

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Level In Further Pure Mathematics F3 (WFM03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021 Publications Code WFM03_01_2101_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol \sqrt{w} will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Question Number	Scheme	Notes	Marks
1(a)		$=\pm \begin{pmatrix} -1\\5\\2 \end{pmatrix}, \pm \overrightarrow{AC} = \pm \begin{pmatrix} 3\\1\\1 \end{pmatrix}$	M1
	Attempts any 2 of these vectors. Al	low these to be written as coordinates.	
	E.g. $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -7 \\ 16 \end{pmatrix}$	Attempts the vector product of 2 appropriate vectors. If no working is shown, look for at least 2 correct elements.	d M1
	Area = $\frac{1}{2}\sqrt{3^2 + 7^2 + 16^2} = \frac{1}{2}\sqrt{314}$	Correct exact area. Allow recovery from sign errors in the vector product e.g. allow following a vector product of $\pm 3\mathbf{i} \pm 7\mathbf{j} \pm 16\mathbf{k}$	A1
	Note that a correct exact area of $\frac{1}{\sqrt{31}}$	4 with no evidence of any incorrect work	
		full marks	
	scores		(3)
	Alternative 1 us	ing cosine rule:	
	(-1)	$=\pm \begin{pmatrix} -1\\5\\2 \end{pmatrix}, \pm \overrightarrow{AC} = \pm \begin{pmatrix} 3\\1\\1 \end{pmatrix}$	M1
	$\frac{1}{1} \frac{1}{1} \frac{1}$	2 of these vectors $\sqrt{1^2 + 5^2 + 2^2}$, $\left \pm \overrightarrow{AC}\right = \sqrt{3^2 + 1^2 + 1^2}$	
	$\cos A = \frac{33+11-30}{2\sqrt{33}\sqrt{11}} = \frac{7\sqrt{3}}{33} \text{ or } \cos B = \frac{30+3}{2\sqrt{30}}$ (For reference $A = 68.44$ °)	$\frac{33-11}{5\sqrt{33}} = \frac{13\sqrt{2}}{3\sqrt{55}} \text{ or } \cos C = \frac{30+11-33}{2\sqrt{30}\sqrt{11}} = \frac{\sqrt{8}}{\sqrt{165}}$, $B = 34.27^{\circ}, C = 77.27^{\circ}$	
		nd attempts the cosine of one of the angles applied cosine rule	d M1
		· e.g.	
	$\cos A = \frac{\overline{AB.Z}}{\sqrt{33}}$	$\overline{AC} = \frac{12 - 4 - 1}{\sqrt{33}\sqrt{11}}$	
		osine of the included angle using a correctly calar product	
	Area = $\frac{1}{2}\sqrt{11}\sqrt{33}\sin A = \frac{1}{2}\sqrt{314}$ or	Correct exact area. Allow recovery from sign errors in the vectors that do not affect the calculations e.g. allow	
	Area $=\frac{1}{2}\sqrt{30}\sqrt{33}\sin B = \frac{1}{2}\sqrt{314}$	$\pm AB = \pm 4\mathbf{i} \pm 4\mathbf{j} \pm \mathbf{k},$ $\pm \overrightarrow{BC} = \pm \mathbf{i} \pm 5\mathbf{j} \pm 2\mathbf{k},$	A1
	Area = $\frac{1}{2}\sqrt{30}\sqrt{11}\sin C = \frac{1}{2}\sqrt{314}$	$\pm \overline{AC} = \pm 3\mathbf{i} \pm \mathbf{j} \pm \mathbf{k}$ And allow work in decimals as long as a correct exact area is found.	
			(3)

Alternative 2 using scalar product:	
$\pm \overrightarrow{AB} = \pm \begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix}, \pm \overrightarrow{BC} = \pm \begin{pmatrix} -1 \\ 5 \\ 2 \end{pmatrix}, \pm \overrightarrow{AC} = \pm \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$ Attempts any 2 of these vectors	M1
Attempts any 2 of these vectors	
A to BC is $\sqrt{AB^2 - \left(\frac{\overrightarrow{AB} \cdot \overrightarrow{BC}}{BC}\right)^2} = \sqrt{\frac{157}{15}}$	
$B \text{ to } CA \text{ is } \sqrt{BC^2 - \left(\frac{\overrightarrow{BC} \cdot \overrightarrow{CA}}{CA}\right)^2} = \sqrt{\frac{314}{11}}$	d M1
or	
$C ext{ to } BA ext{ is } \sqrt{AC^2 - \left(\frac{\overrightarrow{AC} \cdot \overrightarrow{AB}}{AB}\right)^2} = \sqrt{\frac{314}{33}}$	
Attempts one of the altitudes of triangle ABC using a correct method	
Area $=\frac{1}{2}\sqrt{30}\sqrt{\frac{157}{15}} = \frac{1}{2}\sqrt{314}$	
Area $=\frac{1}{2}\sqrt{11}\sqrt{\frac{314}{11}} = \frac{1}{2}\sqrt{314}$ Correct exact area. Allow work in decimals as long as a correct exact area is found.	A1
Area $=\frac{1}{2}\sqrt{33}\sqrt{\frac{314}{33}} = \frac{1}{2}\sqrt{314}$	
	(3)
Alternative 3 using vector products:	
$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} 0\\ 4\\ -16 \end{pmatrix}, \ \mathbf{b} \times \mathbf{c} = \begin{pmatrix} 0\\ -8\\ 20 \end{pmatrix}, \ \mathbf{c} \times \mathbf{a} = \begin{pmatrix} -3\\ -3\\ 12 \end{pmatrix}$	M1
Attempts these vector products	<u> </u>
$\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} = \begin{pmatrix} -3 \\ -7 \\ 16 \end{pmatrix}$	d M1
Adds the appropriate vector products	
Area = $\frac{1}{2}\sqrt{3^2 + 7^2 + 16^2} = \frac{1}{2}\sqrt{314}$ Correct exact area. Allow work in decimals as long as a correct exact area is found.	A1
	(3)

Question Number	Scheme	Notes	Marks
(b)		$=\pm \begin{pmatrix} -2\\2\\k \end{pmatrix}, \pm \overrightarrow{CD} = \pm \begin{pmatrix} -1\\-3\\k-2 \end{pmatrix}$	M1
		of these vectors	
	E.g. $\overrightarrow{AB} \times \overrightarrow{AC}.\overrightarrow{AD} = \begin{pmatrix} -3\\ -7\\ 16 \end{pmatrix}$		
	E.g. $\overrightarrow{AB} \times \overrightarrow{AC} \cdot \overrightarrow{BD} = \begin{pmatrix} - & - \\ - & - \\ - & - \\ - & - \end{pmatrix}$	$ \begin{bmatrix} -3 \\ -7 \\ 16 \end{bmatrix} \bullet \begin{pmatrix} -2 \\ 2 \\ k \end{pmatrix} = 6 - 14 + 16k $	
	E.g. $\overrightarrow{AB} \times \overrightarrow{AC}.\overrightarrow{CD} = \begin{pmatrix} -3\\ -7\\ 16 \end{pmatrix}$	• $\begin{pmatrix} -1 \\ -3 \\ k-2 \end{pmatrix} = 3 + 21 + 16k - 32$	d M1
	Attempts a suitable triple product to obta	in a scalar quantity $(\frac{1}{6} \text{ not required here}).$	
	Do not be too concerned if they make sli	correctly e.g. not the magnitude of a vector. ps as long as appropriate vectors are being quantity is obtained.	
		the tetrahedron ABCD.	
		Correct volume. Must see modulus and must be 2 terms but allow equivalents	
	$Volume = \frac{1}{3} 8k - 4 $	e.g. $\frac{4}{3} 2k-1 , \frac{1}{6} 16k-8 , \frac{1}{6} 8-16k $	A1
		Award once a correct answer is seen and apply isw if necessary.	
			(3)
			Total 6

