[bookmark: _GoBack]MORSE CODE: Programming Tasks

Suggested Solutions and Mark Scheme (Python3)

The following are recommended solutions, and not an exhaustive list of all possible solutions to each task. The marking guidance should be used as a guide only. Discretion should be used in awarding credit where alternative solutions are given.

Task 1	(max. 9 marks)
1 mark	The user is always prompted with “Enter your choice: “ when the program is run
1 mark	The input is converted to uppercase (or equivalent logic later such as checking both upper and lower case letters in the selection/iterative statement
1 mark 	There is an iterative statement that will continue to prompt the user when an invalid choice is made (even if it doesn’t work properly. Also accept an iterative statement with a flag variable and an appropriate selection statement inside the iterative statement which sets the flag variable correctly.
1 mark	The condition for the iterative statement specifically prompts the user with “Invalid choice, please choose a letter from the menu: “ when anything other than “R”. “S” or “X” is entered (or the lowercase equivalents too if the input wasn’t converted to uppercase).
1 mark	The input from the “Invalid choice” prompt is converted to uppercase (or equivalent logic later such as checking both upper and lower case letters in the selection/iterative statement
[image: ../../../Desktop/Screen%20Shot%202018-03-16%20at%2011.59.16.]
1 mark	Screenshot shows ‘y’ was entered, resulting in the Invalid choice prompt
1 mark	Screenshot shows nothing was entered (i.e. enter was pressed with no letter), resulting in the Invalid choice prompt, followed by ‘SS’ being entered at the prompt and another Invalid choice prompt
1 mark	Screenshot shows ‘R’ was entered, resulting in the Enter file name: prompt
[image: ../../../Desktop/Screen%20Shot%202018-03-16%20at%2011.46.33.]
1 mark	Screenshot shows ‘x’ was entered, followed by the program exiting:
[image: ../../../Desktop/Screen%20Shot%202018-03-16%20at%2011.47.17.]	
Task 2	(max. 8 marks)
1 mark	Addition of constant called FULLSTOP and set to the value ‘.’
[image: ../../../Desktop/Screen%20Shot%202018-03-16%20at%2013.10.47.]
1 mark	Adding ‘.’ as the 28th element of the list Letter
1 mark 	Adding ‘.-.-.-‘ as the 28th element of the list MorseCode
1 mark 	Modifying the lists Dot and Dash correctly so that a sequence of dot, dash, dot, dash, dot dash results in the number 27
[image: ../../../Desktop/Screen%20Shot%202018-03-16%20at%2013.15.17.]
1 mark 	Modifying the selection statement in to correctly detect a full stop using the constant FULLSTOP
1 mark 	Selection statement correctly uses the sequence from the 28th element (numbered 27 as they start at 0)
[image: ../../../Desktop/Screen%20Shot%202018-03-16%20at%2013.17.15.]
1 mark	Screenshot shows selecting S to send a message and entering S.O.S. as the message with the
Morse Code being output as below:
[image: ../../../Desktop/Screen%20Shot%202018-03-16%20at%2013.24.30.]
1 mark	Screenshot shows selecting R to receive a message and entering message2.txt as the filename and then the message is decoded as show below including the full stop.
[image: ../../../Desktop/Screen%20Shot%202018-03-16%20at%2013.24.43.]

Task 3	(max. 9 marks)
1 mark	Addition of new option to the menu by modifying DisplayMenu, only accept option exactly as given
[image: ../../../Desktop/Screen%20Shot%202018-03-17%20at%2003.42.32.]
1 mark 	Inclusion of menu option P in a new selection structure in SendReceiveMessages
1 mark 	New option calls the new subroutine PrintMorseCodeSymbols and passes only the arguments Letter and MorseCode
[image: ../../../Desktop/Screen%20Shot%202018-03-17%20at%2003.45.32.]
1 mark 	Code for subroutine PrintMorseCodeSymbols has two parameters (even if the parameters are not correctly named)
1 mark 	Print statement for the table heading outside of any iterative or selection structure
1 mark 	Iterative structure that will iterate through the Letter and MorseCode lists (reject hard coded number for the length)
1 mark 	Suitable code inside the iterative structure to print out a letter with its corresponding Morse code
[image: ../../../Desktop/Screen%20Shot%202018-03-17%20at%2003.50.36.]
1 mark	Screenshot shows two columns, one for Letter and another for Symbol, each of which contain all 26 letters and symbols correctly mapped to each other
1 mark	Screenshot shows the table in precisely the correct format as per the question with the correct capitalisation and correct spacing (ignore failure to leave a blank line before printing the table)
[image: ../../../Desktop/Screen%20Shot%202018-03-17%20at%2003.48.04.]

