
AQA 2022: Breakthrough! (VB.NET) Page 1 of 15 © ZigZag Education, 2021

Programming Tasks

These questions require you to load the Skeleton Program and to make programming changes to it.

Note that any alternative or additional code changes that you deemed appropriate to make must also be evidenced

– ensuring that it is clear where in the Skeleton Program those changes have been made.

Task 1

Task 1 Difficulty: Easy Marks: 2

This question refers to the PlayGame method of the Breakthrough class.

The number of cards left in the deck should be printed out after the current sequence and before the

cards in the player’s hand each turn.

Test the changes you have made:

Run the game and play two turns, showing the number of cards in the deck decreasing appropriately.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 2 of 15 © ZigZag Education, 2021

Task 2

Task 2 Difficulty: Easy Marks: 5

This question refers to the PlayGame and GetChoice methods of the Breakthrough class and the

creation of a new attribute (with accessor methods), PeekUsed in the Lock class.

Introduce a (P)eek option. This can be used once per lock, and allows a player to peek into the deck to

see the next three upcoming cards. There should be a new command in PlayGame that only appears if

the ‘deck peek’ is still available.

Create a new attribute in the Lock class called PeekUsed. Create accessor methods to the Lock class

to update and read the PeekUsed attribute (get/set).

Update the GetChoice() method in the Breakthrough class to give the user the option to ‘(P)eek’. This

menu option should only appear if the PeekUsed attribute is False.

Introduce an option to the menu in the PlayGame() method to accept ‘P’ as one of the menu choices.

This menu option should only appear if the PeekUsed attribute is False. Display the next three cards in

the deck using the GetCardDescriptionAt() method. Set the PeekUsed attribute appropriately once the

peek option has been chosen by the user.

When the player is given a new lock, set the PeekUsed attribute appropriately to allow the user to use

the peek option again.

Test the changes you have made:

Run the game and peek (peek is an option, it works and then it’s no longer an option), peek again to

make sure it doesn’t work even though the option isn’t displayed. Solve a lock and check that peek is

now an option again.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the GetChoice method

 PROGRAM SOURCE CODE for the new PeekUsed attribute

 SCREEN CAPTURE(S) showing the required test.

AQA 2022: Breakthrough! (VB.NET) Page 3 of 15 © ZigZag Education, 2021

Task 3

Task 3 Difficulty: Easy Marks: 3

This question refers to the PlayCardToSequence method of the Breakthrough class.

Under the rules of the game, a player cannot play two cards of the same type sequentially. Currently

there is no error message warning the player when they attempt to do this, however.

Modify the PlayCardToSequence method in the Breakthrough class to introduce an error message

which tells the user that they cannot play two cards of the same type sequentially.

Use the GetCardDescriptionAt method to highlight to the user which card they have just tried to play

and explain that it is the same as the type just played.

Test the changes you have made:

Run the game and show at least one turn played where the error does not get shown and one where it

shows the new error message under the correct conditions of playing a duplicate tool. Make sure to

show that (1) the error message is displayed and (2) the card is not played or discarded.

 Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayCardToSequence method

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 4 of 15 © ZigZag Education, 2021

Task 4

Task 4 Difficulty: Easy Marks: 6

This question refers to the PlayGame and GetChoice methods and the creation of a new private

attribute, MulliganUsed of the Breakthrough class.

Each player gets 1 ‘mulligan’ per game where they can take all the cards in their hand, the deck, the

discard pile and the sequence, put them together and shuffle up and deal again. Any difficulty cards

drawn (when repopulating the player’s hand) should be sent to the discard pile. The player’s score and

the current lock including any solved challenges will remain unchanged.

Create a new attribute in the Breakthrough class called MulliganUsed which is initialised to False. If

the MulliganUsed is False then display an additional (M)ulligan option each turn for the player and

once the mulligan has been used, set the MulliganUsed attribute to True, which should mean that the

(M)ulligan option is no longer displayed or usable.

Test the changes you have made:

Run the game, solve one challenge, use mulligan, play one card to the sequence, choose M (in an

attempt to mulligan again despite no menu option).