Question Number	Scheme	Notes	Marks
2(a)	$y = \ln(\tanh 2x) \Rightarrow e^y = \tanh 2x \Rightarrow e^y$ M1: Applies the chain rule or eliminate obtain to obtain A1: Correct deri Note that some candidates now conve	$\frac{dy}{dx} = \frac{1}{\tanh 2x} \times 2 \operatorname{sech}^2 2x$ or $e^y \frac{dy}{dx} = 2 \operatorname{sech}^2 2x \Longrightarrow \frac{dy}{dx} = \frac{2 \operatorname{sech}^2 2x}{\tanh 2x}$ es the "ln" and differentiates implicitly to $n \frac{dy}{dx} = \frac{k \operatorname{sech}^2 2x}{\tanh 2x}$ vative in any form ert to exponential form to complete this ative for scoring the final M1A1	M1A1
	$= \frac{2\cosh 2x}{\sinh 2x} \times \frac{1}{\cosh^2 2x} = \frac{2}{\sinh 2x \cosh 2x}$	Converts to sinh2x and cosh2x correctly to obtain $\frac{k}{\sinh 2x \cosh 2x}$	M1
	$=\frac{2}{\frac{1}{2}\sinh 4x}=4\operatorname{cosech}4x$	Correct answer. Note that this is not a given answer so you can allow if e.g. a sinh becomes a sin but is then recovered but if there are any obvious errors this mark should be withheld.	A1
	Alternative usi	ng exponentials:	(4)
	$y = \ln \left(\tanh 2x \right)$ $\frac{dy}{dx} = \frac{e^{2x} + e^{-2x}}{e^{2x} - e^{-2x}} \left(\frac{\left(e^{2x} + e^{-2x}\right)\left(2e^{2x} - e^{-2x}\right)}{e^{2x} - e^{-2x}} \right)$ $y = \ln \left(\tanh 2x \right) = \ln \left(\frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} - e^{-2x}\right)$ $\frac{dy}{dx} = \frac{2e^{2x} + 2e}{e^{2x} - e^{-2x}}$ M1: Writes $\tanh 2x$ correctly in terms of equation the subtraction	$\frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}$ $\frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}$ $\frac{e^{2x} + e^{-2x}}{e^{2x} + e^{-2x}}$ or $\frac{e^{2x} - e^{-2x}}{e^{2x} - e^{-2x}} - \ln(e^{2x} + e^{-2x})$ $\frac{e^{2x} - 2e^{-2x}}{e^{2x} + e^{-2x}}$ exponentials and applies the chain rule and law of logs and applies the chain rule vative in any form	M1A1
	$=\frac{2(e^{2x}+e^{-2x})^2-2(e^{2x}-e^{-2x})^2}{e^{4x}-e^{-4x}}$	$=\frac{8}{e^{4x}-e^{-4x}}$ Obtains $\frac{k}{e^{4x}-e^{-4x}}$	M1
	$=\frac{4}{\sinh 4x} = 4\operatorname{cosech}4x$	Correct answer. Note that this is not a given answer so you can allow if e.g. a sinh becomes a sin but is then recovered but if there are any obvious errors this mark should be withheld.	A1

(b) Way 1	$4\operatorname{cosech} 4x = 1 \Longrightarrow \sinh 4x = 4 \Longrightarrow 4x = \ln\left(4 + \sqrt{4^2 + 1}\right)$ Changes to sinh $4x = \dots$ and uses the correct logarithmic form of arsinh to reach $4x = \dots$	M1	
	$x = \frac{1}{4} \ln \left(4 + \sqrt{17} \right)$ Allow e.g. $x = \ln \left(4 + \sqrt{17} \right)^{\frac{1}{4}}$	A1	
			(2)
(b) Way 2	$4\operatorname{cosech} 4x = 1 \Longrightarrow 4 \times \frac{2}{e^{4x} - e^{-4x}} = 1 \Longrightarrow e^{8x} - 8e^{4x} - 1 = 0$ Changes to the <u>correct</u> exponential form to reach $\frac{k}{e^{4x} - e^{-4x}}$, obtains a 3TQ in e^{4x} , solves and takes ln's to reach $4x = \dots$ (usual rules for solving a 3TQ do not apply as long as the above conditions are met)	M1	
	$x = \frac{1}{4}\ln(4 + \sqrt{17})$ This value only. Allow e.g. $x = \ln(4 + \sqrt{17})^{\frac{1}{4}}$	A1	
			(2)
		Tot	al 6

Question Number	Scheme	Notes	Marks
3(a)	$\mathbf{A} = \begin{pmatrix} 2\\ 2\\ 1 \end{pmatrix}$	$ \begin{array}{ccc} k & 2 \\ 2 & k \\ 2 & 2 \end{array} $	
	$ \mathbf{A} = 2(4-2k)-k(4)$ $\implies k^2 - 8k + 12$ Attempts det $\mathbf{A} = 0$ and solves Note that the usual rules for solving a 3T values for k a The attempt at the determinant should b column so allow errors on Note that the rule of Sarrus give	$2 = 0 \implies k =$ s 3TQ to obtain 2 values for k Q do not need to be applied as long as 2 are obtained. be a correct expression for their row or ally when collecting terms	M1
	k = 2, 6	Correct values.	A1
	Marks for part (a) can only be scored in from p	—	
			(2)
(b)	$\begin{pmatrix} 2 & k & 2 \\ 2 & 2 & k \\ 1 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 4-2k & 4-k \\ 2k-4 & 2 & 4k \\ k^2-4 & 2k-4 & 4k \\ \text{Applies the correct method to real} \\ \text{Should be an attempt at the minimal} \\ \text{If there is any doubt then look} \end{pmatrix}$	ach at least a matrix of cofactors ors followed by $\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$	M1
	$\begin{pmatrix} 4-2k & k-4 & 2\\ 4-2k & 2 & k-4\\ k^2-4 & 4-2k & 4-2k \end{pmatrix}$ dM1: Attempts adjoint matrix by trans A1: Corre	$ k - 4 \qquad 2 \qquad 4 - 2k \\ 2 \qquad k - 4 \qquad 4 - 2k $ sposing. Dependent on previous mark.	d M1 A1
	$\mathbf{A}^{-1} = \frac{1}{k^2 - 8k + 12} \begin{pmatrix} 4 - 2 \\ k - 2 \\ 2 \end{pmatrix}$ Fully correct inverse or follow through the follow the follow through the follow the follow the follow thr	2	A1ft
	where their determine Ignore any labelling of the matrices and	l allow any type of brackets around the	
	matr		(4)
			Total 6