Task 4	(max. 21 marks)
1 mark	Addition of new option to the menu by modifying DisplayMenu, only accept option exactly as given
[image:]
1 mark 	Inclusion of menu option T in a new selection structure in SendReceiveMessages
1 mark 	New option calls the new subroutine TransmitMorseCodeSymbols and passes only the argument MorseCode
1 mark 	Modification of menu option S to print out the result of the call to SendMorseCode
[image:]
1 mark 	Code for subroutine TransmitMorseCode has one parameter (even if parameter not correctly named)
1 mark 	Call to SendMorseCode passing the argument of MorseCode (accept whatever the parameter was)
1 mark 	Result of call to SendMorseCode stored in a variable
1 mark 	Suitable iterative structure to go through the Morse code version of the message
1 mark 	Selection statement to store different transmission strings based on the Morse code symbol
1 mark 	Inclusion of space, dot and dash in the selection statement
1 mark 	Selection statement correctly handles putting a single space between symbols
1 mark 	Selection statement correctly handles putting a total of three spaces between letters
1 mark 	Selection statement correctly handles putting a total of seven spaces between words
1 mark 	Suitable prompt to enter a file name
1 mark 	Transmission string correctly written to the file
1 mark 	File is closed after being written to
1 mark 	Using a try…except… structure with an appropriate error message to protect the file handling
[image:]
1 mark	Screenshot shows choosing option T from the menu and entering the message ZIG ZAG (capital letters with a space between the two words)
1 mark	Screenshot shows a prompt for the file name and the user entering message4.txt at the prompt
1 mark	Screenshot shows the user choosing option R from the menu and entering the file name message4.txt at the prompt
1 mark	Screenshot shows the correct Morse code and decoded message as per the screenshot below
[image:]

Task 5	(max. 9 marks)
1 mark	Inclusion of new argument in the called to ReceiveMorseCode in SendReceiveMessages
[image:]
1 mark 	Addition of new parameter to ReceiveMorseCode
[image:]
1 mark 	Modification of the call to Decode in ReceiveMorseCode to specify an additional argument
[image:]
1 mark 	Addition of new parameter to Decode
1 mark	Selection statement to include/exclude valid letters (depending on logic)
1 mark	Error is reported if the CodedLetter doesn’t represent a valid sequence
1 mark	An asterisk is returned if the sequence of dots and dashes is invalid
[image:]
1 mark	Screenshot shows an error message containing the invalid symbol (--…)
1 mark	Screenshot shows the decoded message as *IG ZAG
[image:]

Task 6	(max. 4 marks)
1 mark	Selection statement to check if the last four characters of the FileName are .txt (accept any reasonable method of isolating and checking the last four characters only)
1 mark	.txt correctly appended to the FileName if it is not already the last four characters (and only then)
[image:]
1 mark	Screenshot shows the filename entered as message6 without an extension and the message being received exactly as shown
[image:]
1 mark	Screenshot shows the filename entered as message6.txt including the extension and the message being received exactly as shown
 [image:]

Task 7	(max. 17 marks)
1 mark	Addition of new option to the menu by modifying DisplayMenu, only accept option exactly as given
[image:]
1 mark 	Inclusion of menu option C in a new selection structure in SendReceiveMessages
1 mark 	New option calls the new subroutine ConvertMorseCodeSymbols and passes two arguments Letter and MorseCode (accept them in either order)
[image:]
1 mark 	Code for subroutine ConvertMorseCode has two parameters (even if parameters not correctly named)
1 mark 	User is asked to enter a message in Morse code
1 mark 	Input of Morse code from user stored in a variable with a meaningful identifier
1 mark 	Suitable iterative structure to go through the Morse code version of the message, symbol by symbol
1 mark 	Selection statement checks whether the symbol is a valid Morse code symbol
1 mark 	Inclusion of space in the selection statement
1 mark 	Selection statement correctly handles a single space between symbols and doesn’t print a space in the decoded message
1 mark 	Selection statement correctly handles a total of three spaces between letters and prints a single space in the decoded message
1 mark 	Printing out any invalid symbols received
Accept alternative working solutions (at full marks) that call the subroutine Decode instead but penalise them one mark if it’s not modified to correctly detect any invalid symbols
[image:]

