

A-LEVEL PHYSICS A

PHYA2 – mechanics, materials and waves Mark scheme

2450 June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

COMPONENT NAME: Unit 2 – Mechanics, materials and waves

COMPONENT NUMBER: PHYA2

Question	Part	Sub Part	Marking Guidance	Mark	Comments
1	а		$8300 \times 9.81 \text{ OR} = 81423 \checkmark$ $(8300 \times 9.81 \sin 25)$ $= 3.4 \times 10^4 \text{ (N)} \checkmark (34 411 \text{ N)} \text{ ecf from first line unless g not used}$ msin25 gets zero	2	Penalize use of g=10 here only (35 077 N) Allow 9.8 in any question Correct answer only, gets both marks for all two mark questions
1	b	İ	$(E_k = \frac{1}{2}mv^2)$ = $\frac{1}{2} \times 8300 \times 56^2 \checkmark$ = $1.3 \times 10^7 (J) \checkmark (13 014 400)$ allow use of 8300 only	2	In general: Penalise transcription errors and rounding errors in answers

1	b	ii	$mgh = KE (13\ 014\ 400)$ for mgh allow GPE or E_p OR 13\ 014\ 400 / 81\ 423\ \forall h = 160\ (m) \sqrt{(159.8)} ecf\ 1bi	2	Allow use of suvat approach
1	С	i	(work done) by friction \ drag \ air resistance \ resistive forces ✓ (Energy converted) to internal \ thermal energy ✓	2	Allow 'heat'
1	C	ii	0.87 x (8300 x 9.81 x 140 = 9 917 000) OR $v = \sqrt{\left[\frac{2 \times (9.917.000)}{8300}\right]} \checkmark$ = 49 (= 48.88 ms ⁻¹) \checkmark	2	87% of energy for 140m or 160m only for first mark. Use of 160 (52.26) and/or incorrect or no % (52.4) gets max 1 provided working is shown. Do not credit suvat approaches here.
			Total	10	

2	а	İ	Use of $\left(s = \frac{1}{2}gt^2\right)$ OR $t^2 = 2s/g$ \checkmark $t = \sqrt{\frac{2 \times 1.2}{9.81}} \checkmark$ $= 0.49 \ (0.4946 \ s)$ \checkmark allow 0.5 do not allow 0.50	3	Some working required for full marks. Correct answer only gets 2
2	а	ii	(s= vt) = 8.5 x 0.4946 ✓ ecf ai = 4.2 m ✓ (4.20) ecf from ai	2	
2	b	İ	$\left(s = \frac{1}{2} (u + v) t\right)$ $t = \frac{2s}{u(+v)} \text{ or correct sub into equation above } \checkmark$ $= \frac{2 \times 0.35}{8.5} = 8.2 \times 10^{-2} \text{ (s) } \checkmark \text{ (0.0824) allow 0.08 but not 0.080 or 0.1}$	2	Allow alternative correct approaches
2	bii		$a = (v-u) / t$ OR correct substitution OR $a = 103$ \checkmark $(=-8.5) / 8.24 \times 10^{-2} = 103.2)$ $(F = ma =) 75 \times (103.2) \checkmark$ ecf from bi for incorrect acceleration due to arithmetic error only, not a physics error (e.g. do not allow $a = 8.5$. Use of g gets zero for the question. $= 7700 \text{ N} \checkmark (7741) \text{ ecf (see above)}$	3	Or from loss of KE Some working required for full marks. Correct answer only gets 2
			Total	10	

3	а	i	m = W/g) (3.4 x 10 ⁴ / 9.81 =) 3500 (3466 kg) \checkmark	1	Allow use of g=10
3	а	ii	(moment = $34\ 000\ x\ 5.0$) = $1.7\ x\ 10^5\ \checkmark$ (Nm) Nm \checkmark do not allow NM \ nM etc	2	allow in words
3	а	iii	170 000 = T x <u>12</u> OR T = 170 000 / <u>12</u> ✓ ecf aii = 1.4(167) x 10^4 ✓ (N)	2	
3	а	iv	(Component of T perpendicular to lever) = $T \cos 24$ OR 14 167 x 0.9135 OR 12942 (N) \checkmark ecf aiii allow 2.5cos24 x T (12942) x 2.5 = F x 8.0 OR F = ((12942) x 2.5) / 8.0 \checkmark ecf for incorrect component of T or T on its own F = 4000 (N) \checkmark (4044) ecf ecf for incorrect component of T or T on its own allow 4100 for use of 14 200 (4054)	3	Some working required for full marks. Correct answer only gets 2. Failure to find component of T is max 2 (4400 N)
			total	8	