Question Number	Scheme Notes	Marks
4	$x = 4\cosh\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sinh\theta$	
	$\Rightarrow \int \frac{1}{\left(x^2 - 16\right)^{\frac{3}{2}}} dx = \int \frac{4\sinh\theta}{\left(16\cosh^2\theta - 16\right)^{\frac{3}{2}}} d\theta$	
	Full attempt to use the given substitution. Award for $\int \frac{1}{\left(x^2 - 16\right)^{\frac{3}{2}}} dx = k \int \frac{\sinh \theta}{\left(\left(4\cosh \theta\right)^2 - 16\right)^{\frac{3}{2}}} d\theta$	M1
	Condone $4\cosh^2\theta$ for $(4\cosh\theta)^2$	
	$= \int \frac{4\sinh\theta}{\left(16\sinh^2\theta\right)^{\frac{3}{2}}} \mathrm{d}\theta = \int \frac{4\sinh\theta}{64\sinh^3\theta} \mathrm{d}\theta$	
	Simplifies $(16\cosh^2\theta - 16)^{\frac{3}{2}}$ to the form $k\sinh^3\theta$ which may be implied by:	M1
	$\int \frac{1}{\left(x^2 - 16\right)^{\frac{3}{2}}} \mathrm{d}x = k \int \frac{1}{\sinh^2 \theta} \mathrm{d}\theta$	
	Note that this is not dependent on the first M	
	$= \int \frac{1}{16\sinh^2\theta} \mathrm{d}\theta$	
	Fully correct simplified integral.	A1
	Allow equivalents e.g. $\frac{1}{16}\int \csc^2\theta d\theta$, $\int \frac{1}{(4\sinh\theta)^2} d\theta$, $\int (4\sinh\theta)^{-2} d\theta$ etc.	
	May be implied by subsequent work. $= \int \frac{1}{16 \sinh^2 \theta} d\theta = \frac{1}{16} \int \operatorname{cosech}^2 \theta d\theta = -\frac{1}{16} \operatorname{coth} \theta (+c)$	d M1
	Integrates to obtain $k \operatorname{coth} \theta$. Depends on both previous method marks.	
	$= -\frac{1}{16} \frac{\cosh \theta}{\sinh \theta} + c = -\frac{1}{16} \frac{\frac{x}{4}}{\sqrt{\frac{x^2}{16} - 1}} + c \text{ or e.g. } -\frac{1}{4} \frac{\frac{x}{4}}{\sqrt{x^2 - 16}} + c$	
	Substitutes back <u>correctly</u> for x by replacing $\cosh \theta$ with $\frac{x}{4}$ or equivalent e.g.	d M1
	$4\cosh\theta$ with x and $\sinh\theta$ with $\sqrt{\left(\frac{x}{4}\right)^2} - 1$ or equivalent e.g. $4\sinh\theta$ with $\sqrt{x^2 - 16}$	
	Depends on all previous method marks and must be fully correct work for their "_ $\frac{1}{2}$ "	
	16	
	$\frac{-x}{16\sqrt{x^2-16}}(+c) \text{ oe e.g. } \frac{-\frac{1}{16}x}{\sqrt{x^2-16}}(+c) \qquad \begin{array}{c} \text{Correct answer. Award once the correct} \\ \text{answer is seen and apply isw if necessary.} \\ \text{Condone the omission of "+ c"} \end{array}$	A1
	Note that you can condone the omission of the "d θ " throughout	(6)
		Total 6

Question Number	Scheme	Notes	Marks
	Mark (a) and (b) together but do not o	credit work for (a) that is seen in (c)	
5(a)	$\begin{pmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 8x \\ 8y \\ 8z \end{pmatrix} \text{ or } \begin{pmatrix} -2 \\ -2 \\ -1 \\ -1 \end{pmatrix}$ Correct method for obtain		M1
	i – j A	Any multiple of this vector	A1
			(2)
(b)	$ \mathbf{M} - \lambda \mathbf{I} = \begin{vmatrix} 6 - \lambda \\ -2 \\ -1 \end{vmatrix}$ Correct attempt at the determinant of \mathbf{M} -should be correct with correct signs but double und Note that the rule $(6 - \lambda)(6 - \lambda)(5 - \lambda) - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - $	$\frac{2(2(\lambda-5)-1)}{\sqrt{1}} - \frac{1(2+6-\lambda)}{\sqrt{1}}$ - $\lambda \mathbf{I}$. The terms with single underlining allow minor slips in the brackets with lerlining. of Sarrus gives	M1
	$\rightarrow \lambda^3 - 17 \lambda^2 + 90 \lambda - 144 - 0 \rightarrow \lambda - 144$	Solves $\mathbf{M} - \lambda \mathbf{I} = 0$ to obtain 2 different listinct real eigenvalues excluding 8	M1
	$\Rightarrow \lambda = 3, 6, (8)$ F	For 3 and 6	A1
			(3)

Question Number	Scheme	Notes	Marks
(c)	$ (\mathbf{D} =) \begin{pmatrix} 8 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix} $	Correct D with distinct non-zero eigenvalues in any order. Follow through their non-zero 3 and 6. Ignore labelling and score for sight of the correct or correct ft matrix.	B1ft
		$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots \text{NB } \mathbf{v}_2 = k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	
	$\begin{pmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6x \\ 6y \\ 6z \end{pmatrix} =$	$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots \qquad \text{NB } \mathbf{v}_3 = k \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$	M1
	1 0	2 distinct eigenvalues not including 8 $(\mathbf{M} - \lambda \mathbf{I})\mathbf{x} = 0$	
	$\left(\mathbf{P}=\right) \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$	$ \begin{array}{cccc} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \end{array} $	M1
	part (a) and their other 2 eigenvectors fe eigenvalues in any order. Ignore labellin	igenvectors using their eigenvector from ormed from their other 2 different distinct ng and score for forming this matrix which art of a calculation.	
	$\mathbf{D} = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix} \text{ and }$	$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \end{pmatrix}$	A1
	-	rrectly labelled but the labelling may be heir working.	
			(4)
			Total 9

Question Number	Scheme	Notes	Marks
6(a) Way 1	$\int \frac{x^n}{\sqrt{x^2 + 3}} \mathrm{d}x = \int x^{n-1} x \left(x^2 + 3\right)^{-\frac{1}{2}} \mathrm{d}x \ 0$	$\mathbf{r} \int \frac{x^{n}}{\sqrt{x^{2}+3}} dx = \int x^{n-1} d(x^{2}+3)^{\frac{1}{2}}$	M1
	Applies $x^n = x^{n-1} \times x$ to $\int \frac{x^n}{\sqrt{x^2 + 3}} dx$ but	may be implied by subsequent work	
	$\int x^{n-1} x \left(x^2 + 3\right)^{-\frac{1}{2}} dx = x^{n-1} \left(x^2 + 3\right)^{-\frac{1}{2}} dx$	$\int_{-\infty}^{1} \int (n-1) x^{n-2} (x^2+3)^{\frac{1}{2}} dx$	
	dM1: Applies integratio		
	$\alpha x^{n-1} (x^2 + 3)^{\frac{1}{2}} - \beta$	$\int x^{n-2} (x^2 + 3)^{\frac{1}{2}} dx$	d M1A1
	(NB α , β may be f Note that if a correct formula for parts is correct direction then we can condone slips the above form. If you are u A1: Correct e	quoted first and parts is applied in the in signs as long as the expression is of nsure – send to review.	
	$= x^{n-1} (x^{2} + 3)^{\frac{1}{2}} - \int (n-1)x$ Applies $(x^{2} + 3)^{\frac{1}{2}} = (x^{2} + 3)(x^{2} + 3)^{-\frac{1}{2}}$ havi		M1
	Applies $(x + 3)^2 - (x + 3)(x + 3)^2$ have parts in the corr		
	$= x^{n-1} (x^{2} + 3)^{\frac{1}{2}} - (n-1) \int x^{n} (x^{2} + 3)^{-1} \\ = x^{n-1} (x^{2} + 3)^{\frac{1}{2}} - (n - 1)^{\frac{1}{2}} \\ Splits into 2 integrals in Depends on all the previous of the second seco$	$\int_{-\frac{1}{2}}^{\frac{1}{2}} dx - 3(n-1) \int x^{n-2} (x^2 + 3)^{-\frac{1}{2}} dx$ 1) $I_n - 3(n-1) I_{n-2}$ nvolving I_n and I_{n-2}	d M1
	$\Rightarrow I_n = \frac{x^{n-1}}{n} \left(x^2 + 3\right)^2$ Obtains the printed answer. You can condo any clear errors e.g. invisible brackets that this mark should	$\frac{1}{2} - \frac{3(n-1)}{n} I_{n-2} *$ ne the odd missing "dx" but if there are are not recovered, sign errors etc. then	A1*
			(6)