1 mark	Screenshot shows choosing option C from the menu and entering the message:

.... .. --. .
1 mark	Screenshot shows the decoded message as: HI THERE
[image:]
1 mark	Screenshot shows choosing option C from the menu and entering the message:

.... .-.--- .-.. .-.. ---
1 mark	Screenshot shows the decoded message as: HLLO
1 mark	Screenshot shows the symbol .-.--- as being invalid/not known
[image:]

Task 8	(max. 10 marks)
1 mark	Suitable variable with meaningful identifier initialised to store the quaternary string
1 mark	Selection statement to detect whether the letter is a space or a Morse code symbol
1 mark	Selection statement placed inside appropriate iterative structure (which could be the existing one)
1 mark	Selection statement correctly handles a space between words as 1 in quaternary
1 mark	Selection statement contains an iterative statement to go through all of the dots and dashes in a Morse code symbol
1 mark	Selection statement correctly handles a dot in a symbol as 2 in quaternary
1 mark	Selection statement correctly handles a dash in a symbol as 3 in quaternary
1 mark	Selection statement correctly adds a 0 in quaternary after each complete Morse code symbol
[image:]
1 mark	Screenshot shows S chosen from the main menu and the message entered correctly at the prompt
1 mark	Screenshot shows the message correctly in quaternary AFTER the Morse code version of the message
[image:]

Task 9	(max. 16 marks)
1 mark	Addition of new option to the menu by modifying DisplayMenu, accept any capitalisation
[image:]
1 mark 	Inclusion of menu option E in a new selection structure in SendReceiveMessages
1 mark 	New option calls the new subroutine SendEncryptedMorseCode and passes one argument MorseCode
[image:]
1 mark 	Code for subroutine SendEncryptedMorseCode has one parameter (even not correctly named)
1 mark 	User is asked to enter a message in plain text which is stored in a variable with a meaningful identifier
1 mark 	User is asked to enter a Caesar Cipher Shift which is converted to an integer and stored in a variable with a meaningful identifier
1 mark 	Iterative structure to go through the message entered, character by character
1 mark 	Selection statement inside the iterative structure that differentiates between spaces and non-spaces
1 mark 	Character is correctly Caesar cipher shifted inside the selection statement (accept calls to library functions that do this for you). Do not award the mark if they fail to wrap the shift around (i.e. Z shifts to A)
1 mark 	Cipher text is then correctly converted to Morse code and printed out
[image:]

1 mark	Screenshot shows choosing option E from the menu and entering the message TEST MSG and a Caesar Cipher Shift of 12
1 mark	Screenshot shows the encoded message correctly
[image:]
1 mark	Screenshot shows choosing option E from the menu and entering the message TEST MSG and a Caesar Cipher Shift of -5
1 mark	Screenshot shows the encoded message correctly
[image:]
1 mark	Screenshot shows choosing option E from the menu and entering the message TEST MSG and a Caesar Cipher Shift of 50
1 mark	Screenshot shows the encoded message correctly
[image:]

Task 10	(max. 13 marks)
1 mark	Print statement appears after the one to print out the message in Morse code
1 mark	Message prints out the value from the call to CalculateTransmissionTime
1 mark	Variable MorseCodeString correctly passed as the argument
[image:]
1 mark	Subroutine takes one parameter which has a meaningful identifier
1 mark	There is a variable to hold the total transmission time which is initialised to 0
1 mark	There is an iterative statement to loop through the entire message
1 mark	There is a selection statement inside the iterative statement
1 mark	The selection statement adds 1 for a dot and 3 for a dash
1 mark	There is an additional +1 time unit after every dot or dash
1 mark	The total additional time for an end of letter is +3
1 mark	The total additional time for an end of word is +7
[image:]
1 mark	Screenshot show S being chosen from the menu and the message TEST MSG being entered
1 mark	Screenshot shows 58 time units (after the Morse code)
[image:]

Task 11	(max. 6 marks)
1 mark	Message is not converted to uppercase as it is input
1 mark	Selection statement comparing the message to an uppercase version of the message (or checking if the message contains at least one lowercase letter)
1 mark	Selection statement contains a print statement which explains that the message has been converted and shows the uppercase message
[image:]
1 mark	Screenshot shows as below (with no message about converting it)
[image:]
1 mark	Screenshot the message converted to uppercase including an explanatory message
[image:]
1 mark	Screenshot the message converted to uppercase including an explanatory message
[image:]