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the Breakthrough class

 PROGRAM SOURCE CODE showing changes made to the GetChoice method

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 5 of 15 © ZigZag Education, 2021

Task 5

Task 5 Difficulty: Easy Marks: 3

This question refers to the PlayGame and GetChoice methods of the Breakthrough class.

The player will have a new option in PlayGame to (Q)uit, and for this they will get 1 point added to their

score for each card remaining in the deck. Print out their final score as they quit.

Note that the code should exit cleanly/nicely without using any Application.Exit() type functions or End

type statements or GoTo statements (although break/continue are allowed of course).

Test the changes you have made:

Play one turn of a game, choose quit.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the GetChoice method

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 6 of 15 © ZigZag Education, 2021

Task 6

Task 6 Difficulty: Medium Marks: 5

This question refers to the GetCardFromDeck method of the Breakthrough class and the creation of a

new method, DisplayStats, modifying two existing methods, AddCard and RemoveCard, as well as

adding three new attributes, NumPicks, NumFiles and NumKeys, in the CardCollection class.

Introduce a stats / card count to the CardCollection class which keeps track of which cards have come

out of the deck and calculates the % chance that the next card tile in the deck is X type (or XYZ types).

Introduce three new attributes to the CardCollection class called NumPicks, NumFiles and NumKeys,

which will be updated every time a ToolCard is added to or removed from the CardCollection.

Create a new method in the CardCollection class called DisplayStats. This method should calculate

the percentage chance of the next card being a key, pick or file based on the number of each card and

the number of cards left in the deck.

When the player receives a difficulty card, use the DisplayStats method together with the

GetNumberOfCards method in the CardCollection class to display the following on the screen before

they choose ‘lose a key or discard 5 cards from the deck’.

There is a X% chance that the next card will be a key, a Y% chance that it will be a file and a Z% chance

that it will be a pick.

The percentages should be displayed to two decimal places.

Replace X, Y and Z with the appropriate values. Note that they will not normally add up to 100%

because there are also difficulty cards in the deck.

Test the changes you have made:

Run the game until a difficulty card is drawn and show the printout of the statistics in the correct place

(after the hand and before asking which card).

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the GetCardFromDeck method

 PROGRAM SOURCE CODE showing changes made to the CardCollection class

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 7 of 15 © ZigZag Education, 2021

Task 7

Task 7 Difficulty: Medium Marks: 6

This question involves the CreateStandardDeck, ProcessLockSolved and PlayCardToSequence

methods of the Breakthrough class, as well as the creation of a new SetCardToolkit method in the

Card, ToolCard and CardCollection classes.

Introduce three new ‘multi-tool’ cards – a multi-pick (P m), a multi-key (K m) and a multi-file (F m).

At the start of a standard game (not when loading a save game file), the deck should contain one of each

of these new types of card. Multi-tool cards can be dealt to the player’s hand in the same way as normal

cards are.

On playing a multi-tool card, the player should be given the option to choose which toolkit they want to

assign the card to before it is added to the sequence, therefore allowing a multi-tool card to be applied to

any lock challenge of that type.

When a lock has been solved, three new multi-tool cards (one of each type) are added to the deck to be

available for the next lock and the deck is reshuffled (as normal).

Test the changes you have made:

Play the game and show the use of at least one multi-tool card, the print screen must show the hand and

sequence both before and after the multi-tool is played.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the CreateStandardDeck method

 PROGRAM SOURCE CODE showing changes made to the ProcessLockSaved method

 PROGRAM SOURCE CODE showing changes made to the PlayCardToSequence method

 PROGRAM SOURCE CODE for the new SetCardToolkit method (in Card, ToolCard and

CardCollection classes)

 SCREEN CAPTURE(S) showing the required test.

AQA 2022: Breakthrough! (VB.NET) Page 8 of 15 © ZigZag Education, 2021

Task 8

Task 8 Difficulty: Medium Marks: 6

This question refers to the GetLockDetails method of the Lock class and PlayGame method of the

Breakthrough class.

Challenges are to be marked as ‘partially met’ (rather than just ‘met’ or ‘not met’) if they are partially

solved. A challenge is partially met if the end of the sequence (last one or two cards) matches the start of

an unsolved challenge.

Modify the call to GetLockDetails from PlayGame to pass in the sequence.

