

i

Essential algorithms and data structures
Second Edition

D Hillyard

C Sargent

Published by

CRAIGNDAVE LTD

12 Tweenbrook Avenue

Gloucester

Gloucestershire

GL1 5JY

United Kingdom

admin@craigndave.co.uk

www.craigndave.org

2021
Craig 'n' Dave

mailto:admin@craigndave.co.uk
http://www.craigndave.org/

ii

Every effort has been made to trace copyright holders and obtain their permission for the use of copyright

material. We apologise if any have been overlooked. The authors and publisher will gladly receive information

enabling them to rectify any reference or credit in future editions.

Front cover artwork: The binary tree created using www.visnos.com/demos/fractal.

Text © D. Hillyard and C. Sargent 2022

Original illustrations © D. Hillyard and C. Sargent 2022

Edited by A. Fenn

Graphics and typesetting by CraignDave Ltd

First edition 2018

ISBN: 9798468205341

Copyright © D. Hillyard and C. Sargent 2022

A copy of this book is held in the British library.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means without the prior written permission of the copyright owner.

iii

About the authors

Craig Sargent

Craig is a postgraduate qualified teacher with a Bachelor of Science (Honours) in Computer Science with

Geography. Craig has over seventeen years’ teaching experience in ICT and computer science in two

Gloucestershire schools. An examiner and moderator for awarding bodies in England, Craig has authored many

teaching resources for major publishers.

Formerly a Computing at School (CAS) Master Teacher, Craig has also served as regional coordinator for the

Computing Network of Excellence and contributed to the development of the National Curriculum for Computer

Science. His industry experience includes programming for a high street bank and the Ministry of Defence. He

also wrote his first computer game in primary school.

Both Craig and David contribute to the National Centre for Computing Education.

David Hillyard

David is a postgraduate qualified teacher with a Bachelor of Science (Honours) in Computing with Business

Information Technology. David has over twenty years’ teaching experience in ICT and computer science in five

Gloucestershire secondary schools.

Formerly subject leader for the Gloucestershire Initial Teacher Education Partnership (GITEP) and graduate

teacher programme (GTP) at the University of Gloucestershire, David has led a team of trainee teacher mentors

across the county in ICT and computer science.

His industry experience includes programming for the Ministry of Defence. A self-taught programmer, he wrote

his first computer game at ten years old.

iv

Preface

The aim of this book is to provide students and teachers of A Level Computer Science with a comprehensive

guide to the algorithms and data structures students need to understand for examinations. Each chapter

considers a data structure or algorithm in isolation, including:

• An explanation of how it works

• Real-world applications

• A step-by-step example

• Pseudocode

• Actual printed Python 3.x code listing

o Additional code listings in Visual Basic and C# are provided via download

• A description of its space and time complexity

Additional support materials

In this book, coded solutions are provided in Python 3.x, the most popular language taught at GCSE. Solutions

for Visual Basic (2015 onwards) and C# (2019 onwards) are also available to download from

craigndave.org/algorithms.

Standards

Python source code conforms to the PEP-8 standard as much as possible. Where this would introduce new

keywords, the preference is to show code in the format students are more likely to see in an examination.

Coding standards used in this book

• ++ += –= for incrementing and decrementing variables has been avoided in favour of x = x + 1. Except for

iterations in C# source code.

• Swapping variables using approaches such as a, b = b, a has not been used. A three-way swap with a temporary

variable is favoured in examinations.

• Using classes for data structures and methods for their operations.

• Using the == comparison operator with None instead of is.

• Using shadow names from outer scope in subroutines for simplification.

The result is not necessarily the most efficient code but, rather, the most suitable implementation for this level

of study. There are many ways to code algorithms and data structures. For example, the depth-first traversal

can be coded using iteration or recursion with a dictionary, objects or arrays – that is six different

implementations, but even these are not exhaustive. Combined with a programmer’s personal approach and

the commands available in their chosen language, the possibilities are near-endless.

It is important that students recognise the underlying data structures, understand the way an algorithm works

and can determine outputs from code listings. Therefore, the approaches and solutions presented in this book

are one solution – but not the only solution.

Examiners require students to be able to trace and write many algorithms, but we strongly recommend learning

the principles of the algorithm and how it operates rather than attempting to memorise code listings.

https://craigndave.org/algorithms

v

Specification mapping

O
C

R
 G

C
S

E

(J
2

7
7

)

O
C

R
 G

C
E

 A
S

 L
e

ve
l

(H
0

4
6

)

O
C

R
 G

C
E

 A
 L

e
ve

l

(H
4

4
6

)

A
Q

A
 G

C
S

E

(8
5

2
5

)

A
Q

A
 G

C
E

 A
S

 L
e

ve
l

(7
5

1
6

)

A
Q

A
 G

C
E

 A
 L

e
ve

l

(7
5

1
7

)

P
e

a
rs

o
n

 E
d

e
xc

e
l
G

C
S

E

(1
C

P
2

)

W
JE

C
 G

C
S

E

(C
0

0
/
1

1
5

7
/
9

)

W
JE

C
 G

C
E

 A
S

 L
e

ve
l

(6
0

1
/
5

3
9

1
/
X

)

W
JE

C
 G

C
E

 A
 L

e
ve

l

(6
0

1
/
5

3
4

5
/
3

)

C
a

m
b

ri
d

g
e

 I
G

C
S

E

(0
9

8
4

)
2

0
2

3
-2

0
2

5

O
xf

o
rd

 A
Q

A
 I

G
C

S
E

(9
2

1
0

)

P
e

a
rs

o
n

 E
d

e
xc

e
l
IG

C
S

E

(4
C

P
0

)

Array ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Binary tree ✓ ✓ ✓

Dictionary ✓

Graph ✓ ✓

Linked list ✓ ✓

List ✓ ✓ ✓ ✓ ✓

Object ✓ ✓ ✓ ✓ ✓

Queue ✓ ✓ ✓ ✓

Record ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Stack ✓ ✓ ✓ ✓ ✓

Binary search ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hash table

search
 ✓ ✓ ✓

Linear search ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bubble

sort
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Insertion

sort
✓ ✓ ✓ ✓ ✓

Merge

sort
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Quick

sort
 ✓ ✓

A*

pathfinding
 ✓*

Dijkstra’s

shortest path
 ✓* ✓ ✓

* Students are not required to write code for this algorithm – only to know how the algorithm works and be

able to trace its pseudocode.

vi

vii

Contents

ABSTRACTIONS OF MEMORY 1

Introduction to data structures 2

DATA STRUCTURES 5

Array 6

Binary tree 10

Dictionary 35

Graph 40

Linked list 79

List 90

Object 94

Queue 97

Record 109

Stack 112

Tree 124

In summary 127

SEARCHING ALGORITHMS 131

Binary search 132

Hash table search 139

Linear search 146

In summary Error! Bookmark not defined.

SORTING ALGORITHMS 153

Bubble sort 154

Insertion sort 159

Merge sort 164

Quicksort 172

In summary 191

OPTIMISATION ALGORITHMS 193

A* pathfinding 194

Dijkstra’s shortest path 208

In summary 220

viii

ABSTRACTIONS OF MEMORY
The way in which the computer uses memory to store and retrieve data impacts the efficiency

of the algorithm using that data.

A
B

ST
R

A
C

TI
O

N
S

O
F

M
EM

O
R

Y

2

Introduction to data structures

Algorithms are a sequence of instructions that a human or computer can follow to solve a problem. All

algorithms require data structures – somewhere to store data while the algorithm is executing. The simplest

data structure is the variable, an area of memory holding a single item of data that can be changed when a

program is running with assignment statements. Usually, multiple data items are required and related to each

other in some way. Related data is stored in more complex data structures like arrays, lists and objects.

Algorithms and data structures are held in primary memory – usually random-access memory (RAM) – although

during execution, they will also be held in the cache, an area of high-speed memory in the CPU for temporary

storage of frequently used instructions and data.

Memory is divided into several parts. Three important memory partitions include:

1. Code

2. Call stack

3. Heap

The code section holds the instructions for the algorithm. The call stack (also known as the program stack,

execution stack, control stack, run-time stack, machine stack or simply the stack) is an area of memory used

by the computer to manage subroutines and their data structures.

A stack frame holds local variable values, parameters and the state of the registers when the subroutine was

called, including the return address in the program counter. Beyond simple values of local variables, other data

structures and global variables are stored on the heap with only the reference (address) to the structure being

held in the stack frame.

Confusingly, the actual implementation of the call stack and the heap for the different data structures is largely

dependent on the architecture of the computer and programming language. For example, with C++, objects

can be allocated on the stack or the heap. In Java, all objects are allocated to the heap.

Did you know?

In Python, the following code will output the memory address where the global variable x

is being stored on the heap. 0x in the output indicates that the address is in hexadecimal.

x = "Hello World"

print(hex(id(x)))

A
B

ST
R

A
C

TI
O

N
S

O
F

M
EM

O
R

Y

3

Code, the call stack and the heap illustrated

Code

Call stack

Heap

 Data

Type
Identifier

Address

or value
 Address Value Notes

Sub initialise()

 int lives = 3

0x5D 5 Length

 string title = "Game"

0x5E 100 score[0]

 int score[5]

0x5F 200 score[1]

 for i = 0 to 4

0x60 300 score[2]

 score[i] = 100 * (i + 1)

0x61 400 score[3]

 next i

0x62 500 score[4]

End Sub

S
ta

c
k

 f
ra

m
e

Integer i 4

…

Array score 0x5D

String title 0x65

0x65 Game title

Integer lives 3

 …

Registers

As data structures are created, memory on the heap is allocated to them. Live structures are tracked, and

everything else in the heap is designated as unused. A process known as garbage collection reclaims unused

memory to be used for future allocation.

Data structures are often referred to as static, dynamic, mutable and immutable. Before looking at each data

structure in more detail, it will help you to be aware of what these terms mean.

• Data type: What a sequence of binary digits represents – e.g., integer, floating-point number, string,

date. Each data type requires a specific number of bits to be stored in memory.

• Static: The data structure cannot change in size when the program is running.

• Dynamic: The data structure can change size when a program is running.

• Mutable: The data in the data structure can change when a program is running.
• Immutable: The data in the data structure cannot change when a program is running.

A
B

ST
R

A
C

TI
O

N
S

O
F

M
EM

O
R

Y

4

DATA STRUCTURES
Supported by some programming languages as primitive data types within the command set,

programmers can also implement their own data structures.

D
A

T
A

 S
TR

U
C

TU
R

ES

6

Array

An array is a static collection of items of the same data type called elements. An array is typically used when

the required number of data items is known in advance, to store data that would otherwise be stored in multiple

variables. For example, to store the names of four people, you could have four variables – name1, name2,

name3 and name4.

The problem with this approach is it would not be possible to refer to a specific name or loop through all the

names with a FOR or WHILE command because the number or index is part of the identifier – the name of the

variable. Instead, we need to declare name1 as name[1] and so on. Note how the index is now enclosed in

brackets. Some programming languages used curved brackets while others use square brackets.

Assigning data to the array can be carried out using syntax similar to:

name[0] = "Craig"

name[1] = "Dave"

name[2] = "Sam"

name[3] = "Carol"

With four names, the maximum index is 3 because arrays are usually zero-indexed – i.e., the first item is stored

at index zero. You could start at index 1, but why waste memory unnecessarily?

Now, it is possible to use an iteration to output all the data in the array:

For index = 0 to 3

 Print(name[index])

Next

This is an extremely useful algorithm that you need to know at all levels of study. Alternative code would be:

Print(name1)

Print(name2)

Print(name3)

Print(name4)

It is a misconception that using an array instead of individual variables is more memory-efficient. The same

amount of data still needs to be stored, but an array makes the algorithm scalable, so we only need to change

the number 3 in the iteration to change the number of names we output. You can see how implementing code

with a thousand names without iteration would be time-consuming and impractical.

There are two limitations of using arrays.

1. All data elements in an array must be of the same data type. For example, an array of strings cannot

contain an integer.

2. The size of an array is determined when it is declared – i.e., when the algorithm is written – and cannot

usually be changed when the program is running.

D
A

T
A

 S
TR

U
C

TU
R

ES

7

Applications of an array

Arrays are used when a known number of related data items of the same data type need to be stored. They are

used extensively in supercomputers and graphics processing units.

Some programming languages and hardware implementations allow a single operation to be performed on

many indexes at the same time, making arrays very efficient for mathematical operations. All algorithms can

use an array as their base data structure.

Storing an array in memory

Arrays are always stored in contiguous memory, meaning each element follows the previous one in memory.

Their size is fixed because a sufficient block of memory needs to be allocated in advance. Since all elements

must be of the same data type, it is easy to calculate where an item is in memory from the base address of the

structure, the data type being stored and the index.

For example, an array of 32-bit (4-byte) integers with index 0 stored at address 0x1A would have index 1 stored

at 0x1A + 4 = 0x1E – this makes arrays very efficient, as any element can be found immediately by its address

(known as random-access) rather than sequentially.

To overcome the limitation of arrays being a fixed size, they can be declared larger than they need to be so

data can be inserted into an empty index later. Although this is an inefficient use of memory, it is necessary to

implement dynamic data structures with a static array.

Modern programming languages do allow for the resizing of an array at run-time by finding a new place in the

heap for the entire data structure and moving it to that location. This is a slow O(n) operation, so if it is frequently

required, the programmer should consider using a list or objects instead.

Arrays may have multiple indexes (also called indices) in what is known as a multi-dimension array. An array of

two dimensions is referred to as a two-dimensional array. By using two dimensions, we can store a grid of data

– for example, to represent an 8 x 8 board for a game of chess.

Did you know?

One-dimensional arrays are sometimes called vectors, and two-dimensional arrays are

sometimes called matrices.

All data structures including dictionaries, linked lists, graphs, queues, stacks and trees can

be constructed from arrays.

Some modern programming languages such as Java implement arrays using objects.

D
A

T
A

 S
TR

U
C

TU
R

ES

8

One-dimensional array Two-dimensional array

Name[2] = Dave

Name

Index Element

0 Carol

1 Sam

2 Dave

3 Craig

Board[1,0] = “X”

Board

Index 0 1 2

0 "O" "X"

1 "O"

2 "X"

Notice that in the example of the two-dimensional array above, the first index was chosen to represent the x

position in the table, and the second index represents the y position.

It is also acceptable for the first index to represent the y position and the second index to represent the x

position. In memory, the table doesn’t exist as it is shown. Indexes are simply memory addresses, so the

structure itself is abstracted. It is up to the programmer how they visualise the data structure in their own mind.

Arrays can be declared in any number of dimensions. For example, when storing a linked list using an array,

one dimension is used for the data item, a second dimension is used for the pointer to the next item.

Operations on an array

Typical operations that can be performed on an array include:

• Declare: Initialise the size of an array – i.e., the number of indexes it will have – and reserve memory.

• Access: Return an element from an index.

• Assign: Set the element for a specific index.

• Resize: Change the size of the array at run-time by reallocating it to a different part of the memory.

D
A

T
A

 S
TR

U
C

TU
R

ES

9

Efficiency of operations on an array

Time complexity Space complexity

 Best

case

Average

case

Worst

case

 Best

case

Worst

case

Access,

Assign

O(1)

Constant

O(1)

Constant

O(1)

Constant

O(1)

Constant

O(1)

Constant

Search,

Iterate

O(1)

Constant

O(n)

Linear

(one-dimension)

O(n2)

Polynomial

(two-dimension)

Add item

O(1)

Constant

O(n)

Linear

O(n)

Linear

Delete item

O(1)

Constant

O(n)

Linear

O(n)

Linear

Resize

O(n)

Linear

(one-dimension)

O(n)

Linear

(one-dimension)

O(n2)

Polynomial
(two-dimension)

Since an array is considered a static data structure, its memory footprint is always known at run-time, so it has

a constant space complexity of O(1). Some languages support the resizing of an array at run-time, which can

require moving the structure in memory – an O(n) process for a one-dimension array.

The advantage of using an array is that it can be randomly accessed, meaning you can jump immediately to

any index/memory address in the data structure, resulting in basic operations executing in a constant time

O(1) – for example, adding a new item to an empty index. However, if that index must be found first or the item

needs to be inserted between two existing indexes to maintain an order to the data, the time complexity will

degrade to O(n) because other elements must be considered or moved first.

With multi-dimensional arrays, if a nested loop is required to iterate over all the elements – for example, with

a bubble sort – the time complexity becomes polynomial, O(n2). The exponent represents the number of

dimensions in the structure. In the case of a three-dimensional array, it would be O(n3).

D
A

T
A

 S
TR

U
C

TU
R

ES

10

Binary tree

A binary tree is a dynamic structure of nodes and pointers. A binary tree is a special case of a graph where

each node can only have zero, one or two pointers, with each pointer connecting to a different node. Unlike a

regular tree, the binary tree is a rooted tree. It has a first node from which all operations start, known as the

root node. The connected nodes are called child nodes, while the nodes at the very bottom of the structure are

referred to as leaf nodes. Unlike graphs, trees do not allow for circular links between nodes.

Since a binary tree is essentially a special type of undirected graph, the nodes and pointers can also be

described as vertices and edges, respectively.

There are two types of binary trees. With a binary unordered tree, items added to the tree are not maintained

in a logical order. The balance of the tree is always maintained, with new nodes simply being added to the next

available leaf node. However, when discussing binary trees, we are commonly referring to a binary search tree

where a logical order to the items is maintained as they are entered into the tree.

With a binary search tree, instead of new nodes being entered at the next available leaf node, items that are

lower than the root or child node are placed to the left, while items that are greater than the root or child node

are placed to the right.

The structure may become unbalanced, with one side of the tree containing more nodes than the other. It is

possible to rebalance a binary search tree so that each leaf node is the same distance away from the root node

as any other leaf node. Doing so ensures the structure is as efficient as possible but does require you to output

the data and recreate the tree.

The significant advantage of a binary search tree is that by using traversal algorithms, it is possible to output

nodes in order regardless of the order they were entered into the tree.

From this point onwards, we will only consider the binary search tree, as this is the data structure you will be

expected to understand for examinations.

Child node B G

E

A C F H Leaf node

Root node

D
A

T
A

 S
TR

U
C

TU
R

ES

11

Applications of a binary tree

A binary tree has many uses in computer science. They are frequently used for storing and searching large data

sets. Binary trees can be found in routing tables for packet switching within routers, where similar addresses

are grouped under a single sub-tree. Decision trees are often used in supervised machine learning algorithms

and expression evaluation for compilers.

Huffman coding – used in compression algorithms such as JPEG and MP3 – utilises binary trees, as does

cryptography with GGM trees. Binary trees are also useful for performing arithmetic with reverse Polish

notation, which negates the use of brackets to define the order of precedence for operators in an expression.

Storing a binary tree in memory

A binary tree can be represented in memory using an array or list, with node objects or in a dictionary.

Array Object Dictionary

Index Element Left Right

0 E 1 2

1 B 3 4

2 G 5 6

3 A 7 8

4 C 9 10

5 F 11 12

6 H 13 14

A single node is defined as:

Class Node

 element = ""

 left_pointer = Node

 right_pointer = Node

End Class

binaryTree = {

 "E": ["B", "G"],

 "B": ["A", "C"],

 "G": ["F", "H"],

 "A": [],

 "C": [],

 "F": [],

 "H": []

}

Data structures are often confusing because they can be implemented using other data structures. For

example, a dictionary is a hash map, and a hash map is a particular use of an array. So, storing a binary tree

as a dictionary is also storing the binary tree using an array – just using it in a completely different way.

D
A

T
A

 S
TR

U
C

TU
R

ES

12

Operations on a binary tree

Typical operations that can be performed on a binary tree include:

• Add: Adds a new node to the tree.

• Delete: Removes a node from the tree.

• Binary search: Returns the data stored in a node.

• Pre-order traversal: A type of depth-first traversal.

• In-order traversal: A type of depth-first traversal.

• Post-order traversal: A type of depth-first traversal.

• Breadth-first search: Traverses the tree, starting at the root node and visiting each node at the same

level before going deeper into the structure.

• Rebalance: The Day-Stout-Warren (DSW) algorithm is a method of generating a compact, balanced tree

by converting the tree into a linked list using in-order traversal and performing a series of rotations to

reshape it.

A traversal refers to the process of navigating through the structure and visiting each node only once. A

traversal algorithm is used to find, update and output the data in a binary tree.

Did you know?

The binary tree used to be called a “bifurcating arborescence” – a name associated with

graph theory – before its modern name became popular in computer science.

D
A

T
A

 S
TR

U
C

TU
R

ES

13

Array/list implementation of a binary tree

When a binary tree is stored as an array, the total number of indexes required can be determined by calculating

2^(depth + 1) – 1, the depth being the number of levels required. For example, a two-level binary tree will have

2^3 – 1 = 7 nodes or indexes.

Although a binary tree array is often depicted as having left and right index pointers, they are not necessary.

However, they do make it easier to visualise the structure as a table and see how each node points to the next

index. It is possible to reduce data storage requirements by using only a one-dimensional array to store a node

and calculate the index of the left and right nodes when required:

• The index of the left node can be calculated as 2 * current index + 1.

• The index of the right node can be calculated as 2 * current index + 2.

Index Element Left node Right node

0 E (2 * 0) + 1 = 1 (2 * 0) + 2 = 2

1 B (2 * 1) + 1 = 3 (2 * 1) + 2 = 4

2 G (2 * 2) + 1 = 5 (2 * 2) + 2 = 6

3 A (2 * 3) + 1 = 7 (2 * 3) + 2 = 8

4 C (2 * 4) + 1 = 9 (2 * 4) + 2 = 10

5 F (2 * 5) + 1 = 11 (2 * 5) + 2 = 12

6 H (2 * 6) + 1 = 13 (2 * 6) + 2 = 14

One of the problems of storing a binary tree as an array in this way is there may be many unused leaf nodes or

indexes in the array, resulting in the data structure having a higher memory footprint than is necessary to store

the data. To negate this, it would be possible to always use the next available index when adding new items

and store the values of the left and right pointers instead of calculating them.

The problem with this approach is you also need to store a pointer to the next available index or use an

inefficient linear search to find it. The additional complexity arising from these operations means this

implementation is rarely used but watch out for it in examinations. If a reduced memory footprint is required,

an object-based approach is much easier to implement and more efficient.

D
A

T
A

 S
TR

U
C

TU
R

ES

14

When using an array, even though the underlying data structure is static with the reservation of empty space

and unused indexes, it facilitates the creation of a dynamic data structure with a constant space complexity.

Object implementation of a binary tree

When implementing a binary tree with objects, a node class is defined. The class has the attributes:

• element: To store the value of the node.

• left_pointer: Another instance of the node class or null value if no child exists on the left edge.

• right_pointer: Another instance of the node class or null value if no child exists on the right edge.

Instances of the node class (objects) are created when required, making it a truly dynamic data structure.

Data structures created with objects are often visualised with each node/object represented as a box or circle

with the data element written inside. Lines between the boxes indicate how the nodes are connected to each

other using the left_pointer and right_pointer attributes – these are references to the base memory address of

the connected object on the heap.

To create the structure depicted above, the root node, E, would be created first. Typically, objects are created

(instantiated) with code like: new_node = new Node

new_node is a variable, storing the base memory address of a new instance of the object created on the heap.

Variables used in this way are more commonly called pointers.

The root node of the binary tree can be assigned as: root_node = new_node

The data element of the root node can be assigned as: root_node.element = "E"

This does not create a new object because the keyword “new” was not used. Instead, root_node points to the

base address of new_node.

Instantiating node B and connecting it to E would require the code:

new_node = new Node
new_node.element = "B"
root_node.left_pointer = new_node

B

E

G

D
A

T
A

 S
TR

U
C

TU
R

ES

15

Adding an item to a binary tree

1. Check there is available memory for a new node – output an error if not.

2. Create a new node and insert data into it.

3. If the binary tree is empty:

a. The new node becomes the first item – create a start pointer to it.

4. If the binary tree is not empty:

a. Start at the root node.

b. If the new node should be placed before the current node, follow the left pointer.

c. If the new node should be placed after the current node, follow the right pointer.

d. Repeat from step 4b until the leaf node is reached.

e. If the new node should be placed before the current node, set the left pointer to be the new

node.

f. If the new node should be placed after the current node, set the right pointer to be the new

node.

With an array implementation, step 2 is not necessary because, if the structure is not full, there will already be

a vacant index. Instead, the position of the new node is found, and after step 3 or 4, the data can be inserted

into the tree. Steps 4e and 4f are also unnecessary because it is possible to calculate the pointer from one

node to any other node.

Adding an item to a binary tree illustrated

Start at the root node. D is less than E; follow the left pointer. D is more than B; follow the right pointer. D is

more than C; create a right pointer from C to D.

B G

E

A F H C

D

D
A

T
A

 S
TR

U
C

TU
R

ES

16

Pseudocode for adding an item to a binary tree

If not memoryfull Then

 new_node = New Node

 new_node.left_pointer = Null

 new_node.right_pointer = Null

 current_node = start_pointer

 If current_node == Null Then

 start_pointer = new_node

 Else

 While current_node != Null

 previous_node = current_node

 If new_node < current_node Then

 current_node = current_node.left_pointer

 Else

 current_node = current_node.right_pointer

 End If

 End While

 If new_node < previous_node Then

 previous_node.left_pointer = new_node

 Else

 previous_node.rigth_pointer = new_node

 End If

 End If

End If

Did you know?

The maximum efficiency of a binary tree is achieved when the tree is balanced, meaning

one branch is not significantly larger than another. A self-balancing binary tree

automatically keeps its height small when items are added and deleted by moving nodes

within the structure. A self-balancing operation decreases the efficiency of adding and

deleting items but increases the efficiency of searches.

D
A

T
A

 S
TR

U
C

TU
R

ES

17

Deleting an item from a binary tree

Firstly, we need to find the node to delete in the structure.

1. Start at the root node.

2. While the current node exists, and it is not the one to be deleted:

a. Set the previous node to be the current node.

b. If the item to be deleted is less than the current node:

i. Follow the left pointer.

ii. Set the node found to be the current node.

c. If the item to be deleted is greater than the current node:

i. Follow the right pointer.

ii. Set the node found to be the current node.

Assuming the node to be deleted exists in the binary tree, we can now proceed to delete it. As with all

algorithms, there are many ways to implement the deletion of a node. The Thomas Hibbard algorithm is one

approach. There are three possibilities that need to be considered when deleting a node from a binary tree

using this approach, each with a different operation:

i. The node is a leaf node and has no children. The node can be removed from the tree.

ii. The node has one child. Copy the child node to the node to be deleted and remove the child.

iii. The node has two children. The in-order successor node is copied to the node to be deleted and the

in-order successor is deleted. The successor node is the leftmost/smallest node in the right sub-tree

of the node to be deleted.

The node to be deleted has no children

Here, A is being deleted. The previous node’s left pointer is set to null because A is to the left of B. If C were to

be removed, the previous node’s right pointer would be set to null.

3. If the previous node is greater than the current node, the previous node’s left pointer is set to null.

4. If the previous node is less than the current node, the previous node’s right pointer is set to null.

B G

E

A F H C

D
A

T
A

 S
TR

U
C

TU
R

ES

18

The node to be deleted has one child

Here, B is being deleted. The child node C and its pointers are copied to the node previously occupied by B and

the child node is removed.

This operation can also be accomplished by changing node E’s left pointer to be the left pointer of the node

being deleted. In this case, E’s left pointer becomes C.

In either case, E now points to node C instead of node B.

5. If the current node is less than the previous node:

a. Set the previous node’s left pointer to the current node’s left child.

6. If the current node is greater than the previous node:

b. Set the previous node’s right pointer to the current node’s right child.

C G

E

F H C

D
A

T
A

 S
TR

U
C

TU
R

ES

19

The node to be deleted has two children but no left sub-tree on the right pointer

Here, G is being deleted. In this case, there is no left sub-tree from H, so G is replaced with H and its right

pointer is set to null.

 becomes

H is the successor node and is promoted to the position previously occupied by G. Note that H was not chosen

simply because it is the right child of G but because it is the leftmost node on the right sub-tree from G. If there

were further left nodes to follow, they would be followed to the final leaf node, the successor node.

7. If a right node exists but has no left sub-tree:

a. Set the current node to be the current node’s right pointer.

b. Set the current node’s right pointer to be null.

B G

E

A C F H

B H

E

A C F H

Did you know?

In the example above, you could also replace H with F and delete node F instead.

D
A

T
A

 S
TR

U
C

TU
R

ES

20

The node to be deleted has two children and a left sub-tree on the right pointer

Here, F is being deleted. The successor node is H. F is replaced with H, and J’s left pointer is set to null.

However, it is a mistake to assume that it is always the first left node from the right sub-tree that is found.

Instead, it is the leftmost leaf node that is swapped. Therefore, if H had a left pointer, it would be followed

until the leftmost leaf node was found.

becomes

8. If a right node exists and has a left sub-tree, find the smallest leaf node in the right sub-tree.

a. Change the current node to be the value of the smallest leaf node.

b. Remove the leaf node.

Alternative approaches to deleting a node

One alternative approach would be to use the predecessor node (the rightmost node in the left sub-tree)

instead of the successor node with the Hibbard algorithm.

Another simple approach is for each node to have an additional Boolean field that is set to true if the node

exists and false if it has been deleted. When the tree is traversed, if the node has been deleted and the Boolean

flag is false, the node is not output. When a new node is added to the binary tree, the deleted node is still

considered to ensure the new node is added to the correct branch. With this approach, the binary tree will

continue to grow over time and contain many redundant nodes. Periodically, a rebalance operation would be

performed, skipping over deleted nodes and effectively deleting them forever.

B F

E

A C G

H

J

B H

E

A C G

H

J

D
A

T
A

 S
TR

U
C

TU
R

ES

21

Pseudocode for deleting an item from a binary tree

current_node = root node

while current_node != null and current_node != item

 previous_node = current_node

 if item < current_node.data Then

 current_node = current_node.left_pointer

 Else

 current_node = current_node.right_pointer

 End If

If current_node != null then

 If current_node.left_pointer == null and current_node.right_pointer == null Then

 If previous_node.data > current_node.data Then

 previous_node.left_pointer = null

 Else

 previous_node.right_pointer = null

 End If

 Elseif current_node.right_pointer == null Then

 If previous_node.data > current_node.data Then

 previous_node.left_pointer = current_node.left_pointer

 Else

 previous_node.right_pointer = current_node.left_pointer

 End If

 Elseif current_node.left_pointer == null Then

 If previous_node.data < current_node.data Then

 previous_node.left_pointer = current_node.right_pointer

 Else

 previous_node.right_pointer = current_node.right_pointer

 End If

 Else

 right_node = current_node.right_pointer

 If right_node.left_pointer != null Then

 smallest_node = right_node

 While smallest_node.left_pointer != null

 previous_node = smallest_node

 smallest_node = smallest_node.left_pointer

 End While

 current_node.data = smallest_node.data

 previous_node.left_pointer = null

 Else

 current_node.data = right_node.data

 current_node.right_pointer = null

End If

 End If

End If

D
A

T
A

 S
TR

U
C

TU
R

ES

22

Traversal operations

Finding, updating or outputting the nodes from a binary tree requires a traversal algorithm. These algorithms

visit each node in turn once, starting from the root node, until the desired node is found. Since there are many

potential paths to follow in a binary tree, there are many ways to traverse the structure too, including depth-

first traversal (pre-, in- and post-order) or breadth-first traversal.

