

(2 marks)

(4 marks)

(3 marks)

Summer Work: Part 1 – Sequences and Series, Proof and Algebraic Fractions - Solutions One mark per tick unless stated...

of method

✓ for all correct

for one application

- 1. $u_1 = 2, u_2 = 5,$ $u_3 = 4 \times 5 - 5 \times 2 = 10$ $u_5 = 4 \times 15 - 5 \times 10 = 10$ $u_4 = 4 \times 10 - 5 \times 5 = 15$ $u_6 = 4 \times 10 - 5 \times 15 = -35$
- 2. a + 2d = 20 a + 6d = 52 subtracting gives $4d = 32 \implies d = 8, a = 4$ $S_n = \frac{10}{2}(8 + 9 \times 8) = 400$
- 3. 3 + (n 1)2 = 136 + (n 1)(-5) 3 + 2n - 2 = 136 - 5n + 5 7n = 140n = 20
- 4. Firstly find the sum of all integers from 1 to 300; $a = 1, d = 1, n = 300 \checkmark$ $S_{300} = \frac{300}{2} (2 + 1 \times (300 - 1)) = 45150 \checkmark$

Now find the sum of all multiples of 5 to 300; $a = 5, d = 5, n = \frac{300}{5} = 60$

$$S_{60} = \frac{60}{2}(10 + 5 \times (60 - 1)) = 9150$$

So the sum of all non-multiples of 5 = 45150 - 9150 = 3600 \checkmark (4 marks)

- 5.
- (a) His 22nd birthday is the third term of the sequence...so $40 + 2 \times 25 = \text{\pounds}90 \checkmark (1 \text{ mark})$
- (b) Up to and including his 25^{th} birthday = $S_6 = \frac{6}{2}(2 \times 40 + 25 \times (6 - 1) = \pounds 615$ (2 marks) (c) $S_n > 2000 \implies \frac{n}{2}(80 + 25(n - 1)) > 2000$ (multiply both sides by two) $\implies n(80 + 25n - 25) > 4000$ $\implies 25n^2 + 65n > 4000$ and so $25n^2 + 65n - 4000 > 0$ From the calculator n = 11.59, n = -13.79, but n must be a positive integer, so n > 11.59. So least value of n = 12 which corresponds to his 31^{st} birthday. (4 marks)

6. (a)
$$S_4 = \frac{a(1-(-\frac{2}{3})^4)}{1--\frac{2}{3}} = 520 \implies a = \frac{520\times\frac{2}{3}}{1-(-\frac{2}{3})^4} = 1080$$
 as required (2 marks)

(b)
$$S_{\infty} = \frac{1080}{1 - \frac{2}{3}} = 648$$
 (2 marks)

(c)
$$u_{10} - u_9 = 1080 \left(\left(-\frac{2}{3} \right)^{10-1} - \left(-\frac{2}{3} \right)^{9-1} \right) = (-)70.23 (2d. p.)$$
 (3 marks)

(5 marks)

- 7. Sum of first two terms = a + ar = 34, Sum to infinity $\frac{a}{1-r} = 162 \Rightarrow a = 162(1-r)$ Substituting second equation into the first gives 162(1-r) + 162r(1-r) = 34 $162 - 162r + 162r - 162r^2 = 34$ $162r^2 = 128 \Rightarrow r^2 = \frac{64}{81} \Rightarrow r = \frac{8}{9}(as r > 0)$ $a = 162(1-\frac{8}{9}) = 18$
- 9. (a) We know that $\frac{u_{n+1}}{u_n} = \frac{u_{n+2}}{u_{n+1}} = r$, so $\frac{3p-3}{8p} = \frac{2p-10}{3p-3}$ (multiplying across) $(3p-3)^2 = 8p(2p-10)$ (multiplying out) $9p^2 - 18p + 9 = 16p^2 - 80p$ (gathering like terms on ones side) $7p^2 - 62p - 9 = 0$ as required (4 marks) (b) From calculator, p = 9 (need to say ignore other value as p > 0) (2 marks) (c) $r = \frac{3p-3}{8p} = \frac{1}{3}$ (2 marks) (d) Also, $a = 8p = 8 \times 9 = 72$

$$S_{\infty} - S_{10} = \frac{72}{1 - \frac{1}{3}} - \frac{72 \left(1 - \left(\frac{1}{3}\right)^9\right)}{1 - \frac{1}{3}} = 108 - 107.994513 = 0.00549 \text{ (3 sig figs)} \quad (3 \text{ marks})$$

