

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Level In Further Pure Mathematics F2 (WFM02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021 Publications Code WFM02_01_2101_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \Box or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Marks
1.	$i(1+\sqrt{3}) = \frac{i(1+\sqrt{3})+pi}{i^2(1+\sqrt{3})+3}$ -i(1+\sqrt{3})^2 + 3i(1+\sqrt{3}) = i(1+\sqrt{3})+pi -1-2\sqrt{3}-3+3+3\sqrt{3} = 1+\sqrt{3}+p	M1
	$-1 - 2\sqrt{3} - 3 + 3 + 3\sqrt{3} = 1 + \sqrt{3} + p$	dM1
	p = -2	A1 [3]
M1	Substitute $i(1+\sqrt{3})$ for w and z	
dM1 A1	Solve to $p = \dots$ Correct value for p	
	Some solve for <i>p</i> first:	
M1	Obtain an expression for p in terms of w and/or z	
dM1	Substitute $i(1+\sqrt{3})$ for w and z	
A1	Correct value for p	

Question Number	Scheme	Marks
2 (a)	$\frac{r+2}{r(r+1)} - \frac{r+3}{(r+1)(r+2)} = \frac{(r+2)^2 - r(r+3)}{r(r+1)(r+2)}$	M1
	$=\frac{r^{2}+4r+4-r^{2}-3r}{r(r+1)(r+2)}=\frac{r+4}{r(r+1)(r+2)}$ *	A1* (2)
(b)	$r=1$ $\frac{3}{1\times 2} - \frac{4}{2\times 3}$ $r=n-1$ $\frac{n+1}{(n-1)n} - \frac{n+2}{n(n+1)}$	
	$r=2$ $\frac{4}{2\times 3}-\frac{5}{3\times 4}$ $r=n$ $\frac{n+2}{n(n+1)}-\frac{n+3}{(n+1)(n+2)}$	M1
	$r = 3 \qquad \frac{5}{3 \times 4} - \frac{6}{4 \times 5}$	
	$\sum_{r=1}^{n} \frac{r+4}{r(r+1)(r+2)} = \frac{3}{2} - \frac{n+3}{(n+1)(n+2)}$	A1
	$\sum_{r=1}^{n} \frac{r+4}{r(r+1)(r+2)} = \frac{3(n+1)(n+2)-2n-6}{2(n+1)(n+2)} = \frac{n(3n+7)}{2(n+1)(n+2)}$	dM1 A1cao (4) [6]
(a) M1	Attempt a single fraction with the correct denominator (or 2 separate fraction correct common denominator)	
A1*	Correct result obtained with no errors in the working. Must include LHS as s question or LHS =	hown in
(b) M1	Show sufficient terms to demonstrate the cancelling, min 3 at start and 1 at e and 2 at end. Award by implication if the correct 2 remaining terms are seen	nd or 2 at start
A1 dM1 A1cao	Extract the correct 2 remaining terms Attempt common denominator of the form $k(n+1)(n+2)$ Correct result obtained. No need to show <i>a</i> , <i>b</i> and <i>c</i> explicitly.	

Question Number	Scheme	Marks
3	$x^{2} + x - 2 < \frac{1}{2}x + \frac{5}{2}$ $2x^{2} + x - 9 < 0$	
	$2x^2 + x - 9 < 0$	M1
	$CVs x = \frac{-1 \pm \sqrt{73}}{4}$	A1
	$-x^2 - x + 2 < \frac{1}{2}x + \frac{5}{2}$	M1
	$2x^2 + 3x + 1 > 0$ $(2x+1)(x+1) > 0$	M1
	CVs $x = -\frac{1}{2}, -1$	A1
	$\frac{-1 - \sqrt{73}}{4} < x < -1, -\frac{1}{2} < x < \frac{-1 + \sqrt{73}}{4}$	M1A1 [7]
NB M1 A1 M1 M1 A1 M1 A1	No algebra implies no marks The first 5 marks can all be awarded if equations rather than inequalities are sh Obtain and solve a 3TQ (any valid method including calculator) 2 correct CVs Allow decimal equivalents (1.886, -2.386), min 3 sf, rounde Multiply either side by -1 Obtain and solve a 3TQ (any valid method including calculator) 2 correct CVs Form 2 double inequalities with their CVs. No overlap between these inequalit Correct inequality signs required here or for final mark Correct inequalities obtained. Values must be exact, but note that 0.5 is exact. Allow "and" but not " \cap ". May be written in set language with " \cup " and round	ed or truncated

Question Number	Scheme	Marks
4 (a)	$y^{2} = z^{-1} \implies 2y \frac{dy}{dx} = -\frac{1}{z^{2}} \frac{dz}{dx} \text{ oe eg } \frac{dy}{dx} = -\frac{1}{2} z^{-\frac{3}{2}} \frac{dz}{dx}$ $2y \frac{dy}{dx} + 4y^{2} = 6xy^{4}$	B1
	$2y\frac{\mathrm{d}y}{\mathrm{d}x} + 4y^2 = 6xy^4$	
	$-\frac{1}{z^2}\frac{dz}{dx} + \frac{4}{z} = \frac{6x}{z^2}$	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4z = -6x *$	A1 * (3)