Task 12	(max. 6 marks)
1 mark	Print statement appears after the iterative structure that parses the message
1 mark	Number of symbols computed either by counting the number of dots and dashes or by taking the length of the MorseCodeString and deducting the number of spaces (or by some other reasonable means)
1 mark	Number of characters computed either by counting the number of letters from A-Z or by taking the length of PlainText and deducting the number of spaces (or by some other reasonable means)
1 mark	Print statement is of exactly the same format as the question with the correct spacing and capitalisation
[image:]
1 mark	Screenshot shows five lines of messages of similar content and format to those shown below in the SAME ORDER as those shown below
1 mark	Screenshot shows 9 symbols received and 3 characters received
[image:]

Task 13	(max. 17 marks)
1 mark	New variable created with a sensible identifier for InternationalVersion
1 mark	Variable is defined and initialised to True within SendReceiveMessages
1 mark	Call to DisplayMenu now passes the argument InternationalVersion
1 mark	Menu option V is added to the selection statement
1 mark	Selection statement for option V changes the value of InternationalVersion from True to False or vice-versa
[image:]
1 mark	New parameter for DisplayMenu added with meaningful identifier
1 mark	Selection statement added for InternationalVersion
1 mark	Selection statement affects what is displayed on the menu
1 mark	Menu options refer to either American version or International version
1 mark	After the menu has printed, there is another selection statement for InternationalVersion
1 mark	Selection statement will print out a suitable message according to the value of InternationalVersion correctly stating which version of Morse code is being used
[image:]
1 mark	Screenshot shows menu option V has been added
1 mark	First menu refers to change to American Morse code
1 mark	Screenshot shows that the initial version of Morse code is the International one
1 mark	Screenshot shows that V was selected from the first menu
1 mark	Screenshot shows that the menu option correctly toggles to International version for the second menu
1 mark	Screenshot shows that the message correctly toggles from International version after the first menu to American version after the second and then back again after the third
[image:]

Task 14	(max. 11 marks)
1 mark	Iterative statement with a sensible condition to keeping checking until a suitable file name is entered or the user chooses to overwrite the file
1 mark	Structure such as try… except… with an open statement which tests if the file exists or not
1 mark	Prompt asking the user if they would like to overwrite the file or not and advising them that it already exists
1 mark	Selection statement exits the loop if they want to overwrite the file
1 mark	Selection statement asks for a new file name if they don’t want to overwrite the file
[image:]
1 mark	Screenshot shows user entering T and then TEST MSG correctly
1 mark	User enters message4.txt and the program responds with file already exists message asking if you would like to overwrite it
1 mark	User selects N and enters message14.txt which results in the output shown below (user is taken back to the main menu)
[image:]
1 mark	Screenshot shows user entering T and then TEST MESSAGE correctly
1 mark	User enters message14.txt and then Y – program responds with the main menu
1 mark	User selects R from the main menu and message14.txt which results in the output shown below
[image:]
Task 15	(max. 7 marks)
1 mark	Print statement is inside the selection statement shown below
1 mark	Message prints out the length of Transmission as the total number of symbols received
1 mark	Message correctly counts the number of “=” in the Transmission
1 mark	Message correctly counts the number of “ ” in the Transmission
1 mark	Message printed is of the correct format and matches the example in the question exactly
[image:]
1 mark	Screenshot shows 33 symbols received in total
1 mark	Screenshot shows that there were 16 signals and 17 breaks
[image:]
Morse Code 2018 (Python): Programing Tasks MS	Page 1 of 19	© ZigZag Education 2018
image4.png
EMPTYSTRING = "'
FULLSTOP = '.*

image5.png
def SendReceiveMessages():
Dash = [20,23,27,0,24,1,0,17,0,21,0,25,0,15,11,0,0,0,2,22,13,0,0,10,0,0,0]
Dot = [5,18,2,0,2,9,0,26,0,19,0,3,0,7,4,0,0,0,12,8,14,6,0,16,0,0,0]
Letter = [' ','A','B','C','D','E','F','G","H",'T", "], 'K",'L",'M", 'N",
01, P, QY TR, IS T, U, Y W XY, Y,

