[bookmark: _GoBack]−− −−− ∙−∙ ∙∙∙ ∙
MORSE CODE
−∙−∙ −−− −∙∙ ∙
[bookmark: _Toc415649023][bookmark: _Toc469398926]
Description of the Program
The program is a system that converts between plaintext and Morse code.
Plain text is language printed alphabetically (A, B, C, etc.), whereas Morse code uses patterns of dots and dashes to represent each letter in the alphabet:
	Plaintext
	Morse code
	Plaintext
	Morse code
	Plaintext
	Morse code

	A
	.-
	J
	.---
	S
	...

	B
	-...
	K
	-.-
	T
	-

	C
	-.-.
	L
	.-..
	U
	..-

	D
	-..
	M
	--
	V
	...-

	E
	.
	N
	-.
	W
	.--

	F
	..-.
	O

	X
	-..-

	G
	--.
	P
	.--.
	Y
	-.--

	H

	Q
	--.-
	Z
	--..

	I
	..
	R
	.-.
	
	

Each character is separated by a space, so the word HELLO is represented as follows:
.... . .-.. .-.. ---

	H
	E
	L
	L
	O

	.
	.-..
	.-..

Included within the pre-release material is a text file called ‘message.txt’. The contents of this file are as follows:

===⌂⌂⌂=⌂⌂⌂=⌂===⌂⌂⌂⌂⌂⌂⌂===⌂=⌂=⌂===⌂

Note: The ⌂ symbols are not included in the text file, they have been included in these notes to represent spaces,
to make them more visible for this explanation. The message.txt file consists of spaces and equals symbols only.

Overview
The program has two subroutines that handle conversion between plaintext and Morse code:
ReceiveMorseCode
The subroutine ReceiveMorseCode reads Morse code from a text file and converts it to plain text. One of the key subroutines used to perform this conversion is Decode. The subroutine SendMorseCode takes plaintext from the user at the keyboard and converts it to Morse code.
ReceiveMorseCode consists of three main stages:

1. Extract text from a file. The file contains only spaces and equals symbols. A single equals (=) makes a dot. Three in a row (===) make a dash.

Below is an extract from the text file:

	===⌂=⌂=⌂===
2. Convert the series of equals symbols to a series of dots and dashes. The sequence in the box above would become:
	
	-..-
3. Convert the series of dots and dashes to plaintext, which is a letter between A and Z. The pattern in the box above would become:
	
	X
This process is repeated until the entire message has been translated into plaintext, at which point it is displayed in the console.

SendMorseCode
SendMorseCode is less involved. The user types uppercase plaintext at the console, which is converted into Morse code. The Morse code is then displayed on the console. Any spaces in the plaintext are represented as three spaces in Morse code.
	Input
	Output

	COMPUTING
	-.-. --- -- .--. ..- - .. -. --.

	AQA AS
	.- --.- .- .- ...

ReceiveMorseCode Subroutine

[image: C:\Users\Septimus\Downloads\Untitled Diagram (3).png]

ReceiveMorseCode calls seven other subroutines, either directly or indirectly. These calls are not all included in the flowchart, as the flowchart exists only to provide a top-level understanding of the program.

Decode Subroutine

	Element index in list:
	Dot
	Dash
	Letter
	The subroutine Decode uses three lists in parallel;
Dot, Dash and Letter, whose contents remain the same throughout execution.
The flowchart below shows how Decode would translate the pattern -.- into the plaintext character ‘K’:

[image: C:\Users\Septimus\Downloads\Untitled Diagram (4).png]

If the first character is a dash (-), the program starts by looking at index 0 in the Dash list. If the first character is a dot (.), the starting point is index 0 of the Dot list.

	0
	5
	20
	⌂
	

	1
	18
	23
	A
	

	2
	0
	0
	B
	

	3
	0
	0
	C
	

	4
	2
	24
	D
	

	5
	9
	1
	E
	

	6
	0
	0
	F
	

	7
	26
	17
	G
	

	8
	0
	0
	H
	

	9
	19
	21
	I
	

	10
	0
	0
	J
	

	11
	3
	25
	K
	

	12
	0
	0
	L
	

	13
	7
	15
	M
	

	14
	4
	11
	N
	

	15
	0
	0
	O
	

	16
	0
	0
	P
	

	17
	0
	0
	Q
	

	18
	12
	0
	R
	

	19
	8
	22
	S
	

	20
	14
	13
	T
	

	21
	6
	0
	U
	

	22
	0
	0
	V
	

	23
	16
	10
	W
	

	24
	0
	0
	X
	

	25
	0
	0
	Y
	

	26
	0
	0
	Z
	

SendMorseCode Subroutine

[image: C:\Users\Septimus\Downloads\Untitled Diagram (5).png]

Unlike ReceiveMorseCode, which calls several other subroutines, SendMorseCode is self-contained, and calls no other subroutines. The user enters a message, which is validated to ensure it contains only upper-case characters and spaces. The message is then translated, one character at-a-time, using Morse code equivalents taken from an list called MorseCode.