(b)	$\mathbf{IF} = \mathbf{e}^{\int -4dx} = \mathbf{e}^{-4x}$	B1
	$e^{-4x}\left(\frac{dz}{dx} - 4z\right) = e^{-4x} \times -6x$	
	$z\mathrm{e}^{-4x} = -6\int x\mathrm{e}^{-4x}\mathrm{d}x$	M1
	$= -6\left[-\frac{1}{4}xe^{-4x} + \int\frac{1}{4}e^{-4x}dx\right]$	M1
	$= -6 \left[-\frac{1}{4} x e^{-4x} - \frac{1}{16} e^{-4x} \right] (+c) \text{oe}$	A1
	$=\frac{3}{2}xe^{-4x}+\frac{3}{8}e^{-4x}(+c)$	
	$z = \frac{3}{2}x + \frac{3}{8} + ce^{4x} \text{oe}$	A1 (5)
ALT	$\frac{dz}{dx} - 4z = -6x$	
	$\frac{dz}{dx} - 4z = -6x$ m-4=0 \Rightarrow m=4 \Rightarrow CF is $z = Ae^{4x}$	B1
	PI: $z = \lambda + \mu x$	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} = \mu \Longrightarrow \mu - 4(\lambda + \mu x) = -6x$	
	$4\mu = 6 4\lambda = \mu, \implies \mu = \frac{3}{2}, \ \lambda = \frac{3}{8}$	M1,A1
	$z = \frac{3}{2}x + \frac{3}{8} + Ae^{4x}$	A1
(c)	$y^{2} = \frac{1}{\frac{3}{2}x + \frac{3}{8} + ce^{4x}} = \frac{8}{(12x + 3 + Ae^{4x})} \text{oe}$	B1ft (1)

Question Number	Scheme	Marks
(a) B1 M1 A1 *	Correct derivative seen explicitly or used Substitutions made. Only award when an equation in x and z only is reached (if equation I to II) or an equation in x and y is reached (if working II to I) Correct result obtained with no errors in working	f working
(b) B1 M1 M1 A1 A1	Correct IF seen explicitly or used Multiply through by their IF and integrate the LHS. Accept <i>I</i> for e ^{-4x} on LHS o Apply parts in the correct direction to RHS to obtain $Axe^{-4x} + B\int e^{-4x} dx$ with $A = \pm \frac{3}{2}$ and $B = \pm \frac{3}{2}$ Correct integration of RHS, constant not needed Include the constant and treat it correctly. Answer in form $z =$	nly
ALT B1 M1 M1 A1 A1 (c)	Correct CF May not be seen until GS is formed For a PI of the correct form Differentiate their PI, substitute in the equation and extract 2 equations for the Solve the two equations to obtain correct values for the unknowns Correct GS obtained	
B1ft	Any equivalent to that shown. (no need to change letter for constant if rearrang Must start $y^2 =$ and must include a constant.	ged)

Question Number	Scheme	Marks
5(a)	$-2x\frac{d^2y}{dx^2} + (2-x^2)\frac{d^3y}{dx^3}$	M1
	$-2x\frac{d^{2}y}{dx^{2}} + (2-x^{2})\frac{d^{3}y}{dx^{3}}$ $+5\left(\frac{dy}{dx}\right)^{2} + 5x \times 2\frac{dy}{dx}\frac{d^{2}y}{dx^{2}}, = 3\frac{dy}{dx}$ $\frac{d^{3}y}{dx^{3}}(2-x^{2}) + \frac{d^{2}y}{dx^{2}}\left(10x\frac{dy}{dx} - 2x\right) + 5\left(\frac{dy}{dx}\right)^{2} = 3\frac{dy}{dx}$	M1A1, B1
	$\frac{d^3 y}{dx^3} \left(2 - x^2\right) + \frac{d^2 y}{dx^2} \left(10x\frac{dy}{dx} - 2x\right) + 5\left(\frac{dy}{dx}\right)^2 = 3\frac{dy}{dx}$	
	$\frac{\mathrm{d}^{3}y}{\mathrm{d}x^{3}} = \frac{1}{\left(2-x^{2}\right)} \left(2x\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}}\left(1-5\frac{\mathrm{d}y}{\mathrm{d}x}\right) - 5\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2} + 3\frac{\mathrm{d}y}{\mathrm{d}x}\right) \text{*}$	A1* (5)
ALT 1	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{3y - 5x \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}{\left(2 - x^2\right)}$	
	$\frac{d^{3}y}{dx^{3}} = \frac{\left[3\frac{dy}{dx} - 5\left(\frac{dy}{dx}\right)^{2} - 5x \times 2\frac{dy}{dx}\frac{d^{2}y}{dx^{2}}\right]\left(2 - x^{2}\right) - \left[3y - 5x\left(\frac{dy}{dx}\right)^{2}\right]\left(-2x\right)}{\left(2 - x^{2}\right)^{2}}$	M1M1A1
	$\frac{d^{3}y}{dx^{3}} = \frac{\left[3\frac{dy}{dx} - 5\left(\frac{dy}{dx}\right)^{2} - 10x\frac{dy}{dx}\frac{d^{2}y}{dx^{2}}\right]\left(2 - x^{2}\right) + 2x\left(2 - x^{2}\right)\frac{d^{2}y}{dx^{2}}}{\left(2 - x^{2}\right)^{2}}$	M1 (NB: B1 on ePEN)
