INDUCTION ASSIGNMENT MARKSCHEME

1	curr	voltage	
1.	Curre	resistance	
	1	<u>2V</u>	
	⁼ 15	50 <i>Ω</i> ×	
	= 0.0	08 🗸	
	I	A ✓	3
2	(a)	(i) top diagram shows:	
4.	(a)	(i) top magrain shows. 1. circular waves \checkmark	
		lower diagram shows:	
		2. less diffraction than top diagram \checkmark	
		either diagram shows:	
		3. at least three waves shown \checkmark	
		4. no change in wavelength in these waves \checkmark	4
		(II) wavelength V	1
		speed	
	(b)	(i) wavelength = $\frac{1}{\text{frequency}}$ [use of]	
		330 m/s	
		$=$ $\frac{1000 \text{Hz}}{1000 \text{Hz}}$	
		= 0.33 🗸	
		m ✓	3
-			
3.	(c)	(i) $KE = \frac{1}{2} \times m \times v^2$	
		$= \frac{1}{2} \times 85 \times 12^{-1} \checkmark$	
		-0120 V	3
		energy	U
		(ii) time = $\frac{1}{\text{power}}$	
		= $6120 \text{ J} / 180 \text{ W}; [\text{Allow ecf}] \checkmark$	
		= 34;	_
4	(a)	s; ✓	3
4.	(a)	(i) g.p.e. = lign = $15 \times 98 \times 12^{\circ}$	
		$= 18; (17.64) \checkmark$	
		J; ✓	3
		(ii) power out $=\frac{\text{work done}}{\text{work done}}$.	
		time	
		$=$ $\frac{18}{4}$; \checkmark [Allow use of 17.64]	
		-45 \checkmark [gives 4.41]	
		$\frac{1}{W}; \checkmark [gives + +i]$	
		[Accept ecf from part (a)(i)]	3
		(iii) efficiency $= \frac{\text{power out}}{100}$	
		power in (* 100)	
		$=$ $\frac{4.5}{(\times 100)}$ \checkmark	
		30 (150)	2
	(h)	$=$ 0.15 (15 %);[Allow ect] \checkmark	2
		[Reject light]	1

5. (a) (i) voltage has both + and - values/either direction;
$$\checkmark$$
 1
(ii) amplitude - (±) 2.6 (V) \checkmark
period - 0.024 (s) \checkmark 2
(iii) $f = \frac{1}{T} = \frac{1}{0.024s}$; \checkmark
= 41.7 ;[Allow ecf from (ii)] \checkmark
Hz \checkmark 3

(a) A description to include: 1. upward push/reaction/thrust; \checkmark 2. of the ground on the athlete; \checkmark (b) (i) 0.39 (s); \checkmark [Accept 0.4 (s)] (ii) height = area below graph / average velocity × time; \checkmark $= \frac{1}{2} \times 3.8 \times 0.39$; [Allow ecf from (b)(i)] \checkmark = 0.74; \checkmark m; \checkmark 4

[Allow use of 4.0]

6.

(iii) acceleration =
$$\frac{(v-u)}{t}$$
;
= $-\frac{7.6}{0.78}$; [allow $-\frac{3.8}{0.39}$] \checkmark
= $-9.7 \checkmark$
m/s² \checkmark 3

(iv)	downwards; \checkmark negative gradient/backwards slope/athlete slowing down/ retardation/deceleration; \checkmark	2
(v)	F = ma; = 65 kg × 9.7 (m/s ²) [Allow ecf from b(iii)] \checkmark = 630 - 633 \checkmark	
()	= 0.50 - 0.53	3
(v1)	[Reject gravity]	1

7.	(a)	(i)	copper ions towards negative plate ie to right		
		(ii)	sulphate ions towards positive plate ie to left; ammeter/ M_2 :	\checkmark	1
			moving charges make a current; \checkmark		2
	(b)	(i)	$Q = It; = 0.5 \times 5 \times 60 \checkmark$		
			= 150 🗸		
			C ✓		3
		(ii)	$150/(3.2 \times 10^{-19})$		
			4.688×10^{20} \checkmark		2
			[Allow ecf from part (b)(i)I		
		(iii)	$W = V \times Q$		
			$= 6 \times (3.2 \times 10.19)$ \checkmark		
			$= 1.92 \times 10^{-18}$		
			J✓		3

8.	(a)	Any two from:	
		1. all transverse waves; ✓	
		2. all travel at the speed of light; \checkmark	
		3. can all travel in a vacuum; \checkmark	2
	(b)	(i) red \checkmark	1
		(ii) violet/blue ✓	1
	(c)	$\lambda = c/f$	
		$= 3.0 \times 10^8 / 4.0 \times 10^{12}$	
		$= 7.5 \times 10^{-5}$	
		m ✓	3

use of Pythagoras	
$R = \sqrt{(500^2 + 1200^2)}$	✓
= 1300 🗸	
N 🗸	

Use of $tan\theta$

9.

$\tan\theta = 500/1200$	✓
= 0.4167	✓
$\theta = 23^{\circ}$	✓

3

3