The Text File (message.txt)
The contents of the text file are explained below:
===⌂⌂⌂=⌂⌂⌂=⌂===⌂⌂⌂⌂⌂⌂⌂===⌂=⌂=⌂===⌂

	===⌂⌂⌂
	This is a dash (===), followed by three spaces.
Three spaces signals the end of a character, but not the end of a word.
The character that is made up of a single dash is the letter T.

	=⌂⌂⌂
	This is the second character, which is a single dot, making it the letter E.

	=⌂===
	This character is a dot followed by a dash.
A single space is used between them (instead of three spaces), because the character is not finished yet.
The Morse code comprising a dot followed by a dash is for the letter A.

	⌂⌂⌂⌂⌂⌂⌂
	This is then followed by seven spaces, which are used to form a gap between two words.

	===⌂=⌂=⌂===⌂
	This is a character that is made up of a dash, followed by a dot, followed by a dot, followed by a dash, which make up the letter X.

The whole message, therefore, is TEA X

Morse Code 2018 (Python): Commentary	Page 1 of 15	© ZigZag Education 2018
Subroutine Calls, Parameters and Return Values
The numbers to the left do not indicate the order in which subroutines are called, as there are multiple possible orders.
Instead, these numbers relate to the numbers in the structure diagram.
	Call
	Parameters
	Return

	 1 	Main calls SendReceiveMessages
	-
	-

	 2 	SendReceiveMessages calls DisplayMenu
	-
	-

	 3 	SendReceiveMessages calls GetMenuOption
	-
	MenuOption

	 4 	SendReceiveMessages calls ReceiveMorseCode
	Dash
Letter
Dot
	-

	 5 	SendReceiveMessages calls SendMorseCode
	MorseCode
	-

	 6 	ReceiveMorseCode calls GetTransmission
	-
	Transmission

	 7 	ReceiveMorseCode calls GetNextLetter
	i
Transmission
	i
SymbolString

	 8 	ReceiveMorseCode calls Decode
	CodedLetter
Dash
Letter
Dot
	Letter[Pointer]

This returns a string, but the string is always one character long, and is a character within the string Letter, at location Pointer.
If Letter contains the string “Hello” , then Letter[0] = H, Letter[1] = E, etc.

	 9 	GetTransmission calls StripLeadingSpaces
	Transmission
	Transmission

	 10 	GetTransmission calls StripTrailingSpaces
	Transmission
	Transmission

	 11 	GetTransmission calls ReportError
	s
	-

	 12 	GetNextLetter calls GetNextSymbol
	i
Transmission
	i
Symbol

	 13 	StripLeadingSpaces calls ReportError
	s
	-

	 14 	GetNextSymbol calls ReportError
	s
	-

Description of Subroutines
Each subroutine is described below.
	Subroutine Name
	Description
	

	Decode

Receives a coded letter (i.e. a letter in Morse code, such as -..-), and returns the corresponding plain text letter (‘X’ in this case)
	Parameters:	CodedLetter
		Dash
		Letter
		Dot
Returns:	Letter[Pointer]
Called from:	ReceiveMorseCode
Calls:		-
	1.	Initialise an integer variable CodedLetterLength to be equal to the length of the parameter CodedLetter
2.	Initialise an integer variable Pointer to zero
3.	Set up a loop to iterate through each character in CodedLetter, using the variable i
4.	If i points to a space, this subroutine returns a space to ReceiveMorseCode
5.	If i points to a dash, Pointer is changed to navigate the Morse code binary tree (see Preliminary Material, page 4), one step to the left
6.	If i points to a dot, Pointer is changed to navigate the Morse code binary tree, one step to the right
7.	By the time i has looped through each dot/dash in the encoded character, the value of Pointer should point (in the Letter list) to the letter that corresponds to the Morse code letter
8.	If a space is not returned to ReceiveMorseCode in step 4 (above), the letter identified in step 7 is returned as a string

	DisplayMenu

Displays three options to the user – send Morse code, receive Morse code or end the program
	Parameters:	-
Returns:	-
Called from:	SendReceiveMessages
Calls:		-
	1.	Output three menu options (R, S, X), one on each line