MorseCode = [' ', . ="', = .., ma= = = = e Y,
O T T T T T T T T T S T R S S S S '
’ ’ ’ ’ ’ ’ ’ ’ ’
_1oa _r VN v N v v 00 sp=0="1]
’ ’ ’ - ’ ’ ’ ’

image6.png
if PlainTextLetter == SPACE:

Index = 0

elif PlainTextLetter == FULLSTOP:
Index = 27

else:

Index = ord(PlainTextLetter) — ord('A') + 1

image7.png
Enter your choice: S
Enter your message (uppercase letters and spaces only): S.0.S.

image8.png
Enter your choice: R
Enter file name: message2.txt

NEA X.

image9.png
def DisplayMenu():

print()
print(“Main Menu")
print("=========")

print("R - Receive Morse code")
print("S - Send Morse code")

print("P - Print Morse code symbols")
print("X - Exit program")

print()

image10.png
elif MenuOption == 'P':
PrintMorseCodeSymbols(Letter, MorseCode)

image11.png
def PrintMorseCodeSymbols(Letter, MorseCode):
print("\n Letter | Symbol ")
for Index in range(1,len(Letter)):
print(" {0} | {1}".format(Letter[Index],MorseCode[Index]))

image12.png
Enter your choice: P

Letter | Symbol

N<X=sE<cHunIXovUvoOZErXUHIOTMMOOm>
|

image13.png
print("S - Send Morse code")
print("T - Transmit Morse code")
print("X - Exit program")

image14.png
elif MenuOption == 'S':
print(SendMorseCode (MorseCode))
elif MenuOption == 'T':
TransmitMorseCode(MorseCode)
elif MenuOption == 'X':

image15.png
def TransmitMorseCode(MorseCode):
MorseCodeString = SendMorseCode(MorseCode)
Transmission = ""
for SymbolIndex in range(len(MorseCodeString)):
if MorseCodeString[SymbolIndex] == SPACE:
Transmission += " "
elif MorseCodeString[SymbolIndex] ==
Transmission += "= "
elif MorseCodeString[SymbolIndex] ==

Transmission += "===
else:
ReportError("Invalid Morse code symbol")
FileName = input("Enter file name for transmission: ")
try:
FileHandle = open(FileName, 'w')
FileHandle.write(Transmission)
FileHandle.close()
except:
ReportError("File could not be written")

image16.png
Main Menu

R - Receive Morse code
S - Send Morse code

T — Transmit Morse code
X - Exit program

Enter your choice: T
Enter your message (uppercase letters and spaces only): ZIG ZAG
Enter file name for transmission: message4.txt

Main Menu

R - Receive Morse code
S - Send Morse code

T — Transmit Morse code
X - Exit program

Enter your choice: R
Enter file name: message4.txt

Z1IG ZAG

image17.png
if MenuOption == 'R':
ReceiveMorseCode(Dash, Letter, Dot, MorseCode)

image18.png
def ReceiveMorseCode(Dash, Letter, Dot, MorseCode):

image19.png
PlainTextLetter = Decode(CodedLetter, Dash, Letter, Dot, MorseCode)

image20.png
def Decode(CodedLetter, Dash, Letter, Dot, MorseCode):
if CodedLetter in MorseCode:
CodedLetterLength = len(CodedLetter)
Pointer = 0
for i in range(CodedLetterLength):
Symbol = CodedLetter[i]
if Symbol == SPACE:
return SPACE
elif Symbol == '-':
Pointer = Dash[Pointer]
else:
Pointer = Dot[Pointer]
return Letter[Pointer]
else:
ReportError("Invalid Symbol ({@}) received.".format(CodedLetter))
return "x"

image21.png
Enter your choice: R
Enter file name: message5.txt
* Invalid Symbol (—-...) received.

*IG ZAG

image22.png
if FileName[-4:] != ".txt":
FileName += ".txt"

image23.png
Enter your choice: R
Enter file name: message6

Z1IG ZAG

image24.png
Enter your choice: R
Enter file name: message6.txt

ZIG ZAG

image25.png
print("S - Send Morse code")
print("C - Convert Morse code")
print("X - Exit program")

image26.png
elif MenuOption == 'C':
ConvertMorseCode(Letter, MorseCode)

image27.png
def ConvertMorseCode(Letter, MorseCode):
DecodedString = ""
MorseCodeString = input("Please enter your message in Morse code: ")
SpaceFound = False
for CodedLetter in MorseCodeString.split(" "):
if CodedLetter in MorseCode:
DecodedString += Letter[MorseCode.index(CodedLetter)]
elif CodedLetter == "":
if SpaceFound == True:
DecodedString += " "
SpaceFound = False
else:
SpaceFound = True
else:
ReportError("{0} is not a known Morse code symbol".format(CodedLetter))
print("Decoded message(less any unknown characters):", DecodedString)

image28.png
Enter your choice: C
Please enter your message in Morse code: .. - taas
Decoded message(less any unknown characters): HI THERE

image29.png
Enter your choice: C
Please enter your message in Morse code:
* .—.——— 1s not a known Morse code symbol

