What is the resistance of another cylindrical conductor of length *I*, diameter $\frac{p}{2}$, and resistivity ρ ?

1

2

(Total 1 mark)

The graph shows the current–voltage (I-V) characteristics of a filament lamp.

What is the resistance of the filament when the potential difference (pd) across it is 4.0 V?

A body falls freely, with negligible air resistance. What quantity of the body is its rate of change of momentum?

(Total 1 mark)

4

3

Three identical cells, each of internal resistance *R*, are connected in series with an external resistor of resistance *R*. The current in the external resistor is *I*. If one of the cells is reversed in the circuit, what is the new current in the external resistor?

What is the energy stored in the spring?

5

6

(Total 1 mark)

A car accelerates uniformly from rest along a straight road. Which graph shows the variation of displacement *x* of the car with time *t*?

7

A lift and its passengers with a total mass of 500 kg accelerates upwards at 2 m s⁻² as shown. Assume that g = 10 m s⁻².

What is the tension in the cable?

An object is accelerated from rest by a constant force *F* for a time *t*. Which graphs represent the variation of time with the change in the kinetic energy and the change in momentum of the object?

D Acceleration and rate of change of momentum.

(Total 1 mark)

 \bigcirc

9

Sound waves cross a boundary between two media X and Y. The frequency of the waves in X is 400 Hz. The speed of the waves in X is 330 m s⁻¹ and the speed of the waves in Y is 1320 m s⁻¹. What are the correct frequency and wavelength in Y?

	Frequency / Hz	Wavelength / m	
Α	100	0.82	0
В	400	0.82	0
С	400	3.3	0
D	1600	3.3	0

(Total 1 mark)

11

10

A light source emits light which is a mixture of two wavelength, λ_1 and λ_2 . When the light is incident on a diffraction grating it is found that the fifth order of light of wavelength λ_1 occurs at the same angle as the fourth order for light of wavelength λ_2 . If λ_1 is 480 nm what is λ_2 ?

(Total 1 mark)

12

Which of the following waves cannot be polarised?

- A Each meson consists of a single quark and a single antiquark.
- **B** Each baryon consists of three quarks.
- **C** The magnitude of the charge on every quark is $\frac{1}{3}$
- **D** A particle consisting of a single quark has not been observed.

0	
0	
0	
0	

(Total 1 mark)

14 Electron capture can be represented by the following equation.

$$p + e^- \rightarrow X + Y$$

Which row correctly identifies X and Y?

	x	Y	
Α	р	K⁻	0
В	e-	e+	0
С	n	V _e	0
D	n	π^0	0

Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size.

15

Which correctly compares the de Broglie wavelength λ_e of the electrons with the de Broglie wavelength λ_p of the protons and the width of the diffraction patterns that are produced by these beams?

	comparison of de Broglie wavelength	diffraction pattern	
Α	$\lambda_{\rm e} > \lambda_{\rm p}$	electron beam width > proton beam width	0
в	$\lambda_{\rm e} < \lambda_{\rm p}$	electron beam width > proton beam width	0
с	$\lambda_{\rm e} > \lambda_{\rm p}$	electron beam width < proton beam width	0
D	$\lambda_{\rm e} < \lambda_{\rm p}$	electron beam width < proton beam width	0