Modify GetLockDetails so that if the challenge is not met then it checks to see whether it is partially met.

For challenges of three cards, only check the last two cards and it becomes partially met if the last card

of the sequence matches the first card of the challenge or the second last card of the sequence matches

the first card of the challenge and the last card of the sequence matches the second card of the

challenge.

In general, check N-1 cards where N is the number of cards in the challenge – meaning of course that

challenges of one card cannot be partially met. You only need to solve the problem for challenges of

three cards exactly.

Test the changes you have made:

Run the game and play one card to the sequence that doesn’t match any of the challenges, then play

one towards one of the three card challenges that matches the first card for that challenge, and print

screen showing this entire turn.

Then play a second card to the sequence that matches the second card of the three card challenge.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the GetLockDetails method

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 9 of 15 © ZigZag Education, 2021

Task 9

Task 9 Difficulty: Medium Marks: 5

This question refers to the PlayGame method of the Breakthrough class.

Introduce a bonus for solving locks using fewer cards. Once the first card is played towards the

sequence for a new lock, a counter starts and one is added every time a player makes a move

(discarding or playing to the sequence).

Once a lock is solved (all the challenges), a player receives an extra point for every point under 20 on

the counter, after which it is reset. The player simply receives 0 if the counter is 20 or more. Print out a

message confirming the bonus points that were awarded (including 0 if that’s the case).

Test the changes you have made:

Run the game and play two locks, one solved in under 20 cards to show a bonus score and one solved

in over 20 cards to show a bonus score of 0.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 10 of 15 © ZigZag Education, 2021

Task 10

Task 10 Difficulty: Medium Marks: 9

This question refers to the ProcessLockSolved, SetupGame and GetCardFromDeck methods as well

as the creation of a new method, AddGeniusCardToDeck of the Breakthrough class and the creation

of a new class called GeniusCard.

Introduce a new ‘Genius Card’ which is added to deck at the start of a lock. There should be a 25%

chance of having a ‘Genius Card’ in a deck.

A player can choose to use the ‘Genius Card’ when they draw it to solve a challenge instantly (it should

ask which challenge) or it will be discarded and then reshuffled into the deck as normal with all the cards

from the discard pile.

Note that if a GeniusCard is drawn when filling up the hand it should be discarded automatically and a

message should be printed to this effect.

Create a method called AddGeniusCardToDeck which has a 25% chance of adding one GeniusCard

to the deck. This should be called from ProcessLockSolved and SetupGame.

Create a new class for the GeniusCard which inherits Card with CardType equal to ‘Gen’ and modify

the GetCardFromDeck method of Breakthough to ensure that the card is processed correctly when

drawn.

Test the changes you have made:

Run the game and play until a ‘Genius Card’ is drawn, then choose yes and select the last unsolved

challenge in the current lock.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the ProcessLockSolved method

 PROGRAM SOURCE CODE showing changes made to the SetupGame method

 PROGRAM SOURCE CODE showing changes made to the GetCardFromDeck method

 PROGRAM SOURCE CODE for the new GeniusCard class

 PROGRAM SOURCE CODE for the new AddGeniusCard method

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 11 of 15 © ZigZag Education, 2021

Task 11

Task 11 Difficulty: Hard Marks: 12

This question refers to the addition of a new attribute in the Breakthrough class called Credits and to the

GetCardFromDeck method of the Breakthrough class as well as the creation of a new method,

PrintToolsAvailable, for the CardCollection class.

Introduce the concept of ‘Buying a tool’ from the deck.

Add a new attribute, Credits, to the Breakthrough class which contains the number of credits the player

currently has. At the start of the game, the player has 10 credits. When a player has played a card to the

sequence or discarded a card, if they have at least 2 credits remaining, they should be asked if they would

like to buy a tool (y/n) before their hand is refilled from the deck. If they choose ‘n’ then they simply draw a

card as normal, but otherwise the new card will be the tool card that they purchased.

Players can ‘buy’ a ‘Key’ card at the cost of 3 credits, and ‘file’ or ‘pick’ cards at the cost of 2 credits each.

When the player chooses ‘y’ to buy a tool, they should be prompted with the following menu (items which

have 0 availability should not be listed).

1. F a (1 available)
2. F b (1 available)

3. F c (1 available)

4. P a (1 available)

5. P b (1 available)

6. P c (1 available)

7. K a (1 available)

8. K b (1 available)

9. K c (1 available)

10. No Tool (buy nothing)

The new PrintToolsAvailable method should take one parameter, KeysAvailable, which is True if the

player has at least 3 credits and otherwise is False. It should return an array containing the index of the first

available tool card of each type; for example, if the deck contains three files from toolkit a, the first of which is

at index 3 in the deck, no files from toolkit b and one file from toolkit c which is at index 12 in the deck, then

the first part of the array returned would look like this:

[3, -1, 12, ...

Test the changes you have made:

1. Run the game and play any card to the sequence, then choose ‘y’ when asked if you would like to buy

a tool. Select any tool listed as available, play it to the sequence and then choose ‘y’ again when

asked if you would like to buy a tool; show all the output produced including both menus presented

and the tool card being added to the player’s hand each time.

2. Continue playing the game and buying tools until you have spent a total of 8 credits (4 picks/file or 1

pick/file and 2 keys) and then show the printed list of tools available when you next choose to buy a tool.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the GetCardFromDeck method

 PROGRAM SOURCE CODE for the new Credits attribute

 PROGRAM SOURCE CODE for the new PrintToolsAvailable method

 SCREEN CAPTURE(S) showing the required test

Note: the actual number available should be given, not just 1

Note: keys (items 7‒9) should only be listed if the player has

at least 3 credits left. All menu items should retain the

numbers given above even if some menu items are missing,

e.g. item 10 should always be the ‘No Tool’ option (effectively

the player changed their mind).

Note: -1 is used to indicate that no tool is available in the deck

AQA 2022: Breakthrough! (VB.NET) Page 12 of 15 © ZigZag Education, 2021

Task 12

Task 12 Difficulty: Hard Marks: 4

This question refers to CheckIfLockChallengeMet method of the Breakthrough class.

Create an ‘Advanced’ mode where, for any challenge that requires three or more tool cards to solve,

once the challenge is solved move the cards used to solve it from the sequence to the discard pile,

exposing the previous card on the sequence, which could then possibly be used in solving another

challenge.

For example, if the sequence contains:

Fa, Kc, Pb

and the current challenge is Pb, Kb, Fb. Suppose you play Kb and Fb to the sequence; this will solve the

current challenge but instead of the sequence extending to:

Fa, Kc, Pb, Kb, Fb

it will be contracted to:

Fa, Kc

and the Pb, Kb and Fb cards from the challenge that was just solved will be added to the discard pile.

Test the changes you have made:

Run the game and restart until you get a Lock with at least one challenge of one card and one challenge

of three cards. Play until you solve the single card challenge and then play until you solve a three card

challenge. The screen capture(s) should show the Lock, Sequence and Hand before you play the final

card to solve the three card challenge and the Lock and Sequence after you play it.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the CheckIfLockChallengeMet method

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 13 of 15 © ZigZag Education, 2021

Task 13

Task 13 Difficulty: Hard Marks: 8

This question refers to PlayGame and GetChoice methods and to the creation of a new SaveGame

method in the Breakthrough class. It also requires the creation of new GetChallengesAsString and

GetChallengesMetAsString methods in the Lock class.

The PlayGame menu should have a (S)ave option which will save the game in its current state and

allow it to be reloaded (from the main menu when you first start the game).

In order to understand the format of the save game file, you will have to inspect the game1.txt file and the

LoadGame method of the Breakthrough class.

Print out a suitable message stating whether the game was saved successfully or not.

Test the changes you have made:

1. Take a copy of the game1.txt file and rename it backup.txt.

2. Run the game until you get a lock with at least two challenges. Solve one challenge and then

save the game as ‘game1.txt’ (it shouldn’t prompt you). Load the game and ensure that the state

of it has been correctly restored.