	$\overline{dx^3} = \frac{1}{\left(2-x^2\right)^2}$ $\frac{d^3y}{dx^3} = \frac{1}{\left(2-x^2\right)} \left(2x \frac{d^2y}{dx^2} \left(1-5 \frac{dy}{dx}\right) - 5 \left(\frac{dy}{dx}\right)^2 + 3 \frac{dy}{dx}\right) *$	A1* (5)

ALT 2 $\frac{d^2 y}{dx^2} = \frac{3y}{(2-x^2)} - \frac{5x\left(\frac{dy}{dx}\right)^2}{(2-x^2)}$	
$\frac{1}{dx^2} = \frac{1}{(2-x^2)} - \frac{1}{(2-x^2)}$	
$\frac{d^{3}y}{dx^{3}} = \frac{3\frac{dy}{dx}(2-x^{2})-3y(-2x)}{(2-x^{2})^{2}}$ $= \frac{\left[5\left(\frac{dy}{dx}\right)^{2}+5x\times2\frac{dy}{dx}\frac{d^{2}y}{dx^{2}}\right](2-x^{2})-5x\left(\frac{dy}{dx}\right)^{2}(-2x)}{(2-x^{2})^{2}}$	M1M1A1
	M1(B1 on ePEN)
$\frac{\mathrm{d}^{3} y}{\mathrm{d}x^{3}} = \frac{1}{\left(2-x^{2}\right)} \left(2x \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} \left(1-5 \frac{\mathrm{d}y}{\mathrm{d}x}\right) - 5\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2} + 3\frac{\mathrm{d}y}{\mathrm{d}x}\right) \ast$	A1*
(b) $x = 0 \implies 2\frac{d^2 y}{dx^2} = 9 \frac{d^2 y}{dx^2} = \frac{9}{2}$	B1
$\frac{d^{3}y}{dx^{3}} = \frac{1}{2} \left(-5 \left(\frac{dy}{dx} \right)^{2} + 3 \frac{dy}{dx} \right) = \frac{1}{2} \left(-5 \times \frac{1}{16} + \frac{3}{4} \right) = \frac{7}{32}$	M1
$y = 3 + \frac{1}{4}x + \frac{9}{2}\frac{x^2}{2!} + \frac{7}{32}\frac{x^3}{3!}$ $y = 3 + \frac{1}{4}x + \frac{9}{4}x^2 + \frac{7}{192}x^3$	M1
$y = 3 + \frac{1}{4}x + \frac{9}{4}x^2 + \frac{7}{192}x^3$	A1 (4)

Question Number	Scheme	Marks
(a)		
M1	Differentiate $(2-x^2)\frac{d^2y}{dx^2}$ using product rule	
M1	Differentiate $5x\left(\frac{dy}{dx}\right)^2$ using product and chain rule	
A1	Correct derivative of $5x\left(\frac{dy}{dx}\right)^2$	
B1	Correct derivative of 3y	
A1*	Correct result obtained from fully correct working	
ALT 1	Rearrange and use quotient rule $(1 - 2)^2$	
M1	Use the quotient rule. Denominator must be $(2-x^2)^2$ and numerator to be the	difference of 2
	terms $\left[\left(1 \right)^2 \right]$	
M1	Differentiate $\left[3y - 5x \left(\frac{dy}{dx} \right)^2 \right]$ using product and chain rule	
A1	Fully correct differentiation	
M1	NB: B1 on ePEN Replace 3y with $(2-x^2)\frac{d^2y}{dx^2} + 5x\frac{dy}{dx}$	
A1*	Correct result obtained from fully correct working	
ALT 2	Rearrange, separate into 2 fractions and then use quotient rule	
M1	Use the quotient rule on both fractions. Denominators must be $(2-x^2)^2$ and n	umerator of
	each to be the difference of 2 terms	
M1	Differentiate 3y using the chain rule and differentiate $5x\left(\frac{dy}{dx}\right)^2$ using product	and chain rule
A1	Fully correct differentiation	
M1	NB: B1 on ePEN Replace 3y with $(2-x^2)\frac{d^2y}{dx^2} + 5x\frac{dy}{dx}$	
A1*	Correct result obtained from fully correct working	
(b)		
B1	Correct value of $\frac{d^2 y}{dx^2}$	
M1	Use the given result from (a) to obtain a value for $\frac{d^3y}{dx^3}$	
M1	dx^3 Taylor's series formed using their values for the derivatives (accept 2! or 2 and	1 3! or 6)
A1	Correct series, must start (or end) $y =$ but accept $f(x)$ provided $y = f(x)$ define	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Question Number	Scheme	Marks
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6(a)	$m^2 + 2m + 5 = 0 \implies m = -1 \pm 2i$	M1