Pre-order traversal (depth-first traversal)

Pre-order traversal – a type of a depth-first traversal – is used to create a copy of a binary tree or return prefix

expressions in Polish notation, which can be used by programming language interpreters to evaluate syntax.

The algorithm can be described as node-left-right:

1. Start at the root node.

2. Output the node.

3. Follow the left pointer and repeat from step 2 recursively until there is no pointer to follow.

4. Follow the right pointer and repeat from step 2 recursively until there is no pointer to follow.

Pre-order traversal illustrated

A pre-order traversal can be pictured like this:

Note the markers on the left side of each node. As you traverse the tree, starting from the root, the nodes are

only output when the marker is passed: E, B, A, C, G, F, H. You can illustrate like this in exams to demonstrate

your understanding of the algorithm.

E

B

A C

G

F H

D
A

T
A

 S
TR

U
C

TU
R

ES

23

Pseudocode for a pre-order traversal

Procedure preorder(current_node)

If current_node != null Then

 Print(current_node.data)

 If current_node.left_pointer != null Then

 preorder(current_node.left_pointer)

 End If

 If current_node.right_pointer != null Then

 preorder(current_node.right_pointer)

 End If

End If

End procedure

In-order traversal (depth-first traversal)

An in-order traversal – a type of a depth-first traversal – is used to output the contents of the binary tree in

order. One of the significant advantages of the binary search tree is that it automatically sorts the contents of

the structure without moving data, irrespective of the order in which the data arrived.

The algorithm can be described as left-node-right:

1. Start at the root node.

2. Follow the left pointer and repeat from step 2 recursively until there is no pointer to follow.

3. Output the node.

4. Follow the right pointer and repeat from step 2 recursively until there is no pointer to follow.

Did you know?

Don’t forget, all traversals including pre-order, in-order and post-order always follow the

left path first – unless you want to output the items in reverse order.

D
A

T
A

 S
TR

U
C

TU
R

ES

24

In-order traversal illustrated

An in-order traversal can be pictured like this:

Note the markers on the bottom of each node. As you traverse the tree, starting from the root, the nodes are

only output when the marker is passed: A, B, C, E, F, G, H. You can illustrate like this in exams to demonstrate

your understanding of the algorithm.

To output the nodes in reverse order, simply reverse the algorithm by following the right pointers before

outputting the node and then follow the left pointers.

Pseudocode for an in-order traversal

Procedure inorder(current_node)

If current_node != null Then

 If current_node.left_pointer != null Then

 inorder(current_node.left_pointer)

 End If

 Print(current_node.data)

If current_node.right_pointer != null Then

 inorder(current_node.right_pointer)

 End If

End If

End procedure

E

B

A C

G

F H

D
A

T
A

 S
TR

U
C

TU
R

ES

25

Post-order traversal (depth-first traversal)

A post-order traversal – a type of a depth-first traversal – is used to delete a binary tree or output post-fix

expressions that can be used to evaluate mathematical expressions without brackets. This is how arithmetic

logic units work in stack-machine computers, and it was popular in pocket calculators until the early 2010s.

The algorithm can be described as left-right-node:

1. Start at the root node.

2. Follow the left pointer and repeat from step 2 recursively until there is no pointer to follow.

3. Follow the right pointer and repeat from step 2 recursively until there is no pointer to follow.

4. Output the node.

Post-order traversal illustrated

A post-order traversal can be pictured like this:

Note the markers on the right side of each node. As you traverse the tree, starting from the root, the nodes are

only output when the marker is passed: A, C, B, F, H, G, E. You can illustrate like this in exams to demonstrate

your understanding of the algorithm.

E

B

A C

G

F H

D
A

T
A

 S
TR

U
C

TU
R

ES

26

Pseudocode for a post-order traversal

Procedure postorder(current_node)

If current_node != null Then

 If current_node.left_pointer != null Then

 postorder(current_node.left_pointer)

 End If

If current_node.right_pointer != null Then

 postorder(current_node.right_pointer)

 End If

 Print(current_node.data)

End If

End procedure

Breadth-first traversal using a binary tree

Visiting each node on the same level of a tree before going deeper is an example of a breadth-first traversal.

Although commonly associated with graphs, a binary tree can also be traversed in this way – however, it does

require a queue structure.

1. Start at the root node.

2. While the current node exists:

a. Output the current node.

b. If the current node has a left child, enqueue the left node.

c. If the current node has a right child, enqueue the right node.

d. Dequeue and set the current node to the dequeued node.

Breadth-first traversal on a binary tree illustrated

A breadth-first traversal can be pictured like this:

E

B

A C

G

F H

D
A

T
A

 S
TR

U
C

TU
R

ES

27

Pseudocode for a breadth-first traversal on a binary tree

current_node = root_node

While current_node != null

 Print(current_node)

 If current_node.left_pointer Then enqueue(current_node.left_pointer)

 If current_node.right_pointer Then enqueue(current_node.right_pointer)

 current_node = dequeue()

Binary tree coded in Python using an array

class BinaryTree:

 depth = 5
 max = 2**(depth + 1) - 1
 btree = ["" for item in range(max)]
 root = 0

 def add(self, item):
 current_node = self.root
 # Find correct position
 while current_node < self.max and self.btree[current_node] != "":
 if item < self.btree[current_node]:
 current_node = (2 * current_node) + 1
 else:
 current_node = (2 * current_node) + 2
 # Check overflow
 if current_node < self.max:
 self.btree[current_node] = item
 return True
 else:
 return False

 def delete(self, item):
 # Using Hibbard's algorithm (leftmost node of right sub-tree is the successor)
 # Find the node to delete
 current_node = self.root
 while current_node < self.max and self.btree[current_node] != item:
 if item < self.btree[current_node]:
 current_node = (2 * current_node) + 1
 else:
 current_node = (2 * current_node) + 2
 if current_node < self.max and self.btree[current_node] == item:
 # Handle 3 cases depending on the number of child nodes
 left_node = (2 * current_node) + 1
 right_node = (2 * current_node) + 2
 if left_node < self.max and self.btree[left_node] == "" and right_node <
self.max and self.btree[right_node] == "":
 # Node has no children
 self.btree[current_node] = ""
 elif left_node < self.max and self.btree[left_node] != "" and right_node <
self.max and self.btree[right_node] != "":
 # Node has two children
 # Find the smallest value in the right sub-tree (successor node)
 smallest = right_node
 while (2 * smallest) + 1 < self.max and self.btree[(2 * smallest) + 1] !=
"":

D
A

T
A

 S
TR

U
C

TU
R

ES

28

 smallest = (2 * smallest) + 1
 self.btree[current_node] = self.btree[smallest]
 self.btree[smallest] = ""
 elif left_node < self.max and self.btree[left_node] != "":
 # Node has one left child
 self.btree[current_node] = self.btree[left_node]
 self.btree[left_node] = ""
 elif right_node < self.max and self.btree[right_node] != "":
 # Node has one right child
 self.btree[current_node] = self.btree[right_node]
 self.btree[right_node] = ""
 return True
 else:
 return False

 def preorder(self, current_node):
 # Visit each node: NLR
 if current_node < self.max and self.btree[current_node] != "":
 print(self.btree[current_node])
 self.preorder((2 * current_node) + 1)
 self.preorder((2 * current_node) + 2)

 def inorder(self, current_node):
 # Visit each node: LNR
 if current_node < self.max and self.btree[current_node] != "":
 self.inorder((2 * current_node) + 1)
 print(self.btree[current_node])
 self.inorder((2 * current_node) + 2)

 def postorder(self, current_node):
 # Visit each node: LRN
 if current_node < self.max and self.btree[current_node] != "":
 self.postorder((2 * current_node) + 1)
 self.postorder((2 * current_node) + 2)
 print(self.btree[current_node])

 def bft(self):
 # Visit each node: BFT
 for current_node in range(self.max):
 if self.btree[current_node] != "":
 print(self.btree[current_node])

Main program starts here
items = ["E", "B", "G", "A", "C", "F", "H"]
binary_tree = BinaryTree()
for index in range(0, len(items)):
 binary_tree.add(items[index])
Traverse the binary tree
print("Breadth first traversal:")
binary_tree.bft()
print("Pre-order traversal:")
binary_tree.preorder(binary_tree.root)
print("In-order traversal:")
binary_tree.inorder(binary_tree.root)
print("Post-order traversal:")
binary_tree.postorder(binary_tree.root)

D
A

T
A

 S
TR

U
C

TU
R

ES

29

Binary tree coded in Python using objects

A queue data structure has been included with this implementation to facilitate the breadth-first traversal.

class Queue:

 class Node:
 data = None
 pointer = None

 front_pointer = None
 back_pointer = None

 def enqueue(self, item):
 # Check queue overflow
 try:
 # Push the item
 new_node = Queue.Node()
 new_node.data = item
 # Empty queue
 if self.back_pointer == None:
 self.front_pointer = new_node
 else:
 self.back_pointer.pointer = new_node
 self.back_pointer = new_node
 return True
 except:
 return False

 def dequeue(self):
 # Check queue underflow
 if self.front_pointer != None:
 # Dequeue the item
 popped = self.front_pointer.data
 self.front_pointer = self.front_pointer.pointer
 # When the last item is dequeued reset the pointers
 if self.front_pointer == None:
 self.back_pointer = None
 return popped
 else:
 return None

 def peek(self):
 # Check queue underflow
 if self.front_pointer != None:
 # Peek the item
 return self.front_pointer.data
 else:
 return None

class Binary_tree:
 class Node:
 data = None
 left_pointer = None
 right_pointer = None

 root = None

D
A

T
A

 S
TR

U
C

TU
R

ES

30

 def add(self, item):
 # Check memory overflow
 try:
 new_node = Binary_tree.Node()
 new_node.data = item
 current_node = self.root
 new_node.left_pointer = None
 new_node.right_pointer = None
 # Tree is empty
 if current_node == None:
 self.root = new_node
 else:
 # Find correct position in the tree
 while current_node != None:
 previous = current_node
 if item < current_node.data:
 current_node = current_node.left_pointer
 else:
 current_node = current_node.right_pointer
 if item < previous.data:
 previous.left_pointer = new_node
 else:
 previous.right_pointer = new_node
 return True
 except:
 return False

 def delete(self, item):
 # Using Hibbard's algorithm (leftmost node of right sub-tree is the successor)
 # Find the node to delete
 current_node = self.root
 while current_node != None and current_node.data != item:
 previous = current_node
 if item < current_node.data:
 current_node = current_node.left_pointer
 else:
 current_node = current_node.right_pointer

 # Handle 3 cases depending on the number of child nodes
 if current_node != None:
 if current_node.left_pointer == None and current_node.right_pointer == None:
 # Node has no children
 if previous.data > current_node.data:
 previous.left_pointer = None
 else:
 previous.right_pointer = None
 elif current_node.right_pointer == None:
 # Node has one left child
 if previous.data > current_node.data:
 previous.left_pointer = current_node.left_pointer
 else:
 previous.right_pointer = current_node.left_pointer
 elif current_node.left_pointer == None:
 # Node has one right child
 if previous.data < current_node.data:
 previous.left_pointer = current_node.right_pointer
 else:
 previous.right_pointer = current_node.right_pointer
 else:
 # Node has two children

D
A

T
A

 S
TR

U
C

TU
R

ES

31

 right_node = current_node.right_pointer
 if right_node.left_pointer != None:
 # Find the smallest value in the right sub-tree (successor node)
 smallest = right_node
 while smallest.left_pointer != None:
 previous = smallest
 smallest = smallest.left_pointer
 # Change the deleted node value to the smallest value
 current_node.data = smallest.data
 # Remove the successor node
 previous.left_pointer = None
 else:
 # Handle special case of no left sub-tree from right node
 current_node.data = right_node.data
 current_node.right_pointer = None

 def preorder(self, current_node):
 if current_node != None:
 # Visit each node: NLR
 print(current_node.data)
 if current_node.left_pointer != None:
 self.preorder(current_node.left_pointer)
 if current_node.right_pointer != None:
 self.preorder(current_node.right_pointer)

 def inorder(self, current_node):
 if current_node != None:
 # Visit each node: LNR
 if current_node.left_pointer != None:
 self.inorder(current_node.left_pointer)
 print(current_node.data)
 if current_node.right_pointer != None:
 self.inorder(current_node.right_pointer)

 def postorder(self, current_node):
 if current_node != None:
 # Visit each node: LRN
 if current_node.left_pointer != None:
 self.postorder(current_node.left_pointer)
 if current_node.right_pointer != None:
 self.postorder(current_node.right_pointer)
 print(current_node.data)

 def bft(self, current_node):
 q = Queue()
 # Visit each node: BFT
 while current_node != None:
 print(current_node.data)
 if current_node.left_pointer != None:
 q.enqueue(current_node.left_pointer)
 if current_node.right_pointer != None:
 q.enqueue(current_node.right_pointer)
 current_node = q.dequeue()

D
A

T
A

 S
TR

U
C

TU
R

ES

32

Main program starts here
items = ["E", "B", "G", "A", "C", "F", "H"]
Create binary tree
binary_tree = Binary_tree()
for index in range(0, len(items)):
 binary_tree.add(items[index])
Traverse the binary tree
print("Breadth first traversal:")
binary_tree.bft(binary_tree.root)
print("Pre-order traversal:")
binary_tree.preorder(binary_tree.root)
print("In-order traversal:")
binary_tree.inorder(binary_tree.root)
print("Post-order traversal:")
binary_tree.postorder(binary_tree.root)

Operations

Adding items: binary_tree.add(item)

Deleting items: binary_treet.delete(item)

Outputting items: binary_tree.bft()

binary_tree.preorder(binary_tree.root)

bt.inorder(binary_tree.root)

bt.postorder(binary_tree.root)

Did you know?

Breadth- and depth-first traversals are also called breadth- and depth-first searches if the

algorithm is used to find a particular node and then stop before visiting every node.

Breadth- and depth-first traversals or searches can be used with any type of graph or tree

structure, but a binary search can only be performed on a binary search tree.

D
A

T
A

 S
TR

U
C

TU
R

ES

33

Efficiency of operations on a binary tree

Time complexity Space complexity

 Best

case

Average

case

Worst

case

 Array

implementation

Object

implementation

Access a

node, binary

search

O(1)

Constant

O(log n)

Logarithmic

O(n)

Linear

O(1)

Constant

O(n)

Linear

Add node

O(log n)

Logarithmic

O(log n)

Logarithmic

O(n)

Linear

Delete node

O(log n)

Logarithmic

O(log n)

Logarithmic

O(n)

Linear

Rebalance

O(n)

Linear

O(n)

Linear

O(n)

Linear

Traversal

O(n)

Linear

O(n)

Linear

O(n)

Linear

If the binary tree is implemented with an array, the memory footprint will be fixed and constant, but the size of

the structure will be limited and there will likely be a lot of unused space. An implementation using objects

allows for dynamic memory allocation and for the size of the structure to grow in a linear fashion.

Assuming the binary tree is not pre-populated, establishing the tree from a list of data items will require each

item to be added sequentially. However, the input order of the items does not matter – therefore, the number

of operations depends on the number of data items, O(n).

Adding, deleting and searching nodes on a binary tree uses a technique called divide and conquer. With a

balanced tree, the number of items to consider is halved each time a node is visited, providing logarithmic

complexity, O(log n). If the tree is unbalanced, it becomes the same as a linear search to determine the location

of an item to add or delete, demoting it to linear complexity, O(n).

D
A

T
A

 S
TR

U
C

TU
R

ES

34

Balanced tree where each level is complete: Unbalanced tree holding the same data:

In the best-case scenario, the node to be found is the root node, so it will always be found first, O(1). Notice in

the example above how the worst case becomes a linear search for item H.

All traversal algorithms require each node to be visited. As the number of nodes in the tree increases, so does

the execution time, so traversals are of linear complexity, O(n).

B G

E

A C F H

Did you know?

Binary trees are often used to implement dictionary data structures. As a dictionary does

not permit duplicate keys, it is often thought that binary trees do not allow duplicate nodes

– this is not true. A binary tree can hold duplicate values as child nodes, either to the left

or right of the node with the same value.

A

B

C

E

F

G

H

D
A

T
A

 S
TR

U
C

TU
R

ES

35

Dictionary

A dictionary is used for storing related data and can be static or dynamic. Each item in a dictionary has a key

and value, known as a key-value pair. The key must be unique for all data stored in the dictionary. For example,

the registration number of a car is unique because no two vehicles can have the same registration, so it makes

an ideal key. The value would be associated data about the car – for example:

• Key: GB21 CWW

• Value: Vauxhall Corsa

A dictionary is an implementation of a hash table search using an array or list and is often called an associative

array or hash map. Many high-level languages provide the dictionary as a primitive data structure for the

programmer to use in their programs. The value in the key-value pair can be any another data structure –

commonly a list – making the dictionary highly versatile.

Applications of a dictionary

A dictionary is used to hold data related to a unique key field. NoSQL – an acronym for not only SQL – makes

extensive use of dictionaries to store databases. Dictionaries are also ideal for storing a graph as part of the

implementation of depth- and breadth-first traversal algorithms. A dictionary is useful in any situation where

an efficient value look-up is required.

Storing a dictionary in memory

The implementation of a dictionary is often abstracted from the programmer, who can use operations to add,

remove and change key-value pairs without knowing how the dictionary works in memory. However, if the

dictionary is not supported by your chosen programming language, you would use an array to implement your

own dictionary structure, with the index being determined by the key.

Operations on a dictionary

Typical operations that can be performed on a dictionary include:

• Add key/value: Adding a new key-value pair to the dictionary.

• Delete key/value: Removing a key-value pair from the dictionary.

• Modify key/value: Edit a key-value pair.

• Lookup: Return the value from a key.

• Rehashing: Optimise the data structure to reduce collisions.

D
A

T
A

 S
TR

U
C

TU
R

ES

36

Array/list implementation of a dictionary

A key is changed into a number using a hashing function (also known as a hashing algorithm or hash). The

number returned from the function is an index in an array or list where the value can be found.

Consider the following dictionary:

dictionary = {
 "E": ["B", "G"],
 "B": ["A", "C"],
 "G": ["F", "H"],
 "A": [],
 "C": [],
 "F": [],
 "H": []
}

Examining the first part of the structure, "E": ["B", "G"], the letter E is a key and ["B", "G"] is the value,

a list holding more keys. Since the dictionary needs to be stored as an array, the key must be associated with

an index in the array. Indexes are always integers, so the hashing function converts the character E into a

useful integer.

Each letter can easily be converted into a number using its ASCII value. The number returned will be 65 for the

letter A, so by subtracting 65, A could be stored in the first index in the array. This is a simplistic hashing

algorithm because the key in this example is a single alphanumeric character. When the key is a string or large

integer, a more complex algorithm will be required to determine a suitable index for each key.

 Array

Key Hashing function Index Element

A 65 – 65 = 0 []

B 66 – 65 = 1 ["A","C"]

C 67 – 65 = 2 []

 3

E 69 – 65 = 4 ["B","G"]

F 70 – 65 = 5 []

G 71 – 65 = 6 ["F","H"]

D
A

T
A

 S
TR

U
C

TU
R

ES

37

Notice how the array may not be fully utilised, with some indexes never being generated by the hashing

function. If it is possible to calculate the total number of items to be stored in advance, modulo can be used

as part of the hashing function to ensure values that would result in indexes that fall out of the bounds of the

array are not returned.

The data in the dictionary looks remarkably like the binary tree from the previous chapter, albeit the indexes

are being used differently – this is an example of how one data structure can be implemented using another

data structure. All data structures are simply memory locations that can be accessed with their address.

Adding an item to a dictionary

To add an item to a dictionary, the hashing function is applied to the item’s key, which returns an index where

the item can be stored in the array. However, the hashing function may return a value that is already occupied

by a data item. There are several potential resolutions to this. See the Hash table search section of the

Searching algorithms chapter for a detailed description of the essential properties of hashing functions and

collision resolutions.

Deleting an item from a dictionary

When deleting an item from a dictionary, the hashing function will be applied to the key to determine the index

of the element to delete. It may be that the item at that index is not the one to be deleted because the hashing

function does not always return unique values. The solution to this problem is also described in the Hash table

search section of the chapter on Searching algorithms.

Assuming the item to be deleted is found at the index returned by the hashing value, indexes are not removed

– this is because the dictionary is stored as an array. Instead, the data element can be set to a null value or an

empty string. Alternatively, an additional dimension in the array can be used to store a Boolean value that is

set to true when an item is added and false when the item is deleted.

Did you know?

Programs will often need to store data in a file permanently or transmit it across a network.

A process called serialisation, marshalling, flattening or pickling produces a plain-text or

binary output of a data structure.

D
A

T
A

 S
TR

U
C

TU
R

ES

38

Looking up and item in a dictionary

1. Read a key.

2. Look up the key in the dictionary.

3. If the key exists, return the matching value; if not, return an error.

Pseudocode for looking up an item in a dictionary

key = input("Enter the key: ")

If key in dictionary Then

 Return dictionary[key].value

Else

 Return "Not found"

End If

Lookup operation coded in Python

Dictionary using primitive hash map
dictionary = {"England": "London", "France": "Paris", "Germany": "Berlin"}
key = input("Enter the key: ")
if key in dictionary:
 print(dictionary[key])
else:
 print("Not found")

Did you know?

Dictionary data structures can also be implemented using a self-balancing binary tree.

The advantage of this is that the hashing function traverses the tree to find the node, so

collisions will not happen. Although finding an item may be slower on average, the time

complexity of finding an item can also be reduced to O(log n) in the worst-case scenario

because no collision resolution is necessary.

It is important that the binary tree is balanced to achieve this efficiency, so the structure

of the tree must be updated regularly.

D
A

T
A

 S
TR

U
C

TU
R

ES

39

It is worth noting that there is no known order to the items in a dictionary due to the hashing function. In the

example, even though “England” was entered into the dictionary first, it is not necessarily the first item in the

structure. For this reason, it does not make sense to try to return an item from an index number. Some

languages support such commands, but the returned value often appears to be a random item.

Efficiency of operations on a dictionary

Time complexity Space complexity

 Best

case

Average

case

Worst

case

 Best

case

Worst

case

Lookup,

Modify

O(1)

Constant

O(1)

Constant

O(n)

Linear

O(1)

Constant

O(n)

Linear

Add key/

value

O(1)

Constant

O(1)

Constant

O(n)

Linear

Delete key/

value

O(1)

Constant

O(n)

Linear

O(n)

Linear

Rehash

O(n)

Linear

O(n)

Linear

O(n)

Linear

The dictionary data structure aims to be extremely efficient, returning a value without having to search for the

key in the data set. Since the index of an item is determined by the hashing function, there is no order to the

items in a dictionary and some indexes may not be used.

By using a key, items can still be randomly accessed. In most cases, with an appropriate hashing function, the

key always delivers the index where the item is stored, O(1). New items are added instantly, and deleted items

are replaced with null values. However, depending on the implementation, collisions are likely to occur and

must be resolved, often degrading the lookup operation to a linear search, O(n). Rehashing to optimise the

data structure is also a linear operation.

Dictionaries are often implemented using arrays as their underlying data structure. An array will be of a fixed

size with an O(1) space complexity, although it may be resized, or stored as a binary tree O(n).

D
A

T
A

 S
TR

U
C

TU
R

ES

40

Graph

A graph is a dynamic structure of nodes (called vertices) and pointers (called edges). It is different from a binary

tree because a root vertex is not required, and each vertex can have any number of edges. A graph is different

from a regular tree because any vertex can point to any other vertex in the data structure, making loops

between vertices possible.

The edges on a graph can either point in one direction, known as a directed graph, or in both directions, known

as an undirected graph. Graphs can also be weighted, with each edge given a value or cost that represents a

relationship between the vertices such as the distance between them.

Undirected graph Directed graph

Undirected weighted graph Directed weighted graph

Node (Vertex)

Pointer (Edge)

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

4

3
2

4

2

5

2

4

3
2

4

2

5

2

D
A

T
A

 S
TR

U
C

TU
R

ES

41

Applications of a graph

Graphs have many uses in computer science – for example, mapping road networks for navigation systems,

storing flight paths for aircraft, social networking data such as friends lists, resource allocation in operating

systems, representing molecular structures and geometry. They may also be used for storing knowledge graphs

for expert systems, modelling business problems and pathfinding algorithms.

Storing a graph in memory

Typically, an undirected graph is stored as a dictionary. The value in the key/value pair being a list of connected

vertices. This is known as an adjacency list. In Python, the code would be:

graph = {
 "A": ["B", "C", "D"],
 "B": ["A", "E"],
 "C": ["A", "D"],
 "D": ["A", "C", "F"],
 "E": ["B", "G"],
 "F": ["D"],
 "G": ["E"]
}

This may also be presented in pseudocode as:

edges {
(A, B), (A, C), (A, D), (B, A,), (B, E), (C, A), (C, D), (D, A), (D, C), (D, F), (E, B),
(E, G), (F, D), (G, E)
}

A directed graph stored as a dictionary:

graph = {
 "A": ["B", "C", "D"],
 "B": ["E"],
 "C": ["D"],
 "D": ["F"],
 "E": ["G"],
 "F": [],
 "G": []
}

In this example, note how vertex A is connected to C, but C is only connected to D and not back to A.

Costs on weighted graphs can be defined as:

graph = {
 "A": {"B": 4, "C": 3, "D": 2}
}

This means the cost between A and B is four, the cost between A and C is three, and the cost between A and

D is two. Depending on what the data structure is being used for, costs between two vertices can represent

many things including distance or bandwidth. Note how the graph becomes a dictionary of dictionaries when

storing this additional data.

D
A

T
A

 S
TR

U
C

TU
R

ES

42

Abstraction of a graph data structure

In the illustrations below, we can see how graph data can remain the same even though illustrations of it can

look different. What is important is not what the graph looks like, but which vertices are connected. Using only

the necessary detail and discarding unnecessary detail is known as abstraction.

which is also the same as

An example of abstraction is the map of the London Underground. It bears no resemblance to where the

stations are located; all that matters is which stations are connected in which order and on which line.

Similarly, it is important that students do not concern themselves with how a graph looks or what operation is

being asked for in an examination– e.g., a pre-order traversal on a graph, which you might expect to only be

relevant to a binary tree. Simply follow the algorithm on the structure provided.

A D

 C F

 G

B E

B C D

E

G

F

A

B

C

D

E

G

F
A

is the same as

D
A

T
A

 S
TR

U
C

TU
R

ES

43

Why use abstraction?

Abstraction can often help simplify a problem and make it easier for humans to communicate. Abstractions are

especially useful to explain and illustrate complex relationships. Sometimes, links between seemingly

unrelated problems can be seen with abstractions. Computers do not benefit from abstract illustrations.

Operations on a graph

It is worth noting that because graphs and trees are very similar – with a few notable exceptions – the

operations on a binary tree such as traversal can also be performed on a graph data structure.

Typical operations that can be performed on a graph include:

• Adjacent: Returns whether there is an edge between two vertices.

• Neighbours: Returns all the vertices between two vertices.

• Add: Adds a new vertex to the graph.

• Remove: Removes a vertex from the graph.

• Add edge: Adds a new edge to a vertex from another vertex.

• Remove edge: Removes an edge between two vertices.

• Get vertex value: Returns the data stored in a vertex.

• Set vertex value: Sets the data for a vertex.

• Get edge value: Returns the value of an edge between two vertices.

• Set edge value: Sets the value of an edge between two vertices.

• Depth-first traversal/search: Traverses the graph, starting at the root vertex, visiting each vertex and

exploring each branch as far as possible before backtracking.

• Breadth-first traversal/search: Traverses the graph, starting at the root vertex, visiting each

neighbouring vertex before moving to the vertices at the next depth.

• Pre-order traversal: A type of depth-first traversal (see the Binary tree section for an example).

• In-order traversal: A type of depth-first traversal (see the Binary tree section for an example).

• Post-order traversal: A type of depth-first traversal (see the Binary tree section for an example).

Array implementation of a graph

While it is typical to store a graph as a dictionary, known as an adjacency list, it is also possible to store a graph

using an array. This implementation is known as an adjacency matrix, with rows and columns representing

vertices and the intersections representing edges.

An example of an adjacency matrix for an undirected graph is shown overleaf. The rows and columns are not

usually labelled with the vertices with this approach because they would be indexes, but they are shown here

for clarity.

With undirected graphs a 1 represents an edge existing between the two vertices, while a 0 represents no

edge. With directed graphs the edge value is stored instead.

D
A

T
A

 S
TR

U
C

TU
R

ES

44

Undirected graph Directed graph

 A B C D E F G

A 0 1 1 1 0 0 0

B 1 0 0 0 1 0 0

C 1 0 0 1 0 0 0

D 1 0 1 0 0 1 0

E 0 1 0 0 0 0 1

F 0 0 0 1 0 0 0

G 0 0 0 0 1 0 0

 A B C D E F G

A 0 1 1 1 0 0 0

B 0 0 0 0 1 0 0

C 0 0 0 1 0 0 0

D 0 0 0 0 0 1 0

E 0 0 0 0 0 0 1

F 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0

Undirected weighted graph Directed weighted graph

 A B C D E F G

A 0 4 3 2 0 0 0

B 4 0 0 0 4 0 0

C 3 0 0 5 0 0 0

D 2 0 5 0 0 2 0

E 0 4 0 0 0 0 2

F 0 0 0 2 0 0 0

G 0 0 0 0 2 0 0

 A B C D E F G

A 0 4 3 2 0 0 0

B 0 0 0 0 4 0 0

C 0 0 0 5 0 0 0

D 0 0 0 0 0 2 0

E 0 0 0 0 0 0 2

F 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0

Notice an undirected graph is symmetrical and a directed graph is not.

D
A

T
A

 S
TR

U
C

TU
R

ES

45

An adjacency matrix can also be stored as an adjacency list:

graph ([[0,1,1,1,0,0,0],

 [1,0,0,0,1,0,0],

 [1,0,0,1,0,0,0],

 [1,0,1,0,0,1,0],

 [0,1,0,0,0,0,1],

 [0,0,0,1,0,0,0],

 [0,0,0,0,1,0,0]])

This can be abstracted to a table:

Nodes Adjacency list

A B; C; D

B A; E

C A; D

D A; C; F

E B; G

F D

G E

Object implementation of a graph

Another possibility for storing the graph in memory is for each vertex to be stored as an object. The object would

have an attribute that is a list of edges – since they can be variable in number – with each edge being a pointer

to the connected vertex.

Traversal operations

Finding, updating or outputting the vertices from a graph requires a traversal algorithm. These algorithms visit

each vertex in turn until the desired vertex is found. Since there are many potential paths to follow in a graph,

there are many ways to traverse the structure too including depth- and breadth-first traversals.

If only one occurrence of an item needs to be found, the traversal algorithm can stop without evaluating any

other vertices. In this situation the traversal is often referred to as a depth and breadth-first search.

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

46

Breadth-first traversal on a graph

The breadth-first traversal is used to determine the shortest path between vertices on a graph. It is also used

by search engines to index connected web pages using a crawler algorithm. The breadth-first search can also

be used to find devices on peer-to-peer networks and to send broadcast frames or packets on a network too.

GPS navigation systems, memory management using Cheney’s algorithm and finding nearby people on a social

network are all applications of a breadth-first traversal.

A breadth-first traversal requires the use of a queue data structure.

