object with the results of the query.

'Step 7-Create DataAdpater object

Dim objDS As New DataSet()

'Step 8-Call Fill method, pass DataSet object as argument

objDA.Fill(objDS)

 85

4.4 DataSet Class

 The ADO.NET DataSet Class performs the following functions:

.NET Data Provider Description
DataSet Object Stores the results of a query.

 Very powerful Class, can store entire tables as well as several tables or entire

database locally. Think of the implication, entire database stored locally, no need

to traverse network to get data.

 This object stores a Collection of DataTable Objects and a Collection of

DataRelationship Objects.

 DataTable – Object that stores a Collection named DATAROW and a Collection

named DATACOLUMN and other objects to manage the data retrieved from the

database.

 DataRelantionship – This Collection stores DataRelationship Objects with

information concerning the relationship between the tables, primary & foreign keys
that link the tables etc.

 The explanation to the other collections and objects is listed below.

DataSet Members Description
DataTable Collection Collection that Stores DataTable Objects.

 The explanation to the DataTable object is listed below.

DataRelationship Collection Collection that Stores DataRelationship Objects.

 The explanation to the DataRelationship object is listed below.

DataTable Object Members Description
DataTable Object This object lets you stores and examine the data returned from a query. It

represents the result of query

 The rows and columns returned from a query are stored in two Collections named

DataRow Collection and DataColumn Collection. Both of these child objects will

be described below.

DataColumn Collection A collection storing DataColumn Objects. Each of these objects store information

about one Column in the table.

 Each DataColumn Object corresponds to one Column in the table.

 The DataColumn object DOES NOT store DATA! It only stores information

about the structure of the column or METADATA, such as data type, properties

size, format etc.

DataRow Collection A collection storing DataRow Objects. Each of these objects store information

about the Row in the table.

 Each DataRow Object corresponds to one Row in the table.

 The DataRow object STORES the actual DATA return from a query.
 You examine the content of each DataRow object in the collection to retrieve and

analyzed the data.

 You can use a For..Each..Next loop to iterate through the collection and access the

data.

 86

Constraints Collection A collection storing Contraints Objects. Each of these objects store information

about the constraints or rules placed on columns or multiple columns in the table

stored in the DataSet.

DataView This object is used to view the data in different ways.

 If you want to sort by column, filter rows by criteria etc.

 Multiple views of the same data etc.

DataRelation Collection A collection storing DataRelation Objects. Each of these objects store information

about the relationship between the tables.

 Also information about the primary & foreign keys that link the tables.

 In addition this object enforces referential integrity.

DataRelations Collection

Member

Description

DataRelationship Object DataRelation Objects store information about the relationship between the tables.

 Also information about the primary & foreign keys that link the tables.

 In addition this object enforces referential integrity

 I understand this is a complex data model, so I came up with a diagram below that may help you visualize what the DataSet Class

looks like

DataTable Collection

DataRelations 0

0 1 3

DataRelations 1 DataRelations 2 DataRelations 3

2

DataRelations Collection

DataSet Object

0 1 2 3 4 5

DataTable 1

DataRow0

DataRow1 DataRow2 DataRow3

DataRow Collection

DataCol_0 DataCol_1 DataCol_2 DataCol_3

DataColumn Collection

Const0 Const0 Const0 Const0

Constraints Collection

DataTable 0

DataRow 0 DataRow1 DataRow2 DataRow3

DataRow Collection

DataCol_0 DataCol_1 DataCol_2 DataCol_3

DataColumn Collection

Const0 Const1 Const2 Const3

Constraints Collection

DataSet Class – Properties & Methods

 Table below lists some important properties, methods and constructor of the DataAdapter Class:

Public Constructors

DataSet Constructor Overloaded. Initializes a new instance of the OleDbDataSet class.

Public Properties

Property Description

DataSetName Gets or sets the name of the current DataSet.

Tables Gets the collection of tables contained in the DataSet

Public Methods

Method Description

Using the DataSet Class Object

 The DataSet object stores the result of your query in a complex and flexible data structure.

 In this course, we will simply show the basic use of this class for fetching and retrieving data only.

 In order to use the DataSet Object, you need to keep in mind the diagram show above. Primary the following

 DataSet contains a collection of DataTable objects.

 DataTable object contains a Collection name DataRow that hold Row objects that store the rows of a query.

 DataTable object contains a Collection name DataColumn that hold Column objects that store the metadata of each

column

 Note that for simple data access, you only need the DataTable, DataRow collection and Row objects.