Question Number	Scheme	Notes	Marks
6(a) Way 2	$\int \frac{x^n}{\sqrt{x^2 + 3}} \mathrm{d}x = \int x^{n-2}$ Applies $x^n =$		M1
	$\int x^{n-2} x^2 (x^2 + 3)^{-\frac{1}{2}} dx = \int x^{n-2} dx$ $= \int x^{n-2} (x^2 + 3)^{\frac{1}{2}} dx - \int dM_1$ Writes x^2 as $(x^2 + 3 - 3)$ to obtain $\alpha \int A_1$: Correct ex	$3x^{n-2}(x^{2}+3)^{-\frac{1}{2}}dx$ $x^{n-2}(x^{2}+3)^{\frac{1}{2}}dx - \beta \int x^{n-2}(x^{2}+3)^{-\frac{1}{2}}dx$	d M1A1
	A1: Correct ex $\int x^{n-2} (x^2 + 3)^{\frac{1}{2}} dx = \frac{x^{n-1}}{n-1} (x^2 + 3)^{\frac{1}{2}} dx$ Applies integration by parts on $\alpha x^{n-1} (x^2 + 3)^{\frac{1}{2}} - \beta \int$ Note that if a correct formula for parts is correct direction then we can condone slips the above form. If you are use	$\int x^{n-2} (x^2 + 3)^{\frac{1}{2}} dx \text{ to obtain}$ $x^n (x^2 + 3)^{-\frac{1}{2}} dx$ nuoted first and parts is applied in the in signs as long as the expression is of	M1
	$I_n = \frac{x^{n-1}}{n-1} (x^2 + 3)^{\frac{1}{2}} -$ Brings all together and in Depends on all the prev	$-\frac{1}{n-1}I_n - 3I_{n-2}$ introduces I_n and I_{n-2}	d M1
	$\Rightarrow I_n = \frac{x^{n-1}}{n} \left(x^2 + 3\right)^{\frac{1}{2}}$ Obtains the printed answer. You can condomn any clear errors e.g. invisible brackets that this mark should	ne the odd missing " dx " but if there are are not recovered, sign errors etc. then	A1*

Question Number	Scheme Notes	Marks
(b) Way 1	$I_5 = \frac{x^4}{5} \left(x^2 + 3\right)^{\frac{1}{2}} - \frac{12}{5} I_3$	
	Applies the reduction formula once to obtain I_5 in terms of I_3 Allow slips on coefficients only	M1
	$I_{5} = \frac{x^{4}}{5} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{12}{5} \left(\frac{x^{2}}{3} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{6}{3} I_{1}\right)$	
	Applies the reduction formula again to obtain an expression for I_5 in terms of I_1 and	M1
	allow " <i>I</i> ₁ "or what they think is <i>I</i> ₁ Allow slips on coefficients only	
	$I_{5} = \frac{x^{4}}{5} \left(x^{2} + 3 \right)^{\frac{1}{2}} - \frac{12}{5} \left(\frac{x^{2}}{3} \left(x^{2} + 3 \right)^{\frac{1}{2}} - \frac{6}{3} \left(x^{2} + 3 \right)^{\frac{1}{2}} \right)$	
	Or e.g. $I_5 = \frac{x^4}{5} \left(x^2 + 3\right)^{\frac{1}{2}} - \frac{4}{5} x^2 \left(x^2 + 3\right)^{\frac{1}{2}} + \frac{24}{5} \left(x^2 + 3\right)^{\frac{1}{2}}$	A1
	Any correct expression in terms of x only	
	$I_5 = \frac{1}{5} \left(x^2 + 3 \right)^{\frac{1}{2}} \left(x^4 - 4x^2 + 24 \right) + k$	A1
	Must include the "+ k " but allow other letter e.g. + c	
		(4) Total 10
(b)	1	
Way 2	NB $I_1 = (x^2 + 3)^{\frac{1}{2}}$	
	NB $I_1 = (x^2 + 3)^{\overline{2}}$ $I_3 = \frac{x^2}{3} (x^2 + 3)^{\overline{2}} - \frac{6}{3} I_1$	
	$I_3 = \frac{x^2}{3} \left(x^2 + 3\right)^{\frac{1}{2}} - \frac{6}{3} I_1$ Applies the reduction formula once to obtain I_3 in terms of I_1 and allow " I_1 " or what they think is I_1	M1
	$I_3 = \frac{x^2}{3} \left(x^2 + 3\right)^{\frac{1}{2}} - \frac{6}{3}I_1$ Applies the reduction formula once to obtain I_3 in terms of I_1 and allow " I_1 " or what they think is I_1 Allow slips on coefficients only	M1
	$I_3 = \frac{x^2}{3} \left(x^2 + 3\right)^{\frac{1}{2}} - \frac{6}{3} I_1$ Applies the reduction formula once to obtain I_3 in terms of I_1 and allow " I_1 " or what they think is I_1	
	$I_{3} = \frac{x^{2}}{3} (x^{2} + 3)^{\frac{1}{2}} - \frac{6}{3} I_{1}$ Applies the reduction formula once to obtain I_{3} in terms of I_{1} and allow " I_{1} " or what they think is I_{1} Allow slips on coefficients only $I_{5} = \frac{x^{4}}{5} (x^{2} + 3)^{\frac{1}{2}} - \frac{12}{5} \left(\frac{x^{2}}{3} (x^{2} + 3)^{\frac{1}{2}} - 2I_{1} \right)$ Applies the reduction formula again to obtain an expression for I_{5} in terms of I_{1} and allow " I_{1} " or what they think is I_{1}	M1 M1
	$I_{3} = \frac{x^{2}}{3} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{6}{3}I_{1}$ Applies the reduction formula once to obtain I_{3} in terms of I_{1} and allow " I_{1} " or what they think is I_{1} Allow slips on coefficients only $I_{5} = \frac{x^{4}}{5} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{12}{5} \left(\frac{x^{2}}{3} \left(x^{2} + 3\right)^{\frac{1}{2}} - 2I_{1}\right)$ Applies the reduction formula again to obtain an expression for I_{5} in terms of I_{1} and	
	$I_{3} = \frac{x^{2}}{3} (x^{2} + 3)^{\frac{1}{2}} - \frac{6}{3} I_{1}$ Applies the reduction formula once to obtain <i>I</i> ₃ in terms of <i>I</i> ₁ and allow " <i>I</i> ₁ " or what they think is <i>I</i> ₁ Allow slips on coefficients only $I_{5} = \frac{x^{4}}{5} (x^{2} + 3)^{\frac{1}{2}} - \frac{12}{5} (\frac{x^{2}}{3} (x^{2} + 3)^{\frac{1}{2}} - 2I_{1})$ Applies the reduction formula again to obtain an expression for <i>I</i> ₅ in terms of <i>I</i> ₁ and allow " <i>I</i> ₁ " or what they think is <i>I</i> ₁ Allow slips on coefficients only $I_{5} = \frac{x^{4}}{5} (x^{2} + 3)^{\frac{1}{2}} - \frac{12}{5} (\frac{x^{2}}{3} (x^{2} + 3)^{\frac{1}{2}} - \frac{6}{3} (x^{2} + 3)^{\frac{1}{2}})$ Or e.g. $I_{5} = \frac{x^{4}}{5} (x^{2} + 3)^{\frac{1}{2}} - \frac{4}{5} x^{2} (x^{2} + 3)^{\frac{1}{2}} + \frac{24}{5} (x^{2} + 3)^{\frac{1}{2}}$	
	$I_{3} = \frac{x^{2}}{3} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{6}{3}I_{1}$ Applies the reduction formula once to obtain I_{3} in terms of I_{1} and allow " I_{1} " or what they think is I_{1} Allow slips on coefficients only $I_{5} = \frac{x^{4}}{5} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{12}{5} \left(\frac{x^{2}}{3} \left(x^{2} + 3\right)^{\frac{1}{2}} - 2I_{1}\right)$ Applies the reduction formula again to obtain an expression for I_{5} in terms of I_{1} and allow " I_{1} " or what they think is I_{1} Allow slips on coefficients only $I_{5} = \frac{x^{4}}{5} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{12}{5} \left(\frac{x^{2}}{3} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{6}{3} \left(x^{2} + 3\right)^{\frac{1}{2}}\right)$ E.g. $I_{5} = \frac{x^{4}}{5} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{12}{5} \left(\frac{x^{2}}{3} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{6}{3} \left(x^{2} + 3\right)^{\frac{1}{2}}\right)$ Or e.g.	M1