	GetMenuOption

Prompts the user for a desired menu option, returning it to SendReceiveMessages
	Parameters:	-
Returns:	MenuOption
Called from:	SendReceiveMessages
Calls:		-
	1.	Declare a string variable to store the user’s desired menu option
2.	Set up a loop that repeats until the user input is a single character in length
3.	Within that loop, prompt the user for their desired option (R, S or X)
4.	Return the user input to SendReceiveMessages

	GetNextLetter

A Morse code transmission usually consists of multiple letters. This subroutine extracts the next letter from a transmission.
	Parameters:	i
		Transmission
Returns:	SymbolString
Called from:	ReceiveMorseCode
Calls:		GetNextSymbol
	1.	Declare string variable SymbolString and initialise it to an empty string
2.	Set up a loop to repeat until any one of these conditions is met:
· A space is returned from a call to GetNextSymbol (meaning the Morse character being parsed has ended)
· The EOL character (#) is reached (meaning the end of the entire message has been reached)
· The two characters after the current character are both spaces (meaning the letter has ended)
3.	Within the loop, a call is made to GetNextSymbol, which will return a space, a dash or a dot. A space (see first bullet point) terminates the loop
4.	If the call to GetNextSymbol returns a dash or a dot, that dash or dot is appended to the string variable SymbolString
5.	At the end of the word (see bullet points), SymbolString is returned to ReceiveMorseCode

	GetNextSymbol

A Morse code letter can consist of multiple symbols (combinations of dots and dashes). There are also spaces, which are used to separate them. This subroutine determines whether the next symbol is a dot, a dash or a space.
	Parameters:	i
		Transmission
Returns:	Symbol
Called from:	GetNextLetter
Calls:		ReportError
	1.	When the parameter i is initially passed to this subroutine, its value is zero
2.	Integer variable SymbolLength initialised to zero
3.	i is used to point to characters within the string variable Transmission
4.	If i points to the # character, ‘End of transmission’ is written to the console, and an empty string is returned to GetNextLetter
5.	Otherwise, i is incremented until it reaches either a space or the EOF character (#) within Transmission
6.	As i is incremented, SymbolLength is also incremented
7.	When i points to a space in Transmission, SymbolLength will have a value of either 0, 1 or 3
8.	If SymbolLength is 0, a space is returned to GetNextLetter
9.	If SymbolLength is 1, a dot is returned to GetNextLetter
10.	If SymbolLength is 3, a dash is returned to GetNextLetter
11.	Any other value for SymbolLength indicates an error, and ReportError is called with the parameter ‘Non-standard symbol received’

	GetTransmission

This subroutine prompts the user for a filename, then reads the first line of the corresponding file, passing it back to ReceiveMorseCode
	Parameters:	-
Returns:	Transmission
Called from:	ReceiveMorseCode
Calls:		StripLeadingSpaces
		StripTrailingSpaces
		ReportError
	1.	Prompt the user for a file name
2.	Create a FileHandle connected to the specified file
3.	Read the first line of the file into the variable Transmission
4.	Pass the variable Transmission to the subroutine StripLeadingSpaces, from which it should be returned
5.	If the length of Transmission at this point is greater than zero, pass it to StripTrailingSpaces, from which it should be returned
6.	Append the EOL symbol (currently #) to the variable Transmission
7.	If any errors occur between steps 2 and 6, call ReportError (passing ‘No transmission found’ as a parameter) and set the variable Transmission to an empty string
8.	Return the variable Transmission to the subroutine ReceiveMorseCode

	Main

This subroutine only exists to start
the program (by calling SendReceiveMessages)
	Parameters:	-
Returns:	-
Called from:	-
Calls:		SendReceiveMessages
	1.	Call SendReceiveMessages

	ReceiveMorseCode

Calls other subroutines to manage the process of retrieving an encoded message (in Morse code), extracting each letter in turn and decoding each letter as it is extracted
	Parameters:	Dash
		Letter
		Dot
Returns:	-
Called from:	SendReceiveMessages
Calls:		GetTransmission
		GetNextLetter
		Decode
	1.	Set string variables PlainText and MorseCodeString to contain empty strings
2.	Set the string variable Transmission to contain the return value from a call to the subroutine GetTransmission
3.	Set the integer variable LastChar to point to the index of the last character in Transmission
4.	Initialise an integer variable i to contain zero
5.	Loop through each character in Transmission, with the exception of the last one (which should be the EOL (#) character)
6.	Set the string variable CodedLetter to contain the return value from a call to the subroutine GetNextLetter
7.	Append a SPACE and CodedLetter to MorseCodeString
8.	Set the character variable PlainTextLetter to contain the return
 value from Decode
9. Append PlainTextLetter to PlainText
10. Print out the MorseCodeString and PlainText