- 10. Assumption: there are integers p and q for which 12p + 21q = 5 (divided by 3) $4p + 7q = \frac{5}{3}$ but if p is an integer, so is 4p. Likewise 7q is an integer. The sum of two integers cannot equal a fraction; a contradiction and the assumption is disproved. (3 marks)
- 11. Assumption: $\sqrt{3}$ can be written as $\frac{a}{b}$, where *a* and *b* are integers with no common factors $\sqrt{3}$ So if $\sqrt{3} = \frac{a}{b}$, then $3 = \frac{a^2}{b^2}$ and so $a^2 = 3b^2$ which means that a^2 is a multiple of 3. But a^2 is a multiple of 3 then *a* is also a multiple of 3 (due to pairing of prime factors)

So a = 3k and so $(3k)^2 = 3b^2$ $9k^2 = 3b^2$ and so $3k^2 = b^2$ \checkmark

This means that *b* is also a multiple of 3, which contradicts the fact that *a* and *b* are integers with no common factors and so $\sqrt{3}$ is irrational. \checkmark (4 marks)

12. Write the following as single fractions in their simplest form

(a)
$$\frac{3}{x-1} + \frac{2}{x+3} = \frac{3(x+3)+2(x-1)}{(x-1)(x+3)} = \frac{5x+7}{(x-1)(x+3)}$$

(b) $\frac{6}{x^2-9} - \frac{5}{x^2-x-6} = \frac{6}{(x-3)(x+3)} - \frac{5}{(x-3)(x+2)} = \frac{6(x+2)-5(x+3)}{(x-3)(x+3)(x+2)} = \frac{x-3}{(x-3)(x+3)(x+2)} = \frac{1}{(x+3)(x+2)}$

(c)
$$\frac{3}{x+4} + \frac{2}{x^2+9x+2} = \frac{3}{x+4} + \frac{2}{(x+4)(x+5)} = \frac{3(x+5)+2}{(x+4)(x+5)} = \frac{3x+17}{(x+4)(x+5)}$$
 (9 marks)

13. Write each of the following as partial fractions

(a)
$$\frac{12}{(x-1)(x+3)} = \frac{A}{x-1} + \frac{B}{x+3}$$
 by the cover-up method, $\frac{12}{(x-1)(x+3)} = \frac{3}{x-1} - \frac{3}{x+3}$ (2 marks)
(b) $\frac{3}{x^2+5x+6} = \frac{3}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+5} = \frac{3}{x+2} - \frac{3}{x+3}$ (2 marks)
(c) $\frac{3x+1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1} \Rightarrow 3x + 1 = Ax(x-1) + B(x-1) + Cx^2$
Let $x = 1 \Rightarrow C = 4$
Let $x = 0 \Rightarrow B = -1$
Equate x^2 terms so $A + C = 0 \Rightarrow A = -4$ giving $\frac{4}{x-1} - \frac{4}{x} - \frac{1}{x^2}$ (4 marks)
(d) $\frac{2x-5}{(x+2)^2(x-4)} = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{x-4}$
 $\Rightarrow 2x - 5 = A(x+2)(x-4) + B(x-4) + C(x+2)^2$
Let $x = 4 \Rightarrow C = \frac{1}{12}$
Let $x = -2 \Rightarrow B = \frac{3}{2}$ Equate x^2 terms so $A + C = 0 \Rightarrow A = -\frac{1}{12}$
giving $\frac{3}{2(x+2)^2} + \frac{1}{12(x-4)} - \frac{1}{12(x+2)}$ (4 marks)

 $\frac{13x+1}{(x+2)(x-2)} = \frac{13}{4(x+2)} + \frac{39}{4(x-2)}$ (cover-up method)

So
$$\frac{4x^3 + 2x^2 - 3x + 5}{x^2 - 4} = 4x + 2 + \frac{13}{4(x+2)} + \frac{39}{4(x-2)}$$
 (6 marks)

(6 marks)

15.
$$\frac{2x+6}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2} = \frac{4}{x+1} - \frac{2}{x+2} \quad (\text{cover-up method})$$
$$\frac{4}{x+1} - \frac{2}{x+2} = 4(1+x)^{-1} - 2(2+x)^{-1} = 4(1+x)^{-1} - 2 \times 2^{-1} \left(1 + \frac{x}{2}\right)^{-1}$$
$$= 4(1+(-1)x + \frac{(-1)(-2)}{2!}x^2 + \frac{(-1)(-2)(-3)}{3!}x^3 + \cdots$$
$$-(1+(-1)\left(\frac{x}{2}\right) + \frac{(-1)(-2)}{2!}\left(\frac{x}{2}\right)^2 + \frac{(-1)(-2)(-3)}{3!}\left(\frac{x}{2}\right)^3$$
$$= 3 - \frac{7x}{2} + \frac{15x^2}{4} - \frac{31x^3}{8} + \cdots$$