Question Number	Scheme	Notes	Marks
(b) Way 3	Applies the reduction formula or	$I_{5} = \frac{x^{4}}{5} \left(x^{2} + 3\right)^{\frac{1}{2}} - \frac{12}{5} I_{3}$ Applies the reduction formula once to obtain I_{5} in terms of I_{3} Allow slips on coefficients only	
	$I_{3} = \int \frac{x^{3}}{(x^{2}+3)^{\frac{1}{2}}} dx$ $u = x^{2} + 3 \Rightarrow I_{3} = \int \frac{(u-3)^{\frac{3}{2}}}{u^{\frac{1}{2}}} \frac{du}{2(u-3)^{\frac{1}{2}}} = \frac{1}{2} \int \frac{(u-3)}{u^{\frac{1}{2}}} du = \frac{1}{3}u^{\frac{3}{2}} - 6u^{\frac{1}{2}}$ $= \frac{1}{3}(x^{2}+3)^{\frac{3}{2}} - 6(x^{2}+3)^{\frac{1}{2}}$		M1A1
	$I_5 = \frac{x^4}{5} \left(x^2 + 3\right)^{\frac{1}{2}} - \frac{12}{5} \left(\frac{1}{3}\right)^{\frac{1}{2}}$ M1: A credible attempt to find I_3 an A1: Any correct expression	d then expresses I_5 in terms of x	
	$I_{5} = \frac{1}{5} \left(x^{2} + 3 \right)^{\frac{1}{2}} \left(x^{4} \right)^{\frac{1}{2}}$ Must include the "+ k" but a		A1

Question Number	Scheme	Notes	Marks	
7(a)	$5\mathbf{i} + 3\mathbf{j} - 8\mathbf{k}$ and $2\mathbf{i} - 3\mathbf{j} - 6\mathbf{k}$ lie in Π_1	Identifies 2 correct vectors lying in Π_1	B1	
	$\mathbf{n} = \begin{pmatrix} 5\\ 3\\ -8 \end{pmatrix} \times \begin{pmatrix} 2\\ -3\\ -6 \end{pmatrix} =$ Attempts the vector product be		M1	
	If no working is shown, look for Or e Let $\mathbf{n} = a\mathbf{i} + b\mathbf{i}$ $(a\mathbf{i} + b\mathbf{j} + c\mathbf{k}) \cdot (5\mathbf{i} + 3\mathbf{j} - 8\mathbf{k}) = 0$, $\Rightarrow 5a + 3b - 8c = 0$, $2a - 3b - 6c = 0$	b.g. $b\mathbf{j} + c\mathbf{k}$ then $(a\mathbf{i} + b\mathbf{j} + c\mathbf{k}) \cdot (2\mathbf{i} - 3\mathbf{j} - 6\mathbf{k}) = 0$	M1	
	$= \begin{pmatrix} -42\\ 14\\ -21 \end{pmatrix} \text{ or e.g.} \begin{pmatrix} 6\\ -2\\ 3 \end{pmatrix}$ $(6\mathbf{i} - 2\mathbf{i} + 3\mathbf{k}) \cdot (1)$		A1	
	$(6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) \cdot (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = \dots$ Attempts scalar product between their normal vector and position vector of a point in Π_1 . Do not allow this mark if the "5" (or equivalent) just 'appears'. There must be some evidence for its origin e.g. $\mathbf{a}.\mathbf{n} = \dots$ where \mathbf{a} and \mathbf{n} have been defined earlier. Depends on the first method mark.			
	6x - 2y + 3z = 5* Correct proof			
	Alternative 1 for (a):			
	E.g. Let equation of I 3 points on Π_1 are (1, 2, 1), (3)	•	B1	
	a + 2b + 1 = c, $3a - b - 5 = c$, $8a + 2bSolves simultaneously for a, b$		M1	
	$\Rightarrow a = 2, b = -\frac{2}{3}, c = \frac{5}{3}$	Correct values	A1	
	$ \begin{array}{r} 3 & 3 \\ 2x - \frac{2}{3}y + z = \frac{5}{3} \\ 6x - 2y + 3z = 5 * \end{array} $	Forms Cartesian equation	d M1 A1*	
	Alternative 2 for (a): $(1,2,1) \rightarrow 6x - 2y + 3z = 6 - 4 + 3 = 5$			
			B1	
	$(1, 2, 1) \rightarrow 6x - 2y + \frac{1}{5}$ Shows $(1, 2, 1)$ $\frac{x-3}{5} = \frac{y+1}{3} = \frac{z+5}{-8} \rightarrow \mathbf{r} = \frac{1}{5}$ M1: Converts <i>l</i> to correct parametric form <u>see</u> allow 1 slip with or A1: Correct $6(3+5\lambda)-2(-1+3)$	1) lies on Π_1 $ \begin{array}{c} 3 \\ -1 \\ -5 \end{array} + \lambda \begin{pmatrix} 5 \\ 3 \\ -8 \end{pmatrix} \text{ or equivalent} $ en as part of an attempt at this alternative ne of the elements ext form	B1 M1A1 d M1	

(b) Way 3 $= \begin{vmatrix} -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	<i>P</i> lies in Π_1 and <i>l</i> lies in Π_1 s All correct with $d = \frac{ 6(2) - 2k + 3(-7) - 5 }{\sqrt{6^2 + 2^2 + 3^2}}$	conclusion	A1*		
Way 1 (b) Way 2 Dist (b) Way 3 $= \begin{vmatrix} -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4$					
Way 2 Dist (b) Way 3 $= \begin{vmatrix} -d \\ -d$	1	$d = \frac{ 6(2) - 2k + 3(-7) - 5 }{\sqrt{6^2 + 2^2 + 3^2}}$ Correct method for the shortest distance			
Way 2 Dist (b) Way 3 $= \begin{vmatrix} -d \\ -d$	$=\frac{1}{7} -2k-14 =\frac{2}{7} k+7 *$	Correct completion	A1*		
Way 2 Dist (b) Way 3 $= \begin{vmatrix} -d \\ -d$			(2)		
(b) Way 3 $= \begin{vmatrix} -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	Distance <i>O</i> to Π_1 is $\frac{5}{\sqrt{6^2 + 2^2 + 3^2}}$. Distance <i>O</i> to parallel plane containing <i>Q</i> is $\frac{(6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) \cdot (2\mathbf{i} + k\mathbf{j} - 7\mathbf{k})}{\sqrt{6^2 + 2^2 + 3^2}} = \frac{-9 - 2k}{7}$				
Way 3 $= \begin{vmatrix} -d \\ -d \end{vmatrix}$ (c) Corrections from Π_2 e $d = \frac{d}{2}$	$d = \begin{vmatrix} 5 \\ 7 \end{vmatrix} - \frac{-9 - 2k}{7} \end{vmatrix}$ Correct method for the shortest distance				
Way 3 $= \begin{vmatrix} -d \\ -d \end{vmatrix}$ (c) Corrections from Π_2 e $d = \frac{d}{2}$	$= \frac{1}{7} 2k+14 = \frac{2}{7} k+7 *$ Correct completion				
(c) Corrections from Π_2 e d = $\frac{2}{2}$	$d = \left \frac{\overrightarrow{PQ} \cdot \mathbf{n}}{ \mathbf{n} } \right = \left \frac{(\mathbf{i} + (k-2)\mathbf{j} - 8\mathbf{k}) \cdot (-42\mathbf{i} + 14\mathbf{j} - 21\mathbf{k})}{\sqrt{42^2 + 14^2 + 21^2}} \right $				
Corrections from Π_2 end d =	$\frac{\text{Correct method for the}}{\frac{-42+14k-28+168}{49}} = \frac{ 14k+98 }{49} = \frac{2}{7} k+7 *$		A1*		
	$\frac{2}{7} k+7 = \frac{ 8(2)-4k-7+3 }{\sqrt{8^2+4^2+1^2}}$ Correctly attempts the distance between $(2, k, -7)$ and Π_2 and sets equal to the result from (a). May see alternative methods here for the distance between $(2, k, -7)$ and Π_2 e.g. finds the coordinates of a point on Π_2 e.g. $R(1, 1, -7)$ and then finds $d = \left \frac{\overline{RQ} \cdot (8\mathbf{i} - 4\mathbf{j} + \mathbf{k})}{ 8\mathbf{i} - 4\mathbf{j} + \mathbf{k} }\right = \left \frac{(\mathbf{i} + (k-1)\mathbf{j}) \cdot (8\mathbf{i} - 4\mathbf{j} + \mathbf{k})}{\sqrt{8^2 + 4^2 + 1^2}}\right = \left \frac{8 - 4k + 4}{9}\right = \left \frac{12 - 4k}{9}\right $		M1		
C	$\frac{2}{7}(k+7) = "\frac{1}{9}(12-4k)" \Rightarrow k = \dots \text{ or } \frac{2}{7}(k+7) = "\frac{1}{9}(4k-12)" \Rightarrow k = \dots$ Attempts to solve one of these equations where their distance from Q to Π_2 is of the form $ak + b$ where a and b are non-zero. or $\frac{2}{7}(k+7) = "\frac{1}{9}(12-4k)" \Rightarrow \frac{4}{49}(k+7)^2 = "\frac{1}{81}(12-4k)^2"$ $\Rightarrow 23k^2 - 462k - 441 = 0 \Rightarrow k = \dots$ Squares both sides and attempts to solve resulting quadratic. Condone poor attempts at squaring the brackets and there is no requirement to follow the usual guidance for solving the quadratic $k = -\frac{21}{23}$ or $k = 21$ One correct value. Must be 21 but allow equivalent exact fractions for 21		d M1		