$y' = -a \sin x + b \cos x \qquad y'' = -a \cos x - b \sin x$ $-a \cos x - b \sin x - 2a \sin x + 2b \cos x + 5a \cos x + 5b \sin x = 6 \cos x$ $M1$ $-b - 2a + 5b = 0 \qquad -a + 2b + 5a = 6$ $a = \frac{6}{5} \qquad b = \frac{3}{5}$ $A1$ $GS: y = their CF + \frac{6}{5} \cos x + \frac{3}{5} \sin x$ $A1ft (7)$ $(b) \qquad x = 0, y = 0 = A + \frac{6}{5} \Rightarrow A = -\frac{6}{5}$ $y' = -e^{-x} (A \cos 2x + B \sin 2x) + e^{-x} (-2A \sin 2x + 2B \cos 2x)$ $-\frac{6}{5} \sin x + \frac{3}{5} \cos x$ $x = 0 \qquad \frac{dy}{dx} = 0 \Rightarrow 0 = +\frac{6}{5} + 2B + \frac{3}{5} \Rightarrow B = -\frac{9}{10}$ $M1$ $PS: y = e^{-x} \left(-\frac{6}{5} \cos 2x - \frac{9}{10} \sin 2x\right) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$ $A1 (5)$ $ALT \qquad y = e^{-x} (Pe^{12x} + Qe^{-12x}) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$ $x = 0 y = 0 0 = P + Q + \frac{6}{5}$ $P + Q = -\frac{6}{5} \qquad P - Q = \frac{9}{10}i$ $P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i\right) \qquad Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i\right)$ $dM1$		OR $y = e^{-x} \left(P e^{i2x} + Q e^{-i2x} \right)$ or $y = P e^{(-1+2i)x} + Q e^{(-1-2i)x}$	
$\begin{aligned} -a\cos x - b\sin x - 2a\sin x + 2b\cos x + 5a\cos x + 5b\sin x = 6\cos x & M1 \\ -b - 2a + 5b = 0 & -a + 2b + 5a = 6 & M1 \\ a = \frac{6}{5} & b = \frac{3}{5} & A1 \\ \text{GS: } y = \text{their } \text{CF} + \frac{6}{5}\cos x + \frac{3}{5}\sin x & A1\text{ft} (7) \\ \text{(b)} & x = 0, y = 0 & 0 = A + \frac{6}{5} \Rightarrow A = -\frac{6}{5} & M1 \\ y' = -e^{-x} (A\cos 2x + B\sin 2x) + e^{-x} (-2A\sin 2x + 2B\cos 2x) & M1\text{A1ft} \\ y' = -e^{-x} (A\cos 2x + B\sin 2x) + e^{-x} (-2A\sin 2x + 2B\cos 2x) & M1\text{A1ft} \\ \text{PS: } y = e^{-x} \left(-\frac{6}{5}\cos 2x - \frac{9}{10}\sin 2x\right) + \frac{6}{5}\cos x + \frac{3}{5}\sin x & A1 & (5) \\ \text{ALT} & y = e^{-x} \left(-\frac{6}{5}\cos 2x - \frac{9}{10}\sin 2x\right) + \frac{6}{5}\cos x + \frac{3}{5}\sin x & A1 & (5) \\ \frac{4}{4x} = 0 & 0 = P + Q + \frac{6}{5} & M1 \\ \frac{dy}{dx} = e^{-x} \left(2iPe^{12x} - 2iQe^{-12x}\right) - e^{-x} \left(Pe^{12x} + Qe^{-12x}\right) - \frac{6}{5}\sin x + \frac{3}{5}\cos x & M1\text{A1ft} \\ 0 = 2iP - 2iQ + \frac{9}{5} & M1 \\ P + Q = -\frac{6}{5} & P - Q = \frac{9}{10}i \\ P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i\right) & Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i\right) & dM1 \end{aligned}$			B1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$y' = -a\sin x + b\cos x \qquad y'' = -a\cos x - b\sin x$	
$a = \frac{6}{5} b = \frac{3}{5}$ (b) $a = 0, y = 0 0 = A + \frac{6}{5} \Rightarrow A = -\frac{6}{5}$ (c) $x = 0, y = 0 0 = A + \frac{6}{5} \Rightarrow A = -\frac{6}{5}$ (c) $y' = -e^{-x} (A \cos 2x + B \sin 2x) + e^{-x} (-2A \sin 2x + 2B \cos 2x)$ (c) $-\frac{6}{5} \sin x + \frac{3}{5} \cos x$ (c) $x = 0 \frac{dy}{dx} = 0 \Rightarrow 0 = +\frac{6}{5} + 2B + \frac{3}{5} \Rightarrow B = -\frac{9}{10}$ (d) $Bx = y = e^{-x} \left(-\frac{6}{5} \cos 2x - \frac{9}{10} \sin 2x\right) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$ (f) ALT (g) $y = e^{-x} \left(Pe^{12x} + Qe^{-12x}\right) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$ (g) $x = 0 y = 0 0 = P + Q + \frac{6}{5}$ (g) $y = 0 0 = P + Q + \frac{6}{5}$ (g) $P + Q = -\frac{6}{5} P - Q = \frac{9}{10}i$ (h) $P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i\right) Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i\right)$ (h) $A1$ (h) A		$-a\cos x - b\sin x - 2a\sin x + 2b\cos x + 5a\cos x + 5b\sin x = 6\cos x$	M1