1. Set the root vertex as the current vertex.

2. Add the current vertex to the list of visited vertices if it is not already in the list.

3. For every edge connected to the vertex:

a. If the linked vertex is not in the visited list:

i. Enqueue the linked vertex.

ii. Add the linked vertex to the visited list.

4. Dequeue and set the vertex removed as the current vertex.

5. Repeat from step 2 until the queue is empty.

6. Output all the visited vertices.

Breadth-first traversal illustrated

A breadth-first traversal can be pictured like this:

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

47

Stepping through the breadth-first traversal

The front pointer in the queue is represented by the lowercase letter f. The back pointer in the queue is

represented by the lowercase letter b.

 Graph Queue Visited

Step 1 Start at a root vertex – this can be any vertex, but A has been chosen.

A is not in the visited list; add A to the list of visited vertices. Consider each edge of A.

A

Step 2 B is not in the visited list; enqueue B and add B to the visited list.

f


b


B

AB

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

48

Step 3 C is not in the visited list; enqueue C and add C to the visited list.

f


b


B C

ABC

Step 4 D is not in the visited list; enqueue D and add D to the visited list.

f


b


B C D

ABCD

Step 5 All edges of A have been considered. Dequeue. New current vertex is B.

f


b


B C D

ABCD

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

49

Step 6 B is in the visited list. Consider each edge of B.

f


b


B C D

ABCD

Step 7 A is in the visited list; ignore the vertex.

f


b


B C D

ABCD

Step 8 E is not in the visited list; enqueue E and add E to the visited list.

f


b


B C D E

ABCDE

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

50

Step 9 All edges of B have been considered. Dequeue. New current vertex is C.

f


b


B C D E

ABCDE

Step 10 C is in the visited list. Consider each edge of C.

f


b


B C D E

ABCDE

Step 11 A is in the visited list; ignore the vertex.

f


b


B C D E

ABCDE

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

51

Step 12 D is in the visited list; ignore the vertex.

f


b


B C D E

ABCDE

Step 13 All edges of C have been considered. Dequeue. New current vertex is D.

f


b


B C D E

ABCDE

Step 14 D is in the visited list. Consider each edge of D.

f


b


B C D E

ABCDE

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

52

Step 15 A is in the visited list; ignore the vertex.

f


b


B C D E

ABCDE

Step 16 C is in the visited list; ignore the vertex.

f


b


B C D E

ABCDE

Step 17 F is not in the visited list; enqueue F and add F to the visited list.

f


b


B C D E F

ABCDEF

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

53

Step 18 All edges of D have been considered. Dequeue. New current vertex is E.

f


b


B C D E F

ABCDEF

Step 19 E is in the visited list. Consider each edge of E.

f


b


B C D E F

ABCDEF

Step 20 B is in the visited list; ignore the vertex.

f


b


B C D E F

ABCDEF

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

54

Step 21 G is not in the visited list; enqueue G and add G to the visited list.

f


b


B C D E F G

ABCDEFG

Step 22 All edges of E have been considered. Dequeue. New current vertex is F.

f


b


B C D E F G

ABCDEFG

Step 23 F is in the visited list. Consider each edge of F.

f


b


B C D E F G

ABCDEFG

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

55

Step 24 D is in the visited list; ignore the vertex.

f


b


B C D E F G

ABCDEFG

Step 25 All edges of F have been considered. Dequeue. New current vertex is G.

 f


b


B C D E F G

ABCDEFG

Step 26 G is in the visited list. Consider each edge of G.

 f


b


B C D E F G

ABCDEFG

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

56

Step 27 E is in the visited list; ignore the vertex.

 f


b


B C D E F G

ABCDEFG

Step 28 All edges of G have been considered. Dequeue.

The queue is empty – the algorithm is complete.

B C D

E

G

F

A

Did you know?

The breadth-first traversal was invented by Konrad Zuse, a pioneering computer scientist

in 1945. He is best known for the creation of the world’s first programmable computer, the

Turing-complete Z3. Zuse is often regarded as the inventor of the modern computer.

Zuse worked entirely independently of other leading computer scientists of his day.

Between 1936 and 1945 in near total isolation due to World War II.

Re-invented in 1959 by Edward Moore, the breadth-first traversal was used to find the

shortest path out of a maze. The algorithm was later developed by Chester Lee into a wire

routing algorithm for printed circuit boards.

D
A

T
A

 S
TR

U
C

TU
R

ES

57

Outputs from a breadth first traversal

It is worth noting that there is more than one valid output from a breadth-first traversal. This implementation

examined the edges from A in the order B, C, D, from left to right. However, it would be perfectly valid to examine

them from right to left. To achieve this, the edges would need to be enqueued in reverse order.

Illustrated graph Valid output 1 Valid output 2

A B C D E F G

This is the most common output

shown in examples of this algorithm.

Therefore, it is the one you should

illustrate in exams unless the question

specifically states otherwise.

A D C B F E G

Reverse traversal.

This algorithm demonstrates a full traversal of the graph. However, if the goal is to search the graph for a

specific vertex, the algorithm can terminate when the vertex is found.

Also note that we did not enqueue the root vertex. There seems little point considering it would be dequeued

immediately. However, many implementations of this algorithm will do that. We also checked if the current

vertex was in the visited list – it always will be, so we could introduce a further optimisation here.

Pseudocode for a breadth-first traversal

current_vertex = root

While current_vertex != Nothing

 If not visited.Contains(current_vertex) Then

 Visited.Add(current_vertex)

 End If

For each edge in vertex

 If not visited.Contains(edge.vertex) Then

 Queue.enqueue(edge.vertex)

 Visited.Add(edge.vertex)

 End If

 Next

 current_vertex = Queue.dequeue

End While

For each vertex in visited

 Output current_vertex

Next

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

58

Breadth-first traversal coded in Python

Queue data structure for breadth-first traversal
class Queue:
 class Node:
 data = None
 pointer = None

 front_pointer = None
 back_pointer = None

 def enqueue(self, item):
 # Check queue overflow
 try:
 # Enqueue the item
 new_node = Queue.Node()
 new_node.data = item
 # Empty queue
 if self.back_pointer == None:
 self.front_pointer = new_node
 else:
 self.back_pointer.pointer = new_node
 self.back_pointer = new_node
 return True
 except:
 return False

 def dequeue(self):
 # Check queue underflow
 if self.front_pointer != None:
 # Dequeue the item
 item = self.front_pointer.data
 self.front_pointer = self.front_pointer.pointer
 # When the last item is dequeued reset the pointers
 if self.front_pointer == None:
 self.back_pointer = None
 return item
 else:
 return None

Breadth-first traversal
def bft(graph, root):
 visited = []
 q = Queue()
 current_vertex = root
 while current_vertex != None:
 if current_vertex not in visited:
 visited.append(current_vertex)
 for vertex in graph[current_vertex]:
 if vertex not in visited:
 q.enqueue(vertex)
 visited.append(vertex)
 current_vertex = q.dequeue()
 print(visited)

D
A

T
A

 S
TR

U
C

TU
R

ES

59

Main program starts here
graph = {"A": ["B", "C", "D"], "B": ["A", "E"], "C": ["A", "D"], "D": ["A", "C", "F"], "E":
["B", "G"], "F": ["D"],
 "G": ["E"]}
bft(graph, "A")

Alternative implementations of the breadth-first search

In the code examples above, a queue structure was created using a class with only the enqueue and dequeue

methods. There was no way to determine if there were items in the queue until a dequeue operation was

attempted. With the addition of a method to check if the queue was empty, the algorithm could be rewritten to

iterate only while there were items in the queue. Dequeue could then become the first operation:

Queue.Enqueue(Root)

While not Queue.Empty

 Current_vertex = Queue.Dequeue

 Visited.Add(Current_Vertex)

For each edge in Current_Vertex

 If not visited.Contains(edge.vertex) Then

 Queue.enqueue(edge.vertex)

 Visited.Add(edge.vertex)

 End If

 Next

Some programming languages support queue data structures without needing them to be implemented by the

programmer. When asked to write the code for a graph traversal, it is safe to assume that there is no need to

write the code for the queue methods too.

Since queues are higher-order data structures, they can be implemented with arrays or lists in addition to an

object-oriented approach. With lists, indexes change when items are added and deleted. Index zero will always

be the front of the queue and new items will always be added to the end – so a list is already a queue.

In Python, you could use this code to implement a queue with a list:

Declare a list which will be the queue: Queue = []

Enqueue an item: Queue.append(Vertex)

Dequeue an item: Vertex = Queue.pop(0)

Check if the queue has items: if len(Queue) > 0:

Or more simply: if Queue:

Did you know?

It is possible to implement a parallel breadth-first traversal to increase efficiency.

D
A

T
A

 S
TR

U
C

TU
R

ES

60

Depth-first traversal on a graph

A depth-first traversal is used for pathfinding algorithms, operating system instruction scheduling, the order of

formula recalculation in a spreadsheet, linkers and maze solution algorithms.

A depth-first traversal requires the use of a stack data structure.

1. Set a root vertex as the current vertex.

2. Add the current vertex to the list of visited vertices if it is not already in the list.

3. For every edge connected to the vertex:

a. If the linked vertex is not in the visited list:

i. Push the linked vertex to the stack.

4. Pop the stack and set the item removed as the current vertex.

5. Repeat from step 2 until the stack is empty.

6. Output all the visited vertices.

Depth-first traversal illustrated

A breadth-first traversal can be pictured like this:

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

61

Depth-first traversal with recursion

This type of traversal assumes that a user-defined stack is being used with an iterative algorithm. However, it

is also common to implement the depth-first traversal using only the call stack and recursion:

1. Set a root vertex as the current vertex.

2. Add the current vertex to the list of visited vertices.

3. For every edge connected to the vertex:

a. If the linked vertex is not in the visited list:

i. Recursively repeat from step 2 passing the linked vertex.

Stepping through the depth-first traversal using iteration and a user-defined stack

There are many different approaches to the depth-first traversal algorithm. Each one uses a stack in different

ways to achieve an output. Using iteration as shown below, each vertex linked to an edge is added to the stack

before moving to the next vertex. Later in the chapter, we will contrast this by using a recursive technique where

we rely only on the call stack.

 Graph Stack Visited

Step 1 Start at a root vertex – this can be any vertex, but A has been chosen.

A is not in the visited list; add A to the list of visited vertices. Consider each edge of A.

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

62

Step 2 D is not in the visited list; push D onto the stack.

We are exploring the vertices from right to left so they are output in the expected order,

but it would be fine to push B instead and explore from left to right.

→ D

A

Step 3 C is not in the visited list; push C.

→ C

 D

A

Step 4 B is not in the visited list; push B.

→ B

 C

 D

A

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

63

Step 5 All edges of A have been considered; pop the stack.

New current vertex is B.

 B

→ C

 D

A

Step 6 B is not in the visited list; add B to the list of visited vertices.

Consider each edge of B.

 B

→ C

 D

AB

Step 7 A is in the visited list; ignore the vertex.

 B

→ C

 D

AB

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

64

Step 8 E is not in the visited list; push E onto the stack.

→ E

 C

 D

AB

Step 9 All edges of B have been considered; pop the stack.

New current vertex is E.

 E

→ C

 D

AB

Step 10 E is not in the visited list; add E to the list of visited vertices.

Consider each edge of E.

 E

→ C

 D

ABE

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

65

Step 11 B is in the visited list; ignore the vertex.

 E

→ C

 D

ABE

Step 12 G is not in the visited list; push G onto the stack.

→ G

 C

 D

ABE

Step 13 All edges of E have been considered; pop the stack.

New current vertex is G.

 G

→ C

 D

ABE

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

66

Step 14 G is not in the visited list; add G to the list of visited vertices.

Consider each edge of G.

 G

→ C

 D

ABEG

Step 15 E is in the visited list; ignore the vertex.

 G

→ C

 D

ABEG

Step 16 All edges of G have been considered; pop the stack.

New current vertex is C.

 G

 C

→ D

ABEG

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

67

Step 17 C is not in the visited list; add C to the list of visited vertices.

Consider each edge of C.

 G

 C

→ D

ABEGC

Step 18 D is not in the visited list; push D onto the stack.

 G

→ D

 D

ABEGC

Step 19 A is in the visited list; ignore the vertex.

 G

→ D

 D

ABEGC

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

68

Step 20 All edges of C have been considered; pop the stack.

New current vertex is D.

 G

 D

→ D

ABEGC

Step 21 D is not in the visited list; add D to the list of visited vertices.

Consider each edge of D.

 G

 D

→ D

ABEGCD

Step 22 A is in the visited list; ignore the vertex.

 G

 D

→ D

ABEGCD

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

69

Step 23 C is in the visited list; ignore the vertex.

 G

 D

→ D

ABEGCD

Step 24 F is not in the visited list; push F onto the stack.

 G

→ F

 D

ABEGCD

Step 25 All edges of D have been considered; pop the stack.

New current vertex is F.

 G

 F

→ D

ABEGCD

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

70

Step 26 F is not in the visited list; add F to the list of visited vertices.

Consider each edge of F.

 G

 F

→ D

ABEGCDF

Step 27 D is in the visited list; ignore the vertex.

 G

 F

→ D

ABEGCDF

Step 28 All edges of F have been considered; pop the stack.

New current vertex is D.

 G

 F

 D

ABEGCDF

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

71

Step 29 D is in the visited list; ignore the vertex. Pop the stack.

The stack is empty – the algorithm is complete.

Stepping through the depth-first traversal using recursion and the call stack

Although the use of a user-defined stack delivers the correct output, using only the procedure call stack with

recursion is somewhat simpler. This approach is most likely to feature in mark schemes of depth-first traversal-

related questions.

Step 1 Start at a root vertex. Push A to the stack and list of visited vertices.

→ A

A

Step 2 Push B to the stack and list of visited vertices.

→ B

 A

AB

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

72

Step 3 Push E to the stack and list of visited vertices.

→ E

 B

 A

ABE

Step 4 Push G to the stack and list of visited vertices.

→ G

 E

 B

 A

ABEG

Step 5 G has no unvisited edges. Pop the stack.

E has no unvisited edges. Pop the stack.

B has no unvisited edges. Pop the stack.

Push C to the stack and list of visited vertices.

 E

→ C

 A

ABEGC

B C D

E

G

F

A

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

73

Step 6 Push D to the stack and list of visited vertices.

→ D

 C

 A

ABEGCD

Step 7 Push F to the stack and list of visited vertices.

→ F

 D

 C

 A

ABEGCDF

B C D

E

G

F

A

B C D

E

G

F

A

Did you know?

All algorithms with repeating instructions can be coded using iteration instead of recursion.

It is usually the best choice because iterative algorithms execute within a defined memory

space and are not reliant on free space in the call stack. However, it is often easier to write

recursive algorithms, and more readable code is created. It may even be possible to use

parallel processing to maximise efficiency.

D
A

T
A

 S
TR

U
C

TU
R

ES

74

Step 8 F has no unvisited edges. Pop the stack.

D has no unvisited edges. Pop the stack.

C has no unvisited edges. Pop the stack.

A has no unvisited edges. Pop the stack.

Algorithm complete.

 F

 D

 C

 A

ABEGCDF

Outputs from the depth-first traversal

It is worth noting that there can be multiple valid outputs from a depth-first traversal. You will typically see the

leftmost path being traversed first in mark schemes and other sources. However, it is also valid to follow the

rightmost path first or choose any random edge from a vertex to follow. In doing so, the results of the algorithm

will be different – but nonetheless, it is still a depth-first traversal. Providing the algorithm follows edges to the

bottom of the structure for any vertex, the output is valid as shown below.

Illustrated graph Valid output 1 Valid output 2 Other valid outputs

A B E G C D F

This is the most

common output shown

in examples of this

algorithm. Therefore, it

is the one you should

illustrate in exams

unless the question

specifically states

otherwise.

A D F C B E G

Reverse traversal.

A C D F B E G

A D C F B E G

A B E G D F C

A B E G D C F

B C D

E

G

F

A

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

75

Pseudocode for a depth-first traversal using iteration

current_vertex = root

While current_vertex != Nothing

 If not visited.Contains(current_vertex) Then

 Visited.Add(current_vertex)

 End If

For each edge in vertex

 If not visited.Contains(edge.vertex) Then

 Stack.push(edge.vertex)

 End If

 Next

 current_vertex = Stack.pop

End While

For each vertex in visited

 Output current_vertex

Next

Depth-first traversal coded in Python using iteration

Stack data structure for depth-first traversal
class Stack:
 class Node:
 data = None
 pointer = None

 stack_pointer = None

 def push(self, item):
 # Check stack overflow
 try:
 # Push the item
 new_node = Stack.Node()
 new_node.data = item
 new_node.pointer = self.stack_pointer
 self.stack_pointer = new_node
 return True
 except:
 return False

 def pop(self):
 # Check stack underflow
 if self.stack_pointer != None:
 # Pop the item
 popped = self.stack_pointer.data
 self.stack_pointer = self.stack_pointer.pointer
 return popped
 else:
 return None

 def peek(self):
 # Check stack underflow
 if self.stack_pointer != None:
 # Peek the item
 return self.stack_pointer.data
 else:
 return None

D
A

T
A

 S
TR

U
C

TU
R

ES

76

Depth-first traversal
def dft(graph, root):
 visited = []
 s = Stack()
 current_vertex = root
 while current_vertex != None:
 if current_vertex not in visited:
 visited.append(current_vertex)
 for vertex in reversed(graph[current_vertex]):
 if vertex not in visited:
 s.push(vertex)
 current_vertex = s.pop()
 print(visited)

Main program starts here
graph = {"A": ["B", "C", "D"], "B": ["A", "E"], "C": ["A", "D"], "D": ["A", "C", "F"], "E":
["B", "G"], "F": ["D"], "G": ["E"]}
dft(graph, "A")

Depth-first traversal coded in Python using recursion

Depth-first search using a graph
def dft(graph, current_vertex, visited):
 visited.append(current_vertex)
 for vertex in graph[current_vertex]:
 if vertex not in visited:
 dft(graph, vertex, visited)
 return visited

Main program starts here
graph = {"A": ["B", "C", "D"], "B": ["A", "E"], "C": ["A", "D"], "D": ["A", "C", "F"], "E":
["B", "G"], "F": ["D"], "G": ["E"]}
print(dft(graph, "A", []))

Did you know?

Graph databases were created to overcome the limitations of relational databases.

Unlike relational databases where there is a universal query language (SQL), there are a

wide variety of query languages for graph databases such as Gremlin, SPARQL and

Cipher. A proposal to create a universal query language known as GQL was approved

by the International Organization for Standardization (ISO) in 2019.

D
A

T
A

 S
TR

U
C

TU
R

ES

77

Efficiency of operations on a graph

Time complexity

Space complexity

Object

implementation,

adjacency list

Array

implementation,

adjacency

matrix

Best

case

Worst

case

Storing

graph

O(V+E)

Linear

O(V2)

Polynomial

O(1)

Constant

O(n)

Linear

Add vertex

O(1)

Constant

O(V2)

Polynomial

Add edge

O(1)

Constant

O(1)

Constant

Remove

vertex

O(E)

Linear

O(V2)

Polynomial

Remove

edge

O(V)

Linear

O(1)

Constant

Although the examples presented in this chapter use a static dictionary, a graph is considered a dynamic data

structure. When implemented using object-oriented techniques, its memory footprint grows and shrinks as data

is added and deleted from the structure. Using only the required amount of memory is the most efficient way

of implementing a graph.

When implementing a graph as an array, the memory footprint remains constant but operations such as adding

new vertices may require the matrix to be recreated.

When expressing the time complexity of operations on a graph, V represents the number of vertices and E

represents the number of edges. Storing a graph using object-oriented techniques is far superior to using an

array in most cases – the only exception being removing edges and checking the adjacency of two vertices.

D
A

T
A

 S
TR

U
C

TU
R

ES

78

Both of these operations are constant O(1) with an adjacency matrix, as you can immediately return an element

of an index in an array. However, they are linear O(V) with an object-oriented approach because it is necessary

to follow the edges to find a particular vertex.

Efficiency of a breadth and depth-first traversal

Best

case

Average

case

Worst

case

O(1)

Constant

O(V+E)

Linear

O(V+E)

Linear

The breadth-first traversal can be used to find a single vertex in the structure or output all the data stored in it.

At best, the graph contains just one vertex, so it can be found immediately – O(1) – but if that were the case,

there wouldn’t be any point in having the data structure at all.

Usually, many vertices need to be visited, so it is of linear complexity O(V+E), where V represents the number

of vertices and E the number of edges. Although the nested loop in an algorithm often indicates polynomial

complexity, the time complexity is O(V + E) or linear at worst case because items are enqueued once.

Did you know?

One proposed optimisation of the breadth-first search is the direction-optimising algorithm

described by Scott Beamer in 2016. A conventional top-down approach is combined with

a new bottom-up approach. The resulting algorithm examines fewer edges and improves

the efficiency of the breadth-first search in many cases.

D
A

T
A

 S
TR

U
C

TU
R

ES

79

Linked list

A linked list is a dynamic, ordered structure of nodes and pointers. Unlike a regular list, items in a linked list

are not necessarily stored in contiguous memory, they do not use an index and they must maintain their own

references to the next item in the structure. A start pointer is used to identify the first node in a linked list, and

each item points to the next.

Start pointer



Andy → Craig → Dave → Mark → Sam null

Circular and doubly linked lists

By using the pointer from the last node to point to the first node, a circular linked list can be created.

Start pointer



Andy → Craig → Dave → Mark → Sam 

By adding an extra pointer to each element, a node can point to both the previous and next nodes – we refer

to this as a doubly linked list.

Start pointer



Andy

→

Craig

→

Dave

→

Mark

→

Sam

null

null    

D
A

T
A

 S
TR

U
C

TU
R

ES

80

With a circular linked list, the pointers on the first and last elements can also point to each other, creating a

doubly circular linked list.

Start pointer



Andy

→

Craig

→

Dave

→

Mark

→

Sam



    

Applications of a linked list

Linked lists can be used to store process blocks in a ready state for operating systems managing a processor,

image viewers moving between previous and next images, music players storing tracks in a playlist or

navigating backwards and forwards in a web browser. Linked lists can also be used for hash table collision

resolution as an overflow or maintaining a file allocation table of linked clusters on a secondary storage medium

such as a hard disk.

Although a linked list can simply be an implementation of a list without indexes, it is common to use a linked

list to maintain a logical order to the items in the structure irrespective of their physical order. New items are

always added to the end of the structure, but the pointers are updated so that if they were followed from the

start pointer, they would visit each node in the order of the data stored.

Did you know?

Hans Peter Luhn, the inventor of the hash map and check digit, first proposed linked lists

as a structure in 1953.

D
A

T
A

 S
TR

U
C

TU
R

ES

81

Storing a linked list in memory

A linked list can be represented in memory using an array, a list or with node objects.

Array Object

start = 1

nextFree = 4

Index Element Pointer

0 Dave 3

1 Craig 0

2 Sam -1

3 Mark 2

4 5

5 6

6 -1

A doubly linked list would have another dimension

for a second pointer.

A circular linked list would have the pointer at

index 6 assigned to zero.

A single node is defined as:

Class Node

 element = ""

 Pointer = Node

End Class

Did you know?

Some implementations of the linked list use sentinel or dummy nodes, empty nodes at the

start or end of the structure. These empty nodes can be used to ensure a linked list always

has a first and last node, simplifying the operations.

D
A

T
A

 S
TR

U
C

TU
R

ES

82

Operations on a linked list

Typical operations that can be performed on a linked list include:

• Add: Adds a node to the linked list.

• Delete: Removes a node from the linked list.

• Next: Moves to the next item in the list.

• Previous: Moves to the previous item in a doubly linked list.

• Traverse: A linear search through the linked list.

Array implementation of a linked list

With an array implementation of a linked list, two pointers need to be maintained – one pointer to the index of

the first node containing data and another pointer to the index of the next available free element. The value

for the start pointer can be set to -1 to indicate the linked list is empty. The value of the pointer for the last

element in the array can be set to -1 to indicate there is no more free space in the structure.

With a linked list, each item points to the next – this is achieved with a two-dimensional array where one

dimension holds the value and another dimension holds the index to the next item. Items are added at the next

available free element. When an item is deleted, it becomes the next available free element and its pointer is

updated to be the previous free element.

A linked list is still considered to be dynamic even though, with an array implementation, it is constrained in

size by the static structure.

Object implementation of a linked list

With an object implementation, only one pointer needs to be maintained, pointing to the first node containing

data. When an item is added or deleted, memory is taken or returned to the heap and the pointers of the other

nodes are changed. Object implementations are truly dynamic and can grow or shrink in size.

D
A

T
A

 S
TR

U
C

TU
R

ES

83

Adding an item to a linked list

1. Check there is free memory for a new node. Output an error if not.

2. Create a new node and insert data into it.

3. If the linked list is empty:

a. The new node becomes the first item. Create a start pointer to it.

4. If the new node should be placed before the first node:

a. The new node becomes the first node. Change the start pointer to it.

b. The new node points to the second node.

5. If the new node is to be placed inside the linked list:

a. Start at the first node.

b. If the data in the current node is less than the value of the new node:

i. Follow the pointer to the next node.

ii. Repeat from step 5b until the correct position is found or the end of the linked list is

reached.

c. The new node is set to point where the previous node pointed.

d. The previous node is set to point to the new node.

Start pointer



Andy → Craig → Dave  Mark → Sam Null

 ⋮ ⋮

 Fran 

The assumption here is that we are maintaining an ordered list. If that is not necessary, a new node can simply

be added to the end of the structure and the pointers updated. For the purposes of examinations, you should

always assume that the linked list will be ordered.

D
A

T
A

 S
TR

U
C

TU
R

ES

84

Pseudocode for adding an item to a linked list

If not memoryfull Then

 new_node = New Node

 current_node = start_pointer

 If current_node == Null Then

 new_node.pointer = Null

 start_pointer = new_node

 Else

 If item < current_node.data Then

 start_pointer = new_node

 new_node.pointer = current_node

 Else

 While current_node != Null And item < current_node.data

 previous_node = current_node

 current_node = current_node.pointer

 End While

 new_node.pointer = previous_node.pointer

 previous_node.pointer = new_node

 End If

 End If

End If

Deleting an item from a linked list

1. Check if the linked list is empty and output an error if there is no start node.

2. If the first item is the item to delete, set the start pointer to the next node.

3. If the item to delete is inside the linked list:

a. Start at the first node.

b. If the current node is the item to delete:

i. The previous node’s pointer is set to point to the next node.

c. Follow the pointer to the next node.

d. Repeat from step 3b until the item is found or the end of the linked list is reached.

Start pointer



Andy → Craig → Dave → Mark → Sam null

The node is not physically removed but, rather, the pointer from the previous item is updated. The garbage

collection process will reclaim the unused memory.

D
A

T
A

 S
TR

U
C

TU
R

ES

85

Pseudocode for deleting an item from a linked list

current_node = start_pointer

If current_node != Null Then

 If item == current_node.data Then

 start_pointer = current_node.pointer

 Else

 While current_node != Null And item != current_node.data

 previous_node = current_node

 current_node = current_node.pointer

 End While

 previous_node.pointer = current_node.pointer

 End If

End If

Traversing a linked list

1. Check if the linked list is empty.

2. Start at the node that the start pointer is pointing to.

3. Output the item.

4. Follow the pointer to the next node.

5. Repeat from step 3 until the end of the linked list is reached.

Pseudocode for traversing a linked list

current_node = start_pointer

If current_node != Null Then

 While current_node != Null

 Output current_node

 current_node = current_node.pointer

 End While

End If

Did you know?

In 1955, Allen Newell, Cliff Shaw and Herbert Simon used linked lists as a primary data

structure for their Information Processing Language (IPL). IPL was used to develop AI

programs including Newell, Shaw and Simon’s Logic Theory Machine.

D
A

T
A

 S
TR

U
C

TU
R

ES

86

Linked list coded in Python using an array

class LinkedList:
 max = 10
 llist = [["" for pointer in range(2)] for item in range(max)]
 # Initialise the free items list
 for index in range(max - 2):
 llist[index][1] = index + 1
 llist[max - 1][1] = -1
 nextFree = 0
 start = -1

 def add(self, item):
 current_node = self.start
 # Check memory overflow
 if self.nextFree != -1:
 new_node = self.nextFree
 self.llist[new_node][0] = item
 self.nextFree = self.llist[self.nextFree][1]
 # List is empty
 if self.start == -1:
 self.llist[new_node][1] = -1
 self.start = new_node
 else:
 # Item becomes the new start item
 if item < self.llist[current_node][0]:
 self.start = new_node
 self.llist[new_node][1] = current_node
 else:
 # Find correct position in the list
 while current_node != -1 and self.llist[current_node][0] < item:
 previous_node = current_node
 current_node = self.llist[current_node][1]
 self.llist[new_node][1] = self.llist[previous_node][1]
 self.llist[previous_node][1] = new_node
 return True
 else:
 return False

 def delete(self, item):
 current_node = self.start
 # Check the list is not empty
 if current_node != -1:
 # Item is the start node
 if item == self.llist[current_node][0]:
 self.start = self.llist[current_node][1]
 else:
 # Find the item in the list
 while current_node != -1 and item != self.llist[current_node][0]:
 previous_node = current_node
 current_node = self.llist[current_node][1]
 self.llist[previous_node][1] = self.llist[current_node][1]
 # Return deleted node to the free list
 self.llist[current_node][1] = self.nextFree
 self.nextFree = current_node

D
A

T
A

 S
TR

U
C

TU
R

ES

87

 def output(self):
 items = []
 current_node = self.start
 if self.start != -1:
 # Visit each node
 while current_node != -1:
 items.append(self.llist[current_node][0])
 current_node = self.llist[current_node][1]
 return items

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California", "Wyoming"]
linked_list = LinkedList()
Adding items to the linked list
for index in range(0, len(items)):
 linked_list.add(items[index])
Deleting items from a linked list
linked_list.delete("Florida")
Output the linked list
print(linked_list.output())

Linked list coded in Python using objects

class LinkedList:
 class Node:
 data = None
 pointer = None

 start = None

 def add(self, item):
 # Check memory overflow
 try:
 new_node = LinkedList.Node()
 new_node.data = item
 current_node = self.start
 # List is empty
 if current_node == None:
 new_node.pointer = None
 self.start = new_node
 else:
 # Item becomes the new start item
 if item < current_node.data:
 self.start = new_node
 new_node.pointer = current_node
 else:
 # Find correct position in the list
 while current_node != None and current_node.data < item:
 previous_node = current_node
 current_node = current_node.pointer
 new_node.pointer = previous_node.pointer
 previous_node.pointer = new_node
 return True
 except:
 return False

D
A

T
A

 S
TR

U
C

TU
R

ES

88

 def delete(self, item):
 current_node = self.start
 # Check the list is not empty
 if current_node != None:
 # Item is the start node
 if item == current_node.data:
 self.start = current_node.pointer
 else:
 # Find item in the list
 while current_node != None and item != current_node.data:
 previous_node = current_node
 current_node = current_node.pointer
 previous_node.pointer = current_node.pointer

 def output(self):
 items = []
 current_node = self.start
 if current_node != None:
 # Visit each node
 while current_node != None:
 items.append(current_node.data)
 current_node = current_node.pointer
 return items

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California", "Wyoming"]
linked_list = LinkedList()
Adding items to the linked list
for index in range(0, len(items)):
 linked_list.add(items[index])
Deleting items from a linked list
linked_list.delete("Florida")
Output the linked list
print(linked_list.output())

Operations

Adding items: linked_list.add("Idaho")

Deleting items: linked_list.delete("Idaho")

Outputting items: print(linked_list.output)

Did you know?

