
1	a	Define the term <i>algorithm</i> .	(1 mark)
	b	Give an example of an algorithm used in everyday life.	(1 mark)
	c	Explain the meaning of shapes A and B in Figure 1, when used in a flow chart.	(2 marks)

2 An algorithm is described by the flow chart in Figure 2.

a Complete the table, recording the results of each step as the algorithm is applied.

You may not need all of the rows.

Give the values of *A*, *B*, *C* and *D* to 3 decimal places and the values of *E* to 1 significant figure.

(3 marks)

A	В	п	С	D	Ε	is <i>n</i> > 3?

b If the restriction of n > 3 is changed to n > 100, state the value of *E* when n = 100.

(1 mark)

- 3 The algorithm below finds the approximate square root of a number.
 - 1 Input a number, N
 - 2 Calculate $S = \frac{N}{2}$
 - 3 Calculate $T = \frac{\frac{N}{S} + S}{2}$
 - 4 If S = T when rounded to 2 decimal places, go to 7
 - 5 Replace S with the value of T
 - 6 Go to 3
 - 7 Output *S* to 2 decimal places
 - **a** Apply the algorithm with N = 7. Complete the table, recording the values of *S* and *T* each time they change.

S	Т	S = T to 2 dp?

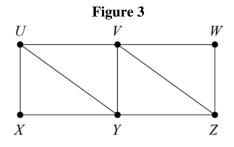
- **b** Show that the algorithm fails when N = -4. Give a reason for this failure.
- 4 The list of numbers below is to be sorted into **descending** order.

7 5 4 6 8

a	Perform the first pass of a bubble sort, showing each comparison.	(2 marks)
b	Write the number of comparisons and the number of swaps used in this first	
	pass.	(1 mark)
с	State which numbers, if any, are guaranteed to be in their correct final position	
	after the first pass.	(1 mark)

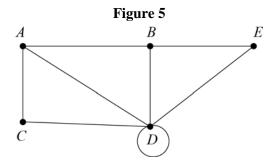
Pearson Edexcel AS and A level Further Mathematics

(3 marks)


(3 marks)

5 Use a quick sort to arrange the numbers below into ascending order.

65 43 24 64 46 13 71 23 16 45


(4 marks)

6 Look at Figure 3.

a	Explain why UXYZWVYU is not a cycle of the graph in Figure 3.	(1 mark)
b	Explain why there would be 5 arcs in a spanning tree of the graph in Figure 3.	(1 mark)
c	Show that the sum of the valencies of the vertices of the graph in Figure 3 is	
	equal to twice the number of edges.	(2 marks)
d	Determine whether the network UXYZWVYU is Eulerian.	(1 mark)

7 Look at Figure 5.

a Use an adjacency matrix to represent the graph in Figure 5.

A network is defined by the distance matrix below.

(2 marks)

	A	B	С	D	E
A	_	6	_	7	_
B	6	_	4	_	12
С	_	4	_	5	_
D	_	_	5	_	_
E	_	10	_	_	_

b Draw the network.

(2 marks)

8 Below are the lengths of seven pieces of wood to be cut from 1.25 m strips.All lengths are given in cm.

40 55 65 40 40 45 40 45 70 40 45

a Use the first-fit decreasing algorithm to calculate how many 1.25 m strips are required and how much wood will be wasted. (4 marks)
b i Use the full-bin algorithm to calculate how many 1.25 m strips are required. (2 marks)
ii State if your solution for part bi is optimal. Justify your answer. (2 marks)