$ \begin{array}{c} \text{(b)} & \begin{array}{c} x = 0, y = 0 & 0 = A + \frac{6}{5} \Rightarrow A = -\frac{6}{5} \\ y' = -e^{-x} (A\cos 2x + B\sin 2x) + e^{-x} (-2A\sin 2x + 2B\cos 2x) \\ -\frac{6}{5}\sin x + \frac{3}{5}\cos x \\ x = 0 & \frac{dy}{dx} = 0 \Rightarrow 0 = +\frac{6}{5} + 2B + \frac{3}{5} \Rightarrow B = -\frac{9}{10} \\ \text{M1} \\ \text{PS: } y = e^{-x} \left(-\frac{6}{5}\cos 2x - \frac{9}{10}\sin 2x \right) + \frac{6}{5}\cos x + \frac{3}{5}\sin x \\ x = 0 & y = 0 & 0 = P + Q + \frac{6}{5} \\ \frac{dy}{dx} = e^{-x} \left(2iPe^{i2x} + Qe^{-i2x} \right) + \frac{6}{5}\cos x + \frac{3}{5}\sin x \\ x = 0 & y = 0 & 0 = P + Q + \frac{6}{5} \\ \frac{dy}{dx} = e^{-x} \left(2iPe^{i2x} - 2iQe^{-i2x} \right) - e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) - \frac{6}{5}\sin x + \frac{3}{5}\cos x \\ 0 = 2iP - 2iQ + \frac{9}{5} \\ P + Q = -\frac{6}{5} & P - Q = \frac{9}{10}i \\ P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i \right) Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i \right) \\ \end{array} $			M1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$a = \frac{6}{5} b = \frac{3}{5}$	A1
$y' = -e^{-x} (A\cos 2x + B\sin 2x) + e^{-x} (-2A\sin 2x + 2B\cos 2x)$ $-\frac{6}{5}\sin x + \frac{3}{5}\cos x$ $x = 0 \frac{dy}{dx} = 0 \Rightarrow 0 = +\frac{6}{5} + 2B + \frac{3}{5} \Rightarrow B = -\frac{9}{10}$ $PS: y = e^{-x} \left(-\frac{6}{5}\cos 2x - \frac{9}{10}\sin 2x \right) + \frac{6}{5}\cos x + \frac{3}{5}\sin x$ $x = 0 y = 0 0 = P + Q + \frac{6}{5}$ $M1$ $\frac{dy}{dx} = e^{-x} (2iPe^{i2x} - 2iQe^{-i2x}) - e^{-x} (Pe^{i2x} + Qe^{-i2x}) - \frac{6}{5}\sin x + \frac{3}{5}\cos x$ $M1A1ft$ $0 = 2iP - 2iQ + \frac{9}{5}$ $P + Q = -\frac{6}{5} P - Q = \frac{9}{10}i$ $P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i \right) Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i \right)$ $M1A1ft$		GS: $y = \text{their } CF + \frac{6}{5}\cos x + \frac{3}{5}\sin x$	A1ft (7)
$\begin{aligned} -\frac{6}{5}\sin x + \frac{3}{5}\cos x & \text{M1A1ft} \\ x &= 0 \frac{dy}{dx} = 0 \Rightarrow 0 = +\frac{6}{5} + 2B + \frac{3}{5} \Rightarrow B = -\frac{9}{10} & \text{M1} \\ \text{PS: } y &= e^{-x} \left(-\frac{6}{5}\cos 2x - \frac{9}{10}\sin 2x \right) + \frac{6}{5}\cos x + \frac{3}{5}\sin x & \text{A1} (5) \end{aligned}$ $\begin{aligned} \text{ALT} & y &= e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) + \frac{6}{5}\cos x + \frac{3}{5}\sin x & \text{A1} (5) \\ x &= 0 y = 0 0 = P + Q + \frac{6}{5} & \text{M1} \\ \frac{dy}{dx} &= e^{-x} \left(2iPe^{i2x} - 2iQe^{-i2x} \right) - e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) - \frac{6}{5}\sin x + \frac{3}{5}\cos x & \text{M1A1ft} \\ 0 &= 2iP - 2iQ + \frac{9}{5} & \text{M1A1ft} \\ P &= \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i \right) Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i \right) & \text{dM1} \end{aligned}$	(b)	5 5	M1
$\begin{aligned} -\frac{3}{5}\sin x + \frac{3}{5}\cos x \\ x = 0 \frac{dy}{dx} = 0 \Rightarrow 0 = +\frac{6}{5} + 2B + \frac{3}{5} \Rightarrow B = -\frac{9}{10} \\ \text{M1} \\ \text{PS: } y = e^{-x} \left(-\frac{6}{5}\cos 2x - \frac{9}{10}\sin 2x \right) + \frac{6}{5}\cos x + \frac{3}{5}\sin x \\ \text{ALT} y = e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) + \frac{6}{5}\cos x + \frac{3}{5}\sin x \\ x = 0 y = 0 0 = P + Q + \frac{6}{5} \\ \frac{dy}{dx} = e^{-x} \left(2iPe^{i2x} - 2iQe^{-i2x} \right) - e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) - \frac{6}{5}\sin x + \frac{3}{5}\cos x \\ 0 = 2iP - 2iQ + \frac{9}{5} \\ P + Q = -\frac{6}{5} P - Q = \frac{9}{10}i \\ P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i \right) Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i \right) \end{aligned}$			M1A1ft