Example 13 - Executing SELECT Query using DataSet that returns One or Multiple Records

 Problem Statement:

 Execute a query to return the one or multiple records from the Customer Table of the SQL Database for the customers whose
ID Number is is available via a variable strIDNumber. User the Parameters Collection to manage the parameters. Use

DataSet object to store and manage the data retrieved from the database. Display the resultant records in a message box,

indicate if record is empty as well.

 Steps to create data access code to use the DataAdapter & DataSet Objects in your applications are as follows:

Step 1: Verify that the ADO.NET Provider and Data mechanism are imported into your code

Imports System.Data

Imports System.Data.OleDb 'OLEDB Provider

ms-help://MS.VSCC.2003/MS.MSDNQTR.2003FEB.1033/cpref/html/frlrfsystemdatadatasetclassctortopic.htm
ms-help://MS.VSCC.2003/MS.MSDNQTR.2003FEB.1033/cpref/html/frlrfsystemdatadatasetclassdatasetnametopic.htm
ms-help://MS.VSCC.2003/MS.MSDNQTR.2003FEB.1033/cpref/html/frlrfsystemdatadatasetclasstablestopic.htm

 89

Step 2: We create the Connection, Command object and set Parameters as necessary.

 Code:

'Step 1-Create Connection, assign Connection to string & open it

Dim strConn As String = "Provider=SQLOLEDB;Data Source=SATURN12\SQLEXPRESS;" & _

 "Database=smallbusinessdb;User ID=dbuser01;Password=dbpassword01"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Open the Connection

objConn.Open()

'Step 4-Create SQL string. We assume here that the variable intID contains the ID

Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = ?"

'Step 5-Create Command object, pass string and connection object as arguments

Dim objCmd As New OleDbCommand(strSQL, objConn)

'Step 6-Add Parameter to Collection & Set Value to variable storing data

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = strIDNumber

Step 3: We create DataAdapter, DataSet Object and execute query and populate DataSet.

 Code:

'Step 7-Create DataAdpater object

Dim objDA As New OleDbDataAdapter(objCmd)

'Step 8-Create DataAdpater object

Dim objDS As New DataSet()

'Step 9-Call Fill method, pass DataSet object as argument

objDA.Fill(objDS)

 90

Step 4: Retrieving the Data Stored in the DataTable Data Row Collection.

 Now we need to search the internal objects of the Tables Collection to extract our results:

'Step 11-Get first Table object from DataTable Collection

Dim objDT As DataTable = objDS.Tables.Item(0)

'Step 12-Create Row object to hold the results of the search

Dim objRow As DataRow

'Step 13-Test to make sure there is data in the in Data Rows Collection

'Note that the Rows (DataRows) collection is a child of the DataTable.

If objDT.Rows.Count <> 0 Then

 'Step 14-Iterate through collection and extract data from a row.

 'Use Item method to get the column data

 For Each objRow In objDT.Rows

'Step 14b-Extract data from a row. Use Item method to get the column data

 strIDNumber = CStr(objDR.Item(0))

 strName = CStr(objDR.Item(1))

 dBirthDate = CDate(objDR.Item(2))

 strAddress = CStr(objDR.Item(3))

 strPhone = CStr(objDR.Item(4))

 intAge = CInt(objDR.Item(5))

'Step 15-Now that you have the data for a record or row, do what you want

 MessageBox.Show(strIDNumber & strName & dBirthDate & strAddress & strPhone & intAge)

 Next

 Else

 'Step 16-No data returned, Record not found. Do what you want here!

 MessageBox.Show("No Customers found")

 End If

Step 5: Clean up

 Now clean up and destroy objects:

'Step 17-Terminate objects

objCmd.Dispose()

objCmd = Nothing

objDA.Dispose()

objDA = Nothing

objDT.Dispose()

objDT = Nothing

objRow = Nothing

objConn.Close()

objConn.Dispose()

objConn = Nothing

 91

Example 14 - Executing SELECT Query that Return TWO Tables using DataSet

 Problem Statement:

 Execute two queries to return TWO TABLES. Return the Customer & Product Tables. User the Parameters Collection to

manage the parameters. Use a DataSet to store the multiple tables

 The code to handle multiple records is identical as the previous code. Since a collection is being used to store the Rows, the For

Each Loop will either return one row or multiple rows.