а	Good/excellent	The candidate's writing should be legible and the spelling	5/6		
5/6			0,0		
		The candidate's answer will be assessed holistically. The answer			
		will be assigned to one of three levels according to the following			
		criteria.			
		High Level (Good to excellent): 5 or 6 marks			
		The information conveyed by the answer is clearly organised, logical			
		and coherent, using appropriate specialist vocabulary correctly. The			
		form and style of writing is appropriate to answer the question.			
		Mentions 5 of the following:			
		 Diagram (not necessarily labelled) showing a workable 			
		· ·			
		· · · · · · · · · · · · · · · · · · ·			
		· · ·			
		newtons			
		And 2 of the following:			
		At least 7 different loads*			
		Repeat measurements for the same wire (or measure whilst unloading)			
	l l		punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria. High Level (Good to excellent): 5 or 6 marks The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question. Mentions 5 of the following: Diagram (not necessarily labelled) showing a workable arrangement of suitable apparatus measure diameter of wires use a micrometer (for the diameter)* apply range of loads or masses measure original length measure or calculate extension (metre) rule (or equivalent) for the original length or extended length or extension* Calculation of the weight of the mass \ use 'weights' in newtons And 2 of the following: Measure diameter in several places At least 7 different loads*	punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria. High Level (Good to excellent): 5 or 6 marks The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question. Mentions 5 of the following: Diagram (not necessarily labelled) showing a workable arrangement of suitable apparatus measure diameter of wires use a micrometer (for the diameter)* apply range of loads or masses measure original length measure or calculate extension (metre) rule (or equivalent) for the original length or extended length or extension* Calculation of the weight of the mass \ use 'weights' in newtons And 2 of the following: Measure diameter in several places At least 7 different loads* Repeat measurements for the same wire (or measure whilst	punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria. High Level (Good to excellent): 5 or 6 marks The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question. Mentions 5 of the following: Diagram (not necessarily labelled) showing a workable arrangement of suitable apparatus measure diameter of wires use a micrometer (for the diameter)* apply range of loads or masses measure original length measure original length measure or calculate extension (metre) rule (or equivalent) for the original length or extended length or extension* Calculation of the weight of the mass \ use 'weights' in newtons And 2 of the following: Measure diameter in several places At least 7 different loads* Repeat measurements for the same wire (or measure whilst

		 Use of a <u>travelling microscope</u> or Searle's apparatus \ pointer <u>touching</u> scale \ set square (for parallax reduction) \ Vernier scale (not Vernier calipers) * Monitor diameter change during experiment *These points may appear in a clear diagram 			
3/4	Moderate	Intermediate Level (Modest to adequate): 3 or 4 marks The information conveyed by the answer may be less well organised and not fully coherent. There is less use of specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less appropriate.	3/4		
		 Mentions 4 points in total from the following 2 lists: Diagram (not necessarily labelled) showing a workable arrangement of suitable apparatus measure <u>diameter</u> of wires (must be stated) use a micrometer (for the diameter)* apply range of loads or masses measure original length measure or calculate extension (metre) rule (or equivalent) for the original length or extended length or extension* Calculation of the weight of the mass \ use 'weights' in newtons 			
		 Accuracy Measure diameter in several places At least 7 different loads* Repeat measurements for the same wire (or measure whilst unloading) Use of a <u>travelling microscope</u> or Searle's apparatus \ pointer 			

		touching scale \ set square(for parallax reduction) \ Vernier scale (not Vernier calipers)* • Monitor diameter change during experiment *These points may appear in a clear and suitably labelled diagram A four mark answer will have good QWC OR will exceed the specification above and will have at least one of the 5 points from the Accuracy list.			
1/2	Limited	Low Level (Poor to limited): 1 or 2 marks The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only partly appropriate. Two valid points from the list For two marks, at least 3 points are required	1/2		
		Marking points: Diagram (not necessarily labelled) showing a workable arrangement of suitable apparatus measure diameter of wires use a micrometer (for the diameter)* apply range of loads or masses measure original length measure or calculate extension		6 marks	