	ReportError

Writes an error to the console between two asterisks
	Parameters:	s
Returns:	-
Called from:	GetTransmission
		StripLeadingSpaces
		GetNextSymbol
Calls:		-
	1.	The error message arrives as a string parameter called s
2. 	Parameter s is displayed between two asterisks

	SendMorseCode

Accepts a plain text input from the user, translates it into Morse code and outputs the translation to the console
	Parameters:	MorseCode
Returns:	-
Called from:	SendReceiveMessages
Calls:		-
	1.	Prompt the user for a message to be encoded
2.	Store the message in the variable PlainText
3.	Store the length of the message in the variable PlainTextLength
4.	Initialise variable MorseCodeString as an empty string
5.	Set up a loop to iterate through each character in PlainText
6.	If the character is a space, the integer variable Index is set to 0
7.	Otherwise, Index is set to a number that represents that letter’s position in the alphabet, e.g. if the letter is A, Index will be set to 1; if the letter is B, Index will be set to 2; etc.
8.	The value of Index is used as an index in the MorseCode list that was passed in as a parameter. For example, if the letter being examined was A, the value of Index would be 1. Element 1 would then be retrieved from the MorseCode list.
9.	The Morse code value retrieved from the list is appended to the variable MorseCodeString, followed by a space
10.	Once steps 6–9 have been performed on each character in the variable PlainText, the value of the variable MorseCodeString is printed

	SendReceiveMessages

This contains the main program loop, which repeatedly displays the menu, prompts the user for an input, then calls the appropriate subroutine in response. This loop ends when the user indicates a desire to end the program.
	Parameters:	-
Returns:	-
Called from:	Main
Calls:		DisplayMenu
		GetMenuOption
		ReceiveMorseCode
		SendMorseCode
	1.	Initialise Dash list (to contain integer pointers that relate to the Morse code binary tree)
2.	Initialise the Letter list (SPACE, ‘A’, B’, ‘C’ … ‘Z’)
3.	Initialise the Dot list (to contain integer pointers that relate to the Morse code binary tree)
4.	Initialise the MorseCode list (to contain the Morse equivalents of letters, in the same order as the Letter list)
5.	Begin a loop that continues until the user indicates that they want to end the program
5.	Call DisplayMenu to display the menu
6.	Call GetMenuOption to get user input from menu
7.	Either call ReceiveMorseCode, call SendMorseCode, or terminate the loop, depending on user input

	StripLeadingSpaces

Removes any spaces from the left of a string
	Parameters:	Transmission
Returns:	Transmission
Called from:	GetTransmission
Calls:		ReportError
	1.	Store the length of the transmission in the integer variable TransmissionLength
2.	Set up a loop that repeats while the first character of Transmission is a space, and while the length of Transmission is greater than zero
3.	Within that loop, decrement the variable TransmissionLength and remove the first character of Transmission
4.	If, after the loop, the length of Transmission is zero, call the subroutine ReportError, passing to it the string ‘No signal received’ as a parameter

	StripTrailingSpaces

Removes any space from the right of a string
	Parameters:	Transmission
Returns:	Transmission
Called from:	GetTransmission
Calls:		-
	1.	Set the integer variable LastChar to point to the index of the last character in Transmission
2.	If the last character is a space, remove it from the string variable Transmission, then decrement LastChar
3.	Repeat step 2 until LastChar does not point to a space

Description of Variables, Constants and Parameters
The following table contains variables ⓥ, constants ⓒ and parameters ⓟ
	Name
	Type
	Description
	Created in / Passed to

	CodedLetter ⓟ
	String
	Contains a single Morse code letter that is about to be decoded (passed by value)
	Decode

	CodedLetter ⓥ
	String
	Contains a single Morse code letter that is about to be decoded or has just been encoded
	ReceiveMorseCode
SendMorseCode

	CodedLetterLength ⓥ
	Integer
	The number of Morse symbols in an encoded letter
	Decode

	Dash ⓟ
	Integer list
	Contains pointers to left branches of the binary tree seen on the Preliminary Material document, page 4 (passed by value)
	Decode
ReceiveMorseCode

	Dash ⓥ
	Integer list
	Contains pointers to left branches of the binary tree seen on the Preliminary Material document, page 4
	SendReceiveMessages

	Dot ⓟ
	Integer list
	Contains pointers to right branches of the binary tree seen on the Preliminary Material document, page 4 (passed by value)
	Decode
ReceiveMorseCode