$k = -\frac{21}{23}$ and $k = 21$	Both correct values. Must be 21 but allow equivalent exact fractions for $-\frac{21}{23}$ and no other values.	A1
		(4)
	·	Total 11

Question Number	Scheme	Notes	Marks
8 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x}{1-x^2}$	Correct derivative	B1
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{4x^2}{\left(1 - x^2\right)^2} = \frac{\left(1 - x^2\right)^2 + 4x^2}{\left(1 - x^2\right)^2}$ Attempts $1 + \left(\frac{dy}{dx}\right)^2$, finds common der		M1
	numerator condoning sign slips only. (7	The denominator may be expanded) Fully correct expression with	
	$= \frac{(1+x^2)^2}{(1-x^2)^2} \text{ or } \left(\frac{1+x^2}{1-x^2}\right)^2$	factorised numerator and denominator.	A1
	$\int_{\frac{1}{2}}^{\frac{3}{4}} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{\frac{1}{2}}^{\frac{3}{4}} \left(\frac{1 + x^2}{1 - x^2}\right) dx^*$	Fully correct proof with no errors and integral as printed on the question paper but allow $x^2 + 1$ for $1 + x^2$ and allow $\int_{\frac{1}{2}}^{\frac{3}{4}} \frac{(1+x^2)}{(1-x^2)} dx \text{ or } \int_{\frac{1}{2}}^{\frac{3}{4}} \frac{1+x^2}{1-x^2} dx$	A1*
			(4)

Question Number	Scheme	Notes	Marks
(b)	$\frac{\left(x^{2}+1\right)}{\left(1-x^{2}\right)} = -1 + \frac{2}{1-x^{2}} \text{ or e.g. } -1 + \frac{1}{1-x} + \frac{1}{1+x}$ Writes the improper fraction correctly $\int \frac{k}{1-x^{2}} dx = \pm \alpha \ln \frac{1+x}{1-x}$ Or e.g. $\int \frac{k}{1-x^{2}} dx = \pm \alpha \ln (1+x) \pm \alpha \ln (1-x)$ Achieves an acceptable logarithmic form for $\int \frac{k}{1-x^{2}} dx$ (k constant) (may see partial fraction approach). If they use artanh here, this mark and the next mark will become available when they change to logarithmic form e.g. when they substitute the limits later.		
	$\int -1 + \frac{2}{1 - x^2} \mathrm{d}x = -x + \ln \frac{1 + x}{1 - x}$	Correct integration	A1
	$\left[\left[-x + \ln \frac{1+x}{1-x} \right]_{\underline{1}}^{\underline{3}} = -\frac{3}{4} + \ln 7 - \left(-\frac{1}{2} + \ln 3 \right) \right]$	Evidence that the given limits have been applied. Condone slips as long as the intention is clear. Depends on the previous M.	d M1
	$= -\frac{1}{4} + \ln\frac{7}{3}$	cao	A1
	Note that a common in	naorraat annraach is:	(5)
	$\int \frac{(1+x^2)}{(1-x^2)} dx = \int \left(\frac{1}{1-x^2} + \frac{x^2}{1-x^2}\right) dx = \frac{1}{2} \ln \frac{1+x}{1-x} + \dots$		
	$= \left[\frac{1}{2}\ln\frac{1+x}{1-x} + \dots\right]_{\frac{1}{2}}^{\frac{3}{4}} = \dots$ If there is no attempt at $\int \left(\frac{x^2}{1-x^2}\right) dx$ this will generally score B0M1A0M0A0 BUT If there is an attempt at $\int \left(\frac{x^2}{1-x^2}\right) dx$ (however poor) and evidence that the limits have been applied this will generally score B0M1A0M1A0. Condone slips with the substitution of limits as long as the intention is clear. BUT note that attempts that consider partial fractions such as $\frac{1+x^2}{1-x^2} = \frac{A}{1-x} + \frac{B}{1+x}$ will generally score no marks – if you are unsure, send to review. Note also that $\frac{1+x^2}{1-x^2} = \frac{A}{1-x} + \frac{B}{1+x} + C$ is a correct form and could score full marks. Also, use of $\frac{(1+x^2)}{(1-x^2)} = \frac{1-x^2+2x^2}{1-x^2} = 1 + \frac{2x^2}{1-x^2}$ with no attempt to deal with the $\frac{2x^2}{1-x^2}$ as an improper fraction as in the main scheme is likely to score no marks.		
			Total 9

(b)	$x = \tanh \theta \Rightarrow \int \frac{(1+x^2)}{(1-x^2)} dx = \int \frac{(1+\tanh^2 \theta)}{(1-\tanh^2 \theta)} \operatorname{sech}^2 \theta d\theta$ Substitutes fully		
	$\int \frac{(1 + \tanh^2 \theta)}{(1 - \tanh^2 \theta)} \operatorname{sech}^2 \theta \mathrm{d}\theta = \int (1 + \tanh^2 \theta) \mathrm{d}\theta$ $= \int (2 - \operatorname{sech}^2 \theta) \mathrm{d}\theta$ Cancel and applies $\tanh^2 \theta = 1 - \operatorname{sech}^2 \theta$		
	Cancel and applies $tail 0 = 1 - \sec t 0$		
	$= \int (2 - \operatorname{sech}^2 \theta) d\theta = 2\theta - \tanh \theta \qquad \text{Correct integration}$		
	$\begin{bmatrix} 2\operatorname{artanh} x - x]_{\frac{1}{2}}^{\frac{3}{4}} = 2 \times \frac{1}{2} \ln \left(\frac{1 + \frac{3}{4}}{1 - \frac{3}{4}} \right) - \frac{3}{4} - \left(2 \times \frac{1}{2} \ln \left(\frac{1 + \frac{1}{2}}{1 - \frac{1}{2}} \right) - \frac{1}{2} \right) \\ \text{Evidence that the given limits have been applied. Condone slips as long as the intention is clear.} \\ \text{Depends on the previous M.} \end{bmatrix}$		
	$= -\frac{1}{4} + \ln\frac{7}{3}$ cao	A1	
		(5)	