Decoded message(less any unknown characters):

*
HLLO

image30.png
def SendMorseCode(MorseCode):
PlainText = input("Enter your message (uppercase letters and spaces only): ")
PlainTextLength = len(PlainText)
MorseCodeString = EMPTYSTRING
QuaternaryString = EMPTYSTRING
for i in range(PlainTextLength):
PlainTextLetter = PlainText[il]
if PlainTextLetter == SPACE:
Index = 0
else:
Index = ord(PlainTextLetter) - ord('A') + 1
CodedLetter = MorseCode[Index]
MorseCodeString = MorseCodeString + CodedLetter + SPACE
if CodedLetter == SPACE:
QuaternaryString += "1"
else:
for DotDash in CodedLetter:
if DotDash == ".":
QuaternaryString += "2"
else:
QuaternaryString += "3"
QuaternaryString += "0"
print(MorseCodeString)
print("The message in Quaternary is:",QuaternaryString)

image31.png
Enter your choice: S
Enter your message (uppercase letters and spaces only): TEST MSG

The message in Quaternary is: 3020222030133022203320

image32.png
print("S - Send Morse code")
print("E - send Encrypted message")
print("X - Exit program")

image33.png
elif MenuOption == 'E':
SendEncryptedMorseCode (MorseCode)

image34.png
def SendEncryptedMorseCode(MorseCode):
PlainText = input("Enter your message (uppercase letters and spaces only): ")
CaesarCipherShift = int(input("Enter the Caesar Cipher Shift: "))
CipherText = ""
for Character in PlainText:
if Character == SPACE:
CipherText += SPACE
else:
CipherText += chr(ord('A') + (ord(Character)-ord('A')+CaesarCipherShift)%26)
CipherTextLength = len(CipherText)
MorseCodeString = EMPTYSTRING
for i in range(CipherTextLength):
CipherTextLetter = CipherText[i]
if CipherTextLetter == SPACE:
Index = 0
else:
Index = ord(CipherTextLetter) — ord('A') + 1
CodedLetter = MorseCode[Index]
MorseCodeString = MorseCodeString + CodedLetter + SPACE
print(MorseCodeString)

image35.png
Enter your choice: E
Enter your message (uppercase letters and spaces only): TEST MSG
Enter the Caesar Cipher Shift: 12

image36.png
Enter your choice: E
Enter your message (uppercase letters and spaces only): TEST MSG
Enter the Caesar Cipher Shift: -5

image37.png
Enter your choice: E
Enter your message (uppercase letters and spaces only): TEST MSG
Enter the Caesar Cipher Shift: 50

image38.png
print(MorseCodeString)
print("Your message will take {@} time units to send.".format(CalculateTransmissionTime(MorseCodeString)))

image39.png
def CalculateTransmissionTime(MorseCodeString):
TransmissionTime = @
for Symbol in MorseCodeString:
if Symbol == ".":
TransmissionTime += 1
elif Symbol == "-":
TransmissionTime += 3
else:
TransmissionTime += 1
TransmissionTime += 1
return TransmissionTime

image40.png
Enter your choice: S
Enter your message (uppercase letters and spaces only): TEST MSG

Your message will take 58 time units to send.

image41.png
Message = input("Enter your message (uppercase letters and spaces only): ")
PlainText = Message.upper()
if Message != PlainText:
print("Only uppercase letters can be used, your message has be converted to: "+PlainText)

image42.png
Enter your choice: S
Enter your message (uppercase letters and spaces only): TEST MSG

image43.png
Enter your choice: S
Enter your message (uppercase letters and spaces only): Test Message
Only uppercase letters can be used, your message has be converted to: TEST MESSAGE

image44.png
Enter your choice: S
Enter your message (uppercase letters and spaces only): test msg

Only uppercase letters can be used, your message has be converted to: TEST MSG

image45.png
while i < LastChar:
i, CodedLetter = GetNextLetter(i, Transmission)
MorseCodeString = MorseCodeString + SPACE + CodedLetter
PlainTextLetter = Decode(CodedLetter, Dash, Letter, Dot)
PlainText = PlainText + PlainTextLetter
print("{@} symbols received which represent {1} characters.".format(len(MorseCodeString)-MorseCodeString.count(" "), len(PlainText)-PlainText.count(" ")))
print(MorseCodeString)
print(PlainText)

image46.png
Enter your choice: R
Enter file name: messagel2.txt
9 symbols received which represent 3 characters.