The disadvantage of a linked list is that elements cannot be randomly accessed – finding

an element requires a linear search, which is slow.

D
A

T
A

 S
TR

U
C

TU
R

ES

89

Efficiency of operations on a linked list

Time complexity Space complexity

 Best

case

Average

case

Worst

case

 Best

case

Worst

case

Access

O(1)

Constant

O(n)

Linear

O(n)

Linear

O(1)

Constant

O(n)

Linear

Next,

Previous

O(1)

Constant

O(1)

Constant

O(1)

Constant

Search,

Traverse

O(1)

Constant

O(n)

Linear

O(n)

Linear

Add item

O(1)

Constant

O(n)

Linear

O(n)

Linear

Delete item

O(1)

Constant

O(n)

Linear

O(n)

Linear

A linked list is a dynamic data structure. Implemented using object-oriented techniques, its memory footprint

grows and shrinks as data is added and deleted. Using only the required amount of memory is the most efficient

way to implement a linked list. However, a linked list can also be implemented using an array. In this case, the

dynamic structure is created upon a static data structure and the memory footprint remains constant – this is

inefficient, as the linked list reserves more memory than it needs unless it is full.

If the order of items is important, you can find the correct position to add or delete a node using a linear search.

At best, a new node becomes the first node, O(1), or it is the first to be deleted, O(1). Typically, this will not be

the case, resulting in a linear complexity, O(n).

If the order of the items in a linked list is not important, adding a new item will always have a time complexity

of O(1). In this situation, a pointer to the last item would be used to prevent having to follow the pointers from

node to node to find the position of the last item in the structure.

D
A

T
A

 S
TR

U
C

TU
R

ES

90

List

A list is a dynamic collection of elements of different data types. Like arrays, lists are indexed and references

to items are held in contiguous memory. Unlike arrays, the size of the list can change when a program is

running, and memory is allocated when it is required.

When choosing between an array and a list, programmers need to consider the purpose of the structure. If the

number of items is known in advance and is of the same data type, an array is a better choice. Not only can

addresses of indexes in an array be calculated, but a list may need to be moved in memory as new items are

added to ensure the structure is held in contiguous memory space. However, lists are often more memory-

efficient because they only use the memory they need for the data they are storing at the time.

A list declaration and assignment in Python:

items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]

Two-dimensional lists can also be implemented as a list of lists.

The first item in a list is often referred to as the head and all other items in the list except the head are the tail.

Some programming languages support head-and-tail operations to extract those items from the list for further

processing.

Lists are implemented in different ways by different programming languages – for example, as a linked list

using objects. You will often hear list and linked list being used synonymously when, in fact, the linked list is

just one possible implementation of a list.

Applications of a list

Lists are used in situations where a set of related data items needs to be stored but the number of items may

vary and be of different data types. Lists are typically used to implement other data structures such as stacks

and queues and to hold values of a dictionary.

D
A

T
A

 S
TR

U
C

TU
R

ES

91

Storing a list in memory

Given that each element can be a different data type – and therefore use a different amount of memory – it is

not possible to use both indexes and contiguous data items. To overcome this problem, references to the data

items are stored contiguously instead.

Heap

Address Value Notes

R
e

fe
re

n
c
e

s
 t

o
 d

a
ta

it
e

m
s

0x5D 0x63 item[0]

0x5E 0x8E item[1]

 0x5F 0xA3 item[2]

 0x60 0xA4 item[3]

…

D
a

ta
 i
te

m
s

0x63 Sword string

…

0x8E 20 integer

…

0xA3 Shield string

0xA4 100 integer

In the example above, a list identified as item has four elements at indexes 0 to 3, with the first index stored

at memory address 0x5D. The address of the other indexes of the list can now be calculated because

addresses are all a fixed size. What is stored in address 0x5D is not the item but the address where the item

is stored. The data for item[0] is actually stored in 0x63, Sword. This is an example of indirect addressing.

Did you know?

Lists can be made from objects too. In this implementation, they become linked lists.

D
A

T
A

 S
TR

U
C

TU
R

ES

92

Operations on a list

Typical operations that can be performed on a list include:

• Access: Return an item by its index.

• Add: Append or insert an item in the list.

• Delete: Remove an item from the list.

• Display: Output all the items in the list.

• Head: Return the first item in the list.

• Exists: Find if an item is in the list.

• Tail: Return all the items in the list except for the first item.

Efficiency of operations on a list

Time complexity Space complexity

 Best

case

Average

case

Worst

case

 Best

case

Worst

case

Access,

Head

O(1)

Constant

O(1)

Constant

O(1)

Constant

O(1)

Constant

O(n)

Linear

Search,

Exists,

Display,

Tail

O(1)

Constant

O(n)

Linear

(one-dimension)

O(n2)

Polynomial
(two-dimension)

Add item

O(1)

Constant

O(n)

Linear

O(n)

Linear

Delete item

O(1)

Constant

O(n)

Linear

O(n)

Linear

Since a list is a dynamic data structure, its memory footprint is not usually known in advance, so it has a linear

space complexity, O(n). A tuple is immutable – therefore, in a best-case scenario, the list may have a constant

space complexity, O(1).

D
A

T
A

 S
TR

U
C

TU
R

ES

93

Like arrays, list elements can be accessed using an index. While this may require a second hop to where the

data is actually stored on the heap (in order to support multiple data types), items can still be accessed in a

constant time, O(1).

Searching for an item in a list may return the first item checked, O(1), or require checking every item until the

one required is reached, O(n). Lists of lists may also further degrade the complexity to polynomial, O(n2),

because of the requirement for a nested loop.

New items are typically added to the end of the list. If an item to be deleted is the last index, both operations

can be performed in a constant time, O(1). However, the dynamic nature of lists and the fact indexes remain

contiguous as items are deleted – even from the middle of the list – means these operations are frequently

linear, O(n), due to the moving of other references in the structure.

Did you know?

References to items in lists are stored in contiguous memory like an array. However, as items

are added and removed from the middle of a list, no empty space remains. The items in

subsequent indexes fill the available space.

For example, if item[0] is deleted, item[1] will become item[0] – this is extremely useful for

programming data structures like queues using a list.

As new items are added to the list, it may become necessary to move the entire structure

in memory to ensure references to items remain contiguous.

D
A

T
A

 S
TR

U
C

TU
R

ES

94

Object

The first computers used arrays for storing data. By 1965, Simula had introduced a new way of programming

using an object-oriented approach. Programs were built from fundamental constructs called objects.

An object has attributes (variables) and methods (subroutines). Like a record data structure, an object may

contain many related attributes of different data types. Unlike records, attributes of an object can be public or

private; a similar concept to the scope of a variable being global or local. Public attributes are like global

variables and can be used and accessed by other objects. Private attributes can only be accessed by methods

of the object – this is known as encapsulation.

Over the years, the concept of object-oriented programming (OOP) changed from its original intentions of self-

contained data structures – messages being passed between objects – into a more complex model. Today,

OOP includes many additional features like sub-classes, inheritance and polymorphism, which are beyond the

scope of this book. Instead, we will look at how objects are used as data structures for algorithms.

An object is defined by using a class structure. For example, part of a person object might look like this

expressed as a class diagram:

Class:

Person

Attributes:

Name: string

EyeColour: string

HeightInCm: integer

Methods:

SetName()

SetHeight()

Objects are also known as instances of a class. You can create (instantiate) as many copies of an object as you

need from a single class structure. Since the number of objects can change at run-time, objects are dynamic

data structures.

Maintaining groups of objects is usually important when programming – so you can use an iteration to call the

methods in all the objects one at a time, for example. Objects can be stored in arrays, known as a collection.

Alternatively, you can use an attribute of an object as a pointer to store the address of another object, effectively

linking them together.

D
A

T
A

 S
TR

U
C

TU
R

ES

95

Applications of an object

Objects are used in situations where there are many related data items of different data types. Objects are

useful when the number of data items to be stored in the structure cannot be known in advance and fast

access to data is required. All algorithms can use an object as their base data structure.

Storing an object in memory

Like all dynamic data structures, when an object is created, memory is allocated to store it on the heap and a

reference to the start of that block of memory is returned and stored on the call stack.

Attributes of an object may be stored as key-value pairs like a dictionary.

Operations on an object

Typical basic operations that can be performed on an object include:

• Construct: A method run when an object is first instantiated.

• Delete: When the last reference to an object is removed, the garbage collector makes the memory

available to other processes.

• Get: A public method to retrieve the value of a private, encapsulated attribute.

• Set: A public method to store a value to a private, encapsulated attribute.

• Receive a message from another object.

• Send a message to another object.

Did you know?

In Java, every data structure is an object – including arrays.

D
A

T
A

 S
TR

U
C

TU
R

ES

96

Efficiency of operations on an object

Time complexity Space complexity

 Best

case

Average

case

Worst

case

 Best

case

Worst

case

Access

O(1)

Constant

O(1)

Constant

O(n)

Linear

O(1)

Constant

O(n)

Linear

Construct

O(1)

Constant

O(1)

Constant

O(1)

Constant

Get, Set

O(1)

Constant

O(1)

Constant

O(n)

Linear

Delete

O(1)

Constant

O(1)

Constant

O(n)

Linear

Since an object is a dynamic data structure, the number of objects required is usually not known in advance,

so it has a linear space complexity, O(n). In some applications, the maximum number of objects is fixed to

maintain performance. Objects are constructed in advance and referenced in a collection or pool. Take a video

game, for example, where no more enemies can be spawned than the maximum number of enemies available

in the pool. In this unique situation, the memory footprint is known, O(1).

Creating, deleting and accessing an object can usually be done in a constant time, O(1), because an object is

an unordered structure. An object in memory can be accessed immediately from its block address, with

individual attributes often stored as key-value pairs. This could potentially increase the complexity of operations

to O(n) depending on how the object and its attributes are stored.

The time complexity of other operations on a collection of objects depends on what the objects are being used

for. For example, if objects are being used to store a binary tree for a post-order traversal, consider the time

complexity of that implementation.

D
A

T
A

 S
TR

U
C

TU
R

ES

97

Queue

A queue is a dynamic data structure. Items are enqueued (added) at the back of the queue and dequeued

(removed) from the front of the queue. It is also possible to peek at the front item without removing it.

Imagine a queue at a checkout. The person at the front is served first and people join at the back. This strict

process can also allow for people to jump the queue – when implemented in computer science, this is known

as a priority queue. In special circumstances, new items can join either the front or back of the queue.

A queue is known as a first-in, first-out or FIFO structure.

A queue has a back pointer that always points to the last item in the queue, sometimes referred to as the tail

or rear pointer. A queue also has a front pointer that always points to the first item in the queue, sometimes

referred to as the head pointer.

Front  Back 

Craig Dave Sam Mark Carol

Applications of a queue

Queues are used for process scheduling, transferring data between processors and printer spooling. They are

also used as buffers between input/output devices operating at different speeds.

In programming, queues are useful for reversing the elements in an array. In game design, they can be used

to manage the spawning of objects to ensure the CPU is not overloaded with operations. Queues are required

to perform a breadth-first traversal on graph data structures. Simulations of real-world models such as

modelling traffic congestion can also use queues.

Did you know?

With a priority queue, each element also has an additional priority attribute. When items

are enqueued in a priority queue, they are inserted into the correct position from highest

to lowest in the queue. Two elements with the same priority are served in the order they

arrived. Priority queues are very useful for implementing operating system scheduling

algorithms such as shortest remaining time.

D
A

T
A

 S
TR

U
C

TU
R

ES

98

Storing a queue in memory

Queues can be represented in memory using an array, a list or objects.

Array List Object

front = 0
back = 4

Index Element

0 Craig

1 Dave

2 Sam

3 Mark

4 Carol

5

6

front = 0

back = 4

Index Element

0 Craig

1 Dave

2 Sam

3 Mark

4 Carol

Note, there is no free space with

a list implementation because it

is truly dynamic. The front pointer

is always at index 0.

Class Queue

 frontPointer = None

 backPointer = None

 Class Node

 element = ""

 pointer = Node

 End Class

End Class

Operations on a queue

Typical operations that can be performed on a queue include:

• Enqueue: Add an item to the back of the queue.

• Dequeue: Remove an item from the front of the queue.

• Peek: Return the value from the front of the queue without removing it.

• Is Empty: Return whether the queue is empty.

• Is Full: Return whether the queue is full.

An attempt to enqueue an item to a queue that is already full is called a queue overflow, while trying to dequeue

an item from an empty queue is called a queue underflow. Both situations should be considered before

attempting to enqueue or dequeue an item.

D
A

T
A

 S
TR

U
C

TU
R

ES

99

Array implementation of a queue

An array is declared large enough to accommodate the maximum number of items. The front and back pointers

are held using variables that are indexes to elements of the array, set to -1 when they are not pointing to any

elements – i.e., when the queue is empty.

When implementing a queue using an array, a unique problem arises because the array is a static structure of

a fixed size. As items are enqueued and dequeued, the values of the front and back pointers will continue to

increase. Eventually, they will reach the end of the structure, preventing any more items from being added –

this is known as a linear queue because the pointers never decrease in value.

A potential solution would be to move all the items in the array down by one index when they are dequeued.

However, moving data items is not efficient, O(n), so it is avoided. A better solution is to cycle back to the start

of the array when the bounds are reached, known as a circular queue.

Linear queue

The status of a linear queue after five items have been enqueued using an array with seven indexes:

Index 0 1 2 3 4 5 6

Pointers Front  Back 

Element Craig Dave Sam Mark Carol

The status of the linear queue after dequeuing an item using an array:

Index 0 1 2 3 4 5 6

Pointers Front  Back 

Element Craig Dave Sam Mark Carol

Note that Craig was not actually removed from the structure; the front pointer moved instead.

The status of the linear queue after enqueuing the next item using an array:

Index 0 1 2 3 4 5 6

Pointers Front  Back 

Element Craig Dave Sam Mark Carol Andy

D
A

T
A

 S
TR

U
C

TU
R

ES

100

The status of the queue after enqueuing another item using an array:

Index 0 1 2 3 4 5 6

Pointers Front  Back 

Element Craig Dave Sam Mark Carol Andy James

Note how the array is now full and no more items can be enqueued.

Circular queue

Often shown in illustrations as a cycle:

The status of a circular queue before enqueuing a new item:

Index 0 1 2 3 4 5 6

Pointers Front  Back 

Element Craig Dave Sam Mark Carol Andy James

0
Craig

1
Dave

2
Sam

3
Mark

4
Carol

5
Andy

6
James

D
A

T
A

 S
TR

U
C

TU
R

ES

101

The status of the circular queue after enqueuing a new item:

Index 0 1 2 3 4 5 6

Pointers Back  Front 

Element Fran Dave Sam Mark Carol Andy James

Notice that the back pointer has looped back around to the start of the structure. There are still a finite number

of items that can be stored, but it is less restrictive than a linear queue. An array with a circular queue is ideal

if you know the memory footprint and want to restrict the number of items in the structure.

It is particularly useful in game design where the number of sprites on the screen affects the framerate. By only

spawning sprites up to the limit of the queue, a stable framerate can be achieved. Changing the value of a

pointer when an item is enqueued or dequeued can be achieved with the following code:

pointer = pointer + 1

if pointer = max then pointer = 0

However, by making use of the modulo operator, the new position of a pointer can be calculated in a single

statement as:

pointer = mod max (In Python: pointer = pointer % max)

Here is an easier way to check if a queue is full before attempting to add a new item regardless of the values

of the front and back pointers:

if (pointer + 1) mod max = front then queueFull

Did you know?

In computer science, modulo is the operator used to calculate modulus.

The modulus can be found by calculating the integer division of one number by another

(called the quotient), multiplying the quotient by the divisor and subtracting the resulting

number from the initial number – e.g., 3 modulo 2 is:

3 / 2 = 1 (rounded down)

1 * 2 = 2

2 – 1 = 1

D
A

T
A

 S
TR

U
C

TU
R

ES

102

How modulus works

Modulo is an arithmetic operator that returns the remainder from a division of two numbers. In Python, this is

represented by the percent symbol – e.g., pointer + 1 % max.

pointer pointer + 1 max (pointer + 1) mod max

0 1 7 1

1 2 7 2

2 3 7 3

3 4 7 4

4 5 7 5

5 6 7 6

6 7 7 0

List implementation of a queue

When implementing a queue using a list, we can use the special property of list indexes. As items are removed

from a list, references to subsequent items are moved down to replace the deleted element, the back pointer

is decremented, and the front of the queue is always at index zero – this negates the need for an additional

variable to store the value of the front pointer because it is always constant.

There is no need to implement a circular queue because a list is dynamic. New elements are allocated from

the heap and indexed as they are required. The linear queue works with list and object implementations.

The status of a queue after five items have been enqueued with a list:

Index 0 1 2 3 4

Pointers Front  Back 

Element Craig Dave Sam Mark Carol

D
A

T
A

 S
TR

U
C

TU
R

ES

103

The status of the queue after dequeuing an item with a list:

Index 0 1 2 3

Pointers Front  Back 

Element Dave Sam Mark Carol

The status of the queue after enqueuing the next item with a list:

Index 0 1 2 3 4

Pointers Front  Back 

Element Dave Sam Mark Carol Andy

Note how the number of indexes grows and shrinks as items are enqueued and dequeued.

Object implementation of a queue

With an object implementation, memory is allocated from the heap to new items as necessary. Each object is

a node, with each node pointing to the next. Front and back pointers are also maintained.

The status of a queue after five items have been enqueued with objects:

Front pointer



 Back pointer



Craig → Dave → Sam → Mark → Carol null

The status of the queue after dequeuing an item with objects:

 Front pointer



 Back pointer



Craig → Dave → Sam → Mark → Carol null

The front pointer is changed to be the node pointed to by the front pointer. Although the node Craig will still

exist in memory on the heap, it does not have an active reference, so it will be reclaimed by the garbage

collection process.

D
A

T
A

 S
TR

U
C

TU
R

ES

104

The status of the queue after enqueuing an item with objects:

 Front pointer



 Back pointer



Craig → Dave → Sam → Mark → Carol → Andy null

Available memory is taken from the heap and the back pointer is updated to point to the new item.

Enqueuing an item to a queue

1. Check for queue overflow. Output an error if no free memory is available.

2. Create a new node and insert data into it.

3. The back pointer is set to point to the new node.

4. If this is the first node in the list, the front pointer is set to point to the new node.

Pseudocode for enqueuing an item

If not memoryfull Then

 new_node = New Node

 If back_pointer = Null Then

 front_pointer = new_node

 Else

 Previous_back_node.pointer = new_node

 End If

 Back_pointer = new_node

End If

Dequeuing an item from a queue

1. Check for queue underflow. Output an error if the front pointer does not point to a node.

2. Output the node pointed to by the front pointer.

3. Set the front pointer to the previous item.

Pseudocode for dequeuing an item

If front_pointer != Null Then

 Output front_pointer.data

 front_pointer = front_pointer.pointer

 If front_pointer = Null Then back_pointer = Null

End If

D
A

T
A

 S
TR

U
C

TU
R

ES

105

Peeking an item in a queue

1. Output an error if the front pointer does not point to a node.

2. Output the node pointed to by the front pointer.

Pseudocode for peeking an item from a queue

If front_pointer != Null Then

 Output front_pointer.data

End If

Circular queue coded in Python using an array/list

class Queue:
 max = 10
 items = ["" for index in range(max)]

 front_pointer = -1
 back_pointer = -1

 def enqueue(self, item):
 # Check queue overflow
 if (self.back_pointer + 1) % self.max != self.front_pointer:
 self.back_pointer = (self.back_pointer + 1) % self.max
 # Enqueue the item
 self.items[self.back_pointer] = item
 # Set first item if queue was empty
 if self.front_pointer == -1:
 self.front_pointer = 0
 return True
 else:
 return False

 def dequeue(self):
 # Check queue underflow
 if self.front_pointer != -1:
 # Dequeue the item
 item = self.items[self.front_pointer]
 # If the queue is not empty change the front pointer
 if self.front_pointer != self.back_pointer:
 self.front_pointer = (self.front_pointer + 1) % self.max
 else:
 # When the last item is dequeued reset the pointers
 self.front_pointer = -1
 self.back_pointer = -1
 return item
 else:
 return None

 def peek(self):
 # Check queue underflow
 if self.front_pointer != -1:
 # Peek the item
 return self.items[self.front_pointer]
 else:
 return None

D
A

T
A

 S
TR

U
C

TU
R

ES

106

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
q = Queue()
Add items to the queue
for index in range(0, len(items)):
 q.enqueue(items[index])
Remove items from the queue
print(q.dequeue())
Output the next item in the queue
print(q.peek())

Queue coded in Python using objects

class Queue:
 class Node:
 data = None
 pointer = None

 front_pointer = None
 back_pointer = None

 def enqueue(self, item):
 # Check queue overflow
 try:
 # Enqueue the item
 new_node = Queue.Node()
 new_node.data = item
 # Empty queue
 if self.back_pointer == None:
 self.front_pointer = new_node
 else:
 self.back_pointer.pointer = new_node
 self.back_pointer = new_node
 return True
 except:
 return False

 def dequeue(self):
 # Check queue underflow
 if self.front_pointer != None:
 # Dequeue the item
 item = self.front_pointer.data
 self.front_pointer = self.front_pointer.pointer
 # When the last item is dequeued reset the pointers
 if self.front_pointer == None:
 self.back_pointer = None
 return item
 else:
 return None

 def peek(self):
 # Check queue underflow
 if self.front_pointer != None:
 # Peek the item
 return self.front_pointer.data
 else:
 return None

D
A

T
A

 S
TR

U
C

TU
R

ES

107

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
q = Queue()
Add items to the queue
for index in range(0, len(items)):
 q.enqueue(items[index])
Remove items from the queue
print(q.dequeue())
Output the next item in the queue
print(q.peek())

Operations

Enqueue items: q.enqueue(item)

Dequeue items: print(q.dequeue())

Peeking an item: print(q.peek())

D
A

T
A

 S
TR

U
C

TU
R

ES

108

Efficiency of operations on a queue

Time complexity Space complexity

 Best

case

Average

case

Worst

case

 Best

case

Worst

case

Enqueue

O(1)

Constant

O(1)

Constant

O(1)

Constant

O(1)

Constant

O(n)

Linear

Dequeue

O(1)

Constant

O(1)

Constant

O(1)

Constant

Is Empty,

Is Full

O(1)

Constant

O(1)

Constant

O(1)

Constant

Peek

O(1)

Constant

O(1)

Constant

O(1)

Constant

A queue is a dynamic data structure. When implemented using object-oriented techniques, its memory footprint

grows and shrinks as data is enqueued and dequeued from the structure. Using only the required amount of

memory is the most efficient way of implementing a queue.

However, a queue can also be implemented using an array. In this case, you are creating a dynamic structure

on top of a static data structure, so the memory footprint remains constant. This method is inefficient because,

unless it is full, the queue will be reserving more memory than it needs.

Items are enqueued at the back of the queue and dequeued from the front. Peeking looks at the item at the

front of the queue. Detecting if a queue is empty or full only requires examining the value of the pointers.

Therefore, the time complexity of all operations on a queue is constant, O(1).

D
A

T
A

 S
TR

U
C

TU
R

ES

109

Record

A record, sometimes called a structure or compound data is a collection of related items – often of different

data types – called fields. A record is like an object with attributes, although records do not require the object-

oriented paradigm and do not have methods. Records are often thought of as special cases of objects, referred

to as plain old data structures or PODs.

It is useful to define a fixed maximum size of each field in bytes when using string fields in records in order to

minimise data storage requirements and speed up searches.

Applications of a record

The history of the record can be traced to the punched card, where columns on the card related to each field.

In early programming applications, the record was an ideal structure for reading and writing data from

secondary storage. The size of a record could be calculated by adding the fixed size of all the fields.

By using a unique numeric primary key field called a record number, the location of the record on the storage

medium can be found by multiplying the record number by the record size. It is also possible to determine the

record number using a hashing function.

Records were so common in early computing that there are special characters for delimiting fields and records

(ASCII codes 28-31). If fixed-size data types are not used, these special characters can be used to easily identify

where one data item ends and the next one begins.

Today, records are still used extensively as an alternative structure for groups of related variables and use the

with statement in many programming languages. Records are also used to construct databases, although their

operations are largely abstracted by database management systems. It is more common to connect a program

to a DBMS if records need to be stored or use a data interchange format such as JSON or XML.

Operations on a record

Typical operations that can be performed on a record structure include:

• Declare: When using records, the structure of the record type is defined first, much like an object being

declared in a class.

• Add/Construct: Make a new record using a set of specific values and possibly field names.

• Assign/Update: Attribute a value to a field.

• Hash: Compute a record number from the key.

• Search: Find a record by hashing the primary key, using a linear search or a linked list secondary key.

• Delete: Remove a record.

• Compare: Return whether two records are the same or one is greater than the other using lexicographic

order.

D
A

T
A

 S
TR

U
C

TU
R

ES

110

Using a record structure

Before a record structure can be used, the fields must be defined. The syntax will vary between languages. In

Visual Basic, a record declaration statement might look like this:

 Structure Person
 <VBFixedString(6)> Public StaffCode As String
 <VBFixedString(20)> Public Forename As String
 <VBFixedString(20)> Public Surname As String
 <VBFixedString(10)> Public StaffType As String

 End Structure

<VBFixedString(20)> means the Forename field will be of a fixed length of 20 characters – this is optional.

The StaffCode field is being used as the unique primary key.

The record structure must be declared before it can be used:

 Dim Employee As Person

However, it is typically more useful to have more than one record, so an array of records can be declared:

 Dim Employee(50) As Person

The records can then be used:

 Employee(1).StaffCode = "CRS"
 Employee(1).Forename = "Craig"
 Employee(1).Surname = "Sargent"
 Employee(1).StaffType = "Teacher"
 Employee(2).StaffCode = "DHI"
 Employee(2).Forename = "Dave"
 Employee(2).Surname = "Hillyard"
 Employee(2).StaffType = "Teacher"

Not all languages support the record data structure – Python being an example – but it can be simulated with

objects or dictionaries quite easily.

For example, using a dictionary in Python, a record structure could be defined and declared as follows:

Employee = {

 "CRS": {"Surname": "Sargent", "Forename": "Craig", "StaffType": "Teacher"},

 "DAH": {"Surname": "Hillyard", "Forename": "Dave", "StaffType": "Teacher"},

}

Records can then be output…

 print(Employee["DAH"]["Surname"])

…and updated:

 Employee["CRS"]["StaffType"] = "Admin"

D
A

T
A

 S
TR

U
C

TU
R

ES

111

Efficiency of operations on a record

Time complexity Space complexity

 Best

case

Average

case

Worst

case

 Best

case

Worst

case

Add, Delete

O(1)

Constant

O(1)

Constant

O(n)

Linear

O(1)

Constant

O(n)

Linear

Search

O(1)

Constant

O(1)

Constant

O(n)

Linear

Compare

O(1)

Constant

O(1)

Constant

O(1)

Constant

If there are a known number of records with a fixed field size, the memory footprint can be calculated, making

the space complexity constant, O(1). However, record structures are frequently used in database applications

where the number of records stored is variable. Although using fixed-length fields is more efficient for finding

records in a data set, it is also possible to use variable-length fields, which require end-of-field markers – the

memory footprint will then change as records are added to the data set, O(n).

Calculating the time complexity of a record depends on the algorithms being implemented. New records are

usually added to the end of the data set because it is inefficient to insert them between existing records. Linked

lists are often maintained as secondary keys in order to maintain a logical order of records. As records need to

be appended, the time complexity is O(1).

When finding records with fixed-length fields, a hash function can be used on the key field to calculate the byte

position of the required record, O(1). However, variable-length records will require a linear search; O(1) at best

– if the record is the first in the data set – but usually O(n). The time complexity for both adding a record and

searching the data set assumes that records are being held either in memory or on random-access secondary

storage such as a hard disk or solid-state drive. In the past, records were frequently held on linear drives such

as tape or punched cards, so the time complexity would always be linear, O(n).

Deleting records can be done in several ways. One approach is to flag the record as deleted but not actually

remove it until the record set is maintained in a batch process. Alternatively, the record can be removed, but

this is inefficient because all the other records would need to be moved to fill space in the data set. Both

methods require searching for the record – O(1) with fixed-length records or O(n) with variable-length.

D
A

T
A

 S
TR

U
C

TU
R

ES

112

Stack

A stack is a dynamic data structure. Items are both pushed (added) onto the top of the stack and popped

(removed) from the top of the stack. It is also possible to peek at the top item without removing it.

Imagine a stack of coins. A coin can be added or removed from the top but not the middle. The only way of

accessing items in the stack is from the top.

A stack is known as a last-in, first-out or LIFO structure.

It has a stack pointer that always points to the item at the top – this is also called the top pointer.

Top → Carol

 Mark

 Sam

 Dave

 Craig

Applications of a stack

Stacks are essential to the operation of a computer system. A stack frame is pushed onto a call stack when

subroutines are called. The stack frame includes the values of the registers when the subroutine was called,

parameters and local variables. Many compilers use a stack for parsing syntax expressions.

Stacks are used for depth-first traversal of graph data structures, undo operations that track user inputs and

backtracking algorithms – for example, pathfinding maze solutions. Stacks are also used to evaluate

mathematical expressions without brackets using a shunting yard algorithm and reverse Polish notation.

Did you know?

In 1946, Alan Turing first used the terms bury and unbury to describe calling and returning

from subroutines. In 1955, Klaus Samelson and Friedrich Bauer filed a patent for the idea of

a stack.

D
A

T
A

 S
TR

U
C

TU
R

ES

113

Storing a stack in memory

Array List Object

top = 4

Index Element

0 Carol

1 Mark

2 Sam

3 Dave

4 Craig

5

6

top = 0

Index Element

0 Craig

1 Dave

2 Sam

3 Mark

4 Carol

Note that there is no free space

with a list implementation

because it is truly dynamic. New

items are always added and

removed from index 0.

Class Stack

 stackPointer = None

 Class Node

 element = ""

 pointer = Node

 End Class

End Class

Operations on a stack

Typical operations that can be performed on a stack include:

• Push: adding an item to the top of the stack.

• Pop: removing an item from the top of the stack.

• Peek: return the value from the top of the stack without removing it.

• Is Empty: return whether the stack is empty.

• Is Full: return whether the stack is full.

An attempt to push an item onto a stack that is already full is called a stack overflow, while attempting to pop

an item from an empty stack is called a stack underflow. Both of these situations should be considered before

attempting to push or pop an item.

D
A

T
A

 S
TR

U
C

TU
R

ES

114

Array implementation of a stack

An array is declared large enough to accommodate the maximum number of items. A variable is used to hold

the stack pointer, the index of the item at the top of the stack. This index is set to -1 when the stack is empty.

It feels counterintuitive to illustrate a stack with index 0 at the top, but as it is an abstraction, it doesn’t matter.

To avoid confusion, index 0 will be shown at the bottom of the structure.

The status of the stack after five items have been pushed using an array with seven indexes:

Pointer Index Element

 6

 5

Top → 4 Craig

 3 Dave

 2 Sam

 1 Mark

 0 Carol

The status of the stack after popping an item using an array:

Pointer Index Element

 6

 5

 4 Craig

Top → 3 Dave

 2 Sam

 1 Mark

 0 Carol

Note that Craig was not actually removed from the structure; instead, the pointer was moved.

D
A

T
A

 S
TR

U
C

TU
R

ES

115

The status of the stack after pushing the next item using an array:

Pointer Index Element

 6

 5

Top → 4 Andy

 3 Dave

 2 Sam

 1 Mark

 0 Carol

The status of the stack after pushing another item using an array:

Pointer Index Element

 6

Top → 5 James

 4 Andy

 3 Dave

 2 Sam

 1 Mark

 0 Carol

Notice how previously popped items are overwritten when new items are pushed.

D
A

T
A

 S
TR

U
C

TU
R

ES

116

List implementation of a stack

When implementing a stack using a list, it is easier to push a new item to index 0 and move all the other

elements down one index – this is not very efficient, O(n), but list methods can be used to handle the operation

and make the implementation easier.

The status of a stack after five items have been pushed with a list:

Pointer Index Element

Top → 0 Craig

 1 Dave

 2 Sam

 3 Mark

 4 Carol

The status of the stack after popping an item with a list:

Pointer Index Element

Top → 0 Dave

 1 Sam

 2 Mark

 3 Carol

The status of the stack after pushing the next item with a list:

Pointer Index Element

Top → 0 Andy

 1 Dave

 2 Sam

 3 Mark

 4 Carol

Note how the number of indexes grows and shrinks as items are pushed and popped.

D
A

T
A

 S
TR

U
C

TU
R

ES

117

Object implementation of a stack

With an object implementation, memory is allocated to new items as necessary. Each object is a node, with

each node pointing to the next. The stack pointer is still maintained.

The status of a stack after five items have been pushed with objects:

Stack pointer



Craig → Dave → Sam → Mark → Carol null

The status of the stack after popping an item with objects:

 Stack pointer



Craig → Dave → Sam → Mark → Carol Null

The stack pointer is changed to be the node pointed to by the top node. Although the node Craig will still exist

in memory, it does not have an active reference, so it will be reclaimed by the garbage collection process.

The status of the stack after pushing an item with objects:

Stack pointer



Andy → Dave → Sam → Mark → Carol null

The new item is added, and the stack pointer is changed to point to the new node. The pointer on the new node

points to the node previously pointed to by the stack pointer.

D
A

T
A

 S
TR

U
C

TU
R

ES

118

Pushing an item onto a stack

1. Check for stack overflow. Output an error if no free memory is available.

2. Create a new node and insert data into it.

3. The new node points to the previous node.

4. The stack pointer is set to point to the new node.

Pseudocode for pushing an item onto a stack

If not memoryfull Then

 new_node = New Node

 new_node.pointer = stack_pointer

stack_pointer = new_node

End If

Popping an item from a stack

1. Check for stack underflow. Output an error if the stack pointer does not point to a node.

2. Output the node pointed to by the stack pointer.

3. Set the stack pointer to the previous item.

Pseudocode for popping an item from a stack

If stack_pointer != Null Then

 Output stack_pointer.data

 stack_pointer = stack_pointer.pointer

End If

Did you know?

Popping is sometimes called pulling.

In addition to pushing, popping and peeking items from a stack, a third operation called

rotate or roll can be used to move items around a stack – e.g., A-B-C becomes B-C-A,

where the first item has rolled around to become the last item.

D
A

T
A

 S
TR

U
C

TU
R

ES

119

Peeking an item from a stack

1. Output an error if the stack pointer does not point to a node.

2. Output the node pointed to by the stack pointer.

Pseudocode for peeking an item from a stack

If stack_pointer != Null Then

 Output stack_pointer.data

End If

Did you know?

Stacks can also be used in the architecture of a computer. The x87 floating point co-

processor used by old x86 machines is one example. The registers inside the co-processor

were organised as a stack, but direct access to individual registers was also possible.

Today these maths co-processors are integrated into the main CPU architecture.

D
A

T
A

 S
TR

U
C

TU
R

ES

120

Stack coded in Python using an array/list

class Stack:
 max = 10
 items = ["" for index in range(max)]

 stackPointer = -1

 def push(self, item):
 # Check stack overflow
 if self.stackPointer < self.max:
 self.stackPointer = self.stackPointer + 1
 # Push the item
 self.items[self.stackPointer] = item
 return True
 else:
 return False

 def pop(self):
 # Check queue underflow
 if self.stackPointer != -1:
 # Pop the item
 item = self.items[self.stackPointer]
 self.stackPointer = self.stackPointer - 1
 return item
 else:
 return None

 def peek(self):
 # Check stack underflow
 if self.stackPointer != -1:
 # Peek the item
 return self.items[self.stackPointer]
 else:
 return None

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
s = Stack()
Add items to the stack
for index in range(0, len(items)):
 s.push(items[index])
Remove items from the stack
print(s.pop())
Output the next item in the stack
print(s.peek())

D
A

T
A

 S
TR

U
C

TU
R

ES

121

Stack coded in Python using objects

class Stack:
 class Node:
 data = None
 pointer = None

 stack_pointer = None

 def push(self, item):
 # Check stack overflow
 try:
 # Push the item
 new_node = Stack.Node()
 new_node.data = item
 new_node.pointer = self.stack_pointer
 self.stack_pointer = new_node
 return True
 except:
 return False

 def pop(self):
 # Check stack underflow
 if self.stack_pointer != None:
 # Pop the item
 popped = self.stack_pointer.data
 self.stack_pointer = self.stack_pointer.pointer
 return popped
 else:
 return None

 def peek(self):
 # Check stack underflow
 if self.stack_pointer != None:
 # Peek the item
 return self.stack_pointer.data
 else:
 return None

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
s = Stack()
Add items to the stack
for index in range(0, len(items)):
 s.push(items[index])
Remove items from the stack
print(s.pop())
Output the next item in the stack
print(s.peek())

D
A

T
A

 S
TR

U
C

TU
R

ES

122

Operations

Adding items: s.push("Colarado")

Deleting items: print(s.pop())

Peeking an item: print(s.peek())

Did you know?

The peek operation is not necessary. It can be implemented with a pop operation

followed by a push operation.

Other operations on a stack can include duplicate, where the top item is popped and

then pushed twice, and swap or exchange, where the top two items are popped and

then pushed back to the stack in the opposite order.

While these additional operations do not feature in the specification, examples of them

can make great examination questions to test your understanding of how a stack works.

Did you know?

Computers use a stack to store data when subroutines are called – this includes the values

of the registers (so a program can resume when the subroutine ends), fixed-length local

variables and memory address references to other data structures.

As the size of the stack frame is not fixed, it poses a security risk. When an oversized frame

is written to the stack, the values of the registers stored in another stack frame can be

overwritten, causing the program to branch unexpectedly, known as stack smashing. This

is a technique used by viruses.

D
A

T
A

 S
TR

U
C

TU
R

ES

123

Efficiency of operations on a stack

Time complexity Space complexity

 Best

case

Average

case

Worst

case

 Best

case

Worst

case

Push

O(1)

Constant

O(1)

Constant

O(1)

Constant

O(1)

Constant

O(n)

Linear

Pop

O(1)

Constant

O(1)

Constant

O(1)

Constant

Is Empty,

Is Full

O(1)

Constant

O(1)

Constant

O(1)

Constant

Peek

O(1)

Constant

O(1)

Constant

O(1)

Constant

A stack is a dynamic data structure. When implemented using object-oriented techniques, its memory footprint

grows and shrinks as data is pushed onto and popped from the structure. Using only as much memory as

needed is the most efficient way of implementing a stack.

However, a stack could also be implemented using an array. In this case, the dynamic structure has been

created upon a static data structure, so the memory footprint remains constant. This method is inefficient

because the stack will be reserving more memory than it needs unless it is full.

Items are always pushed onto and popped from the top of the stack. Peeking an item looks at the item at the

stack pointer and detecting if a stack is full or empty only requires examining the value of the stack pointer.

Therefore, the time complexity of all operations on a stack is constant, O(1).

D
A

T
A

 S
TR

U
C

TU
R

ES

124

Tree

A tree is a connected, undirected graph with no cycles. A tree may have a root node – known as a rooted tree

– or no identifiable root node. Unlike a graph, a rooted tree is often used to define parent-child relationships

between nodes and store hierarchical data.

There are many different types of tree structures including general trees, AVL trees, b-trees, binary trees, binary

interval trees, cartesian trees, KD trees, search trees, quad trees, R-trees, red-black trees, splay trees, and

treaps to name a few. For the purposes of examinations, it is sufficient for you to only understand the

similarities and differences between general trees and binary search trees.

Unlike a binary tree, a general tree is not limited to a maximum of two child nodes. A node can have any number

of children, but loops between nodes are not permitted and it is common for one node to have a single parent.

Therefore, there is only one path to any one node.

Applications of a tree

General trees are used to model file systems, represent abstract syntax trees for program compilation, parse

natural language and store geometric data. Interval trees are used in vector graphic processing to find visible

elements inside three-dimensional space. Quad trees are used in image processing for compression

algorithms, mesh generation and spatial partitioning for collision detection in games.

R-trees may be used to store objects on maps, allowing for queries such as, “Find all the banks within 5km of

my location.” Splay trees are used to implement caching and garbage collection algorithms.

B C D

E

G

F

A

D
A

T
A

 S
TR

U
C

TU
R

ES

125

Storing a general tree in memory

Since trees are very similar to graphs, they can be stored in the same way using a dictionary or objects.

Operations on a tree

• Add: Add a new node at a certain position in the tree.

• Delete: Remove a node from the tree.

• Find ancestor: Find the common parent of one or more nodes.

• Graft: Add a whole section to a tree – e.g., copying a node and its children from another tree.

• Prune: Remove a node and all its children.

• Search: Find an item using a breadth- or depth-first search.

Did you know?

In graph theory, an undirected graph where any two vertices are connected by one edge

at most is also known as a forest. In computer science, a forest is often defined as multiple

disconnected trees. If you remove the root node of a binary tree that has two children,

the result is a forest of two trees.

Think about the organisation of files on a computer, presented in a tree data structure with

one folder connected to one or more sub-folders. The computer may also have multiple

drives – e.g., C:\, D:\. This is an example of a forest, where each tree is a drive.

D
A

T
A

 S
TR

U
C

TU
R

ES

126

Efficiency of a tree

Time complexity Space complexity

 Best

case

Average

case

Worst

case

 Best

case

Worst

case

Add, Delete

O(1)

Constant

O(log n)

Logarithmic

O(log n)

Linear

O(1)

Constant

O(n)

Linear

Search

O(1)

Constant

O(log n)

Logarithmic

O(n)

Linear

Graft, Prune

O(1)

Constant

O(n)

Linear

O(n)

Linear

A tree is a dynamic data structure that grows and shrinks as necessary. If the items in a tree are fixed, the

space complexity is O(1), but this is rarely the case.

When performing operations on a tree, one branch will be followed. There is only one route to a node because

cycles are not permitted. Therefore, it may be possible to discount whole branches of a tree when an edge is

followed, resulting in a divide-and-conquer algorithm of O(log n).

It could also be the case that the operation to be performed only requires accessing the root node of a rooted

tree. In this best case, the time complexity will be constant, O(1) – but again, this is rarely the case.

Due to the nature of the tree, it may be necessary to use breadth- and depth-first algorithms – which are linear

operations, O(n) – to find items.

Grafting and pruning trees may be straightforward if the new branches can be added to existing nodes, O(1).

However, they may also require some restructuring of the tree, resulting in a linear operation, O(n).

D
A

T
A

 S
TR

U
C

TU
R

ES

127

In summary

Array List Object

Elements are all the same data

type.

Elements can be different data

types.

Attributes can be different data

types.

Elements are stored in

contiguous memory.

Elements are stored in

contiguous memory.

Objects are not stored in

contiguous memory.

Uses the index register. Uses the index register. Does not use the index register.

Static data structure. Dynamic data structure. Dynamic data structure.

Uses an index to set or retrieve an

element at a specific address.

Uses an index to set or retrieve an

element at a specific address.

Uses methods to get and set

private attributes.

Does not use methods. May use additional methods to

perform operations on elements.

May use additional methods to

perform operations on attributes.

Items are not added; vacant

indexes are assigned with data

elements.

When items are added, memory

is reserved from the heap.

When new instances of objects

are constructed, memory is

reserved from the heap.

Indexes are not deleted; when

data items are removed, the

element is set to an empty string

or null value.

When items are removed, other

items fill the available space.

Objects that are not referenced

with a pointer are reclaimed

during garbage collection.

As elements are of the same data

type, the address of each index

can be calculated easily, making

arrays efficient for arithmetic.

The address of each element

cannot be calculated because

they can hold data of different

types, making lists inefficient.

Maintaining pointers to obsolete

objects can cause memory leaks

in algorithms, degrading their

performance over time.

D
A

T
A

 S
TR

U
C

TU
R

ES

128

Dictionary

Static or dynamic data structure, depending on the implementation.

Uses key-value pairs. Values are stored at an index determined by a hashing function applied to the key.

Uses a hash table search or binary tree search to retrieve a value from a key.

Linked list

Dynamic data structure.

Elements can be different data types.

Elements are not stored contiguously.

Elements are accessed sequentially with a linear search.

May have special implementations, enabling it to be doubly linked or circular.

Stack Queue

LIFO – last-in, first-out structure. FIFO – first-in, first-out structure.

Items are inserted (pushed) onto and deleted

(popped) from the top of the structure.

Items are inserted (enqueued) to the back of the

structure and removed (dequeued) from the front.

One pointer at the top of the structure. Two pointers – one at the back of the structure

where new data items are added and one at the

front where data items are removed.

D
A

T
A

 S
TR

U
C

TU
R

ES

129

Graph Binary tree Tree

No root vertex. Has a root node. May have a root node, but it is not

essential.

Vertices can have any number of

edges.

Nodes can only have zero, one or

two child nodes.

Nodes can have zero or any

number of child nodes.

There may be many paths to a

vertex. Loops are permitted

between vertices.

Only one path to a node. Only one path to a node.

Any vertex can be a starting point

for breadth- and depth-first

traversal or search.

All operations start from the root

node.

Operations can start from any

node.

Used to represent related data. Can be used to implement binary

searches using a binary search

tree and many other data

structures including dictionaries.

Used to represent hierarchical

related data.

D
A

T
A

 S
TR

U
C

TU
R

ES

130

SEARCHING ALGORITHMS
Routines that find data within a data structure.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

132

Binary search

The binary search is an efficient algorithm for finding an item in a sorted data set. It repeatedly checks the

middle item in the data set and discards half the data during each pass until either the item is found at the

middle position, it is the only item left to check or it is not found.

The binary search can be performed on an array, list or binary search tree, implemented with either arrays, lists

or objects. For the algorithm to work, the data set must be sorted – this can be achieved by inserting new items

into their correct place, by applying a sorting algorithm to an array, or as a consequence of storing the data in

a binary search tree.

Applications of a binary search

The binary search is an efficient algorithm, providing the data is already sorted. It is most typically used with

binary search trees on large data sets. Compared to alternative searching algorithms, the binary search is

particularly useful for range searches – for example, returning all the items greater than x.

Binary search in simple-structured English

1. Start at the middle item in the list.

2. If the middle item is the one to be found, the search is complete.

3. If the item to be found is lower than the middle item, discard all items to the right.

4. If the item to be found is higher than the middle item, discard all items to the left.

5. Repeat from step 2 until the item is found or there are no more items in the list.

6. If the item has been found, output its data. If it has not, output “Not found”.

Visualising a binary search

Sorted array/list

Binary search tree

 ↓ ↓

↓ ↙ ↘

 ↓ ↙ ↘ ↙ ↘

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

133

Stepping through an example of a binary search on a sorted array

Searching for California:

Index: 0 1 2 3 4

Step 1 Calculate the middle as the first index (0) + the last index (4) integer division by 2 = 2: Delaware

Alabama California Delaware Florida Georgia

Step 2 Delaware is not the item to be found. California is lower. Discard all items to the right.

Alabama California Delaware Florida Georgia

Step 3 Calculate the middle as the first index (0) + the last index (1) integer division by 2: = 0: Alabama

Alabama California Delaware Florida Georgia

Step 4 Alabama is not the item to be found. California is higher. Discard all items to the left.

Alabama California Delaware Florida Georgia

Step 5 Calculate the middle as the first index (1) + the last index (1) integer division by 2 = 1: California

Alabama California Delaware Florida Georgia

Three comparisons were needed to find the item.

Note how the number of items to be checked is halved after each comparison – this is what makes the binary

search so efficient, but it also explains why the items must be in order for the algorithm to work.

Use of integer division to find the middle point

In this example, the middle position was calculated as first index + last index integer division by 2 – this ensures

that the result of the division is always an integer (whole number) because dividing odd numbers by two causes

a fractional component of 0.5. The number is rounded down, but this is not important. Another acceptable

implementation could round the result of the division up instead. It just feels less intuitive for experienced

programmers to do this because it requires an additional function.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

134

Stepping through an example of a binary search on a binary search

tree stored as an array

Searching for Alabama:

Index: 0 1 2 3 4 5 6

Step 1 Start at the root node. Index 0: Delaware

Delaware California Florida Alabama Georgia

Step 2 Delaware is not the item to be found. Alabama is lower. Follow the left pointer (2 * 0) + 1 = Index 1

Delaware California Florida Alabama Georgia

Step 3 California is not the item to be found. Alabama is lower. Follow the left pointer (2 * 1) + 1 = Index 3

Delaware California Florida Alabama Georgia

For an explanation of how binary search trees are stored in arrays, see the Binary tree section of the chapter

on Data structures.

An object implementation

The binary tree can also be stored using objects. The algorithm is the same, but instead of calculating the index

of the next item, each node has attributes for the left and right pointers. Each of those attributes stores the

address of the object it is connected to. For example, imagine the items are being stored at memory addresses

0xA0, 0xB3, 0xB6, 0xC8 and 0xCF. The memory map for the binary tree would look like this:

Address: 0xA0 Address: 0xB3 Address: 0xC8

Item: Delaware Item: California Item: Alabama

Left pointer: 0xB3 Left pointer: 0xC8 Left pointer: null

Right pointer: 0xB6 Right pointer: null Right pointer: null

 Address: 0xB6 Address: 0xCF

 Item: Florida Item: Georgia

 Left pointer: null Left pointer: null

 Right pointer: 0xCF Right pointer: null

In this case, to find Alabama, the algorithm would begin at the start pointer, which would point to the root node

at address 0xA0. The item is compared, and the left pointer is followed to address 0xB3, then 0xC8.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

135

Pseudocode for the binary search using an array/list

Function binarySearch(items, item_to_find)

found = False

first = 0

last = items.Length -1

While first <= last and found == False

midpoint = (first + last) DIV 2

If items[midpoint] == item_to_find then

found = True

Else

If items[midpoint] < item_to_find then

first = midpoint + 1

Else

last = midpoint – 1

End If

End If

End while

If found == True then

 Return "Item found at position ", midpoint

Else

 Return "Item not found"

End If

End function

Did you know?

The binary search is also known as the half-interval search, logarithmic search or binary

chop. There are many different types of binary search including uniform, exponential,

interpolation, fractional cascading, noisy and quantum.

First proposed by Bernard Chazelle and Leonidas Guibas in 1986, fractional cascading

uses multiple arrays or lists to optimise the search for frequently searched items. Thankfully,

you only need to know about the classic binary search for examinations.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

136

Binary search coded in Python using an array/list

def binary_search(items, item_to_find):
 found = False
 first = 0
 last = len(items) - 1
 # Repeat until the item is found or no items are left to check
 while first <= last and not found:
 # Calculate the mid point using integer division
 midpoint = (first + last) // 2
 # Item found
 if items[midpoint] == item_to_find:
 found = True
 else:
 # Recalculate the mid point
 if items[midpoint] < item_to_find:
 first = midpoint + 1
 else:
 last = midpoint - 1
 if found:
 print("Item found at position", midpoint)
 else:
 print("Item not found")

items = ["Alabama", "California", "Delaware", "Florida", "Georgia"]
item_to_find = input("Enter the state to find: ")
binary_search(items, item_to_find)

Did you know?

As the binary search requires you to calculate the mid-point, the algorithm can fail in

certain situations. Midpoint = (first + last) DIV 2 can result in an arithmetic overflow

if the result is greater than the maximum value for an integer – this occurs when the

number of items in the data structure is larger than the maximum number the computer

can store. For a 32-bit signed integer, that’s 2,147,483,6437.

The Java programming language failed to trap this error in a library providing a binary

search function for more than nine years, causing programs to crash unexpectedly.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

137

Efficiency of a binary search

 Time complexity

Space

complexity
 Best

case

Average

case

Worst

case

Sorted

array

O(1)

Constant

O(log n)

Logarithmic

O(log n)

Logarithmic

 O(1)

Constant

Binary

search tree

O(1)

Constant

O(log n)

Logarithmic

O(n)

Linear

 O(1)

Constant

A binary search will usually be more efficient than a linear search and less efficient than a hash table search.

The biggest disadvantage of a binary search is that data items must be sorted for the algorithm to work – this

can be achieved logically when items are added to a binary search tree by maintaining an order to the items in

an array/list or using a searching algorithm.

Given that maintaining the order to items in an array requires a linear algorithm O(n), this is not usually an

efficient approach unless items are added infrequently and searches are performed very frequently. It is

typically better to use a binary search tree implemented with an array (although that can result in a lot of

unused indexes) or the most optimised object-based approach in terms of both time and space complexity.

In the best case, the item to be found is either in the middle position of an array or at the root node of a binary

search tree. In this special case, the algorithm has a time complexity of O(1) since the item to be found will

always be the first item checked – however, this is not usually the case.

In most cases, the time it takes to find an item increases with the size of the data set, but because half the

items can be discarded at a time, the algorithm is usually logarithmic, O(log n).

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

138

Unbalanced binary tree

If a binary tree is used to store the data, it is possible that an unbalanced tree could be created:

 ↓

 12

 ↙ ↘

 36

↙ ↘ ↙ ↘

 78

In a worst-case scenario, finding number 78 would require checking all the items, increasing the time

complexity to O(n) – this does not usually happen, and if a binary tree is to be used, it should be balanced.

Did you know?

Careful consideration of all the nuances of an algorithm and its data structure results in

higher-level responses to examination questions such as, “Compare and contrast the

linear and binary search.” You will want to consider:

• The underlying data structure – e.g., an array or objects.

• The implementation of the data structure – e.g., a binary search tree stored as an

array or objects and how such a choice affects space complexity.

• The number of items in the data set and how it affects time complexity.

• The position of the item to be found in the data set and how it affects the best-,

worst- and average-case scenarios.

• Maintaining the data structure as items are added and deleted or the need for a

sorting algorithm – and how this affects the usefulness of the algorithm.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

139

Hash table search

The goal with a hash table search is to immediately find an item without needing to compare other items in the

data set first – this makes it the most efficient searching algorithm in most cases. Often called a hash map, a

hash table search is also how programming languages implement a dictionary data structure. A hashing

function is used to calculate the position of an item in a hash table.

Applications of a hash table search

Hash tables are used in situations where items in a large data set need to be found quickly – for example,

looking up vehicle details from a car registration plate using the police ANPR system. Hash tables are also used

to create a symbol table during program compilation.

The Rabin-Karp algorithm uses a hash table search to find pattern matches in strings – for example, detecting

plagiarism in student essays. Search engine indexes are stored and searched using a hash table and, as the

name suggests, the dictionary compression algorithm also uses a hash table search.

Hashing functions

A hashing function is applied to a key to determine a hash value – the position of the item in a hash table.

There are many different hashing functions in use today. A simple example might be to add up the ASCII values

of all the characters in a string and calculate the modulus of that value by the size of the hash table.

Assuming a table size of 10:

Florida: F = 70, l = 108, o = 111, r = 114, i = 105, d = 100, a = 97

70 + 108 + 111 + 114 + 105 + 100 + 97 = 705

705 mod 10 = 5

The position of Florida in the table is 5.

A hash table needs to be at least large enough to store all the data items but is usually significantly larger to

minimise the chance of returning the same value for more than one item, known as a collision:

Delaware: D = 68, e = 101, l = 108, a = 97, w = 119, a = 97, r = 114, e = 101

68 + 101 + 108 + 97 + 119 + 97 + 114 + 101 = 805

805 mod 10 = 5

The position of Delaware in the table is 5.

Since two items cannot occupy the same position in a hash table, a collision has occurred.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

140

Properties of good hashing functions

A good hashing function should:

1. Be calculated quickly.

2. Result in as few collisions as possible.

3. Use as little memory as possible.

Resolving collisions

There are many strategies to resolve collisions generated from hashing functions. A simple solution is open

addressing, repeatedly checking the next available space in the hash table until an empty position is found and

storing the item in that location. To find the item later, the hashing function delivers the start position from

which a linear search can be applied until the item is found – this is known as linear probing:

1 2 3 4 5 6 7 8 9 10

Alabama Georgia Florida Delaware California

In this example, we can see that Delaware has a hash value of 5, but that position is occupied by Florida.

Delaware is therefore placed at 6, the next available position. California has a hash value of 6 but cannot

occupy its intended position, so it must be stored at the next available position, 7.

A disadvantage of this form of linear probing is that it prevents other items from being stored at their correct

locations in the hash table. It also results in what we refer to as clustering, several positions being filled around

common collision values.

Notice that with a table size of ten, two collisions occur. With a table size of five, three collisions occur, resulting

in a less efficient algorithm but a reduced memory footprint. If the table size is increased to eleven, no collisions

occur. With hashing algorithms, there is often a trade-off between the efficiency of the algorithm and the size

of the hash table.

A potential solution to clustering is to skip several positions before storing the item, resulting in more even

distribution throughout the table. A simple approach would be to skip to every third item. A variation of this

known as quadratic probing increases the number of items skipped with each jump – e.g., 1, 4, 9, 16.

It may also be necessary to increase the size of the hash table in the future and recalculate new positions for

the items. The process of finding an alternative position for items in a hash table is known as rehashing.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

141

An alternative method of handling collisions is to use a two-dimensional hash table, making it possible for more

than one item to be placed at the same position – this is called chaining:

 1 2 3 4 5 6 7 8 9 10

0 Alabama Georgia Florida California

1 Delaware

In this example, we can see that both Florida and Delaware are occupying the same position but different

elements of a two-dimensional array. Another possibility would be to use a second table for collisions, referred

to as an overflow table:

1 2 3 4 5 6 7 8 9 10

Alabama Georgia Florida California

0 1 2 3 4 5 6 7 8 9

Delaware

Hash table search in simple-structured English

1. Calculate the position of the item in the hash table using a hashing function.

2. Check if the item at that position is the item to be found.

3. If it is not, move to the next item.

4. Repeat from step 2 until the item is found or there are no more items in the hash table.

5. If the item has been found, output its data. If it has not, output “Not found”.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

142

Visualising a hash table search

 ↓

 ↘

Stepping through an example of a hash table search

Searching for California:

Index: 1 2 3 4 5 6 7 8 9 10

Step 1 Calculate the hash value for California:

C = 67, a = 97, l = 108, I = 105, f = 102, o =111, r =114, n = 110, I = 105, a = 97

67 + 97 + 108 + 105 + 102 + 111 + 114 + 110 + 105 + 97 = 1016

1016 mod 10 = 6.

Compare California to Delaware.

Delaware is not the item to be found – move to the next item in the hash table.

A
la

b
a

m
a

G
e

o
rg

ia

F
lo

ri
d

a

D
e

la
w

a
re

C
a

li
fo

rn
ia

Step 2 Compare California to California.

Item found.

A
la

b
a

m
a

G
e

o
rg

ia

F
lo

ri
d

a

D
e

la
w

a
re

C
a

li
fo

rn
ia

Two comparisons were required to find the item.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

143

Pseudocode for the hash table search

Function hashSearch(items, item_to_find)

hash = calculate_hash(item_to_find)

If hash_table(hash) != “”:

 If hash_table(hash) == item_to_find:

 Found = True

 Else

 Do While hash < hash_table.Length and not found:

 If hash_table(hash) != item_to_find:

 hash = hash + 1

 Else

 found = True

 End If

 End While

 End If

End If

If found == True then

 Return "Item found at position ", index

Else

 Return "Item not found"

End If

End function

Did you know?

The efficiency of a hash table search is reliant on the suitability of the hashing function. If

the data set is known in advance and does not change, it is possible to construct a perfect

hash function that guarantees constant time complexity without any collisions.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

144

Hash table search coded in Python using an array/list

class HashTable:
 array_table = []

 def hashing_function(self, item, table_size):
 # Simple hashing algorithm adds ascii values of characters modulus table size
 total = 0
 for character in range(len(item)):
 total = total + ord(item[character])
 return total % table_size

 def create_table(self, items, table_size):
 # Reserve memory for hashing table
 for counter in range(table_size):
 self.array_table.append("")

 # Place data into hashing table
 for item_index in range(len(items)):
 table_index = self.hashing_function(items[item_index], table_size)
 if self.array_table[table_index] != "":
 print("Collision inserting", items[item_index], "at", table_index)
 # On collision insert in next available space
 while self.array_table[table_index] != "":
 table_index = table_index + 1
 self.array_table[table_index] = items[item_index]
 print("Inserted", items[item_index], "at index", table_index)
 return self.array_table

 def search(self, item_to_find):
 found = False
 index = self.hashing_function(item_to_find, len(self.array_table))
 # Attempt to find item at hash value
 if self.array_table[index] != "":
 if self.array_table[index] == item_to_find:
 found = True
 else:
 # Degrade to linear search for collisions
 while index < len(self.array_table) and not found:
 if self.array_table[index] != item_to_find:
 index = index + 1
 else:
 found = True
 if found:
 print("Item found at position", index)
 else:
 print("Item not found")

Main algorithm starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
The larger the table the fewer collisions
store = HashTable()
table_size = 10
store.create_table(items, table_size)
item_to_find = input("Enter the state to find: ")
store.search(item_to_find)

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

145

Efficiency of a hash table search

Time complexity

Space

complexity
Best

case

Average

case

Worst

case

O(1)

Constant

O(1)

Constant

O(n)

Linear

 O(1)

Constant

On average, the hash table search outperforms a linear or binary search. It does not require the data to be

sorted – instead, it finds the position of an item immediately using a hashing function, resulting in a constant

time complexity of O(1) in both best and average cases.

However, if the item cannot be found immediately because of a collision, linear probing must be used instead

– this results in a time complexity of O(n) because each item must be checked in turn until either the item is

found or the end of the table is reached.

With hash table searching, it is important to use an efficient hashing function that will calculate quickly but

also produce as few collisions as possible – this is often achieved using a larger hash table than required to

store the data, increasing the number of unique positions and reducing the number of possible collisions.

Did you know?

It is also a good idea to swap data items where collisions occur so that the more frequently

searched item is stored in the location determined by the hashing function. This approach

is known as Robin Hood hashing.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

146

Linear search

The linear search finds an item in a sorted or unsorted list. A linear search starts at the first item in the list and

checks each item one by one. Think about searching for a card in a shuffled deck, starting with the top card

and checking each one until you find the card you want.

Applications of a linear search

The linear search is ideal for finding items in small data sets and performing searches with unordered data

such as settings files. It is the easiest searching algorithm to implement but usually the most inefficient.

Linear search in simple-structured English

1. Start at the first item in the list.

2. If the item in the list is the one to be found, the search is complete.

3. If it is not, move to the next item.

4. Repeat from step 2 until the item is found or there are no more items in the list.

5. If the item has been found, output its data. If it has not, output “Not found”.

Visualising a linear search

↓

 ↓

 ↓

 ↓

Did you know?

Linear searches can also be performed on serial files. If you are asked to perform a linear

search on a file, don’t forget to include a line of pseudocode to open the file before the

algorithm and to close the file afterwards – it may be worth a mark.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

147

Stepping through an example of a linear search

Searching for California:

Index: 0 1 2 3 4

Step 1 Start at the first item in the list. Compare California to Florida.

Florida is not the item to be found – move to the next item in the list.

Florida Georgia Delaware Alabama California

Step 2 Compare California to Georgia.

Georgia is not the item to be found – move to the next item in the list.

Florida Georgia Delaware Alabama California

Step 3 Compare California to Delaware.

Delaware is not the item to be found – move to the next item in the list.

Florida Georgia Delaware Alabama California

Step 4 Compare California to Alabama.

Alabama is not the item to be found – move to the next item in the list.

Florida Georgia Delaware Alabama California

Step 5 Compare California to California.

Item found.

Florida Georgia Delaware Alabama California

Five comparisons were required to find the item.

Did you know?

It was once thought that an unstructured search could never perform better than O(n) on

average. However, Grover’s algorithm and later modifications make O(√n) a possibility

with quantum computers.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

148

Pseudocode for the linear search

Function linearSearch(items, item_to_find)

index = 0

found = False

While found == False and index < items.Length

 If items[index] == item_to_find then

found = True

 Else

 index = index + 1

 End If

End while

If found == True then

 Return "Item found at position ", index

Else

 Return "Item not found"

End If

End function

Linear search coded in Python using an array/list

def linear_search(items, item_to_find):
 index = 0
 found = False
 # Check every item until found or until there are no more items to check
 while not found and index < len(items):
 if items[index] == item_to_find:
 found = True
 else:
 index = index + 1
 if found:
 print("Item found at position", index)
 else:
 print("Item not found")

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
item_to_find = input("Enter the state to find: ")
linear_search(items, item_to_find)

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

149

Efficiency of a linear search

Time complexity

Space

complexity
Best

case

Average

case

Worst

case

O(1)

Constant

O(n)

Linear

O(n)

Linear

 O(1)

Constant

A linear search is only efficient on small, unsorted data sets. It is usually inferior to a binary or hash table

search, but it does benefit from not requiring the data to be sorted and has the smallest memory footprint.

In the best case, the item to be found is the first in the data set. In this situation, the linear search performs as

well as a binary search when the first item is in the middle of the list, O(1) – that means the linear search can

perform better than a binary search on very small lists.

In the worst case, the item to be found is last on the list or not in the list at all, so all the items need to be

checked, O(n). Typically, the item to be found will be somewhere in the data set and, as the data set grows,

more searching must be performed. Therefore, the algorithm has a complexity of O(n).

Did you know?

Although inefficient, the linear search is the only option if items need to be found in an

unordered data set.

If certain items are likely to be searched for more frequently, it would also be better to

place them towards the beginning of the list to maximise the efficiency of the algorithm.

When programming a linear search, use a WHILE statement if only one occurrence of an

item needs to be found and a FOR statement if all occurrences need to be found.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

150

Did you know?

Cache is high speed memory located inside the CPU. If the number of items in the data

set is less than 16,000, the entire data set can probably be held in the L1 cache. If the

number of items is less than 64,000, the entire data set can probably be held in the L2

cache.

Even though the linear search is inefficient, it can be performed so quickly that it likely

won’t matter. Any data that can be processed within a couple of hundred milliseconds is

considered small – and you’d be surprised how much data that is with modern processors.

Benchmarks have shown it is possible to execute a linear search on over 10 million items in

less than 200ms.

Many optimisations of algorithms include caching the results of calculations or frequently

required data. If the number of data items is less than 100, the inefficient linear search

executes so quickly that it can be more expensive to store and retrieve the result instead

of searching on demand. Optimisations often only become worthwhile if the algorithm

needs to be run several thousand times.

Modern CPUs have single instruction, multiple data (SIMD) capabilities, enabling parallel

operations where the same instruction can be carried out on multiple memory locations

simultaneously. With just four cores, a small data set for a linear search can become as

many as 200 million data items.

A final consideration when optimising algorithms includes the human factor. Sometimes,

optimising approaches to code can take time and are also more complex than the

solutions they might replace. Premature optimisation has its own cost in terms of

development time.

Even if it is not optimal, any algorithm that can execute quickly is usually good enough,

providing it is not required for critical, real-time applications or maximising frame rate. The

surprising conclusion is that although the linear search is considered inefficient, it is often a

suitable solution.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

151

In summary

Binary search Hash table search Linear search

Items must be in order for the

algorithm to work.

Items do not need to be in order. Items do not need to be in order.

Start at the middle item. Uses a hashing function on the

key to determine the item index.

Start at the first item.

Halve the item set after each

comparison until the item is

found or there are no more items.

Hashing function delivers the

item’s location unless it doesn’t

exist or there is a collision.

Search each item in sequence

until the item is found or there

are no more items to check.

Can be implemented using an

array or binary search tree.

Can be implemented with an

array or list. Used to implement a

dictionary.

Can be implemented using an

array, list or linked objects.

Suitable for a large number of

items and range searches.

Suitable for a large number of

items but not range searches.

Only suitable for a small number

of items.

Requires log2 n + 1 comparisons. Usually requires one comparison

or <n in the worst case.

Requires n comparisons.

 On average, the fastest of the

searching algorithms.

On average, the slowest of the

searching algorithms.

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S

152

SORTING ALGORITHMS
Routines that organise data in fundamental data structures.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

154

Bubble sort

The bubble sort orders a data set by comparing each item with the next one and swapping the items if they are

out of order. Comparing each item with its neighbour until the end of the data set is reached is known as a

pass. If a swap is made at any time during a pass, the algorithm must start again with a new pass until no more

swaps are made. The largest (or smallest) item bubbles up to the end of the data set with each pass.

Applications of a bubble sort

The bubble sort is usually the most inefficient sorting algorithm but easy to implement, so it is a popular choice

for very small data sets. It is ideal for situations that require a simple, easy-to-program sorting algorithm.

Bubble sort in simple-structured English

1. Start at the first item in the list.

2. Compare the current item with the next item.

3. If the two items are in the wrong position, swap them.

4. Move up one item to the next item in the list.

5. Repeat from step 2 until all the unsorted items have been compared.

6. If any items were swapped, repeat from step 1. Otherwise, the algorithm is complete.

Visualising a bubble sort

Pass 1

Pass 2 Pass 3

 ↓ ↓ ↓ ↓ ↓ ↓

 ↓ ↓ ↓ ↓

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

155

Stepping through an example of a bubble sort

Index: 0 1 2 3 4

Step 1 Compare Florida and Georgia – no swap required.

→Florida Georgia Delaware Alabama California

Step 2 Compare Georgia and Delaware – swap the items.

Florida →Georgia Delaware Alabama California

Step 3 Compare Georgia and Alabama – swap the items.

Florida Delaware →Georgia Alabama California

Step 4 Compare Georgia and California – swap the items.

Florida Delaware Alabama →Georgia California

Step 5 Georgia has bubbled to the end of the list.

At least one swap was made, so start the algorithm again.

Compare Florida with Delaware – swap the items.

→Florida Delaware Alabama California Georgia

Step 6 Compare Florida with Alabama – swap the items.

Delaware →Florida Alabama California Georgia

Step 7 Compare Florida with California – swap the items.

Delaware Alabama →Florida California Georgia

Step 8 Florida has bubbled to the end of the list.

At least one swap was made, so start the algorithm again.

Compare Delaware with Alabama – swap the items.

→Delaware Alabama California Florida Georgia

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

156

Step 9 Compare Delaware with California – swap the items.

Alabama →Delaware California Florida Georgia

Step 10 Delaware has bubbled to the end of the list.

At least one swap was made, so start the algorithm again.

Compare Alabama with California – no swap required.

→Alabama California Delaware Florida Georgia

Step 11 No swaps were made – the list is sorted.

Alabama California Delaware Florida Georgia

Pseudocode for the bubble sort

Function bubbleSort(items)

n = items.Length

swapped = True

While n > 0 AND swapped

swapped = False

 n = n - 1

 For index = 0 TO n - 1

If items[index] > items[index+1] then

Swap(items[index], items[index+1])

swapped = True

 End If

 End For

End while

Return items

End function

Did you know?

The bubble sort is also called the sinking sort. Although it is regarded as an inefficient

sorting algorithm, it is a good solution if a data set is almost sorted already. It has an

advantage over the merge sort and quicksort because it can detect when the sort is

complete, making it more efficient in some situations.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

157

Bubble sort coded in Python using an array/list

def bubble_sort(items):
 n = len(items)
 swapped = True
 # Start a new pass until no swap is made
 while n > 0 and swapped:
 swapped = False
 # Last item has bubbled to the top and no longer needs to be checked
 n = n - 1
 # Compare all items except those already sorted
 for index in range(0, n):
 if items[index] > items[index + 1]:
 temp = items[index]
 items[index] = items[index + 1]
 items[index + 1] = temp
 swapped = True
 return items

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
print(bubble_sort(items))

Optimisations

Note that the number of items being compared is reduced by one with each pass. Once items have bubbled to

their correct position, there is no need to compare them again – only items that could potentially be swapped

are considered, making the bubble sort more efficient. However, it will still work if all items are compared in

each pass, albeit less efficiently.

Another feature of the bubble sort is to nest a counter-controlled loop (FOR statement) inside a condition-

controlled loop (WHILE statement) so the algorithm can terminate early if no swaps are made during a pass,

further increasing its efficiency. It will still work with two counter-controlled loops – but again, less efficiently.

Did you know?

There have been attempts to improve the efficiency of the bubble sort – one includes

reversing the direction of the algorithm after each iteration, known as a cocktail sort. The

comb sort is another method that compares non-adjacent items. At best, a comb sort can

perform as well as a quicksort.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

158

Efficiency of a bubble sort

Time complexity

Space

complexity
Best

case

Average

case

Worst

case

O(n)

Linear

O(n2)

Polynomial

O(n2)

Polynomial

 O(1)

Constant

In the best case, the data set is already sorted, in which case, only one pass is required to check all the items

in the list and no swaps will be made, so it is of linear complexity, O(n) – this is not usually the case, as the

purpose of the algorithm is to sort data.

As the algorithm contains a nested loop, it has polynomial time complexity, O(n2), because the time it takes to

execute both iterations increases with the size of the data set.

However, it does not require any additional memory, making it an in-place sort. It can be performed on the data

structure containing the data set, so the space complexity is O(1).

The most efficient method of implementing a bubble sort is to stop the algorithm when no swaps are made.

The bubble sort was ideal in the early days of computing when data was stored on tape drives and computers

had very little RAM. Rewinding and fast-forwarding a tape was so slow that executing a random-access

algorithm was impractical. If possible, you would always want to process data sequentially with no more than

two records at a time being compared.

Did you know?

It is a misconception to assume the bubble sort is always the least efficient sorting

algorithm. There are certain edge-case situations where one algorithm may outperform

another. In the case of the bubble sort, that situation would be when the data set is

already sorted – however, this cannot be known in advance.

Big O notation considers the worst case, where the bubble sort is outperformed by other

algorithms. On the other hand, Big Ω (Omega) considers the best case, where the bubble

sort may have an advantage.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

159

Insertion sort

The insertion sort inserts items into their correct position amongst previously placed items. It is a useful

algorithm for small data sets.

Applications of an insertion sort

The insertion sort is particularly useful for inserting items into an already sorted list. It is usually replaced by

more efficient sorting algorithms for large data sets.

Insertion sort in simple-structured English

1. Start at the second item in the list. This becomes the item to be inserted.

2. Compare the item to be inserted with the next adjacent item to the left.

3. If the adjacent item is greater than the item to be inserted move the adjacent item up one place.

4. Repeat from step 2 until the position of the item to be inserted has been found.

5. Insert the current item.

6. Repeat from step 2 with the next item in the list until all the items have been inserted.

Visualising an insertion sort

 ↓

 ↓

 ↓

The steps of an insertion sort are often visualised in examination mark schemes with a table:

Unsorted: Florida Georgia Delaware Alabama California

Insert Georgia: Florida Georgia Delaware Alabama California

Insert Delaware: Delaware Florida Georgia Alabama California

Insert Alabama Alabama Delaware Florida Georgia California

Insert California: Alabama California Delaware Florida Georgia

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

160

Stepping through an example of an insertion sort

Index: 0 1 2 3 4

Step 1 Start at the second item (index 1): Georgia.

Compare Georgia to Florida. Florida is less than Georgia, so the correct position has been

found. Georgia is inserted.

→Florida Georgia Delaware Alabama California

Step 2 Move to the next item: Delaware. Compare Delaware with Georgia.

Georgia is greater than Delaware, so the position of Delaware has not been found.

Florida →Georgia Delaware Alabama California

Step 3 Move Georgia up. Compare Delaware with Florida.

Florida is greater than Delaware, so the position of Delaware has not been found.

→Florida Georgia Georgia Alabama California

Step 4 Move Florida up. There are no more items to compare.

Delaware is inserted.

→Delaware Florida Georgia Alabama California

Step 5 Move to the next item: Alabama. Compare Alabama with Georgia.

Georgia is greater than Alabama, so the position of Alabama has not been found.

Delaware Florida →Georgia Alabama California

Step 6 Move Georgia up. Compare Alabama with Florida.

Florida is greater than Alabama, so the position of Alabama has not been found.

Delaware →Florida Georgia Georgia California

Step 7 Move Florida up. Compare Alabama with Delaware.

Delaware is greater than Alabama, so the position of Alabama has not been found.

→Delaware Florida Florida Georgia California

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

161

Step 8 Move Delaware up. There are no more items to compare.

Alabama is inserted.

→Alabama Delaware Florida Georgia California

Step 9 Move to the next item: California. Compare California with Georgia.

Georgia is greater than California, so the position of California has not been found.

Alabama Delaware Florida →Georgia California

Step 10 Move Georgia up. Compare California to Florida.

Florida is greater than California, so the position of California has not been found.

Alabama Delaware →Florida Georgia Georgia

Step 11 Move Florida up. Compare California to Delaware.

Delaware is greater than California, so the position of California has not been found.

Alabama →Delaware Florida Florida Georgia

Step 12 Move Delaware up. Compare California to Alabama.

Alabama is less than California, so the correct position has been found. California is inserted.

There are no more items to check – the list is sorted.

→Alabama California Delaware Florida Georgia

Notice the algorithm started at the second item. The first item is assumed to already be inserted into the sorted

list. This is one implementation of the insertion sort. It is possible to write the algorithm in several different

ways. For example, instead of comparing every item with the one before it until the correct position is found,

you could start at the beginning of the list (index 0) and work up to the item to be inserted instead.

Did you know?

There are often many different implementations of the same algorithm. You could also

write the insertion sort to take items from a list and insert them into a new list. When

algorithms move items within the same data structure and do not use additional data

structures for their operation, they are called in-place algorithms.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

162

Pseudocode for the insertion sort

Function insertionSort(items)

For index = 1 TO items.Length

 current = items[index]

index2 = index

While index2 > 0 AND items[index2 -1] > current

items[index2] = items[index2 -1]

index2 = index2 -1

 End while

items[index2] = current

End For

Return items

End function

Insertion sort coded in Python using an array/list

def insertion_sort(items):
 n = len(items)
 # Consider all the items
 for index in range(1, n):
 current = items[index]
 index2 = index
 # Find position and move items down one index to make space for new item
 while index2 > 0 and items[index2 - 1] > current:
 items[index2] = items[index2 - 1]
 index2 = index2 - 1
 # Insert new item in correct position
 items[index2] = current
 return items

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
print(insertion_sort(items))

Did you know?

Sorting algorithms are often combined to achieve maximum performance with a variety

of different data sets.

The binary merge sort uses an insertion sort on groups of 32 elements and completes the

process with a merge sort on the groups. It combines the speed of the insertion sort on

small data sets with the speed of the merge sort on large data sets.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

163

Efficiency of an insertion sort

Time complexity

Space

complexity
Best

case

Average

case

Worst

case

O(n)

Linear

O(n2)

Polynomial

O(n2)

Polynomial

 O(1)

Constant

In the best case, the data set is already ordered, so no data needs to be moved. The algorithm has a linear

time complexity, O(n), because each item must still be checked – this is not usually the case, as the purpose

of the algorithm is to sort data.

The algorithm contains a nested iteration – one loop to check each item and another to move items so an item

can be slotted into place. Due to these iterations, the algorithm has polynomial complexity, O(n2).

The algorithm does not require any additional memory, as it can be performed on the data structure containing

the data set. Therefore, it has a space complexity of O(1).

An alternative version of the algorithm puts sorted data into a new list instead of working on the original list –

this does not change the time complexity of the algorithm but would increase the space complexity to O(n).

Did you know?

Attempts have been made to further optimise the insertion sort. The Shellsort, invented in

1959 by Douglas Shell, was the most notable, achieving significantly better performance.

Another optimisation uses a linked list instead of an array, negating the need to move

items within the data structure.

In 2006, a new variant of the insertion sort was proposed, called the library sort or gapped

insertion sort. This version leaves a small number of unused spaces in the array to avoid

having to move large numbers of items when one is inserted.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

164

Merge sort

A merge sort can sort a data set extremely quickly using divide and conquer. The principle of divide and conquer

is to create two or more identical sub-problems from the larger problem, solve them individually and combine

their solutions to solve the bigger problem. With the merge sort, the data set is repeatedly split in half until

each item is in its own list. Adjacent lists are then merged back together, with each item being entered into the

correct place in the new, combined list.

Applications of a merge sort

The merge sort works best with larger data sets where memory usage is not a concern. It is ideal for parallel

processing environments where the concept of divide and conquer can be used to maximise efficiency.

Merge sort in simple-structured English

The merge sort has two stages, often called the split and merge steps.

Split step:

1. Repeatedly divide each list in half until each item is in its own list.

Merge step:

2. Take two adjacent lists and start with the first item in each one.

3. Compare the two items.

4. Insert the lowest item into a new list. Move to the next item in the list it was taken from.

5. Repeat steps 3 and 4 until all the items from one of the lists have been put into the new list.

6. Append all the items from the list still containing items to the new list.

7. Replace the two adjacent lists with the one new list.

8. Repeat from step 2 until only one list remains.

When programming this algorithm using iteration, step 1 can be achieved by putting each item into a new list

one at a time – a simple optimisation that is worth implementing. However, in examinations, you should show

that the data set is repeatedly split until each item is in its own list.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

165

Visualising a merge sort

 ↙ ↘

↙ ↘ ↙ ↘

 ↘ ↙ ↘ ↙

 ↘ ↙

Unlike the bubble and insertion sort, the classic merge sort is not an in-place algorithm. It requires additional

memory beyond that which is used to store the data to perform its operation. Although this is a significant

disadvantage, it does enable multiple processors to work on different parts of the data set at the same time,

significantly increasing the algorithm’s performance and enabling it to perform better with larger data sets.

Did you know?

The merge sort is very expensive in terms of space complexity because it repeatedly

creates new lists. Most optimisations have explored reducing the amount of memory the

algorithm requires.

Although the merge sort usually includes the splitting and merging of new, separate lists, it

is also possible to write the algorithm to execute within one structure. A smaller amount of

additional memory is used as a temporary space outside of the merge routine.

Jyrki Katajainen proved it is possible to write a variation of the classic merge sort with O(1)

space.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

166

Stepping through an example of a merge sort

Index: 0 1 2 3 4

Step 1

Split

Divide the list in half to create two smaller lists.

Florida Georgia Delaware Alabama California

Step 2

Split

Divide the two lists in half to create four smaller lists.

Florida Georgia Delaware Alabama California

Step 3

Split

Divide the four lists to create five lists.

Florida Georgia Delaware Alabama California

Step 4

Merge

Compare the first items in two lists: Florida and Georgia are in the correct order.

Copy Florida into a new list. Copy Georgia into the list.

→Florida Georgia Delaware Alabama California

New list Florida Georgia

Step 5

Merge

Compare the first items in two lists: Alabama and Delaware are in the correct order.

Copy Alabama into a new list. Copy Delaware into the list.

Florida Georgia →Alabama Delaware California

New lists Florida Georgia Alabama Delaware

Step 6

Merge
No list to compare California with.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

167

Step 7

Merge

Compare the first items in two lists: Florida and Alabama.

Copy Alabama into a new list. Move to the next item in that list.

→Florida Georgia Alabama Delaware California

New lists Alabama

Step 8

Merge

Compare Florida to Delaware.

Copy Delaware into the new list. There are no more items in that list.

→Florida Georgia Alabama Delaware California

New list Alabama Delaware

Step 9

Merge
Copy all the items from the other list into the new list.

New list Alabama Delaware Florida Georgia

Step 10

Merge

Compare the first item in two lists: Alabama and California.

Copy Alabama into a new list. Move to the next item in that list.

→Alabama Delaware Florida Georgia California

New list Alabama

Step 11

Merge

Compare the first item in two lists: Delaware and California.

Copy California into a new list. There are no more items in that list.

Alabama →Delaware Florida Georgia California

New list Alabama California

Step 12

Merge
Copy all the items from the other list into the new list.

New list Alabama California Delaware Florida Georgia

When only one list remains, the items are sorted.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

168

Pseudocode for the merge sort

Function mergeSort(items)

listofitems = []

item = []

For n = 0 TO items.Length - 1

 item = items[n]

 listofitems.append(item)

Next n

While listofitems.Length != 1

 index = 0

 While index < listofitems.Length - 1

 newlist = merge(listofitems[index],listofitems[index+1])

 listofitems[index] = newlist

 del listofitems[index+1]

 index = index + 1

 End while

End while

return listofitems

End function

Function merge(list1,list2)

 newlist = []

 index1 = 0

 index2 = 0

 While index1 < list.Length and index2 < list2.Length

 If list1[index1] > list2[index2] Then

 newlist.append list2[index2]

 index2 = index2 + 1

 ElseIf list1[index1] < list2[index2] Then

 newlist.append list1[index1]

 index1 = index1 + 1

 ElseIf list1[index1] == list2[index2] Then

 newlist.append list1[index1]

 newlist.append list2[index2]

 index1 = index1 + 1

 index2 = index2 + 1

 End If

 End While

 If index1 < list1.Length Then

 For item = index1 to list1.Length

 newlist.append list1[item]

 Next item

 ElseIf index2 < list2.Length Then

 For item = index2 to list2.Length

 newlist.append list2[item]

 Next item

 End If

 Return newlist

End Function

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

169

Merge sort coded in Python using arrays/lists and iteration

def merge_sort(items):
 # Split step
 items_list = split(items)

 # Merge step
 while len(items_list) != 1:
 index = 0
 # Merge pairs of lists
 while index < len(items_list) - 1:
 new_list = merge(items_list[index], items_list[index + 1])
 items_list[index] = new_list
 # Once merged, delete one of the now redundant lists
 del items_list[index + 1]
 index = index + 1
 return items_list[0]

def split(items):
 # Every item is put into its own list within a container list
 list_of_items = []
 for n in range(len(items)):
 item = [items[n]]
 list_of_items.append(item)
 return list_of_items

def merge(list1, list2):
 # Merge two lists into a new list
 new_list = []
 index1 = 0
 index2 = 0
 # Check each item in each list, and add the smallest item to a new list
 while index1 < len(list1) and index2 < len(list2):
 if list1[index1] > list2[index2]:
 new_list.append(list2[index2])
 index2 = index2 + 1
 elif list1[index1] < list2[index2]:
 new_list.append(list1[index1])
 index1 = index1 + 1
 elif list1[index1] == list2[index2]:
 new_list.append(list1[index1])
 new_list.append(list2[index2])
 index1 = index1 + 1
 index2 = index2 + 1

 # Add left over items from the remaining list
 if index1 < len(list1):
 for item in range(index1, len(list1)):
 new_list.append(list1[item])
 elif index2 < len(list2):
 for item in range(index2, len(list2)):
 new_list.append(list2[item])

 return new_list

Main algorithm starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
print(merge_sort(items))

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

170

An alternative implementation using recursion

While it is more memory-efficient to implement the merge sort using iteration alone, the algorithm can be

optimised for parallel processing using recursion.

A merge sort coded in Python using arrays/lists and recursion

def mergeSort(items):
 # Split step
 if len(items) > 1:
 mid = len(items) // 2
 list1 = items[:mid]
 list2 = items[mid:]

 mergeSort(list1)
 mergeSort(list2)

 index1 = 0
 index2 = 0
 items_index = 0

 # Merge step
 while index1 < len(list1) and index2 < len(list2):
 if list1[index1] < list2[index2]:
 items[items_index] = list1[index1]
 index1 = index1 + 1
 else:
 items[items_index] = list2[index2]
 index2 = index2 + 1
 items_index = items_index + 1

 while index1 < len(list1):
 items[items_index] = list1[index1]
 index1 = index1 + 1
 items_index = items_index + 1

 while index2 < len(list2):
 items[items_index] = list2[index2]
 index2 = index2 + 1
 items_index = items_index + 1
 return items

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
print(mergeSort(items))

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

171

Efficiency of a classic merge sort

Time complexity

Space

complexity
Best

case

Average

case

Worst

case

O(n log n)

Linearithmic

O(n log n)

Linearithmic

O(n log n)

Linearithmic

 O(n)

Linear

In all cases, the data in a merge sort needs to be manipulated so each item is in its own list. The time this takes

will increase with more data, as will the memory requirements, O(n). However, by using a divide-and-conquer

algorithm, the data set can be repeatedly divided, O(log n).

When the lists are merged back together, it is possible to merge more than one list simultaneously, although

each item in the list needs to be considered in turn to determine its position in the new list. Therefore, the

algorithm has a linearithmic time complexity, O(n log n), and a space complexity of O(n).

Did you know?

The merge sort was extremely popular in the early days of computing because the

algorithm could be run on multiple tape drives. Modern solid-state drives and magnetic

hard disks allow for any item of data on the drive to be randomly accessed. However,

with tape drives, data could only be accessed serially, one item at a time.

The linear nature of the merge sort makes it ideal for drives such as tape that can only

be efficiently read and written forwards.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

172

Quicksort

As its name suggests, the quicksort orders a data set extremely quickly using divide and conquer. The principle

of divide and conquer is to create two or more identical, smaller sub-problems from the larger problem, solve

them individually and combine their solutions to solve the bigger problem. There are many different

implementations of the quicksort, which can be confusing, but they all share two common features identifying

the algorithm as a quicksort:

1. A pivot – a single item in the data set that all other items are compared to.

2. Partitioning step – an algorithm that swaps items so that, after each pass, items less than the pivot are

placed to its left and items greater than the pivot are placed to its right.

A typical data set after one pass of a quicksort:

9 12 6 20 33 25 47

Values less than the pivot Pivot Values greater than the pivot

The algorithm is called recursively on the set of values to the left of the pivot first and then the values to the

right until the complete data set is sorted.

The choice of pivot and partitioning step can make a significant difference to the efficiency of the algorithm.

Any item in the data set can be chosen as the pivot, although typically, it is either the first item (Hoare scheme),

the last item (Lomuto scheme), the middle item or a random item. Middle and random items are often swapped

with the first item before the algorithm begins so the pivot is always the first item in the list.

The quicksort has been continually evolving since its publication by Tony Hoare in 1961, and many different

partition schemes are used today. These include finding the median for the pivot, sub-dividing the data set into

smaller data sets first, the dual pivot and three pivots. In this book, we will explore three simple approaches,

but you will only need to be familiar with one for examinations.

Applications of a quicksort

The quicksort is suitable for any data set but shines with larger data sets. It is ideal for parallel processing

environments where the concept of divide and conquer can be used. Typically found in real-time situations due

to its efficiency, the quicksort has applications in medical monitoring, life support systems, aircraft controls

and defence systems.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

173

Hoare scheme in simple-structured English

A pivot item is chosen, against which other items will be compared – this is usually the first item in the list, but

it can be any item including the last item or even a random item. Two pointers are each compared with the

pivot in turn until the correct position for the pivot is determined. The algorithm is then repeated recursively on

the items to the left and right of this position.

This approach can be described with the following steps:

1. Set the pivot value as the first item in the list.

2. Set a pointer to the second and last items in the list.

3. While the second pointer is greater than or equal to the first pointer:

a. While the first pointer is less than or equal to the second pointer and the item at the first pointer

is less than or equal to the pivot value, increase the first pointer by one.

b. While the second pointer is greater than or equal to the first pointer and the item at the second

pointer is greater than or equal to the pivot, decrease the second pointer by one.

c. If the second pointer is greater than the first pointer, swap the items.

4. Swap the pivot value with the item at the second pointer.

5. Repeat from step 1 on the list of items to the left of the second pointer.

6. Repeat from step 1 on the list of items to the right of the second pointer.

Did you know?

Many sources present the quicksort using only one of the popular algorithms. This can be

confusing when you compare this to examination mark schemes that may be using an

alternative quicksort scheme. Be aware there is more than one valid approach to a

quicksort.

In 2009, Vladimir Yaroslavskiy proposed a new implementation of the quicksort that used

two pivots instead of one. At the time, Java was using a variant of the quicksort created

by Jon Bentley and Doug McIlroy in the 1990s. After extensive performance tests,

Yaroslavskiy proved beyond doubt that his implementation was superior, and it is now the

default sorting algorithm for Java.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

174

Visualising one pass of the Hoare scheme

Step 3a: Position the first pointer in relation to the pivot. Move up the data set until an item greater than the

pivot is found.

↓ ↓

↓ ↓

↓ ↓

Step 3b: Position the second pointer in relation to the pivot. Move down the data set until an item less than

the pivot is found:

↓ ↓

↓ ↓

Step 3c and 4: Set the position of the pivot by swapping the item at the pivot with the item at the position of

the second pointer:

↓ ↓

Repeat on all the items to the left of the pivot first and then all the items to the right of the pivot until all items

are in the correct position.

< < >

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

175

Stepping through an example of the Hoare scheme

Index: 0 1 2 3 4

Step 1 Set the pivot to the first item. Set pointers to indexes 1 and 4.

Florida →Georgia Delaware Alabama California

Step 2 Consider the first pointer: Georgia is greater than Florida. First pointer finished.

Florida →Georgia Delaware Alabama California

Step 3 Consider the second pointer: California is less than Florida. Second pointer finished.

Florida →Georgia Delaware Alabama California

Step 4 The second pointer is greater than the first pointer, so swap the items.

Florida →California Delaware Alabama Georgia

Step 5 The second pointer is greater than the first pointer, so consider the first pointer again.

Consider the first pointer: California is less than Florida. Increment the first pointer.

Florida →California Delaware Alabama Georgia

Step 6 Consider the first pointer: Delaware is less than Florida. Increment the first pointer.

Florida California →Delaware Alabama Georgia

Step 7 Consider the first pointer: Alabama is less than Florida. Increment the first pointer.

Florida California Delaware →Alabama Georgia

Step 8 Consider the first pointer: Georgia is greater than Florida. First pointer finished.

Florida California Delaware Alabama →Georgia

Step 9 Consider the second pointer: Georgia is greater than Florida. Decrement the second pointer.

Florida California Delaware Alabama →Georgia

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

176

Step 10 Consider the second pointer: Alabama is less than Florida. Second pointer finished.

Florida California Delaware Alabama →Georgia

Step 11 The second pointer is not greater than the first pointer.

Swap the pivot item with the item at the second pointer.

Alabama California Delaware Florida →Georgia

Step 12 Quicksort the items to the left of the second pointer.

Set the pivot to the first item. Set pointers to indexes 1 and 2.

Alabama →California Delaware Florida Georgia

Step 13 Consider the first pointer: California is greater than Alabama. First pointer finished.

Alabama →California Delaware Florida Georgia

Step 14 Consider the second pointer: Delaware is greater than Alabama. Decrement the second pointer.

Alabama →California Delaware Florida Georgia

Step 15 Consider the second pointer: California is greater than Alabama. Decrement the second pointer.

Alabama →California Delaware Florida Georgia

Step 16 The second pointer is less than the first pointer.

Swap the pivot item with the item at the second pointer. (No change)

Alabama →California Delaware Florida Georgia

Step 17 Quicksort the items to the left of the second pointer. There are none.

Quicksort the items to the right of the second pointer.

Set the pivot to the first item. Set pointers on indexes 2 and 2.

Alabama California →Delaware Florida Georgia

Step 18 Consider the first pointer: Delaware is greater than California. First pointer finished.

Alabama California →Delaware Florida Georgia

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

177

Step 19 Consider the second pointer: Delaware is greater than California. Decrement the second pointer.

Alabama California →Delaware Florida Georgia

Step 20 The second pointer is less than the first pointer.

Swap the pivot item with the item at the second pointer. (No change)

Alabama California →Delaware Florida Georgia

Step 21 Quicksort the items to the left of the second pointer – there are none.

Quicksort the items to the right of the second pointer. Delaware is the only item in the list.

Alabama California Delaware Florida Georgia

Step 22 Continue the algorithm from step 11 before the recursive calls.

Quicksort the items to the right of the second pointer. Georgia is the only item in the list.

Alabama California Delaware Florida Georgia

Pseudocode for the Hoare scheme

Function quicksort(list)

 If items.Length <= 1 Then Return items

 pointer1 = 1

 pointer2 = items.Length – 1

 pivot = items[0]

 While pointer2 >= pointer1

 While pointer1 <= pointer2 And items[pointer1] <= pivot

 pointer1 = pointer1 + 1

 End While

 While pointer2 >= pointer1 And items[pointer2] >= pivot

 pointer2 = pointer2 – 1

 End While

 If pointer2 > pointer1 Then Swap(items[pointer1],items[pointer2])

 End While

 Swap(pivot,items[pointer2])

 left = quicksort(items[0 to pointer2])

 right = quicksort(items[pointer2 + 1 to items.Length])

 Return left + items[pointer2] + right

End Function

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

178

Hoare scheme coded in Python using an array/list

def quicksort(items):
 # A single item does not need sorting
 if len(items) <= 1:
 return items
 else:
 # Set the two pointer positions and pivot to be the first item
 pointer1 = 1
 pointer2 = len(items) - 1
 pivot_value = items[0]
 # Partitioning step
 while pointer2 >= pointer1:
 # Move first pointer
 while pointer1 <= pointer2 and items[pointer1] <= pivot_value:
 pointer1 = pointer1 + 1
 # Move second pointer
 while pointer2 >= pointer1 and items[pointer2] >= pivot_value:
 pointer2 = pointer2 - 1
 # Swap items
 if pointer2 > pointer1:
 temp = items[pointer1]
 items[pointer1] = items[pointer2]
 items[pointer2] = temp
 # Put pivot item in position
 temp = items[0]
 items[0] = items[pointer2]
 items[pointer2] = temp

 # Divide and conquer left and right of the pivot
 left = quicksort(items[0:pointer2])
 right = quicksort(items[pointer2 + 1:len(items)])
 return left + [items[pointer2]] + right

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
print(quicksort(items))

There are many variations of this algorithm, but what identifies it as a Hoare scheme are the two condition-

controlled iterations in the partitioning step. One pointer increments up the data set, while a second pointer

decrements down the data set.

Did you know?

If you choose three random elements from the data set, select the median of the three

and swap it with the rightmost element, you will have improved the chance of an optimal

pivot to 68 percent. Take the median of five random elements, and the chance increases

to 79 percent. Seven random items, and it’s 90 percent! That’s because the best-case

scenario for a quicksort is to have half the elements on either side of the pivot.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

179

Lomuto scheme in simple-structured English

The Lomuto scheme is a popular alternative quicksort algorithm. It does not perform as well as the Hoare

scheme, as it swaps more items than necessary, which is computationally slow. However, many consider it

easier to understand because it only uses a single counter-controlled iteration in the partitioning step.

This approach can be described with the following steps:

1. Set the pivot value as the last item in the list.

2. Set a pointer to the first item in the list.

3. For every item in the list:

a. If the item is less than the pivot:

i. swap the item with the item at the pointer.

ii. Increment the pointer.

4. Swap the pivot with the item at the pointer.

5. Repeat from step 1 on the list of items to the left of the pointer.

6. Repeat from step 1 on the list of items to the right of the pointer.

Did you know?

The quicksort was invented by Tony Hoare while he was a student in the Soviet Union.

He was working on a machine translation project and needed to sort Russian words before

looking them up in an English-Russian dictionary. Having initially developed the insertion

sort, he realised it was too slow and developed the quicksort instead.

When back in England, Tony Hoare was asked to write code for a Shellsort by his boss and

placed a bet that his sorting algorithm was the fastest. His boss coded the quicksort – and

Tony won a sixpence!

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

180

Visualising one pass of the Lomuto scheme

Step 3: The pivot is always the last item. The pink arrow represents the counter-controlled FOR loop. The black

arrow is the pointer, which increments only after the item at the pink arrow is less than the pivot.

↓

↓ ↓

 ↓

↓ ↓

 ↓

 ↓ ↓

 ↓

 ↓ ↓

 ↓

 ↓ ↓

Step 4: At the end of the iteration, swap the pivot with the item at the pointer.

 ↓

 ↓ ↓

Repeat on all the items to the left of the pivot first and then all the items to the right of the pivot until all the

items are in the correct position.

< > >

Did you know?

The quicksort can also be visualised as a binary tree. Each node is a pivot for the child

nodes below it.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

181

Stepping through an example of the Lomuto scheme

Index: 0 1 2 3 4

Step 1 Set the pivot to the last item. Set both the pointer and counter to index 0.

→Florida Georgia Delaware Alabama California

Step 2 Consider the item at the counter. Florida is greater than California – no swap is required.

Increment the counter.

→Florida Georgia Delaware Alabama California

Step 3 Consider the item at the counter. Georgia is greater than California – no swap is required.

Increment the counter.

→Florida Georgia Delaware Alabama California

Step 4 Consider the item at the counter. Delaware is greater than California – no swap is required.

Increment the counter.

→Florida Georgia Delaware Alabama California

Step 5 Consider the item at the counter. Alabama is less than California – swap the items

at the pointer and counter. Increment the pointer. Increment the counter.

→Florida Georgia Delaware Alabama California

Step 6 The end of the list is reached.

Alabama →Georgia Delaware Florida California

Step 7 Swap the pivot with the item at the pointer.

Alabama →California Delaware Florida Georgia

Step 8 Quicksort the items to the left of the pivot. Alabama is the only item.

Quicksort the items to the right of the pivot.

Alabama California →Delaware Florida Georgia

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

182

Step 9 Consider the item at the counter. Delaware is less than Georgia – swap the items

at the pointer and counter – they are the same. Increment the pointer. Increment the counter.

Alabama California →Delaware Florida Georgia

Step 10 Consider the item at the counter. Florida is less than Georgia – swap the items at the pointer and

counter – they are the same. Increment the pointer. Increment the counter.

Alabama California Delaware →Florida Georgia

Step 11 The end of the list is reached.

Alabama California Delaware Florida →Georgia

Step 12 Swap the pivot with the item at the pointer – they are the same.

Alabama California Delaware Florida →Georgia

Step 13 Quicksort the items to the left of the pivot.

Quicksort the items to the right of the pivot – no items.

Alabama California →Delaware Florida Georgia

Step 14 Consider the item at the counter. Delaware is less than Florida – swap the items

at the pointer and counter – they are the same. Increment the pointer. Increment the counter.

Alabama California →Delaware Florida Georgia

Step 15 The end of the list is reached.

Alabama California Delaware →Florida Georgia

Step 16 Swap the pivot with the item at the pointer – they are the same.

Alabama California Delaware →Florida Georgia

Step 17 Quicksort the items to the left of the pivot. Delaware is the only item.

Quicksort the items to the right of the pivot – no items.

Alabama California Delaware Florida Georgia

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

183

Pseudocode for the Lomuto scheme

Function quicksort(list)

 If items.Length <= 1 Then Return items

 pointer2 = 0

 pivot = items[items.Length -1]

 For pointer1 = 0 TO items.Length - 1

 If items[pointer1] < pivot then

 Swap(items[pointer1], items[pointer2])

 pointer2 = pointer2 + 1

 End If

 End For

 Swap(pivot, items[pointer2])

 left = quicksort(items[0 to pointer2])

 right = quicksort(items[pointer2 + 1 to items.Length])

 Return left + items[pointer2] + right

End Function

Lomuto scheme coded in Python using an array/list

def quicksort(items):
 # A single item does not need sorting
 if len(items) <= 1:
 return items
 else:
 # Set the pointer position and pivot to be the last item
 pointer2 = 0
 pivot_value = items[len(items) - 1]
 # Partitioning step
 for pointer1 in range(0, len(items) - 1):
 if items[pointer1] < pivot_value:
 temp = items[pointer2]
 items[pointer2] = items[pointer1]
 items[pointer1] = temp
 pointer2 = pointer2 + 1
 # Put pivot item in position
 temp = items[pointer2]
 items[pointer2] = pivot_value
 items[len(items) - 1] = temp

 # Divide and conquer left and right of the pivot
 left = quicksort(items[0:pointer2])
 right = quicksort(items[pointer2 + 1:len(items)])
 return left + [items[pointer2]] + right

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
print(quicksort(items))

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

184

Lomuto variant in simple-structured English

An adaptation of the Lomuto scheme was demonstrated as a Hungarian folk dance by a dance group at

Romania’s Sapientia University and has appeared in examination mark schemes.

Although the coded solution appears more complex, it is perhaps even easier to understand because it only

uses one pointer and a pivot. Two items are compared and, if necessary, swapped. The pointer starts at the

first item and always moves towards the pivot. If the pointer is less than the pivot, it moves to the right. If the

pointer is greater than the pivot, it moves to the left. Once the pointer has reached the pivot, the position of

the pivot has been found. This approach can be described with the following steps:

1. Set a pointer to the first item and set the pivot to be the last item in the list.

2. While the pointer is not equal to the pivot:

a. If the items are in the wrong order, swap the item with the pivot.

b. Move the pointer one index towards the pivot. (Note: This could be a move left or right.)

3. Repeat from step 1 on the list of items to the left of the pointer.

4. Repeat from step 1 on the list of items to the right of the pointer.

Visualising one pass of the Lomuto variant

Step 2: Compare the items at opposite ends and swap them if necessary:

↓ ↓

 ↓ ↓

 ↓ ↓

 ↓ ↓

 ↓

 ↓

Repeat on all the items to the left of the pivot first and then all the items to the right of the pivot until all the

items are in the correct position.

< > >

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

185

Stepping through an example of the Lomuto variant

Index: 0 1 2 3 4

Step 1 Set the pointer to index 0 and set the pivot to be the last item.

→Florida Georgia Delaware Alabama California

Step 2 Compare Florida and California. Florida is greater than California – swap them over.

→Florida Georgia Delaware Alabama California

Step 3 Move the pointer towards the pivot.

California Georgia Delaware →Alabama Florida

Step 4 Compare Alabama with California. Alabama is less than California – swap them over.

California Georgia Delaware →Alabama Florida

Step 5 Move the pointer towards the pivot.

Alabama →Georgia Delaware California Florida

Step 6 Compare Georgia with California. Georgia is greater than California – swap them over.

Alabama →Georgia Delaware California Florida

Step 7 Move the pointer towards the pivot.

Alabama California →Delaware Georgia Florida

Step 8 Compare Delaware with California. Delaware is greater than California – no swap required.

Alabama California →Delaware Georgia Florida

Step 9 Move the pointer towards the pivot.

Alabama →California Delaware Georgia Florida

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

186

Step 10 The pointer is at the pivot.

Quicksort items to the left of the pivot. Alabama is the only item.

Quicksort items to the right of the pivot.

Alabama California Delaware Georgia Florida

Step 11 Set the pointer to index 2 and set the pivot to be the last item.

Alabama California →Delaware Georgia Florida

Step 12 Compare Delaware with Florida. Delaware is less than Florida – no swap required.

Alabama California →Delaware Georgia Florida

Step 13 Move the pointer towards the pivot.

Alabama California Delaware →Georgia Florida

Step 14 Compare Georgia with Florida. Georgia is greater than Florida – swap them over.

Alabama California Delaware →Georgia Florida

Step 15 Move the pointer towards the pivot.

Alabama California Delaware →Florida Georgia

Step 16 The pointer is at the pivot.

Quicksort items to the left of the pivot. Delaware is the only item.

Quicksort items to the right of the pivot. Georgia is the only item.

Alabama California Delaware Florida Georgia

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

187

Pseudocode for the Lomuto variant

Function quicksort(items)

If items.Length <= 1 Then Return items

 pointer = 0

pivot = items.Length – 1

 While pointer != pivot

If (items[pointer] > items[pivot] and pointer < pivot)
Or (items[pointer] < items[pivot] and pointer > pivot) Then

 Swap(items[pointer], items[pivot])
 Swap(pointer, pivot)

 End If

 If pointer < pivot Then

 pointer = pointer + 1

 Else

 pointer = pointer – 1

 End If

End While

 left = quicksort(items[0 to pointer])

 right = quicksort(items[pointer + 1 to items.Length])

 Return left + items[pointer] + right

End Function

Lomuto variant coded in Python using an array/list

def quicksort(items):
 # A single item does not need sorting
 if len(items) <= 1:
 return items
 else:
 # Set the pointer position and pivot to be the last item
 pointer = 0
 pivot = len(items) - 1
 # Partitioning step
 while pointer != pivot:
 # Put pivot item in position
 if (items[pointer] > items[pivot] and pointer < pivot) or (
 items[pointer] < items[pivot] and pointer > pivot):
 temp = items[pointer]
 items[pointer] = items[pivot]
 items[pivot] = temp
 temp_pointer = pointer
 pointer = pivot
 pivot = temp_pointer
 # Move the pointer
 if pointer < pivot:
 pointer = pointer + 1
 else:
 pointer = pointer - 1

 # Divide and conquer left and right of the pivot
 left = quicksort(items[0:pointer])
 right = quicksort(items[pointer + 1:len(items)])
 return left + [items[pointer]] + right

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

188

Main program starts here
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"]
print(quicksort(items))

Efficiency of a quicksort

Time complexity

Space

complexity
Best

case

Average

case

Worst

case

O(n log n)

Linearithmic

O(n log n)

Linearithmic

O(n2)

Polynomial

 O(log n)

Logarithmic

Once the position of the pivot is found, the quicksort divides the list in half and recursively sorts each of the

sub-lists, making it ideal for parallel processing.

Dividing the data set in this way provides a linearithmic time complexity, O(n log n). It is unlikely that the data

set will be divided equally in half, but in the worst case, the pivot will always be the first or last item and the

time complexity becomes polynomial, O(n2). At best, the data set will be divided equally, resulting in linearithmic

complexity, O(n log n). On average, the position of the pivot item will be somewhere between the first and last

item in the data set, and the time complexity will average out.

The code examples presented here are not memory-efficient because they create new lists for each recursive

call. Implementing the algorithm in this way increases the space complexity but makes the algorithm easier to

code and understand. An alternative approach would be to use the same data set, passing the pointers as

parameters to the quicksort function, not the data structure.

However, any recursive algorithm – even if it does not create new data sets – will require a call stack, so the

space complexity is still considered O(log n), not O(1).

Using the first item as a pivot is often a bad choice for data that is not in a random order because the item at

the beginning of a data set is often a small one. In this situation, the number of swaps is increased, so the

algorithm is more likely to be O(n2). A random pivot is more likely to achieve O(n log n) performance.

One method of further optimising the quicksort is to recognise when the number of items in the data set is

small and switch to an algorithm that is better suited to small data sets such as an insertion sort.

The quicksort is often considered more efficient than a merge sort due to requiring less memory than a typical

recursive merge sort implementation.

One of the goals of a good sorting algorithm is to not change the order of items that are the same. Moving

items unnecessarily is called instability and is a weakness of the quicksort.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

189

Did you know?

Nico Lomuto’s partition scheme is generally considered to be less efficient than Tony

Hoare’s algorithm because it may perform unnecessary swaps – three times as many, on

average.

Did you know?

In 1987, Tony Hoare met Nico Lomuto at the Continental Club in Austin, Texas.

“Listen, Tony,” Nico said as the chit chat petered off, “about that partitioning algorithm. I never

meant to publish or—”

“Oh yes, yes, the partitioning algorithm”, interrupted Tony.

“Yeah, that partitioning algorithm that keeps on getting mentioned together with yours. I’m not

much of an algorithms theorist… the bothersome part about it is that it’s not even a better

algorithm. My partitioning scheme will always do the same number of comparisons and at least

as many swaps as yours. In the worst case, mine does n additional swaps — n! I can’t understand

why they keep on mentioning the blessed thing. It’s out of my hands now. I can’t tell them what

algorithms to teach and publish.”

“I understand, Nico. Yet please consider the following. Your algorithm is simple and regular, moves

in only one direction, and does at most one swap per step. That may be appropriate for some

future machines that…”

“No matter the machine, more swaps can’t be better than fewer swaps. It’s common sense,”

Nico replied.

“I would not be so sure. Computers do not have common sense. Computers are surprising. It

stands to reason they’ll continue to be.”

dlang.org/blog/2020/05/14/lomutos-comeback/

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

190

Why are there so many sorting algorithms?

It is easy to jump to the conclusion that there must be a “best” sorting algorithm. While it is true that sorting

algorithms have developed over time and research is still ongoing today, there is no perfect sorting algorithm.

Each algorithm’s performance depends on the data set it is being applied to.

When writing algorithms, there are four significant factors to consider:

1. The processing architecture. Parallel processors usually execute more efficiently than single

processors. If a data set can be divided and the same algorithm applied to each sub-set of data, it is

well-suited to parallelism. Good examples of this are the merge sort and quicksort, which take

advantage of divide and conquer and work best with large, unsorted data sets.

2. The memory footprint. The amount of memory an algorithm has to work with can be a limiting factor. In

computer science, there is often a balance between the efficiency of processing and the efficiency of

memory. In the past, memory was a significant limiting factor and programmers would strive to save

every byte they could. In the past, computers had only kilobytes of memory to store the operating

system, as well as programs and data – today, we have gigabytes. Algorithms that perform well in a

defined memory space include the bubble sort and insertion sort.

3. The volume of code. More efficient algorithms often require more complex code – this is difficult to

write for novice programmers and requires more memory to store. Sometimes, the speed of execution

is not the most important factor. A good example of this is the bubble sort, which is easy to write,

requires very few lines of code and works on all storage media.

4. The state and size of the data set. Some algorithms that are often less efficient can outperform others

if the data set is already partially sorted. A good example is the bubble sort, which can outperform a

quicksort on a partially sorted list but is quickly beaten if the data set is large and random.

A great exercise is to take the code for each algorithm in this book and apply it to different types of data sets

to see how the speed of execution is affected. Different data sets might include ordered, reverse-ordered,

random, small and large volumes of data.

 Did you know?

In 2001, recognising that no one algorithm is best, Tim Peters invented the Timsort, which is

used by the Python sort() method. It is now the default algorithm in Java and across the

Android platform. The Timsort is different from other algorithms in that it pre-processes the

data to compute which algorithm would be most efficient before applying it. If the array

or list has less than 64 elements, it uses an insertion sort. If the data set has more than 64

elements, it uses a variation of a merge sort.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

191

In summary

Bubble sort Insertion sort Merge sort Quicksort

Adjacent items are

compared and swapped

if they are out of order.

Each item is compared

to every other item from

the start until its place

is found.

Items in one list are

compared to items in

another list to create a

new list.

Items are compared to

a pivot.

Uses a nested iteration. Uses a nested iteration. Uses either a nested

iteration or recursion.

Uses either a nested

iteration or recursion.

Slow. Slow. Quick. Quick.

Suitable for a small

number of items.

Suitable for a small

number of items.

Suitable for a large

number of items.

Suitable for a large

number of items.

Easy to program. Easy to program. More difficult to

program.

More difficult to

program.

Known memory

footprint. In-place

algorithm.

Known memory

footprint. In-place

algorithm.

Memory footprint can

increase as the

algorithm executes.

Classic implementation

is not an in-place

algorithm.

Memory footprint can

increase as the

algorithm executes.

Can be an in-place

algorithm depending on

the implementation.

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S

192

OPTIMISATION ALGORITHMS
Routines that find optimal paths between vertices on a graph.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

194

A* pathfinding

The A* algorithm finds the shortest path between two vertices on a weighted graph using a heuristic. It performs

better than Dijkstra’s algorithm because not every vertex is considered. Instead, an optimal path is followed

towards the goal. A* is an example of a best-first search algorithm.

To avoid the need to consider every vertex, a heuristic estimates the cost of the path between adjacent vertices

and the goal. It then follows this path. It is important that the heuristic is admissible by not over-estimating the

cost, thereby choosing an incorrect vertex to move to next and ultimately taking a longer path to the goal. The

vertices being considered are referred to as the fringe, frontier or border. The usefulness of the A* algorithm

is determined by the suitability of the heuristic.

About heuristics

In addition to the cost of each edge, you might be able to calculate the distance

between a vertex and the goal, represented by the dotted lines in Figure 1. This

additional data, called the heuristic, allows you to determine that B is closer to

the goal than C or D. Therefore, B is the vertex that should be followed, even

though the cost from A to B is higher than the cost from A to C or A to D. When

determining the shortest path, the cost is added to the heuristic to determine the

best path. It is worth noting that the calculation of the heuristic does not need to

be accurate, it just needs to deliver an admissible result.

Consider a video game where we want to maximise

the frames per second by reducing the number of

operations to be performed in a specific amount of

time. In Figure 2, a character at position S (10,2 on

the screen) is required to travel to E (8,16). A heuristic measuring the distance

between S and E could be calculated using Pythagoras’ theorem on the right-angle

triangle: √22 + 142 = 14.142

However, simply adding the two sides (a and o) requires fewer processing cycles

but still delivers a useful result (2 + 14 = 16). We have used the Manhattan

distance (the sum of the opposite and adjacent) to estimate h instead of the

accurate Euclidian distance (hypotenuse). Estimating results in this way – where

only a best guess matters – is called a heuristic in computer science.

Although the heuristic could potentially be calculated in advance for each

vertex, it is usually only calculated as needed to maximise the efficiency of the algorithm.

4 2
3

4

2

B

F

A

D

E

C

G

2

10

5

Figure 1 S

E

x = 10
y = 2

x = 8

y = 16

o

a

h

Figure 2

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

195

The A* algorithm has some notation that programmers of the algorithm will be familiar with:

• The distance from the start of a vertex plus the edge value is referred to as the g value.

• The heuristic is known as the h value.

• The distance from the start of a vertex plus the edge value plus the heuristic is called the f value.

Applications of A* pathfinding

Although useful in travel routing systems, A* is generally outperformed by other algorithms that pre-process

the graph to enhance performance. A* was originally developed as part of the Shakey project to build a robot

with artificial intelligence.

Frequently found in video games, the algorithm is used to move non-playable characters in a way that makes

them appear to move intelligently. It can also be found in network packet routing, financial modelling for trading

assets and goods (arbitrage opportunity), solving puzzles like word ladders and social networking analyses –

calculating degrees of separation between individuals to suggest friends, for example.

A* pathfinding in simple-structured English

To calculate the shortest path between two nodes:

1. Set initial g (and optionally h and f) values for all vertices in graph.

2. Until the goal vertex has been visited:

a. Find the vertex with the lowest f value that has not been visited.

b. For each connected vertex that has not been visited:

i. Calculate the distance from the start by adding the edge value and the heuristic.

ii. If the distance is lower than the currently recorded f value:

1. Set the f value of the connected vertex to the newly calculated distance.

2. Set the previous vertex to be the current vertex.

c. Set the current vertex as visited.

To output the shortest path:

3. Start from a goal vertex.

4. Add the previous vertex to the start of a list.

5. Repeat from step 4 until the start vertex is reached.

6. Output the list.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

196

Visualising A* pathfinding

Blue nodes represent the fringe. Grey nodes are never considered.

Stepping through A* pathfinding

Note that many sources do not show the initial values for the distance from the start or f in their illustration of

the A* algorithm. However, they need to be infinity for all vertices, except for the start, which has a value of

zero. The heuristic for the goal should also be zero.

Representing infinity

Some programming languages support infinity as a value. In Python, float("inf") uses the IEEE 754 standard

which has special floating-point values for infinity. An alternative is to use sys.maxsize from the sys library. In

languages that do not support infinity, you would need to set infinity as a very large number that cannot occur.

For example, 999999999.

In this example, we have chosen to show the calculated heuristic for each vertex to the goal in advance.

Although the heuristic is often be calculated as needed in most implementations, the algorithm can also be

optimised with pre-calculations if it makes sense to do so.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

197

Step 1 Set the distance from the start to infinity for all vertices.

Set the distance from the start to zero for vertex A. Set f value to the heuristic.

Select the vertex with the lowest f value that has not been visited: A.

Consider each edge from A that has not been visited: B, C, D.

Vertex

Distance

from start
Heuristic f Visited

Previous

vertex

A 0 10 10 No

B ∞ 6 ∞ No

C ∞ 8 ∞ No

D ∞ 12 ∞ No

E ∞ 2 ∞ No

F ∞ 10 ∞ No

G ∞ 0 ∞ No

Step 2 f = A’s distance from the start + edge weight + heuristic.

 B: 0 + 4 + 6 = 10 (lower than ∞) Update

 C: 0 + 3 + 8 = 11 (lower than ∞) Update

 D: 0 + 2 + 12 = 14 (lower than ∞) Update

Set A to visited.

Vertex

Distance

from start
Heuristic f Visited

Previous

vertex

A 0 10 10 Yes

B 4 6 10 No A

C 3 8 11 No A

D 2 12 14 No A

E ∞ 2 ∞ No

F ∞ 10 ∞ No

G ∞ 0 ∞ No

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

198

Step 3 Select the vertex with the lowest f value that has not been visited: B.

Consider each edge from B that has not been visited: E.

Vertex

Distance

from start
Heuristic f Visited

Previous

vertex

A 0 10 10 Yes

B 4 6 10 No A

C 3 8 11 No A

D 2 12 14 No A

E ∞ 2 ∞ No

F ∞ 10 ∞ No

G ∞ 0 ∞ No

Step 4 f = B’s distance from the start + edge weight + heuristic.

 E: 4 + 4 + 2 = 10 (lower than ∞) Update

Set B to visited.

Vertex

Distance

from start
Heuristic f Visited

Previous

vertex

A 0 10 10 Yes

B 4 6 10 Yes A

C 3 8 11 No A

D 2 12 14 No A

E 8 2 10 No B

F ∞ 10 ∞ No

G ∞ 0 ∞ No

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

199

Step 5 Select the vertex with the lowest f value that has not been visited: E.

Consider each edge from E that has not been visited: G.

Vertex

Distance

from start
Heuristic f Visited

Previous

vertex

A 0 10 10 Yes

B 4 6 10 Yes A

C 3 8 11 No A

D 2 12 14 No A

E 8 2 10 No B

F ∞ 10 ∞ No

G ∞ 0 ∞ No

Step 6 f = E’s distance from the start + edge weight + heuristic.

 G: 8 + 2 + 0 = 10 (lower than ∞) Update

Set E to visited.

Vertex

Distance

from start
Heuristic f Visited

Previous

vertex

A 0 10 10 Yes

B 4 6 10 Yes A

C 3 8 11 No A

D 2 12 14 No A

E 8 2 10 Yes B

F ∞ 10 ∞ No

G 10 0 10 No E

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

200

Step 7 Select the vertex with the lowest f value that has not been visited: G.

Consider each edge from G that has not been visited: F.

Vertex

Distance

from start
Heuristic f Visited

Previous

vertex

A 0 10 10 Yes

B 4 6 10 Yes A

C 3 8 11 No A

D 2 12 14 No A

E 8 2 10 Yes B

F ∞ 10 ∞ No

G 10 0 10 No E

Step 8 f = G’s distance from the start + edge weight + heuristic.

 F: 10 + 10 + 10 = 30 (lower than ∞) Update

Set G to visited.

Vertex

Distance

from start
Heuristic f Visited

Previous

vertex

A 0 10 10 Yes

B 4 6 10 Yes A

C 3 8 11 No A

D 2 12 14 No A

E 8 2 10 Yes B

F 15 10 30 No G

G 10 0 10 Yes E

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

201

Step 9 At this point, although vertices C, D and F have not been visited, the goal vertex G has been visited and

all vertices connected to it have been considered – this means we have found the optimal path.

Vertex

Distance

from start
Heuristic f Visited

Previous

vertex

A 0 10 10 Yes

B 4 6 10 Yes A

C 3 8 11 No A

D 2 12 14 No A

E 8 2 10 Yes B

F 15 10 30 No G

G 10 0 10 Yes E

Step 10 To output the optimal path, start with the goal vertex and follow the previous vertices back to the start,

inserting the new vertex at the front of the list:

Optimal path from A to G is: A→B→E→G

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

Did you know?

A search algorithm is said to be admissible if it is guaranteed to return an optimal solution.

If the heuristic function used by A* is admissible, then A* is admissible.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

202

Pseudocode for A* pathfinding

Function astar(graph, start, goal)

For each vertex in graph

 distance[vertex] = infinity : f[vertex] = infinity

Next

distance[start] = 0 : f[start] = 0

While goal in graph

 shortest = null

 For each vertex in graph

 If shortest == null Then

 shortest = vertex

 ElseIf distance[vertex] < distance[shortest] Then shortest = vertex

 End If

 Next

 For each neighbour in graph[shortest]

 If neighbour in graph and cost + distance[shortest] <
distance[neighbour] then

 distance[neighbour] = cost + distance[shortest]

 f[neighbour] = cost + g[shortest] + h[neighbour]

 previous_vertex[neighbour] = shortest

 End If

 Next

 graph.pop(shortest)

End While

vertex = goal

While vertex != start

 optimal_path.insert(vertex)

 vertex = previous_vertex[vertex]

End While

Return optimal_path

End Function

Did you know?