ALT $PS: y = e^{-x} \left(-\frac{6}{5} \cos 2x - \frac{9}{10} \sin 2x \right) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$ $x = 0 y = 0 0 = P + Q + \frac{6}{5}$ $\frac{dy}{dx} = e^{-x} \left(2iPe^{i2x} - 2iQe^{-i2x} \right) - e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) - \frac{6}{5} \sin x + \frac{3}{5} \cos x$ $M1$ $M1A1ft$ $0 = 2iP - 2iQ + \frac{9}{5}$ $P + Q = -\frac{6}{5} P - Q = \frac{9}{10}i$ $P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i \right) Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i \right)$ $dM1$		5 5	
ALT $y = e^{-x} \left(P e^{i2x} + Q e^{-i2x} \right) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$ $x = 0 y = 0 0 = P + Q + \frac{6}{5}$ M1 $\frac{dy}{dx} = e^{-x} \left(2iP e^{i2x} - 2iQ e^{-i2x} \right) - e^{-x} \left(P e^{i2x} + Q e^{-i2x} \right) - \frac{6}{5} \sin x + \frac{3}{5} \cos x$ M1A1ft $0 = 2iP - 2iQ + \frac{9}{5}$ $P + Q = -\frac{6}{5} P - Q = \frac{9}{10}i$ $P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i \right) Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i \right)$ dM1		$x = 0 \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies 0 = +\frac{6}{5} + 2B + \frac{3}{5} \implies B = -\frac{9}{10}$	dM1
ALT $y = e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$ $x = 0 y = 0 0 = P + Q + \frac{6}{5}$ $\frac{dy}{dx} = e^{-x} \left(2iPe^{i2x} - 2iQe^{-i2x} \right) - e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) - \frac{6}{5} \sin x + \frac{3}{5} \cos x$ $0 = 2iP - 2iQ + \frac{9}{5}$ $P + Q = -\frac{6}{5} P - Q = \frac{9}{10}i$ $P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i \right) Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i \right)$ dM1		PS: $y = e^{-x} \left(-\frac{6}{5} \cos 2x - \frac{9}{10} \sin 2x \right) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$	
$\frac{dy}{dx} = e^{-x} \left(2iPe^{i2x} - 2iQe^{-i2x} \right) - e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) - \frac{6}{5} \sin x + \frac{3}{5} \cos x $ M1A1ft $0 = 2iP - 2iQ + \frac{9}{5}$ $P + Q = -\frac{6}{5} \qquad P - Q = \frac{9}{10}i$ $P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i \right) \qquad Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i \right) $ dM1	ALT	$y = e^{-x} \left(P e^{i2x} + Q e^{-i2x} \right) + \frac{6}{5} \cos x + \frac{3}{5} \sin x$	[12]
$ \begin{array}{c} arr & & & & & & & \\ 0 = 2iP - 2iQ + \frac{9}{5} \\ P + Q = -\frac{6}{5} & P - Q = \frac{9}{10}i \\ P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i \right) Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i \right) \\ dM1 \end{array} $		$x=0$ $y=0$ $0=P+Q+\frac{6}{5}$	M1
$P + Q = -\frac{6}{5} \qquad P - Q = \frac{9}{10}i$ $P = \frac{1}{2}\left(-\frac{6}{5} + \frac{9}{10}i\right) \qquad Q = \frac{1}{2}\left(-\frac{6}{5} - \frac{9}{10}i\right)$ dM1		$\frac{dy}{dx} = e^{-x} \left(2iPe^{i2x} - 2iQe^{-i2x} \right) - e^{-x} \left(Pe^{i2x} + Qe^{-i2x} \right) - \frac{6}{5}\sin x + \frac{3}{5}\cos x$	M1A1ft
$P = \frac{1}{2} \left(-\frac{6}{5} + \frac{9}{10}i \right) \qquad Q = \frac{1}{2} \left(-\frac{6}{5} - \frac{9}{10}i \right) \qquad $		$0 = 2iP - 2iQ + \frac{9}{5}$	
		$P+Q = -\frac{6}{5}$ $P-Q = \frac{9}{10}i$	
PS: $y = \frac{1}{2}e^{-x}\left(-\frac{6}{5}+\frac{9}{10}i\right)e^{2ix}+\frac{1}{2}e^{-x}\left(-\frac{6}{5}-\frac{9}{10}i\right)e^{-2ix}+\frac{6}{5}\cos x+\frac{3}{5}\sin x$ A1 (5)			dM1
		PS: $y = \frac{1}{2}e^{-x}\left(-\frac{6}{5} + \frac{9}{10}i\right)e^{2ix} + \frac{1}{2}e^{-x}\left(-\frac{6}{5} - \frac{9}{10}i\right)e^{-2ix} + \frac{6}{5}\cos x + \frac{3}{5}\sin x$	A1 (5)

Question Number	Scheme	Marks
(a)		
M1	Form and solve the auxiliary equation	