Alternative approach to integration in part (b) by substitution:

Note that a similar approach can be applied to $\left(\frac{1}{1}\right)$

$$\int \left(\frac{x^2}{1-x^2}\right) \mathrm{d}x$$

Question Number	Scheme	Notes	Marks	
9	$\frac{x^2}{25} + \frac{y^2}{16} = 1,$	$(5\cos\theta, 4\sin\theta)$		
(a)	Scheme $\frac{x^2}{25} + \frac{y^2}{16} = 1, ($ $\frac{dx}{d\theta} = -5\sin\theta, \frac{dy}{d\theta} = 4\cos\theta$ or $\frac{2x}{25} + \frac{2y}{16}\frac{dy}{dx} = 0 \text{ oe}$ or $\frac{dy}{dx} = -\frac{4x}{25}\left(1 - \frac{x^2}{25}\right)^{-\frac{1}{2}} \text{ oe}$	Correct derivatives or correct implicit differentiation or correct explicit differentiation.	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\cos\theta}{-5\sin\theta}$	Divides their derivatives correctly or substitutes and rearranges	M1	
	$M_{N} = \frac{5\sin\theta}{4\cos\theta}$	Correct perpendicular gradient rule – may be implied when they form the normal equation.	M1	
	$y - 4\sin\theta = \frac{5\sin\theta}{4\cos\theta} \left(x - 5\cos\theta\right)$	Correct straight line method (any complete method). Must use their gradient of the normal.	M1	
	$5x\sin\theta - 4y\cos\theta = 9\sin\theta\cos\theta^*$ or $9\sin\theta\cos\theta = 5x\sin\theta - 4y\cos\theta^*$	Achieves the printed answer with no errors and allow this answer to be obtained from the previous line. Allow $5\sin\theta x$ for $5x\sin\theta$ and $4\cos\theta y$ for $4y\cos\theta$.	A1*	
	Allow all marks if the gradient is seen as a function of x and y initially (even in the straight line equation) as long as this is recovered correctly.			
	Solutions that do not use calculus e.g. just quoting the equation of the normal as $y-4\sin\theta = \frac{5\sin\theta}{4\cos\theta}(x-5\cos\theta)$ send to review however if they just quote			
	e.g. $ax \sin \theta - by \sin \theta = (a^2 - b^2) \sin \theta \cos \theta$ and then write down the result this scores no marks.			
	But we would accept $\frac{dy}{dx} = \frac{4\cos\theta}{-5\sin\theta}$ to be quoted for a full solution.			
(b)	$b^{2} = a^{2} \left(1 - e^{2}\right) \Longrightarrow 16 = 25 \left(1 - e^{2}\right) \Longrightarrow e = \frac{3}{5}$		(5)	
	F is $(ae, 0) = \left(5 \times \frac{3}{5}, 0\right)$		M1	
	Or e.g. " c " ² = $a^2e^2 = a^2 - b^2 = 25 - 16 \Rightarrow a^2e^2 = 9 \Rightarrow ae =$ Fully correct strategy for <i>F</i> (must be numerical so (5 <i>e</i> , 0) is M0			
	$(3,0) \qquad \begin{array}{c} \text{Correct coordinates. } (\pm 3,0) \text{ scores} \\ \text{A0} \end{array}$			

