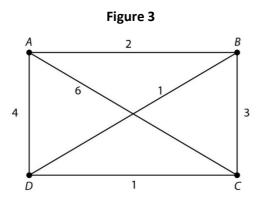

1 Look at Figure 1.

а	Complete a Hamiltonian cycle starting <i>ADF</i> for the graph in Figure 1.	(1 mark)
b	Use the planarity algorithm to determine whether the graph shown in	
	Figure 1 is planar.	
	Draw a diagram to justify your answer.	(3 marks)
Arc	cs ED and CD are now added to the graph.	
С	Explain why the new graph is not planar.	(1 mark)

2 Figure 2 shows roads connecting five towns. The numbers show distances in kilometres.

These are the distance and route matrices after the third iteration of Floyd's algorithm:

	A	В	С	D	Ε
A	I	22	42	15	15
В	22	-	20	5	23
С	42	20	-	25	43
D	15	5	25	-	16
E	15	23	43	16	-


	А	В	С	D	Ε
А	1	В	В	D	Е
В	А	-	С	D	Е
С	В	В	-	В	В
D	А	В	В	-	Е
E	А	В	В	D	-

a Perform the fourth iteration. (4 marks)There are no changes on the fifth iteration.

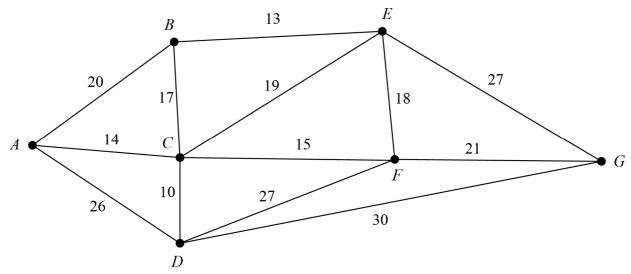
b Explain how to find the shortest distance and route from town *C* to town *A* using your answer from part **a**.

State the route and the distance. (4 marks)

3 Figure 6 shows a network with the weights on the arcs representing distances.

a Apply Floyd's algorithm to find the complete network of shortest distances.

You should show both the distance table and the route table after each iteration. (9 marks)


	Α	В	с	D
A				
В				
с				
D				

	A	В	с	D
Α				
В				
С				
D				

b Explain how to use your final matrix to find the shortest route from vertex *A* to vertex *C*.

State this distance. (3 marks)

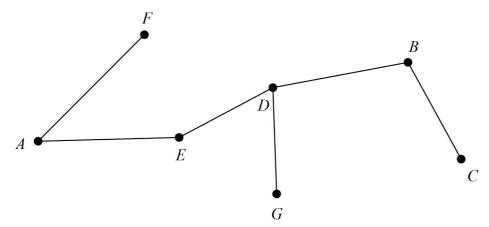
4 The network in the diagram shows the distances, in km, between seven wind turbines. All the turbines need to be serviced by an engineer.

By deleting *C* a lower bound for the length of the route is found to be 122 km.

- **a** By deleting *F*, find another lower bound of the route. State which is the better lower bound of the two.
- **b** By inspection, complete the table of least distances below.

(5 marks) (3 marks)

	A	В	С	D	E	F	G
A	—	20	14		33	29	
B	20	_	17		13	31	40
С	14	17	_	10	19	15	
D			10	—			30
E	33	13	19		—	18	27
F	29	31	15		18	—	21
G		40		30	27	21	—


c Starting at *F* use the nearest neighbour algorithm with the completed table to obtain an upper bound for the length of the route. State your route.
 (3 m)

(3 marks)

	A	В	С	D	E	F	G
A	—	4	5	3	2	5	6
B	4	Ι	1	2	4	7	6
С	5	1		3	4	6	7
D	3	2	3	_	2	6	4
E	2	4	4	2		6	6
F	5	7	6	6	6	_	10
G	6	6	7	4	6	10	_

The table shows the distance, in km, between seven houses.

Prim's algorithm is used on the above table to find a minimum spanning tree. The order in which the arcs are chosen is *AE ED BD BC DG AF* with the associated tree.

Melissa delivers parcels. She has a parcel to deliver to each of the seven houses.

The distance between the parcel depot and each house, in km, is shown in the table below.

House	A	B	С	D	E	F	G
Distance from depot P (km)	11	15	16	16	12	17	18

Melissa wants to travel the shortest distance from the depot to each house before returning to the depot.

- a Using the given information, calculate a lower bound for the length of Melissa's route. You must show all your working clearly. (3 marks)
- b Use the nearest neighbour algorithm, starting from the parcel depot (P), to find a route for Melissa to deliver all her parcels. Hence find an upper bound for the length of Melissa's route.
 (3 marks)