 Steps to create data access code to use the DataAdapter & DataSet Objects in your applications are as follows:

Step 1: Verify that the ADO.NET Provider and Data mechanism are imported into your code

Imports System.Data

Imports System.Data.OleDb 'OLEDB Provider

Step 2: We create the Connection, Command object and set Parameters as necessary.

 Code:

'Step 1-Create Connection, assign Connection to string & open it

Dim strConn As String = "Provider=SQLOLEDB;Data Source=SATURN12\SQLEXPRESS;" & _

 "Database=smallbusinessdb;User ID=dbuser01;Password=dbpassword01"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Open the Connection

objConn.Open()

'Step 4-Create SQL string. Here we have 2 QUERIES, to search 2 Tables

 Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = ?;" & _

 "SELECT * FROM Product WHERE Product_ID = ?"

'Step 5-Create Command object, pass string and connection object as arguments

Dim objCmd As New OleDbCommand(strSQL, objConn)

'Step 6-Add Parameter to Collection & Set Value to variable storing data

objCmd.Parameters.Add("Customer_ID", OleDbType.Integer).Value = txtIDNum.txt

Step 3: We create DataAdapter, DataSet Object and execute query and populate DataSet.

 Code:

'Step 7-Create DataAdpater object

Dim objDA As New OleDbDataAdapter(objCmd)

'Step 8-Create DataAdpater object

Dim objDS As New DataSet()

'Step 9-Call Fill method, pass DataSet object as argument

objDA.Fill(objDS)

 92

Step 4: Retrieving the Data Stored in the DataTable Data Row Collection.

 Now we need to iterate through the FIRST TABLE, table(0) to extract the ROWS for the first table in the DataTable Collection:

'Step 11-Get first Table object from DataTable Collection

Dim objDT As DataTable = objDS.Tables.Item(0)

'Step 12-Create Row object POINTER to point to each ROW OBJECT

Dim objRow As DataRow

'Step 13-Test to make sure there is data in the in Data Rows Collection

'Note that the Rows (DataRows) collection is a child of the DataTable.

If objDT.Rows.Count <> 0 Then

 'Step 14-Iterate through collection and extract data from a row.

 'Use Item method to get the column data

 For Each objRow In objDT.Rows

'Step 14b-Extract data from a row. Use Item method to get the column data

 strIDNumber = CStr(objDR.Item(0))

 strName = CStr(objDR.Item(1))

 dBirthDate = CDate(objDR.Item(2))

 strAddress = CStr(objDR.Item(3))

 strPhone = CStr(objDR.Item(4))

 intAge = CInt(objDR.Item(5))

'Step 15-Now that you have the data for a record or row, do what you want

 MessageBox.Show(strIDNumber & strName & dBirthDate & strAddress & strPhone & intAge)

 Next

 Else

 'Step 16-No data returned, Record not found. Do what you want here!

 MessageBox.Show("No Customers found")

 End If

 93

Step 5: Retrieving the Data Stored in the DataTable Data Row Collection.

 Now we need to iterate through the FIRST TABLE, table(0) to extract the ROWS for the first table in the DataTable Collection:

'Step 11-POINT OR GET SECOND Table object from DataTable Collection

 objDT objDS.Tables.Item(1)

'Step 13-Test to make sure there is data in the in Data Rows Collection

If objDT.Rows.Count <> 0 Then

 'Step 14-Iterate through collection and extract data from a row.

 For Each objRow In objDT.Rows

'Step 14b-Extract data from a row. Use Item method to get the column data

 strProduct_ID = CStr(objDR.Item(0))

 strProduct_Name = CStr(objDR.Item(1))

 strProduct_Description = CStr(objDR.Item(2))

 dProduct_Date = CDate(objDR.Item(3))

 decProduct_Cost = CStr(objDR.Item(4))

 decProduct_Sale_Price = CStr(objDR.Item(5))

'Step 15-Now that you have the data for a record or row, do what you want

 MessageBox.Show(strProduct_ID & strProduct_Name & strProduct_Description & dProduct_Date

& decProduct_Cost & decProduct_Sale_Price)

 Next

 Else

 'Step 16-No data returned, Record not found. Do what you want here!

 MessageBox.Show("No Products found")

 End If

Step 6: Clean up

 Now clean up and destroy objects:

'Step 17-Terminate objects

objCmd.Dispose()

objCmd = Nothing

objDA.Dispose()

objDA = Nothing

objDT.Dispose()

objDT = Nothing

objRow = Nothing

objConn.Close()

objConn.Dispose()

objConn = Nothing

 94

Example 15 - SELECT Query that Return TWO Tables using DataSet (METHOD II)

 Problem Statement:

 We will show a different implementation of the previous example. Execute two queries to return TWO TABLES. Return the

Customer & Product Tables. User the Parameters Collection to manage the parameters. Use a DataSet to store the multiple

tables

 The code to handle multiple records is identical as the previous code. Since a collection is being used to store the Rows, the For

Each Loop will either return one row or multiple rows.

 Steps to create data access code to use the DataAdapter & DataSet Objects in your applications are as follows:

Step 1: Verify that the ADO.NET Provider and Data mechanism are imported into your code

Imports System.Data

Imports System.Data.OleDb 'OLEDB Provider

Step 2: We create the Connection, Command object and set Parameters as necessary.

 Code:

'Step 1-Create Connection, assign Connection to string & open it

Dim strConn As String = "Provider=SQLOLEDB;Data Source=SATURN12\SQLEXPRESS;" & _

 "Database=smallbusinessdb;User ID=dbuser01;Password=dbpassword01"

'Step 2-Create Connection object, Pass the string as an argument to the constructor

Dim objConn As New OleDbConnection(strConn)

'Step 3-Open the Connection

objConn.Open()

'Step 4-Create SQL string. Here we have 2 QUERIES, to search 2 Tables

 Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = ?;" & _

 "SELECT * FROM Product WHERE Product_ID = ?"

'Step 5-Create Command object, pass string and connection object as arguments

Dim objCmd As New OleDbCommand(strSQL, objConn)

'Step 6-Add Parameter to Collection & Set Value to variable storing data

objCmd.Parameters.Add("Customer_ID", OleDbType.Integer).Value = txtIDNum.txt

Step 3: We create DataAdapter, DataSet Object and execute query and populate DataSet.

 Code:

'Step 7-Create DataAdpater object

Dim objDA As New OleDbDataAdapter(objCmd)

'Step 8-Create DataAdpater object

Dim objDS As New DataSet()

'Step 9-Call Fill method, pass DataSet object as argument

objDA.Fill(objDS)

 'Step 5-Name tables based on order of query

 objDS.Tables(0).TableName = "Customer"

 objDS.Tables(1).TableName = "Product"

 95

Step 4: Retrieving the Data Stored in the DataTable Data Row Collection.

 Now we need to iterate through the FIRST TABLE, table(0) to extract the ROWS for the first table in the DataTable Collection:
'Step 11-Get first Table object from DataTable Collection

Dim objDT As DataTable = objDS.Tables.Item(0)

'Step 12-Create Row object POINTER to point to each ROW OBJECT

Dim objRow As DataRow

'Step 13-Loop through DataTables Collection to access each table(i)

For Each objDT In objDS.Tables

 'Step 14-Loop throgh data row collection to access row in table(i)

 For Each objRow In objDataTable.Rows

 'Step 15-Access Table(0) and display data

 If objDT.TableName = "Customer" Then

 If objDT.Rows.Count <> 0 Then

 'Step 16-Extract data from a row.

 strIDNumber = CStr(objDR.Item(0))

 strName = CStr(objDR.Item(1))

 dBirthDate = CDate(objDR.Item(2))

 strAddress = CStr(objDR.Item(3))

 strPhone = CStr(objDR.Item(4))

 intAge = CInt(objDR.Item(5))

 Else

 'Step 17-Display no record found

 MessageBox.Show("No Customers found")

 End If

 End If

 'Step 18-Access Table(1) and display data

 If objDT.TableName = "Product" Then

 If objDT.Rows.Count <> 0 Then

 'Step 19-Extract data from a row.

 strProduct_ID = CStr(objDR.Item(0))

 strProduct_Name = CStr(objDR.Item(1))

 strProduct_Description = CStr(objDR.Item(2))

 dProduct_Date = CDate(objDR.Item(3))

 decProduct_Cost = CStr(objDR.Item(4))

 decProduct_Sale_Price = CStr(objDR.Item(5))

 Else

 'Step 20-Display no record found

 MessageBox.Show("No Products found")

 End If

 End If

 Next

Next

Step 5: Clean up

 Now clean up and destroy objects:
'Step 17-Terminate objects

objCmd.Dispose()

objCmd = Nothing

objDA.Dispose()

objDA = Nothing

objDT = Nothing

objRow = Nothing

objConn.Close()

objConn.Dispose()

objConn = Nothing