(c) $\frac{x = \frac{9}{5}\cos\theta}{25\cos(\theta - 33^{\circ})^{2} + (4\sin\theta)^{2}} = \frac{Correct x coordinate (of Q)}{6H} = \frac{1}{2}$ $\frac{PF^{2} = (5\cos\theta - 33^{\circ})^{2} + (4\sin\theta)^{2}}{(5\cos\theta - 33^{\circ})^{2} + (4\sin\theta)^{2}} = \frac{Correct application of Pythagoras to find PF or PF^{2}. Their "33^{\circ} should be positive but allow work in terms of e eg. "5e". Applies sin2 \theta = 1 - \cos^{3} \theta to obtain a quadratic expression in \cos\theta. If the correct identity is not scene explicitly then their working must imply that a correct identity is not scene explicitly then their working must imply that a correct identity is not scene explicitly is not scene or priority is not sce$				
$\frac{\ln d F \circ r PF^2}{PF = \sqrt{(5\cos\theta - "3")^2 + (4\sin\theta)^2}} \qquad $	(c)	$x = \frac{9}{5}\cos\theta$	Correct x coordinate (of Q)	B1
$\frac{25\cos^2\theta - 30\cos\theta + 9 + 16\sin^2\theta}{25\cos^2\theta - 30\cos\theta + 9 + 16(1 - \cos^2\theta)} \qquad \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$		or	find PF or PF^2 . Their "3" should be positive but allow work in terms of e	M1
$\frac{PF^2 = 9\cos^2 \theta - 30\cos \theta + 25}{PF^2 = 9\cos^2 \theta - 30\cos \theta + 25}$ terms of $\cos \theta$ with terms collected. A1 Note that an alternative to using Pythagoras to find <i>PF</i> is to use <i>PF = ePM</i> where <i>M</i> is the foot of the perpendicular from <i>P</i> to the positive directrix. Score M1 for $x = \frac{a}{e} = \frac{5}{3/5} \left(= \frac{25}{3} \right) (\cot \pm \frac{25}{3})$ and d M1A1 for <i>PF = ePM = $\frac{3}{3} \left(\frac{25}{3} - 5\cos \theta \right)$ $\frac{ QF }{ PF } = \frac{3 - \frac{9}{5}\cos \theta}{5 - 3\cos \theta} = \frac{3\left(1 - \frac{3}{5}\cos \theta\right)}{5\left(1 - \frac{3}{5}\cos \theta\right)} \text{ or e.g.} \frac{3}{5} \times \frac{1 - \frac{3}{5}\cos \theta}{1 - \frac{3}{5}\cos \theta} = \frac{3}{5} = e^*$ or e.g. $\frac{QF^2}{PF^2} = \frac{\left(3 - \frac{9}{5}\cos^2 \theta\right)^2}{9\cos^2 \theta - 30\cos \theta + 25} = \frac{9 - \frac{54}{5}\cos \theta + \frac{81}{25}\cos^2 \theta}{9\cos^2 \theta - 30\cos \theta + 25}$ $= \frac{9\left(1 - \frac{6}{5}\cos \theta + \frac{9}{25}\cos^2 \theta\right)}{25\left(1 - \frac{6}{5}\cos \theta + \frac{9}{25}\cos^2 \theta\right)} \text{ or e.g.} \frac{9}{25} \times \frac{1 - \frac{6}{5}\cos \theta + \frac{9}{25}\cos^2 \theta}{1 - \frac{6}{5}\cos \theta + \frac{9}{25}\cos^2 \theta} = \frac{9}{25} \Rightarrow \frac{QF}{PF} = \frac{3}{5} = e^*$ A1* Fully correct working including factorisation or equivalent leading to showing that $\frac{ QF }{ PF } = e \text{ with no errors and a conclusion " = e"}.$ Note that the value of <i>e</i> must have been seen earlier e.g. in part (b) or calculated independently somewhere in the question. Note that this mark depends on a ratio where the numerator and denominator are either both positive or both negative or modulus symbols are present throughout. This does not apply to the second case as both numerator and denominator must be positive as they are squared. (5)</i>			quadratic expression in $\cos \theta$. If the correct identity is not seen explicitly then their working must imply that a correct identity has been used.	d M1
is the foot of the perpendicular from <i>P</i> to the positive directrix. Score M1 for $x = \frac{a}{e} = \frac{5}{3/5} \left(= \frac{25}{3} \right) (\text{not} \pm \frac{25}{3})$ and dM1A1 for $PF = ePM = \frac{3}{5} \left(\frac{25}{3} - 5\cos\theta \right)$ $\frac{ QF }{ PF } = \frac{3 - \frac{9}{5}\cos\theta}{5 - 3\cos\theta} = \frac{3\left(1 - \frac{3}{5}\cos\theta\right)}{5\left(1 - \frac{3}{5}\cos\theta\right)} \text{ or e.g. } \frac{3}{5} \times \frac{1 - \frac{3}{5}\cos\theta}{1 - \frac{3}{5}\cos\theta} = \frac{3}{5} = e^*$ or e.g. $\frac{QF^2}{PF^2} = \frac{\left(3 - \frac{9}{5}\cos\theta\right)^2}{9\cos^2\theta - 30\cos\theta + 25} = \frac{9 - \frac{54}{5}\cos\theta + \frac{81}{25}\cos^2\theta}{9\cos^2\theta - 30\cos\theta + 25}$ $= \frac{9\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta\right)}{25\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta\right)} \text{ or e.g. } \frac{9}{25} \times \frac{1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta}{1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta} = \frac{9}{25} \Rightarrow \frac{QF}{PF} = \frac{3}{5} = e^*$ A1* Fully correct working including factorisation or equivalent leading to showing that $\frac{ QF }{ PF } = e \text{ with no errors and a conclusion " = e"}.$ Note that the value of <i>e</i> must have been seen earlier e.g. in part (b) or calculated independently somewhere in the question. Note that this mark depends on a ratio where the numerator and denominator are either both positive or both negative or modulus symbols are present throughout. This does not apply to the second case as both numerator and denominator must be positive as they are squared. (5)				A1
and d M1A1 for $PF = ePM = \frac{3}{5} \left(\frac{25}{3} - 5\cos\theta\right)$ $\frac{ QF }{ PF } = \frac{3 - \frac{9}{5}\cos\theta}{5 - 3\cos\theta} = \frac{3\left(1 - \frac{3}{5}\cos\theta\right)}{5\left(1 - \frac{3}{5}\cos\theta\right)} \text{ or e.g. } \frac{3}{5} \times \frac{1 - \frac{3}{5}\cos\theta}{1 - \frac{3}{5}\cos\theta} = \frac{3}{5} = e^*$ or e.g. $\frac{QF^2}{PF^2} = \frac{\left(3 - \frac{9}{5}\cos\theta\right)^2}{9\cos^2\theta - 30\cos\theta + 25} = \frac{9 - \frac{54}{5}\cos\theta + \frac{81}{25}\cos^2\theta}{9\cos^2\theta - 30\cos\theta + 25}$ $= \frac{9\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta\right)}{25\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta\right)} \text{ or e.g. } \frac{9}{25} \times \frac{1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta}{1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta} = \frac{9}{25} \Rightarrow \frac{QF}{PF} = \frac{3}{5} = e^*$ A1* Fully correct working including factorisation or equivalent leading to showing that $\frac{ QF }{ PF } = e \text{ with no errors and a conclusion " = e"}.$ Note that the value of <i>e</i> must have been seen earlier e.g. in part (b) or calculated independently somewhere in the question. Note that this mark depends on a ratio where the numerator and denominator are either both positive or both negative or modulus symbols are present throughout. This does not apply to the second case as both numerator and denominator must be positive as they are squared. (5)		is the foot of the perpendicular from	m P to the positive directrix.	
$\frac{ QF }{ PF } = \frac{3 - \frac{9}{5}\cos\theta}{5 - 3\cos\theta} = \frac{3\left(1 - \frac{3}{5}\cos\theta\right)}{5\left(1 - \frac{3}{5}\cos\theta\right)} \text{ or e.g. } \frac{3}{5} \times \frac{1 - \frac{3}{5}\cos\theta}{1 - \frac{3}{5}\cos\theta} = \frac{3}{5} = e^*$ or e.g. $\frac{QF^2}{PF^2} = \frac{\left(3 - \frac{9}{5}\cos\theta\right)^2}{9\cos^2\theta - 30\cos\theta + 25} = \frac{9 - \frac{54}{5}\cos\theta + \frac{81}{25}\cos^2\theta}{9\cos^2\theta - 30\cos\theta + 25}$ $= \frac{9\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta\right)}{25\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta\right)} \text{ or e.g. } \frac{9}{25} \times \frac{1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta}{1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta} = \frac{9}{25} \Rightarrow \frac{QF}{PF} = \frac{3}{5} = e^*$ A1* Fully correct working including factorisation or equivalent leading to showing that $\frac{ QF }{ PF } = e \text{ with no errors and a conclusion " = e"}.$ Note that the value of e must have been seen earlier e.g. in part (b) or calculated independently somewhere in the question. Note that this mark depends on a ratio where the numerator and denominator are either both positive or both negative or modulus symbols are present throughout. This does not apply to the second case as both numerator and denominator must be positive as they are squared. (5)		/ 3		
$\frac{QF^{2}}{PF^{2}} = \frac{\left(3 - \frac{9}{5}\cos\theta\right)^{2}}{9\cos^{2}\theta - 30\cos\theta + 25} = \frac{9 - \frac{54}{5}\cos\theta + \frac{81}{25}\cos^{2}\theta}{9\cos^{2}\theta - 30\cos\theta + 25}$ $= \frac{9\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^{2}\theta\right)}{25\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^{2}\theta\right)} \text{ or e.g.} = \frac{9}{25} \times \frac{1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^{2}\theta}{1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^{2}\theta} = \frac{9}{25} \Rightarrow \frac{QF}{PF} = \frac{3}{5} = e^{*} A1^{*}$ Fully correct working including factorisation or equivalent leading to showing that $\frac{ QF }{ PF } = e \text{with no errors and a conclusion " = e"}.$ Note that the value of <i>e</i> must have been seen earlier e.g. in part (b) or calculated independently somewhere in the question. Note that this mark depends on a ratio where the numerator and denominator are either both positive or both negative or modulus symbols are present throughout. This does not apply to the second case as both numerator and denominator must be positive as they are squared. (5)		and d M1A1 for $PF = ePM$	$I = \frac{3}{5} \left(\frac{25}{3} - 5\cos\theta \right)$	
(5)		or e.g. $\frac{QF^2}{PF^2} = \frac{\left(3 - \frac{9}{5}\cos\theta\right)^2}{9\cos^2\theta - 30\cos\theta + 25} = \frac{9\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta\right)}{25\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta\right)}$ or e.g. $= \frac{9}{25} \times \frac{1 - \frac{6}{25}}{1 - \frac{6}{25}}$ Fully correct working including factorisation $\frac{ QF }{ PF } = e$ with no errors and Note that the value of <i>e</i> must have been sees independently somewhere Note that this mark depends on a ratio where either both positive or both negative or mod This does not apply to the second case as both	$= \frac{9 - \frac{54}{5}\cos\theta + \frac{81}{25}\cos^2\theta}{9\cos^2\theta - 30\cos\theta + 25}$ $= \frac{9}{5}\frac{5}{5}\frac{\cos\theta + \frac{9}{25}\cos^2\theta}{65\cos\theta + \frac{9}{25}\cos^2\theta} = \frac{9}{25} \Rightarrow \frac{QF}{PF} = \frac{3}{5} = e^*$ or equivalent leading to showing that a conclusion " = e". In earlier e.g. in part (b) or calculated re in the question. In the numerator and denominator are ulus symbols are present throughout.	A1*
Total 12				(5)
				Total 12