The * symbol in computer science is referred to as an asterisk. However, when speaking,

we refer to the A* algorithm as the A-star algorithm.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

203

A* pathfinding coded in Python using a dictionary and graph

def astar(graph, h, start, goal):
 # Initialise
 infinity = float("inf")
 g = {}
 f = {}
 previous_vertex = {}
 optimal_path = []

 # Set the g and f for all vertices to infinity
 for vertex in graph:
 g[vertex] = infinity
 f[vertex] = infinity
 # Set the g from the start vertex to 0 and the f value to the heuristic of the start
 g[start] = 0
 f[start] = h[start]

 # Consider each vertex until goal is visited
 while goal in graph:
 # Find the vertex with the shortest f from the start
 shortest = None
 for vertex in graph:
 if shortest == None:
 shortest = vertex
 elif f[vertex] < f[shortest]:
 shortest = vertex

 # Calculate g & f value for each node
 for neighbour, cost in graph[shortest].items():
 # Update f value and previous vertex if lower
 if neighbour in graph and cost + g[shortest] + h[neighbour] < f[neighbour]:
 g[neighbour] = cost + g[shortest]
 f[neighbour] = cost + g[shortest] + h[neighbour]
 previous_vertex[neighbour] = shortest

 # The vertex has now been visited, remove it from the vertices to consider
 graph.pop(shortest)

 # Generate the shortest path
 # Start from the goal, adding vertices to the front of the list
 vertex = goal
 while vertex != start:
 optimal_path.insert(0, vertex)
 vertex = previous_vertex[vertex]
 # Add the start vertex
 optimal_path.insert(0, start)

 # Return the shortest shortest_path
 return optimal_path

Main program starts here
graph = {"A": {"B": 4, "C": 3, "D": 2}, "B": {"A": 4, "E": 4}, "C": {"A": 3, "D": 5}, "D":
{"A": 2, "C": 5, "F": 2}, "E": {"B": 4, "G": 2}, "F": {"D": 2, "G": 10}, "G": {"E": 2, "F":
10}}
h = {"A": 10, "B": 6, "C": 8, "D": 12, "E": 2, "F": 10, "G": 0}

print(astar(graph, h, "A", "G"))

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

204

Application of A* to a grid

The A* algorithm is often associated with finding the shortest path on a grid – this is especially useful for video

games. Consider the graph below. As this is an abstraction, it can be drawn in any number of different ways.

The only important data is the vertex, its connections and their edge values.

 A

 D

 F

B C

 G

E

The grid above contains the same data but visualised in a different way. The edge values are the number of

squares to the next letter, location or waypoint.

If the waypoints are not important, they could be removed completely. In that case, each square becomes a

vertex. Using the A* algorithm, it is possible to find the shortest path between any two squares, even around

walls. A wall prevents squares from having an edge connection between them. The distance from the start (g)

is the distance to the start square. The heuristic (h) is the Manhattan distance to the goal, ignoring walls.

Therefore, the f value becomes the distance from the start plus the distance to the goal.

 C is the start. G is the goal. The diamonds indicate the vertices connected to C for which the g,

h and f values need to be calculated.

 ◆ The g value of this square is the g value of the previous square plus one (0 + 1 = 1).

The h value is 4 (four squares from the goal using the Manhattan distance).

The f value is 1 + 4 = 5. C

 ◆ The g value of this square is the g value of the previous square plus one (0 + 1 = 1).

The h value is 2 (two squares from the goal using the Manhattan distance).

The f value is 1 + 2 = 3.

 G

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

205

The illustration below shows the shortest path calculated using the A* algorithm from C to G. The f values are

calculated as needed and shown inside the square to make the example easier to follow. The initial g values

of the squares are null, which is another way of representing infinity.

The current vertex is shaded dark grey. The visited vertices are shaded lighter grey. In this example, if more

than one square has the lowest f value, the one closest to the top-left is considered first.

Step 1 Step 2 Step 3 Step 4 Step 5

 9

 7 7 7

 5 5 5 5 5

 C C C C 7 C 7

 3 3 5 3 5 3 5 3 5

 G G G G G

Step 6 Step 7 Step 8 Step 9 Step 10

 9 9 11 9 11 11 9 11 11 9 11

 7 7 7 7 11 11 7 11

 5 5 9 5 9 5 9 5 9

 C 7 C 7 C 7 C 7 C 7

 3 5 3 5 3 5 3 5 3 5

 G G G G G

Step 11 Step 12 Step 13 Step 14 Step 15

11 9 11 11 9 11 11 9 11 11 9 11 11 9 11

11 7 11 11 7 11 11 7 11 13 11 7 11 13 11 7 11 13

 5 9 11 5 9 11 5 9 11 5 9 11 5 9

 C 7 C 7 C 7 11 C 7 11 C 7

 3 5 3 5 3 5 3 5 11 3 5

 G G G G G

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

206

Step 16 Step 17 Step 18 Step 19 Step 20

11 9 11 11 9 11 11 9 11 11 9 11 11 9 11

11 7 11 13 11 7 11 13 11 7 11 13 11 7 11 13 11 7 11 13

11 5 9 11 5 9 11 5 9 11 5 9 13 11 5 9 13

11 C 7 11 C 7 11 C 7 11 C 7 11 C 7 13

11 3 5 11 3 5 11 3 5 11 3 5 11 3 5

11 11 11 11 11

 G 11 G 11 G 11 G 11 G

 13 13 13

Step 21 Step 22 Step 23 Step 24 Step 25

11 9 11 11 9 11 11 9 11 11 9 11 11 9 11

11 7 11 13 11 7 11 13 11 7 11 13 11 7 11 13 11 7 11 13

11 5 9 13 11 5 9 13 11 5 9 13 11 5 9 13 11 5 9 13

11 C 7 13 11 C 7 13 11 C 7 13 11 C 7 13 11 C 7 13

11 3 5 13 11 3 5 13 11 3 5 13 11 3 5 13 11 3 5 13

11 11 13 11 13 11 13 11 13

11 G 11 G 11 G 13 11 G 13 11 G 13

13 13 13 13 15 13 13 15

Step 26 Step 27

11 9 11 11 9 11

11 7 11 13 11 7 11 13

11 5 9 13 11 5 9 13

11 C 7 13 11 C 7 13

11 3 5 13 11 3 5 13

11 13 11 15 13

11 13 13 11 13 13

13 13 15 13 13 15

Because of the configuration of the maze, almost all squares were visited. However, there were some squares

(shaded yellow) that were not, demonstrating the efficiency savings of the algorithm. With a larger grid and

fewer or no walls, the efficiency of the A* algorithm would be more profound.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

207

Efficiency of A* pathfinding

Time complexity

Best

case

Average

case

Worst

case

O(bd)

Linear

O(bd)

Linear

O(bd)

Polynomial

Determining the efficiency of the A* algorithm is not simple because there are several optimisations that can

be implemented and different perspectives on how to calculate the time complexity.

Depending on the purpose of A* pathfinding within a larger program, it may only be necessary to compute one

path, not necessarily the most optimal path. Therefore, once the goal vertex has been reached, the algorithm

could stop prematurely, possibly reducing the execution time but at the cost of not backtracking to consider

other, potentially more optimal routes.

A common optimisation with A* pathfinding is to pre-calculate the f values of some vertices and store these in

another data structure such as a hash table. If a value is needed again, instead of being calculated to return

the same result, it can simply be looked up – assuming the heuristic has not changed.

Having a suitable heuristic that can be calculated quickly is essential – the complexity of this is usually

considered to be O(1). Where it makes sense to use a Manhattan distance, the heuristic is as optimal as it can

be. However, A* can be used in situations where the heuristic is just a computation to deliver a best guess.

Computer science theorists usually consider the execution time of A* as the result of the number of vertices

and edges in the graph. However, those working with artificial intelligence consider what is known as the

branching factor (b). In AI processing, the number of edges to consider can be extremely large, so an

optimisation that avoids having to consider all the vertices would be used. In this case, the number of vertices

and edges has less relevance, so time complexity is more a measurement of the depth to the goal vertex (d).

The time complexity of A* pathfinding is often calculated as polynomial, O(bd). The values of the branching

factor, the goal vertex and the heuristic affect the efficiency of the algorithm so significantly that it can either

be almost linear at best or polynomial at worst.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

208

Dijkstra’s shortest path

Dijkstra’s shortest path algorithm is a special case of the A* pathfinding algorithm. It finds the shortest path

between one vertex and all other vertices on a weighted graph. It does not use a heuristic and is a type of

breadth-first traversal. A limitation of Dijkstra’s shortest path is that it does not work for edges with a negative

weight value. The Bellman–Ford algorithm later provided a solution to that problem.

Applications of Dijkstra’s shortest path

Developed before the A* optimisation for a single path, Edsger Dijkstra developed his algorithm to find the

shortest route of travel between Rotterdam and Groningen. It can be used for many purposes where the

shortest path between two points needs to be established. Maps, IP routing and the telephone network make

use of Dijkstra’s algorithm.

Dijkstra’s shortest path in simple-structured English

To calculate the shortest path:

1. Set initial distance-from-the-start values for all vertices in graph.

2. For each vertex in the graph:

a. Find the vertex with the shortest distance from the start that has not been visited.

b. For each connected vertex that has not been visited:

i. Calculate the distance from the start.

ii. If the distance from the start is lower than the currently recorded distance from the

start:

1. Set the shortest distance to the start of the connected vertex to the newly

calculated distance.

2. Set the previous vertex to be the current vertex.

3. Set the vertex as visited.

To output the shortest path:

4. Start from a goal vertex

5. Add the previous vertex to the start of a list.

6. Repeat from step 5 until the start vertex is reached.

7. Output the list.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

209

Visualising Dijkstra’s shortest path

Stepping through Dijkstra’s shortest path

Step 1 Set the distance from the start for all vertices to infinity.

Set the distance from the start for vertex A to zero.

Select the vertex with the lowest distance from the start that has not been visited: A.

Consider each edge from A that has not been visited: B, C, D.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 No

B ∞ No

C ∞ No

D ∞ No

E ∞ No

F ∞ No

G ∞ No

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

210

Step 2 Distance from the start = A’s distance from the start + edge weight.

 B: 0 + 4 = 4 (lower than ∞) Update

 C: 0 + 3 = 3 (lower than ∞) Update

 D: 0 + 2 = 2 (lower than ∞) Update

Set A to visited.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 No A

C 3 No A

D 2 No A

E ∞ No

F ∞ No

G ∞ No

Step 3 Select the vertex with the lowest distance from the start that has not been visited: D.

Consider each edge from D that has not been visited: C, F.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 No A

C 3 No A

D 2 No A

E ∞ No

F ∞ No

G ∞ No

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

211

Step 4 Distance from the start = D’s distance from the start + edge weight.

 C: 2 + 5 = 7 (higher than 3) No update

 F: 2 + 2 = 4 (lower than ∞) Update

Set D to visited.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 No A

C 3 No A

D 2 Yes A

E ∞ No

F 4 No D

G ∞ No

Step 5 Select the vertex with the lowest distance from the start that has not been visited: C.

Consider each edge from C that has not been visited: none.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 No A

C 3 No A

D 2 Yes A

E ∞ No

F 4 No D

G ∞ No

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

212

Step 6 No edges to consider.

Set C to visited.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 No A

C 3 Yes A

D 2 Yes A

E ∞ No

F 4 No D

G ∞ No

Step 7 Select the vertex with the lowest distance from the start that has not been visited: B.

This could also have been F – it doesn’t matter which is chosen first.

Consider each edge from B that has not been visited: E.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 No A

C 3 Yes A

D 2 Yes A

E ∞ No

F 4 No D

G ∞ No

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

213

Step 8 Distance from the start = B’s distance from the start + edge weight.

 E: 4 + 4 = 8 (lower than ∞) Update

Set B to visited.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 Yes A

C 3 Yes A

D 2 Yes A

E 8 No B

F 4 No D

G ∞ No

Step 9 Select the vertex with the lowest distance from the start that has not been visited: F.

Consider each edge from F that has not been visited: G.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 Yes A

C 3 Yes A

D 2 Yes A

E 8 No B

F 4 No D

G ∞ No

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

214

Step 10 Distance from the start = F’s distance from the start + edge weight.

G: 4 + 10 = 14 (lower than ∞) Update

Set F to visited.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 Yes A

C 3 Yes A

D 2 Yes A

E 8 No B

F 4 Yes D

G 14 No F

Step 11 Select the vertex with the lowest distance from the start that has not been visited: E.

Consider each edge from F that has not been visited: G.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 Yes A

C 3 Yes A

D 2 Yes A

E 8 No B

F 4 Yes D

G 14 No F

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

215

Step 12 Distance from the start = E’s distance from the start + edge weight.

 G: 8 + 2 = 10 (lower than 14) Update

Set E to visited.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 Yes A

C 3 Yes A

D 2 Yes A

E 8 Yes B

F 4 Yes D

G 10 No E

Step 13 Select the vertex with the lowest distance from the start that has not been visited: G.

Consider each edge from G that has not been visited: none.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 Yes A

C 3 Yes A

D 2 Yes A

E 8 Yes B

F 4 Yes D

G 10 No E

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

216

Step 14 No edges to consider.

Set G to visited.

Vertex

Distance

from start
Visited

Previous

vertex

A 0 Yes

B 4 Yes A

C 3 Yes A

D 2 Yes A

E 8 Yes B

F 4 Yes D

G 10 Yes E

Step 15 There are no unvisited vertices. The algorithm is complete.

To output the shortest path from the start to the goal, begin with the goal vertex and follow the previous

vertices back to the start, inserting the new vertex at the front of the list:

Shortest path from A to G is: A→B→E→G.

Note how Dijkstra’s algorithm finds the shortest path between every vertex to the start. You can pick any vertex

and follow the previous vertices back to vertex A – a key difference between Dijkstra and the A* algorithm.

4 2
3

4

2

B

F

A

C D

E

G

2

10

5

Did you know?

Dijkstra’s algorithm was used to demonstrate the computing ability of the new ARMAC

computer in 1956. The computer was able to find the shortest routes between 64 cities in

the Netherlands on a transport map. 64 was the limit because it only required six bits (26)

to encode a city name as a number.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

217

Pseudocode for Dijkstra’s shortest path

Function dijkstra(graph, start, goal)

For each vertex in graph

 distance[vertex] = infinity

Next

distance[start] = 0

While unvisited_vertices in graph

 shortest = null

 For each vertex in graph

 If shortest == null Then

 shortest = vertex

 ElseIf distance[vertex] < distance[shortest] Then

 shortest = vertex

 End If

 Next

 For each neighbour in graph

 If cost + distance[shortest] < distance[neighbour] then

 distance[neighbour] = cost + distance[shortest]

 previous_vertext[neighbour] = shortest

 End If

 Next

 vertex = visited

End While

vertex = goal

While vertex != start

 shortest_path.insert(vertex)

 vertex = previous_vertex[vertex]

End While

Return shortest_path

End Function

Did you know?

Adaptations of Dijkstra’s shortest path are often the algorithms behind routing protocols in

packet switching networks.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

218

Dijkstra’s shortest path coded in Python using a dictionary and graph

def dijkstra(graph, start, goal):
 # Initialise
 infinity = float("inf")
 distance = {}
 previous_vertex = {}
 shortest_path = []

 # Set the shortest distance from the start for all vertices to infinity
 for vertex in graph:
 distance[vertex] = infinity
 # Set the shortest distance from the start for the start vertex to 0
 distance[start] = 0

 # Loop until all the vertices have been visited
 while graph:
 # Find the vertex with the shortest distance from the start
 shortest = None
 for vertex in graph:
 if shortest == None:
 shortest = vertex
 elif distance[vertex] < distance[shortest]:
 shortest = vertex

 # Calculate shortest distance for each edge
 for neighbour, cost in graph[shortest].items():
 # Update the shortest distance for the vertex if the new value is lower
 if neighbour in graph and cost + distance[shortest] < distance[neighbour]:
 distance[neighbour] = cost + distance[shortest]
 previous_vertex[neighbour] = shortest

 # The vertex has now been visited, remove it from the vertices to consider
 graph.pop(shortest)

 # Generate the shortest path
 # Start from the goal, adding vertices to the front of the list
 vertex = goal
 while vertex != start:
 shortest_path.insert(0, vertex)
 vertex = previous_vertex[vertex]
 # Add the start vertex
 shortest_path.insert(0, start)

 # Return the shortest shortest_path
 return shortest_path

Main program starts here
graph = {"A": {"B": 4, "C": 3, "D": 2}, "B": {"A": 4, "E": 4}, "C": {"A": 3, "D": 5}, "D":
{"A": 2, "C": 5, "F": 2},
 "E": {"B": 4, "G": 2}, "F": {"D": 2, "G": 10}, "G": {"E": 2, "F": 10}}
print(dijkstra(graph, "A", "G"))

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

219

Efficiency of Dijkstra’s shortest path

Time complexity

Best

case

Average

case

Worst

case

O(E+V log V)

Linearithmic

O(E log V)

Linearithmic

O(V2)

Polynomial

A FOR loop is used to set the shortest distance of all the vertices. This part of the algorithm is linear, O(n). The

main algorithm uses a graph stored as a dictionary, and we assume a time complexity of O(1) for looking up

data about each vertex.

A FOR loop is nested in a WHILE loop when the shortest distance for each neighbouring vertex is calculated

from every connected edge – this means the algorithm has a polynomial complexity at worst, O(V2), but different

implementations can reduce this to O(E log V), where E is the number of edges and V the number of vertices.

Did you know?

Dijkstra’s shortest path does not work with negative edge values. The Bellman-Ford

algorithm and a further development, Johnson’s algorithm, would later provide a solution

to this problem.

Dijkstra’s shortest path is also an example of a breadth-first traversal.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

220

In summary

A* pathfinding Dijkstra’s shortest path

Finds the shortest path between two vertices only. Finds the shortest path from one vertex to all other

vertices.

Uses a heuristic. No heuristic.

Only promising vertices are expanded during the

search.

All vertices are expanded during the search.

The heuristic helps find a solution more quickly. Slower than A* pathfinding.

Fails with negative edge values and if the heuristic is

over-estimated.

Fails with negative edge values.

A typical heuristic might be calculated as the

distance to the goal vertex.

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

221

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

222

Index

A

A* · 195, 196, 197, 203, 204, 205, 206,

207, 208, 209, 217, 221

Abstraction · 8, 35, 42, 43, 45, 110, 115,

205

Adjacency list · 41, 43, 45, 77

Adjacency matrix · 43, 45, 77, 78

Admissible · 195

Array · 2, 3, 6, 7, 8, 9, 11, 13, 14, 15, 27,

33, 35, 36, 37, 39, 43, 59, 77, 78, 81,

82, 86, 89, 90, 93, 94, 98, 99, 100,

101, 102, 106, 109, 111, 114, 115,

116, 121, 124, 128, 133, 134, 135,

136, 137, 138, 142, 145, 149, 151,

158, 163, 170, 171, 179, 184, 188

ASCII · 36, 110, 140

Associative array · 35

Attribute · 14, 45, 94, 96, 97, 110, 128,

135

B

Bellman–Ford algorithm · 209

Best-first search · 195

Binary search · 10, 12, 23, 33, 125, 130,

133, 134, 135, 136, 137, 138, 146,

150, 151

Binary search tree · 10, 23, 125, 130,

133, 135, 138, 151

Binary tree · ii, 10, 11, 12, 13, 14, 15,

16, 17, 20, 21, 22, 23, 25, 26, 27, 28,

29, 32, 33, 37, 40, 42, 43, 97, 125,

129, 130, 135, 139

Border · 195

Branching factor · 208

Breadth-first search · 12, 45, 46, 59

Bubble sort · 9, 155, 156, 157, 158,

159, 191, 192

Buffer · 98

C

Call stack · 2, 3, 61, 71, 96, 113, 189

Chaining · 142

Child node · 10, 17, 18, 27, 30, 125, 130

Circular linked list · 79, 80, 81

Circular queue · 100, 101, 102, 103,

106

Class · 11, 14, 27, 29, 58, 59, 75, 81, 86,

87, 94, 99, 106, 107, 110, 114, 121,

122, 145

Clustering · 141

Collection · 6, 90, 94, 97, 110

Collision · 35, 37, 39, 80, 125, 140, 141,

142, 145, 146, 151

Constant complexity O(1) · 9, 33, 34,

39, 77, 78, 89, 92, 93, 97, 109, 112,

124, 127, 138, 146, 150, 159, 164,

189, 208, 220

Contiguous memory · 7, 79, 90, 128

Crawler · 46

D

Database · 35, 110, 112

Decision tree · 11

Depth-first search · 76, 126

Dequeue · 26, 27, 29, 31, 46, 48, 50, 51,

53, 54, 55, 56, 57, 58, 59, 98, 99,

100, 102, 104, 106, 107, 108, 109,

129

Dictionary · 11, 35, 36, 37, 38, 39, 41,

43, 77, 90, 96, 111, 126, 129, 130,

140, 151, 204, 219, 220

Directed graph · 40, 41, 43, 44

Divide-and-conquer · 33, 127, 165, 172,

173, 179, 184, 188, 191

Doubly linked list · 79, 81, 82

Dynamic · 3, 7, 10, 14, 33, 35, 40, 77,

79, 82, 89, 90, 92, 93, 94, 96, 97, 98,

99, 103, 109, 113, 114, 124, 127,

128, 129

E

Edge · 10, 14, 40, 41, 43, 45, 46, 47, 48,

49, 50, 51, 53, 54, 55, 56, 57, 59, 60,

61, 63, 64, 65, 66, 67, 68, 69, 70, 72,

74, 75, 77, 78, 127, 130, 195, 196,

198, 199, 200, 201, 205, 208, 209,

210, 211, 212, 213, 214, 215, 216,

217, 219, 220, 221

Efficiency · 1, 9, 33, 39, 77, 78, 89, 92,

97, 109, 112, 124, 127, 138, 141,

146, 150, 158, 159, 164, 172, 173,

189, 191, 195, 207, 208, 220

Element · 6, 7, 8, 9, 11, 13, 14, 36, 37,

78, 79, 80, 81, 82, 90, 91, 93, 98, 99,

100, 101, 102, 103, 104, 114, 115,

116, 117, 125, 128, 129, 142

Encapsulation · 94

Enqueue · 26, 27, 29, 31, 46, 47, 48, 49,

52, 54, 57, 58, 59, 78, 98, 99, 100,

101, 102, 103, 104, 106, 107, 108,

109, 129

Expert system · 41

F

f value · 196, 198, 199, 200, 201, 204,

205, 206, 208

FIFO · 98, 129

Fringe · 195, 197

Frontier · 195

G

g value · 196, 205, 206

Garbage collection · 3, 84, 104, 118,

125, 128

Global · 2, 94

Graph · 10, 26, 35, 40, 41, 42, 43, 44,

45, 46, 47, 57, 58, 59, 60, 61, 74, 76,

77, 78, 98, 113, 125, 126, 130, 194,

195, 196, 203, 204, 205, 208, 209,

218, 219, 220

H

h value · 196, 205

Hash table · 11, 35, 37, 38, 80, 129,

138, 140, 141, 142, 143, 144, 145,

146, 150, 151, 208

Hash table search · 37, 140, 142, 145,

151

Hash value · 140, 141, 143, 145

Hashing function · 11, 35, 36, 37, 38,

39, 80, 110, 112, 129, 138, 140, 141,

142, 143, 144, 145, 146, 150, 151,

208

Head · 90, 92, 98

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

223

Head pointer · 98

Heap · 2, 3, 7, 14, 82, 91, 93, 96, 103,

104, 105, 128

Heuristic · 195, 196, 197, 198, 199, 200,

201, 202, 204, 205, 208, 209, 221

Hibbard · 17, 20, 27, 30

Hoare · 173, 174, 175, 176, 178, 179,

180

Huffman coding · 11

I

Immutable · 3, 92

Inheritance · 94

In-order traversal · 12, 17, 23, 24, 28,

32, 43

In-place algorithm · 159, 166

Insertion sort · 160, 161, 162, 163, 164,

166, 189, 191, 192

Integer division · 134, 137

Iteration · 6, 61, 75, 94, 164, 165, 170,

171, 180, 181, 192

K

Key · 35, 36, 37, 38, 39, 41, 96, 97, 110,

112, 129, 140, 151, 217

Key-value pair · 35, 41, 96, 97, 129

L

Leaf node · 10, 13, 15, 17, 19, 20

Lexicographic · 110

LIFO · 113, 129

Linear complexity O(n) · 7, 9, 33, 34, 39,

77, 89, 92, 93, 97, 100, 109, 112,

117, 124, 127, 138, 139, 146, 150,

159, 164, 172, 220

Linear probing · 141, 146

Linear queue · 100, 102, 103

Linear search · 13, 33, 39, 82, 89, 110,

112, 129, 138, 141, 145, 147, 148,

149, 150, 151

Linearithmic complexity O(n log n) ·

172, 189, 220

Linked list · 12, 79, 80, 81, 82, 83, 84,

85, 86, 87, 88, 89, 90, 110, 112, 129

List · 7, 11, 13, 33, 35, 36, 41, 45, 46,

47, 48, 49, 52, 54, 59, 60, 61, 63, 64,

66, 67, 68, 70, 71, 72, 73, 79, 80, 81,

82, 83, 86, 87, 88, 89, 90, 91, 92, 93,

99, 103, 104, 105, 106, 114, 117,

121, 128, 133, 136, 137, 138, 145,

147, 148, 149, 150, 151, 155,156,

157, 158, 159, 160, 162, 163, 164,

165, 167, 168, 169, 170, 172, 173,

174, 178, 179, 180, 182, 183, 184,

185, 188, 189, 191, 192, 196, 202,

204, 209, 217, 219

Local · 2, 94, 113

Logarithmic complexity O(log n) · 33,

127, 138, 172, 189

Lomuto · 173, 180, 181, 182, 184, 185,

186, 188

M

Manhattan distance · 195, 205, 208

Merge sort · 165, 166, 167, 169, 170,

171, 172, 189, 191, 192

Method · 12, 59, 94, 96, 109, 110, 112,

117, 124, 128, 142, 159, 189

Modulus · 37, 102, 103, 140, 145

Mutable · 3

N

Node · 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 29,

31, 33, 34, 40, 45, 58, 75, 79, 80, 81,

82, 83, 84, 85, 86, 87, 88, 89, 99,

104, 105, 106, 107, 114, 118, 119,

120, 122, 125, 126, 127, 130, 135,

138, 196, 197, 204

O

Object · 2, 7, 11, 13, 14, 29, 33, 45, 59,

77, 78, 81, 82, 87, 89, 90, 94, 96, 97,

98, 99, 103, 104, 105, 107, 109, 110,

111, 114, 118, 122, 124, 125, 126,

128, 133, 135, 138, 151

Object-oriented · 59, 77, 78, 89, 94,

109, 110, 124

One-dimension · 8, 13

Overflow · 27, 29, 58, 75, 80, 86, 87,

99, 105, 106, 107, 114, 119, 121,

122, 142

Overflow table · 142

P

Parallel · 165, 171, 173, 189, 191

Partitioning step · 173, 179, 180, 184,

188

Pass · 133, 155, 158, 173

Pathfinding · 41, 60, 113, 195, 196, 197,

203, 204, 208, 209, 221

Peek · 29, 75, 98, 99, 106, 107, 108,

109, 113, 114, 121, 122, 123, 124

Peer-to-peer · 46

Pivot · 173, 174, 175, 176, 177, 178,

179, 180, 181, 182, 183, 184, 185,

186, 187, 188, 189, 192

Pointer · 10, 11, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 29,

31, 40, 45, 47, 58, 75, 79, 80, 81, 82,

83, 84, 85, 86, 87, 88, 89, 94, 98, 99,

100, 101, 102, 103, 104, 105, 106,

107, 109, 113, 114, 115, 116, 117,

118, 119, 120, 122, 124, 128, 129,

135, 174, 175, 176, 177, 178, 179,

180, 181, 182, 183, 184, 185, 186,

187, 188, 189

Polish notation · 11, 22, 113

Polymorphism · 94

Polynomial complexity O(nx) · 9, 77, 92,

93, 159, 164, 189, 208, 220

Pop · 114

Post-order traversal · 12, 22, 25, 26, 28,

32, 43, 97

Pre-calculate · 197, 208

Predecessor · 20

Pre-order traversal · 12, 22, 23, 28, 32,

42, 43

Primary key · 110, 111

Priority queue · 98

Private attribute · 94, 96, 128

Public attribute · 94, 96, 111

Push · 114

Q

Quadratic probing · 141

Queue · 26, 29, 46, 47, 56, 57, 58, 59,

90, 98, 99, 100, 101, 102, 103, 104,

105, 106, 107, 109, 121, 129

Quicksort · 173, 177, 178, 179, 180,

182, 183, 184, 187, 188, 189, 191,

192

R

Random access · 9, 39

Rebalance · 10, 12, 20, 33

Record · 94, 110, 111, 112

Recursion · 61, 71, 76, 171, 178, 189,

192

Register · 128

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S

224

Rehashing · 35, 39, 141

Root node · 10, 12, 14, 15, 17, 21, 22,

23, 24, 25, 26, 27, 29, 32, 34, 40, 43,

46, 47, 57, 58, 59, 60, 61, 71, 75, 76,

125, 127, 130, 135, 138

Rooted tree · 10, 125, 127

S

Scheduling · 60, 98

Shortest path · 46, 195, 196, 204, 205,

206, 209, 210, 217, 218, 219, 220,

221

Shunting yard algorithm · 113

Social network · 41, 46, 196

Space complexity · 9, 14, 33, 39, 77, 89,

92, 97, 109, 112, 124, 127, 138, 146,

150, 159, 164, 172, 189

Stack · 2, 3, 25, 60, 61, 62, 63, 64, 65,

66, 67, 68, 69, 70, 71, 72, 73, 74, 75,

76, 90, 113, 114, 115, 116, 117, 118,

119, 120, 121, 122, 124, 129

Stack frame · 2, 3, 113

Static · 3, 6, 7, 9, 14, 35, 77, 82, 89, 100,

109, 124, 128, 129

Sub-class · 94

Sub-tree · 11, 17, 19, 20, 27, 30

Successor · 17, 19, 20, 27, 30

Symmetrical · 44

T

Tail · 90, 92, 98

Three-dimensions · 9, 125

Time complexity · 9, 33, 39, 77, 78, 89,

92, 97, 109, 112, 124, 127, 138, 139,

146, 150, 159, 164, 172, 189, 208,

220

Traversal · 10, 12, 22, 23, 24, 25, 26, 27,

28, 29, 32, 33, 34, 35, 42, 43, 45, 46,

47, 57, 58, 59, 60, 61, 71, 74, 75, 76,

78, 97, 98, 113, 130, 209

Tree · 10, 11, 12, 13, 15, 17, 20, 22, 24,

25, 26, 27, 29, 32, 33, 34, 40, 43,

125, 126, 127, 130, 133, 135, 139

Tuple · 92

Two-dimensions · 7, 8, 82, 90, 142

U

Unbalanced · 10, 33, 34, 139

Underflow · 29, 58, 75, 99, 105, 106,

107, 114, 119, 121, 122

Undirected graph · 10, 40, 41, 43, 44,

125

Unordered tree · 10

Unsorted · 147, 150, 155, 191

V

Vector · 125

Vertex · 10, 40, 41, 42, 43, 46, 47, 60,

61, 62, 63, 64, 66, 67, 68, 70, 71, 72,

73, 77, 78, 130, 194, 195, 196, 197,

198, 202, 204, 205, 206, 208, 209,

210, 217, 218, 219, 220, 221

Visited list · 46, 47, 48, 49, 50, 51, 52,

53, 54, 55, 56, 57, 60, 61, 62, 63, 64,

65, 66, 67, 68, 69, 70, 71

W

Weighted graph · 40, 41, 44, 195, 209

Z

Zero-Indexed · 6

