Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor
1a	For example, ADFBCEA, ADFCBEA, ADFBECA, or ADFCEBA	B1	1.1b	7th Be able to determine if a graph contains a Hamiltonian cycle
		(1)		
1b	For example, using $ADFBCEA$, AB(I) $AC(O)BE(I)$ $CF(O)A$ DFC B F	M1 A2	1.1b 1.1b	6th Be able to apply the planarity algorithm for planar graphs
1c	States that one named arc (either <i>ED</i> or <i>CD</i>) crosses at least one named arc	B1 (1)	2.4	6th Be able to apply the planarity algorithm for planar graphs
(5 marks)				
Notes1aMust start and finish with A.1bM1 for Hamiltonian cycle drawn; A1 for each non-intersecting arc drawn.				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor	
2a	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A1 M1 A1	1.1b	7th Be able to find all shortest paths between all pairs of vertices using Floyd's algorithm	
		(4)			
2b	Using row 3, column 1 Shortest distance from <i>C</i> to <i>A</i> is 40 From route matrix <i>CA</i> goes via <i>D</i> , so <i>CDA</i> <i>CD</i> goes via <i>B</i> , from route matrix So, <i>CBDA</i>	M1 A1 M1 A1	2.4	7th Be able to find all shortest paths between all pairs of vertices using Floyd's algorithm	
		(4)			
(8 marks)					
Notes					
2a M1 first row distances					
AI All distances					
MI row C correct routes					
	AI All routes				
Condone dashes top left to bottom right diagonal					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor
3a	A B C D A - 2 6 4 B 2 - 3 1 C 6 3 - 1 D 4 1 1 -	M1 A1 A1ft	1.1b	7th Be able to find all shortest paths between all pairs of vertices using Floyd's algorithm
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		
	A B C D A A B C D B A B C D B A B C D C A B C D C A B C D D A B C D A B C D A B C D A B C D A B C D A B C D A B C D B A B C D C B B C D D B B C D	A1 A1		

	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	B A B C D			
	C B B C D			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	A B C D A - 2 5 3 B 2 - 3 1 C 5 3 - 1 D 3 1 1 - A B C D A A B D B B A B D D C D D C D D B C D D B C D			
	<u>A</u> - <u>2</u> <u>4</u> <u>3</u>			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		(9)		
3b	A to C via D (row 1, col 3) so ADC	M1	2.4	7th
	A to D is via B (row1 col 4) so $ABDC$	A1		Be able to find all shortest paths
	(row 1, col 3) from distance matrix			of vertices using
	Distance = 4	A1		Floyd's algorithm
		(3)		
			I	(12 marks)
Notes				
3a First M1: All 32 cells completed, with dashes on diagonal. Condone 2 errors per table.				
First A1: All distances and routes correct.				
Second M1: Allow one error only, so at least one value reduced correctly				
Fifth A1 : <i>D</i> in row 1 col 3				

Sixth A1: All correct

4 a	B 13 E	M1	1.1b	7th	
	17 A•14 10			Know how to identify the best lower and upper bounds	
	b Length = 81 km	A1			
	So lower bound 81 + 15 + 18 = 114 km	M1 A1			
	Best lower bound is 122 km	B1			
		(5)			
4b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1 B1	1.1b	5th Understand the travelling salesman problem	
		(3)			
4c	FCD(C)ABEGF	M1 A1	1.1b	5th Use the nearest neighbour	
	Length 130 km	A1		algorithm to find an upper bound	
		(3)			
				(11 marks)	
Notes					
4b B1 DF correct. B1 AC correct. B1 all others correct.					

4c M1Tour, all vertices visited.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress Descriptor	
5a	Two shortest arcs from depot A and E $11 + 12 = 23$	M1	3.1b	8th	
		A1		Solve the	
	16 + 23 = 39 km	A1		salesman problem and interpret the solution in context	
		(3)			
5b	PAEDBCFGP	M1	1.1b	8th	
		A1		Solve the travelling	
	Upper bound 47 km	A1		salesman problem and interpret the solution in context	
		(3)			
(6 marks)					
Notes 5b M1 correctly uses spanning tree (P)AEDBC					

TOTAL MARK: 42