M1. (a)	(i)	meter deflects then returns to zero ✓ current produces (magnetic) field / flux ✓ change in field / flux through Q induces emf ✓ induced emf causes current in Q (and meter) ✓
		Deflection to right (condone left) then zero is equivalent to 1st mark.
		Accept momentary deflection for 1 st point.
		"Change in field / flux <u>induces</u> current in Q" is just 🖌 from the last two marking points.

max 3

(ii) meter deflects in opposite direction (or to left, or ecf) ✓ field / flux through P is reduced ✓ induces emf / current in opposite direction ✓ Ignore references to magnitude of deflection.

2

(b) (i) flux linkage (=
$$n\Phi = nBA$$
) = 40 × 0.42 × 3.6 × 10⁻³
= 6.0(5) × 10⁻² ✓

Unit mark is independent. Allow 6×10^{-2} .

Wb turns ✓ Accept 60 mWb turns if this unit is made clear. Unit: allow Wb.

(ii) change in flux linkage = $\Delta(n\Phi)$ = 6.05 × 10⁻² (Wb turns) \checkmark induced emf $\left(=\frac{\Delta(n\phi)}{\Delta t}\right) = \frac{6.05 \times 10^{-2}}{0.50} = 0.12(1)$ (V) \checkmark

Essential to appreciate that 6.05×10^{-2} is change in flux linkage for 1st mark. Otherwise mark to max 1.

[9]

2

M3.(a) (i) 60 (degrees) 🗸

(ii) angle required is 150° ✓

2

1

1

(b) (i) (magnitude of the induced) emf ✓
Accept "induced voltage" or "rate of change of flux linkage", but not "voltage" alone.

(ii) frequency
$$\left(=\frac{1}{T}\right) = \frac{1}{40 \times 10^{-3}} \checkmark (= 25 \text{ Hz})$$

no of revolutions per minute = $25 \times 60 = 1500$ 1500 scores both marks. Award 1 mark for $40s \rightarrow 1.5$ rev min⁻¹.

2

(iii) maximum flux linkage (=BAN) = 0.55 (Wb turns) ✓

angular speed $\omega \left(=\frac{2\pi}{T}\right) = \frac{2\pi}{40 \times 10^{-3}} \checkmark (= 157 \text{ rad s}^{-1})$