16. (a)
$$(5 - 3x)^{-3} = \frac{1}{125} \left(1 - \frac{3}{5}x \right)^{-3}$$

$$= \frac{1}{125} \left[1 + (-3) \left(-\frac{3}{5}x \right) + \frac{(-3)(-4)}{2} \left(-\frac{3}{5}x \right)^2 + \left(\frac{(-3)(-4)(-5)}{6} \left(-\frac{3}{5}x \right)^3 + \cdots \right]$$

$$= \frac{1}{125} + \frac{9}{625}x + \frac{54}{3125}x^2 + \frac{54}{3125}x^3 + \cdots$$
(5 marks)

(b)
$$|x| < \frac{5}{3}$$
 or $-\frac{5}{3} < x < \frac{5}{3}$ (1 mark)

17.
$$\sqrt{4 + (4 - k)^2 + 1} = 3 \checkmark$$

 $(4 - k)^2 = 4$
 $4 - k = \pm 2$
 $k = 2, 6 \checkmark$ (3 marks)

18.
$$BC = AC - AB = i - 7j - 4k$$

 $|BC| = \sqrt{1 + 49 + 16} = \sqrt{66}$
 $\widehat{BC} = \frac{1}{\sqrt{66}}(i - 7j - 4k)$

19. 2q - 3p = 13 and 4q + p = 5 Solve simultaneously to get p = -3 and q = 2Sub in to get r = 7(3 marks) 20. D(2, 5, -1) $\checkmark \checkmark \checkmark$

Pure Total: 107 marks

Summer Work: Part 2 – Correlation and the Normal Distribution

								_
7	Time (t) hours	1	2	3	4	5	6	
	Number of bacteria (n)	700	1280	1920	3160	5100	8000	
1	log n	2.845	3.107	3.283	3.500	3.708	3.903	$\checkmark\checkmark$

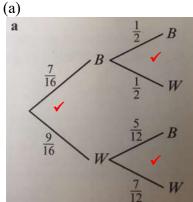
1. Values should be given to 3 decimal places...

PMCC (from calculator) = 0.99897 showing almost perfect positive correlation between t and log n

So $\log n = mt + c$ and so $n = 10^{mt+c} = 10^c \times 10^{mt} = 10^c \times (10^m)^t = ab^t$, where $a = 10^c$ and $b = 10^m$. From the equation, c = 2.66 and m = 0.209, so $a = 10^{2.66} = 457$ and $b = 10^{0.209} = 1.62$ (3sf) (8 marks)

- 2. (i) From the calculator, PMCC = 0.6261
 - (ii) $H_0: \rho = 0$ and $H_1: \rho > 0$ (one-tailed test) From tables, p-value for n = 10 at 5% level is 0.5494. We see that 0.6261 > 0.5494 and so there is significant correlation – we can reject the null hypothesis and conclude there is positive correlation between the Maths and Physics scores (context). (4 marks)
- 3. The test is two-tailed as the alternative hypothesis is undirected. From tables, the p-value corresponding to n = 12 and significance level of 0.5% at each end is 0.7079, so the results would be significant if r was greater than 0.7079 or less than -0.7079. As r = 0.-65 we cannot reject the null hypothesis and she would conclude that there is no evidence of correlation between Maths scores and English scores (context needed). (3 marks)
- 4. The random variable $X \sim N(30, 5^2)$. Find, to 3 decimal places; (i) 0.115 (ii) 0.023 (iii) 0.497 (iv) P(28 < X < 32) = 0.311 (6 marks)
- 5. (a) P(X > 280) = 6.68%
 (b) Using the inverse Normal, drive length would need to be at least 266.8 metres. (4 marks)

(1 mark)



(3 marks)

(b)
$$\left(\frac{7}{12} \times \frac{1}{2}\right) + \left(\frac{9}{16} \times \frac{5}{12}\right) = \frac{29}{64} = 0.453 \ (3 \ s. f.)$$
 (2 marks)

(c) P(white from A|White from B) = P(white from A \cap white from B) \div P(white from B) $= \left(\frac{9}{16} \times \frac{7}{12}\right) \div \left(1 - \frac{29}{64}\right) = \frac{3}{5}\checkmark$ (2 marks)

7.

- (a) Independent so $P(A) \times P(B) = P(A \cap B)$ so $3P(B)^2 = P(A \cap B)$ Using the addition formula $\frac{7}{12} = P(A) + P(B) P(A \cap B) = 4P(B) 3P(B)^2$ Rearrange quadratic to give $3P(B)^2 4P(B) + \frac{7}{12} = 0$ Solving gives $P(B) = \frac{7}{6}$ or $\frac{1}{6}$ so must be $\frac{1}{6}$ (5 marks)
- (b) Since A and B are independent, $P(A \cap B) = P(A) \times P(B) = \left(3 \times \frac{4}{6}\right) \times \frac{1}{6} = \frac{1}{12}$ (c) Since A and B are independent $P(B|A' \vee P(B)) = \frac{1}{4}$ (3 marks) (2 marks)

(c) Since A and B are independent
$$P(B|A') = P(B) = \frac{1}{6} \checkmark$$

Applied Total: 43 marks