 (metre) rule (or equivalent) for the original length or extended length or extension* Calculation of the weight of the mass \ use 'weights' in newtons
 Measure diameter in several places At least 7 different loads* Repeat measurements for the same wire (or measure whilst unloading) Use of a travelling microscope or Searle's apparatus \ pointer touching scale \ set square(for parallax reduction) \ Vernier scale (not Vernier calipers) * Monitor diameter change during experiment

4	b	i	<u>brittle</u> ✓ allow misspellings allow: britle, brittleness,	1	
4	b	ii	stress A B	3	Allow full credit if strain plotted against stress correctly
			strain		Allow reasonable free hand straight line.
			For stress- strain: Straight line labelled 'A' with greater gradient than other line and starting close to origin ✓ allow small curve in correct direction at end of line. Line labelled 'B' with significant curve and decreasing gradient which may then undulate ✓ (forgive one label to be missing)		Tolerance for curve of A: no more than 10% of the total change in strain for their line.

	Both of the above AND axes labelled, y, 'stress' or symbol or F/A, and x, ' <u>strain</u> or symbol or deltaL / L' ✓ (disallow if incorrect units are included but forgive 'PA' etc) (Assume stress-strain if no labels are give – max 2) For strain – stress: Straight line labelled 'A' with lesser gradient than other line ✓ allow small curve in correct direction at end of line. Line labelled 'B' with significant curve and increasing gradient which may then undulate ✓ (allow one label to be missing) Both of the above AND axes labelled, x, 'stress' or symbol or F/A, and y, ' <u>strain</u> or symbol or deltaL / L' ✓ (disallow if incorrect units are included)		Line B must have a curved portion of 20% or more. It must have an initial straight section
			A correct force- extension graph gets max 2
4 c i	(strain = $\Delta L/L$) strain = 0.24/100 (= 0.0024) OR correct calculation of extension (0.0036) \checkmark (stress = E x strain) stress = 2.80 (x 10 ¹¹) x 0.0024 \checkmark ecf from first mark = 6.7 x10 ⁸ (Pa) \checkmark ecf from first mark	3	Some working required for full marks. Correct answer only gets 2
4 c ii	$(A = \pi(D/2)^2)$	3	Some working required for full

$\pi(1.4 \text{ (x10}^{-3}) / 2)^2$ OR = 1.539 x 10 ⁻⁶ (m ²) \checkmark ignore incorrect powers of ten $F = E \times A \times \Delta L / L$ OR = 280 (x10 ⁹) x 1.539 (x 10 ⁻⁶) 0.0024 ecf 4ci (incorrect extension or strain)		marks. Correct answer only gets 2
OR A x their stress from 4ci ✓ ecf 4ci for strain and ecf for incorrect area in 4cii but do not accept use of diameter or radius as the area = 1 000 ✓ (1034.46 N)		Use of diameter or radius for area gets zero for the question
total	16	

5	1 _	1 .			
3	а	İ	$\sin 60 = 1.47 \sin \theta$ OR $\sin \theta = \sin 60 / 1.47$ ✓	2	
			$(\sin^{-1} 0.5891) = 36 (^{\circ}) \checkmark (36.0955^{\circ}) (allow 36.2)$		Allow 36.0
5	а	ii	$\sin \theta_c = 1.33/1.47 \text{ OR } \sin \theta_c = 0.9(048) \checkmark$	2	Allow 64 for use
		"	$(\sin^{-1} 0.9048) = 65 (^{\circ}) \checkmark (64.79)$	_	of 0.9 and 66
					for use of 0.91
5	а	liii	Answer consistent with previous answers, e.g.	2	
			If aii >ai:		
			Ray refracts at the boundary AND goes to the right of the normal ✓		
			Angle of refraction > angle of incidence ✓ this mark depends on the first		
					Approx. equal
			If aii < ai:		angles
			TIR ✓		(continuation of
			Angle of reflection = angle of incidence ✓		the line must touch 'Figure 4'
			Ignore the path of the ray beyond water/glass boundary		label)
	h		For December Symposium.	1	
5	b		For Reason or Explanation:	4	
			The angle of refraction should be > angle of incidence when entering the		Allow 'ray
			water ✓		doesn't bend
			water has a lower refractive index than glass \ light is faster in water than		towards normal' (at glass/water)
			in glass ✓		(at glass/watel)
			TIR could not happen \ there is no critical angle, when ray travels from		Allow optical

	water to oil ✓ TIR only occurs when ray travels from higher to lower refractive index \ water has a lower refractive index than oil ✓		density Boundary in question must be clearly implied
	total	10	