A1 B1	Correct CF, either form (Often not seen until GS stated) Correct form for the PI	
ы М1	Differentiate twice and sub in the original equation	
M1	Obtain a pair of simultaneous equations and attempt to solve	
A1	Correct values for both unknowns	
A1ft	Form the GS. Must start $y =$ Follow through their CF (writing CF scores A0 scored a minimum of 2 of the M marks	0) Must have
(b)		
	For CF $y = e^{-x} (A \cos 2x + B \sin 2x)$	
M1	Sub $x = 0$, $y = 0$ in their GS and obtain a value for A	
M1	Differentiate their GS Product rule must be used	
A1ft	Correct differentiation of their GS provided this has 4 terms	
dM1	Sub $x = 0$, $\frac{dy}{dx} = 0$ and their A and obtain a value for B Depends on both previous	ious M marks
A1	Fully correct PS. Must start $y =$	
ALT(b)		
	For CF $y = e^{-x} (Pe^{i2x} + Qe^{-i2x})$ or $y = Pe^{(-1+2i)x} + Qe^{(-1-2i)x}$	
M1	Sub $x = 0$, $y = 0$ in their GS and obtain an equation in P and Q	
M1	Differentiate their GS Product rule must be used if $y = e^{-x} \left(P e^{i2x} + Q e^{-i2x} \right)$ use	d
A1ft	Correct differentiation of their GS	
dM1	Sub $x = 0$, $\frac{dy}{dx} = 0$ to obtain a second equation and solve the pair of equations	The solution
A1	must allow for <i>P</i> and <i>Q</i> to be complex Fully correct PS. Must start $y =$	

Question Number	Scheme	Marks
7 (a)	$x = r\cos\theta = 3\sin 2\theta\cos\theta$	B1
(a)	$\frac{dx}{d\theta} = 6\cos 2\theta \cos \theta - 3\sin 2\theta \sin \theta = 0$	M1
ALT	$2\cos\theta(\cos^2\theta - 2\sin^2\theta) = 0$ For the 2 M marks:	M1
	$x = 6\sin\theta\cos^2\theta \Longrightarrow \frac{dx}{d\theta} = 6\cos^3\theta - 12\sin^2\theta\cos\theta = 0$	
	$\tan\phi = \frac{1}{\sqrt{2}} *$	A1* (4)
(b)	$ \tan \phi = \frac{1}{\sqrt{2}} \implies \sin \phi = \frac{1}{\sqrt{3}}, \ \cos \phi = \frac{\sqrt{2}}{\sqrt{3}} $	M1
	$R = 3 \times 2 \times \frac{1}{\sqrt{3}} \times \frac{\sqrt{2}}{\sqrt{3}} = 2\sqrt{2}$	A1 (2)
(c)	Area of sector $=\frac{1}{2}\int r^2 d\theta = \frac{9}{2}\int \sin^2 2\theta d\theta$	M1
	$=\frac{9}{2}\int_{0}^{\arctan\left(\frac{1}{\sqrt{2}}\right)}\frac{1}{2}\left(1-\cos 4\theta\right)\mathrm{d}\theta$	M1
	$=\frac{9}{2}\left[\frac{1}{2}\left(\theta-\frac{1}{4}\sin 4\theta\right)\right]_{0}^{\arctan\frac{1}{\sqrt{2}}}$	M1A1
	$=\frac{9}{4}\left[\arctan\frac{1}{\sqrt{2}} - \frac{1}{4}\sin 4\left(\arctan\frac{1}{\sqrt{2}}\right) - 0\right]$	dM1
	$\sin 4\phi = 2\sin 2\phi \cos 2\phi = 4\sin \phi \cos \phi \left(2\cos^2 \phi - 1\right)$	
	$=4 \times \frac{1}{\sqrt{3}} \times \frac{\sqrt{2}}{\sqrt{3}} \left(2 \times \frac{2}{3} - 1\right) = \frac{4\sqrt{2}}{9}$	M1
	Area of sector $=\frac{9}{4}\left(\arctan\frac{1}{\sqrt{2}} - \frac{1}{4} \times \frac{4\sqrt{2}}{9}\right) = \frac{9}{4}\arctan\frac{1}{\sqrt{2}} - \frac{\sqrt{2}}{4}$	A1 (7)
		[13]

Question Number	Scheme	Marks
(a)		
B1	State $x = (r \cos \theta) = 3 \sin 2\theta \cos 2\theta$ May be given by implication	
M1	Attempt to differentiate $x = r \cos \theta$ or $x = r \sin \theta$ Product rule must be used	
M1	Use a correct double angle formula and equate the derivative of $r \cos \theta$ to 0 M1 Attempt the differentiation of $x = r \cos \theta$ or $x = r \sin \theta$ using the product	rule (after
ALT	using a double angle formula) M1 Use a correct double angle formula and equate the derivative of $r \cos \theta$ to	o 0
A1*	Complete to the given answer and no extras with no errors in the working. Acc All values seen must be exact	cept θ or ϕ
(b)		
M1	Attempt exact values for $\sin \theta$ and $\cos \theta$ and use these to obtain a value for <i>I</i>	?.