3. Restore the original game1.txt from backup.txt.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the GetChoice method

 PROGRAM SOURCE CODE for the new SaveGame method

 PROGRAM SOURCE CODE for the new GetChallengesAsString method

 PROGRAM SOURCE CODE for the new GetChallengesMetAsString method

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 14 of 15 © ZigZag Education, 2021

Task 14

Task 14 Difficulty: Hard Marks: 6

This question refers to PlayGame and PlayCardToSequence methods and the creation of a new

attribute, BonusPool, in the Breakthrough class. It also requires the creation of a new public method,

IsPartial, in the Lock class, which takes Sequence as a parameter as well as modification of the

GetCardDescriptionAt method.

Introduce a bonus for playing consecutive cards to a lock that solves a challenge. More specifically, each

card played in a row that goes towards solving a challenge will add 5 to the bonus pool and that bonus

pool will be added to the score for each card. The GetCardDescriptionAt method will need to return an

empty string if the list index doesn’t exist.

For example, the bonus pool is 0 and a player plays a card towards challenge 1: the bonus pool of 0 is

added to their score along with their normal score and the bonus pool is increased to 5. If the player

does anything except play another correct card towards challenge 1, then the bonus pool will be reset to

0; otherwise they will get the score for the card played as normal, plus the bonus pool of 5, and then the

bonus pool will be increased to 10 and so on.

Test the changes you have made:

Run the game and keep discarding until you have all three cards required to solve a challenge, then

solve it one card after another; continue playing and play a card to a challenge and then a card to the

sequence that is not part of the challenge.

Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the PlayGame method

 PROGRAM SOURCE CODE showing changes made to the PlayCardToSequence method

 PROGRAM SOURCE CODE showing changes made to the GetCardDescriptionAt method

 PROGRAM SOURCE CODE for the new BonusPool attribute

 PROGRAM SOURCE CODE for the new IsPartial method

 SCREEN CAPTURE(S) showing the required test

AQA 2022: Breakthrough! (VB.NET) Page 15 of 15 © ZigZag Education, 2021

Task 15

Task 15 Difficulty: Extreme Marks: 10

This question refers to the ProcessLockSolved, GetCardFromDeck and CheckIfPlayerHasLost

methods, and to the creation of new private GenerateSolubleLock and GenerateChallenge methods

and a new private attribute FinalLock in the Breakthrough class. It also requires the creation of a new

public IsSoluble method in the Lock class that takes the Deck and Hand as parameters.

EXTRA FILE NEEDED: game2.txt

Every lock presented must be solvable based on the cards left in the deck, even if doing so would

exhaust the deck. If the lock cannot be solved, then choose a new random lock. If this happens 10 times

in a row (without a suitable lock being found) then display a message ‘Final Lock’ to the user and

generate a lock with two challenges that can be solved.

Once those challenges are solved, there should be a message from CheckIfPlayerHasLost that,

instead of saying the player lost, prints out ‘You have solved the final lock. Your final score is:’ + Score.

When approaching this task you should ignore the effect of Difficulty cards and it is sufficient to simply

check that the Deck and Hand combined contain the requisite number of each type of card for the next

lock.

The attribute FinalLock should be set to 0 at the start and then set to 1 in ProcessLockSolved when

the final lock is set. When CheckIfPlayerHasLost runs, it should set FinalLock to 2 if it is 1 (ensuring

that the final turn is played). If FinalLock is 1 and there are no cards left in the deck then the player

doesn’t lose until all the cards from their hand are gone.

Test the changes you have made:

1. Change the game to load the file game2.txt instead of game1.txt and then run the game and

load game.

2. Play the game until the message ‘Final Lock’ is displayed, then solve that lock and print out the

final turn.

 Evidence that you need to provide:

 PROGRAM SOURCE CODE showing changes made to the ProcessLockSolved method

 PROGRAM SOURCE CODE showing changes made to the CheckIfPlayerHasLost method

 PROGRAM SOURCE CODE showing changes made to the GetCardFromDeck method

 PROGRAM SOURCE CODE for the new GenerateSolubleLock method

 PROGRAM SOURCE CODE for the new GenerateChallenge method

 PROGRAM SOURCE CODE for the new IsSoluable method

 PROGRAM SOURCE CODE for the new FinalLock attribute

 SCREEN CAPTURE(S) showing the required test

	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8
	Task 9
	Task 10
	Task 11
	Task 12
	Task 13
	Task 14
	Task 15