6	а		One of: (spectral) analysis of light from stars (analyse) composition of stars Chemical analysis Measuring red shift \ rotation of stars ✓	1	Allow: measuring wavelength or frequency from a named source of light.
			Insufficient answers: 'observe spectra', 'spectroscopy', 'view absorption \emission spectrum', 'compare spectra', 'look at light from stars'.		Allow any other legitimate application that specifies the source of light. E.g. absorbtion\emission spectra in stars, 'observe spectra of materials'
6	b	i	first order beam first order spectrum first order image ✓	1	Allow 'n=1', '1' 'one', 1 st
6	b	ii	The light at A will appear white (and at B there will be a spectrum) OR greater intensity at A ✓	1	
6	С		$(d = 1/ (lines per mm x 10^3))$ = 6.757 x 10 ⁻⁷ (m) OR 6.757 x 10 ⁻⁴ (mm) \checkmark	3	Some working required for full marks. Correct

		$(n\lambda = d \sin \theta)$ = 6.757 x 10 ⁻⁷ x sin 51.0 ✓ ecf only for :		answer only gets 2
		 incorrect power of ten in otherwise correct calculation of d use of d = 1480, 1.48, 14.8 (etc) from incorrect order in 6bii = 5.25 x 10⁻⁷ (m) ✓ ecf only for : incorrect power of ten in otherwise correct d from incorrect order in 6bii 		Power of 10 error in d gets max 2. For use of d in mm, answer = 5.25 x 10 ⁻⁴ gets max 2
		Trom incorrect order in obii		n =2 gets max 2 unless ecf from 6bii
				use of d=1480 yields wavelength of 1150m
6	d	n = d (sin90) / λ OR n = 6.757 x 10 ⁻⁷ / 5.25 x 10 ⁻⁷ ✓ ecf both numbers from 6c	2	Accept 1.28, 1.3
		= 1.29 so <u>no more</u> beams observed ✓ or answer consistent with their working		Second line gets both marks
		OR 2 = d (sinΘ) / λ OR sinΘ = 2 x 5.25 x 10 ⁻⁷ / 6.757 x 10 ⁻⁷ ✓ ecf both numbers from 6c		Conclusion consistent with working
		sin⊖ = 1.55 (so not possible to calculate angle) so <u>no more</u> beams ✓		working

	OR sin⁻¹(2 x (their λ / their d)) ✓			
	(not possible to calculate) so <u>no more</u> beams ✓ ecf			
	total		8	
а	number of (complete) <u>waves</u> (passing a point) <u>in 1 second</u> OR number of waves / time (for the waves to pass a point) OR (complete number of) oscillations \ vibrations <u>per second</u> OR 1/T with T defined as time for 1 (complete) oscillation ✓	1		Allow: Cycles Allow: unit time
b	For two marks: Oscillation of particles \ medium \ material etc, but not oscillation of wave is parallel to \ in same direction as the direction wave (travels) ✓✓ For one mark: Particles\material\medium move(s) \ disturbance \ displacement Parallel to \ in same direction as the direction wave travels OR (oscillations) parallel to direction of wave travel The one mark answer with: Mention of compressions and rarefactions	2		Allow Vibration Allow direction of energy transfer \ wave propagation
		total a	total a	(not possible to calculate) so no more beams

	OR (Longitudinal waves) cannot be polarised Gets two marks ✓		
7 c	$(f = 1540 / 0.50 \times 10^{-3})$ = 3 100 000 (Hz) \checkmark (3 080 000) 2sf \checkmark	2	
7 d	No more than two points from either list (max 3): Description Mention of nodes and antinodes Particles not moving at a node Maximum displacement at antinode Particles either side of node in antiphase / between two nodes in phase Variation of amplitude between nodes Explanation A stationary wave (forms) two waves are of equal frequency or wavelength (and amplitude in the same medium) reflected and transmitted waves \ waves travelling in opposite directions, pass through each other superpose / interfere occurs constructive interference at antinodes destructive interference at nodes	3	Allow 'standing wave'

		√√√		
		total	8	
		Total on paper	70	