S0S

image47.png
InternationalVersion=True

ProgramEnd = False

while not ProgramEnd:
DisplayMenu(InternationalVersion)
MenuOption = GetMenuOption()

if MenuOption == 'R':
ReceiveMorseCode(Dash, Letter, Dot)
elif MenuOption == 'S':
SendMorseCode (MorseCode)
elif MenuOption == 'V':
InternationalVersion = not InternationalVersion
elif MenuOption == 'X':

ProgramEnd = True

image48.png
def DisplayMenu(InternationalVersion):

print()
print(“Main Menu")
print("=========")

print("R - Receive Morse code")
print("S - Send Morse code")
if InternationalVersion:
print("V - change to American Morse code")
else:
print("V - change to International Morse code")
print("X - Exit program")
print()
if InternationalVersion:
print("System is currently using the International version of Morse code.")
else:
print("System is currently using the American version of Morse code.")

image49.png
Main Menu

R - Receive Morse code

S - Send Morse code

V - change to American Morse code
X - Exit program

System is currently using the International version of Morse code.
Enter your choice: V

Main Menu

R - Receive Morse code

S - Send Morse code

V - change to International Morse code
X - Exit program

System is currently using the American version of Morse code.
Enter your choice: V

Main Menu

R - Receive Morse code

S - Send Morse code

V - change to American Morse code
X - Exit program

System is currently using the International version of Morse code.
Enter your choice: X

image50.png
FileName = input("Enter file name for transmission: ")
WriteFile = False
while not WriteFile:
try:
FileHandle = open(FileName, 'r')
FileHandle.close()
Answer = input("File already exists, would you like to overwrite it (Y/N)? ")
if Answer in ["Y", "y", "yes", "YES"]:
WriteFile = True
else:
FileName = input("Enter file name for transmission: ")
except:
WriteFile = True
try:
FileHandle = open(FileName, 'w')
FileHandle.write(Transmission)
FileHandle.close()
except:
ReportError("File could not be written")

image51.png
Enter your choice: T

Enter your message (uppercase letters and spaces only): TEST MSG
Enter file name for transmission: message4.txt

File already exists, would you like to overwrite it (Y/N)? N
Enter file name for transmission: messagel4d.txt

image52.png
Enter your choice: T

Enter your message (uppercase letters and spaces only): TEST MESSAGE
Enter file name for transmission: messagel4d.txt

File already exists, would you like to overwrite it (Y/N)? Y

Main Menu

R - Receive Morse code
S - Send Morse code

T - Transmit Morse code
X - Exit program

Enter your choice: R
Enter file name: messagel4d.txt

TEST MESSAGE

image53.png
if len(Transmission) > 0:
Transmission = StripTrailingSpaces(Transmission)
print("{@} symbols received in transmission consisting of".format(len(Transmission)), \
“n{o} signals and {1} breaks.".format(Transmission.count("="),Transmission.count(" ")))
Transmission = Transmission + EOL -

image54.png
Enter your choice: R

Enter file name: message.txt
33 symbols received in transmission consisting of 16 signals and 17 breaks.

TEA X

image1.png
def GetMenuOption():
MenuOption = input("Enter your choice: ").upper()
while MenuOption not in ['R', 'S', 'X']:
MenuOption = input("Invalid choice, please choose a letter from the menu: ").upper()
return MenuOption

image2.png
Main Menu

R - Receive Morse code
S - Send Morse code
X - Exit program

Enter your choice: y
Invalid choice, please choose a letter from the menu:
Invalid choice, please choose a letter from the menu: SS

Invalid choice, please choose a letter from the menu: R
Enter file name:

image3.png
Main Menu

R - Receive Morse code
S - Send Morse code
X - Exit program

Enter your choice: x
Stuarts—-MacBook-Pro%