	Dot ⓥ
	Integer list
	Contains pointers to right branches of the binary tree seen on the Preliminary Material document, page 4
	SendReceiveMessages

	EMPTYSTRING ⓒ
	String
	Constant to store an empty string: “”
	(global)

	EOL ⓒ
	Char
	Constant to store # symbol, which marks the end of a line
	(global)

	FileHandle ⓥ
	File Handle
	Used to store a reference to the text file containing the transmission
	GetTransmission

	FileName ⓥ
	String
	Name (which can include path) of a text file to be read
	GetTransmission

	FirstSignal ⓥ
	Char
	Contains the first character of a string that’s being trimmed
	StripLeadingspaces

	i ⓟ
	Integer
	The index of a character within a Morse code string currently being processed
	GetNextSymbol
GetNextLetter

	i ⓥ
	Integer
	The index of a character within a Morse code string currently being processed
Note there is another variable called i in SendMorseCode but it is only used as a loop variable
	ReceiveMorseCode

	Index ⓥ
	Integer
	Stores a pointer used to access the correct Morse code character within a list
	SendMorseCode

	LastChar ⓥ
	Integer
	Points to the index of the last character in Transmission
	StripTrailingSpaces
ReceiveMorseCode

	Letter ⓟ
	String list
	Contains a space in the first element, followed by the upper-case alphabet, with each letter in its own element (passed by value)
	Decode
ReceiveMorseCode

	Letter ⓥ
	String list
	Contains a space in the first element, followed by the upper-case alphabet, with each letter in its own element
	SendReceiveMessages

	LetterEnd ⓥ
	Boolean
	Set to true if the end of a Morse code letter has been reached while it is being parsed character by character
	GetNextLetter

	MenuOption ⓥ
	String
	Contains the user’s response when presented with the program’s main menu
	GetMenuOption
SendReceiveMessages

	MorseCode ⓟ
	String list
	Contains a space in the first element, followed by Morse code equivalents for each letter, with one such letter per element (passed by value)
	SendMorseCode

	MorseCode ⓥ
	String list
	Contains a space in the first element, followed by Morse code equivalents for each letter, with one such letter per element
	SendReceiveMessages

	MorseCodeString ⓥ
	String
	An entire Morse code message, which can contain any number of Morse code characters
	ReceiveMorseCode

	MorseCodeString ⓥ
	String
	Contains a Morse code message, constructed character by character
	SendMorseCode

	PlainText ⓥ
	String
	Contains a message that has been (or is about to be) decoded from its Morse code equivalent
	ReceiveMorseCode
SendMorseCode

	PlainTextLength ⓥ
	Integer
	The number of characters to be converted to Morse code
	SendMorseCode

	PlainTextLetter ⓥ
	Char
	Contains a single, upper-case letter that has been decoded, i.e. is no longer Morse code
	ReceiveMorseCode

	PlainTextLetter ⓥ
	Char
	Contains each letter in turn, as it is about to be converted to Morse code
	SendMorseCode

	Pointer ⓥ
	Integer
	Points to the list element that will be accessed next as individual dots and dashes are parsed
	Decode

	ProgramEnd ⓥ
	Boolean
	Set to true if the main program loop is about to terminate
	SendReceiveMessages

	s ⓟ
	String
	Parameter (passed by value) that contains an error message
	ReportError

	Signal ⓥ
	String
	Variable to examine each character of Transmission in turn
	GetNextSymbol

	SPACE ⓒ
	Char
	Constant to store a single space character
	(global)

	Symbol ⓥ
	Char
	Contains a dot, dash or space within a Morse code letter
	GetNextSymbol
Decode

	Symbol ⓥ
	String
	Contains the value returned from GetNextSymbol (i.e. a single dot, dash or space) that forms part of a Morse code letter
	GetNextLetter

	SymbolLength ⓥ
	Integer
	Stores the number of characters in a single Morse code letter
	GetNextSymbol

	SymbolString ⓥ
	String
	Built up, one dot or dash at a time, into a Morse code letter
	GetNextLetter

	Transmission ⓟ
	String
	Stores a sequence of Morse code letters (passed by value)
	StripLeadingSpaces
StripTrailingSpaces
GetNextSymbol
GetNextLetter

	Transmission ⓥ
	String
	Stores a sequence of equals signs and spaces, used to represent Morse code as described in the Preliminary Material Document
	GetTransmission
ReceiveMorseCode

	TransmissionLength ⓥ
	Integer
	Stores the length of the Transmission variable
	StripLeadingSpaces

Morse Code 2018 (Python): Commentary	Page 15 of 15	© ZigZag Education 2018
image3.png

image1.png

image2.png