	Values for $\sin\theta$ and/or $\cos\theta$ may have been seen in (a)	
A1	A correct, exact value for <i>R</i> , as shown or any equivalent. Award M1A1 for a correct exact answer	
(c)		
M1	Use of Area $=\frac{1}{2}\int r^2 d\theta$ Limits not needed (ignore any shown)	
M1	Use the double angle formula to obtain $k \int \frac{1}{2} (1 \pm \cos 4\theta) d\theta$ Ignore any limits given by	
	This is NOT dependent NB: There are other, lengthy, methods of reaching this point	
M1	Attempt the integration $\cos 4\theta \rightarrow \pm \frac{1}{4}\sin 4\theta$ (Not dependent)	
A1 dM1	Correct integration of $1 - \cos 4\theta$ Correct use of correct limits. Depends on second and third M marks 0 at lower limit need not be shown	
M1	Attempt an exact numerical value for $\sin 4 \left(\arctan \frac{1}{\sqrt{2}} \right)$	
A1	Correct final answer. Award M1A1 for a correct exact final answer	

Question Number	Scheme	Marl	٨S
8 (a)	$z^n = e^{in\theta} = \cos n\theta + i\sin n\theta$		
	$\frac{1}{z^n} = e^{-in\theta} = \cos(-n\theta) + i\sin(-n\theta) = \cos n\theta - i\sin n\theta$		
(b)	$z^{n} + \frac{1}{z^{n}} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta = 2\cos n\theta$ *	M1A1cs	so (2)
	$\left(z+\frac{1}{z}\right)^{6} = z^{6} + 6z^{5} \times \frac{1}{z} + \frac{6 \times 5}{2!} z^{4} \times \frac{1}{z^{2}} + \frac{6 \times 5 \times 4}{3!} z^{3} \times \frac{1}{z^{3}} + \frac{6 \times 5 \times 4 \times 3}{4!} z^{2} \times \frac{1}{z^{4}} + \frac{6 \times 5 \times 4 \times 3 \times 2}{5!} z \times \frac{1}{z^{5}} + \frac{1}{z^{6}}$	M1A1	
	$(2\cos\theta)^6 = z^6 + 6z^4 + 15z^2 + 20 + 15 \times \frac{1}{z^2} + 6 \times \frac{1}{z^4} + \frac{1}{z^6}$		
	$64\cos^6\theta = z^6 + \frac{1}{z^6} + 6\left(z^4 + \frac{1}{z^4}\right) + 15\left(z^2 + \frac{1}{z^2}\right) + 20$	M1	
	$64\cos^6\theta = 2\cos 6\theta + 6 \times 2\cos 4\theta + 15 \times 2\cos 2\theta + 20$	M1	
	$\cos^{6}\theta = \frac{1}{32} \left(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10\right) *$	A1*	(5)
(c)	$\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 = 10$ $32\cos^{6}\theta = 10$	M1A1	
	$\cos\theta = \pm \sqrt[6]{\frac{5}{16}}$		
	$\theta = 0.6027, 2.5388$ $\theta = 0.603, 2.54$	M1A1	(4)
(d)	$\int_0^{\frac{\pi}{3}} \left(32\cos^6\theta - 4\cos^2\theta \right) \mathrm{d}\theta$		
	$= \int_0^{\frac{\pi}{3}} \left(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 - 4\cos^2 \theta\right) \mathrm{d}\theta$		
	$= \int_0^{\frac{\pi}{3}} \left(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 - 2 - 2\cos 2\theta\right) d\theta$	M1	
	$= \left[\frac{1}{6}\sin 6\theta + \frac{3}{2}\sin 4\theta + \frac{13}{2}\sin 2\theta + 8\theta\right]_{0}^{\frac{\pi}{3}}$	M1A1	
	$= (0) + \frac{3}{2} \left(-\frac{\sqrt{3}}{2} \right) + \frac{13}{2} \times \frac{\sqrt{3}}{2} + \frac{8\pi}{3} (-0)$	dM1	
	$=\frac{5\sqrt{3}}{2}+\frac{8\pi}{3}$ oe	A1	(5)
	2 3		[16]

Question Number	Scheme	Marks	
(a)			
M1	Attempt to obtain $z^n + \frac{1}{z^n}$		
A1cso	Reach the given result with clear working and no errors Must see $\cos(-n\theta) + i\sin(-n\theta)$		
(b)	changed to $\cos n\theta - i \sin n\theta$ (ie both included)		
	The first 3 marks apply to the binomial expansion only $(1 + 1)^6$		
M1	Apply the binomial expansion to $\left(z+\frac{1}{z}\right)^6$ Coefficients must be numerical (ie	ients must be numerical (ie ${}^{n}C_{r}$ is not	
A1 M1	acceptable). The expansion must have 7 terms with at least 4 correct Correct expansion, terms need not be simplified Simplify the coefficients and pair the appropriate terms on RHS (At least 2 pairs must be correct)		
M1	Use the result from (a) throughout. Must include 2^6 or 64 now		
A1*	Obtain the given result with no errors in the working		
(c)			
M1	Use the result from (b) to simplify the given equation $D_{ab} = \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}$		
A1 M1	Reach $32\cos^6\theta = 10$ oe Solve to obtain at least one correct value for θ , in radians and in the given range, 3 sf or		
A1	better 2 correct values, and no extras, in radians and in the given range. Must be 3 sf here Ignore extras outside the range		
(d)			
M1	Use the result in (b) to change $\cos^6 \theta$ to a sum of multiple angles ready for int		
	use $\cos^2 \theta = \pm \frac{1}{2} (\cos 2\theta \pm 1)$ on $\cos^2 \theta$ Limits not needed, ignore any shown	L	
M1	Integrate their expression to obtain an expression containing terms in $\sin 6\theta$, $\sin 4\theta$, $\sin 2\theta$ and θ Limits not needed		
A1 dM1	Correct integration Limits not needed Substitute limit pi/3. Depends second M mark		
A1	Correct, exact, answer (any equivalent to that shown). AwardM1A1 for a correct following fully correct working.	ect final answer	
	There are other ways to integrate the function in (d), eg parts on one or both of	the powers of	
	$\cos\theta$, using $\cos^6\theta = (\cos^2\theta)^3 = \frac{1}{8}(1+\cos 2\theta)^3 = \dots$		
	If in doubt about the marking of alternative methods which are not completely review	correct, send to	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom