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Preface 

The aim of this book is to provide students and teachers of A Level Computer Science with a comprehensive 

guide to the algorithms and data structures students need to understand for examinations. Each chapter 

considers a data structure or algorithm in isolation, including:  

• An explanation of how it works 

• Real-world applications 

• A step-by-step example 

• Pseudocode  

• Actual printed Python 3.x code listing 

o Additional code listings in Visual Basic and C# are provided via download 

• A description of its space and time complexity 

Additional support materials 

In this book, coded solutions are provided in Python 3.x, the most popular language taught at GCSE. Solutions 

for Visual Basic (2015 onwards) and C# (2019 onwards) are also available to download from 

craigndave.org/algorithms. 

Standards 

Python source code conforms to the PEP-8 standard as much as possible. Where this would introduce new 

keywords, the preference is to show code in the format students are more likely to see in an examination.  

Coding standards used in this book 

• ++ += –= for incrementing and decrementing variables has been avoided in favour of x = x + 1. Except for 

iterations in C# source code. 

• Swapping variables using approaches such as a, b = b, a has not been used. A three-way swap with a temporary 

variable is favoured in examinations. 

• Using classes for data structures and methods for their operations. 

• Using the == comparison operator with None instead of is. 

• Using shadow names from outer scope in subroutines for simplification.  

The result is not necessarily the most efficient code but, rather, the most suitable implementation for this level 

of study. There are many ways to code algorithms and data structures. For example, the depth-first traversal 

can be coded using iteration or recursion with a dictionary, objects or arrays – that is six different 

implementations, but even these are not exhaustive. Combined with a programmer’s personal approach and 

the commands available in their chosen language, the possibilities are near-endless. 

It is important that students recognise the underlying data structures, understand the way an algorithm works 

and can determine outputs from code listings. Therefore, the approaches and solutions presented in this book 

are one solution – but not the only solution. 

Examiners require students to be able to trace and write many algorithms, but we strongly recommend learning 

the principles of the algorithm and how it operates rather than attempting to memorise code listings.  

https://craigndave.org/algorithms
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Array ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Binary tree   ✓   ✓    ✓    

Dictionary      ✓        

Graph   ✓   ✓        

Linked list   ✓       ✓    

List ✓ ✓ ✓    ✓   ✓    

Object   ✓   ✓  ✓ ✓ ✓    

Queue  ✓ ✓   ✓    ✓    

Record ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Stack  ✓ ✓  ✓ ✓    ✓    

Binary search ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

Hash table 

search 
  ✓   ✓    ✓    

Linear search ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Bubble 

sort 
✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Insertion 

sort 
✓ ✓ ✓      ✓ ✓    

Merge 

sort 
✓  ✓ ✓  ✓ ✓ ✓  ✓  ✓ ✓ 

Quick 

sort 
  ✓       ✓    

A* 

pathfinding 
  ✓*           

Dijkstra’s 

shortest path 
  ✓*   ✓    ✓    

 

* Students are not required to write code for this algorithm – only to know how the algorithm works and be 

able to trace its pseudocode. 
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ABSTRACTIONS OF MEMORY 
The way in which the computer uses memory to store and retrieve data impacts the efficiency 

of the algorithm using that data. 
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Introduction to data structures 

Algorithms are a sequence of instructions that a human or computer can follow to solve a problem. All 

algorithms require data structures – somewhere to store data while the algorithm is executing. The simplest 

data structure is the variable, an area of memory holding a single item of data that can be changed when a 

program is running with assignment statements. Usually, multiple data items are required and related to each 

other in some way. Related data is stored in more complex data structures like arrays, lists and objects. 

Algorithms and data structures are held in primary memory – usually random-access memory (RAM) – although 

during execution, they will also be held in the cache, an area of high-speed memory in the CPU for temporary 

storage of frequently used instructions and data. 

Memory is divided into several parts. Three important memory partitions include: 

1. Code 

2. Call stack 

3. Heap 

The code section holds the instructions for the algorithm. The call stack (also known as the program stack, 

execution stack, control stack, run-time stack, machine stack or simply the stack) is an area of memory used 

by the computer to manage subroutines and their data structures.  

A stack frame holds local variable values, parameters and the state of the registers when the subroutine was 

called, including the return address in the program counter. Beyond simple values of local variables, other data 

structures and global variables are stored on the heap with only the reference (address) to the structure being 

held in the stack frame. 

Confusingly, the actual implementation of the call stack and the heap for the different data structures is largely 

dependent on the architecture of the computer and programming language. For example, with C++, objects 

can be allocated on the stack or the heap. In Java, all objects are allocated to the heap. 

  

Did you know? 

In Python, the following code will output the memory address where the global variable x 

is being stored on the heap. 0x in the output indicates that the address is in hexadecimal. 

x = "Hello World" 

print(hex(id(x))) 
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3 

 

Code, the call stack and the heap illustrated 

 

Code 
 

Call stack 
 

Heap 

  Data 

Type 
Identifier 

Address 

or value 
 Address Value Notes 

Sub initialise()      
 

     

  int lives = 3      

 
0x5D 5 Length 

  string title = "Game"      
 

0x5E 100 score[0] 

  int score[5]      
 

0x5F 200 score[1] 

  for i = 0 to 4      
 

0x60 300 score[2] 

    score[i] = 100 * (i + 1)      
 

0x61 400 score[3] 

  next i      
 

0x62 500 score[4] 

End Sub 

S
ta

c
k
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ra

m
e

 

Integer i 4 
 

…     

 
Array score 0x5D 

 
     

 
String title 0x65 

 
0x65 Game title 

 
Integer lives 3 

 
 …     

 
Registers 

 
   

 

As data structures are created, memory on the heap is allocated to them. Live structures are tracked, and 

everything else in the heap is designated as unused. A process known as garbage collection reclaims unused 

memory to be used for future allocation. 

Data structures are often referred to as static, dynamic, mutable and immutable. Before looking at each data 

structure in more detail, it will help you to be aware of what these terms mean. 

• Data type: What a sequence of binary digits represents – e.g., integer, floating-point number, string, 

date. Each data type requires a specific number of bits to be stored in memory.  

• Static: The data structure cannot change in size when the program is running. 

• Dynamic: The data structure can change size when a program is running. 

• Mutable: The data in the data structure can change when a program is running. 
• Immutable: The data in the data structure cannot change when a program is running. 



 

 

A
B

ST
R

A
C

TI
O

N
S 

O
F 

M
EM

O
R

Y
 

4 

  



 

DATA STRUCTURES 
Supported by some programming languages as primitive data types within the command set, 

programmers can also implement their own data structures.  
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Array  

An array is a static collection of items of the same data type called elements. An array is typically used when 

the required number of data items is known in advance, to store data that would otherwise be stored in multiple 

variables. For example, to store the names of four people, you could have four variables – name1, name2, 

name3 and name4.  

The problem with this approach is it would not be possible to refer to a specific name or loop through all the 

names with a FOR or WHILE command because the number or index is part of the identifier – the name of the 

variable. Instead, we need to declare name1 as name[1] and so on. Note how the index is now enclosed in 

brackets. Some programming languages used curved brackets while others use square brackets.  

Assigning data to the array can be carried out using syntax similar to: 

name[0] = "Craig" 

name[1] = "Dave" 

name[2] = "Sam" 

name[3] = "Carol" 

With four names, the maximum index is 3 because arrays are usually zero-indexed – i.e., the first item is stored 

at index zero. You could start at index 1, but why waste memory unnecessarily? 

Now, it is possible to use an iteration to output all the data in the array: 

For index = 0 to 3 

 Print(name[index]) 

Next 

This is an extremely useful algorithm that you need to know at all levels of study. Alternative code would be: 

Print(name1) 

Print(name2) 

Print(name3) 

Print(name4) 

It is a misconception that using an array instead of individual variables is more memory-efficient. The same 

amount of data still needs to be stored, but an array makes the algorithm scalable, so we only need to change 

the number 3 in the iteration to change the number of names we output. You can see how implementing code 

with a thousand names without iteration would be time-consuming and impractical. 

There are two limitations of using arrays. 

1. All data elements in an array must be of the same data type. For example, an array of strings cannot 

contain an integer. 

2. The size of an array is determined when it is declared – i.e., when the algorithm is written – and cannot 

usually be changed when the program is running. 
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Applications of an array 

Arrays are used when a known number of related data items of the same data type need to be stored. They are 

used extensively in supercomputers and graphics processing units.  

Some programming languages and hardware implementations allow a single operation to be performed on 

many indexes at the same time, making arrays very efficient for mathematical operations. All algorithms can 

use an array as their base data structure. 

Storing an array in memory 

Arrays are always stored in contiguous memory, meaning each element follows the previous one in memory. 

Their size is fixed because a sufficient block of memory needs to be allocated in advance. Since all elements 

must be of the same data type, it is easy to calculate where an item is in memory from the base address of the 

structure, the data type being stored and the index.  

For example, an array of 32-bit (4-byte) integers with index 0 stored at address 0x1A would have index 1 stored 

at 0x1A + 4 = 0x1E – this makes arrays very efficient, as any element can be found immediately by its address 

(known as random-access) rather than sequentially. 

To overcome the limitation of arrays being a fixed size, they can be declared larger than they need to be so 

data can be inserted into an empty index later. Although this is an inefficient use of memory, it is necessary to 

implement dynamic data structures with a static array.  

Modern programming languages do allow for the resizing of an array at run-time by finding a new place in the 

heap for the entire data structure and moving it to that location. This is a slow O(n) operation, so if it is frequently 

required, the programmer should consider using a list or objects instead. 

Arrays may have multiple indexes (also called indices) in what is known as a multi-dimension array. An array of 

two dimensions is referred to as a two-dimensional array. By using two dimensions, we can store a grid of data 

– for example, to represent an 8 x 8 board for a game of chess. 

  

Did you know? 

One-dimensional arrays are sometimes called vectors, and two-dimensional arrays are 

sometimes called matrices. 

All data structures including dictionaries, linked lists, graphs, queues, stacks and trees can 

be constructed from arrays. 

Some modern programming languages such as Java implement arrays using objects. 
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One-dimensional array Two-dimensional array 

 

 

 

 

 

 

 

 

 

 

Name[2] = Dave 

Name 

Index Element 

0 Carol 

1 Sam 

2 Dave 

3 Craig 

 

 

 

 

 

 

 

 

  

 

Board[1,0] = “X” 

Board 

Index 0 1 2 

0 "O" "X"  

1  "O"  

2   "X" 

Notice that in the example of the two-dimensional array above, the first index was chosen to represent the x 

position in the table, and the second index represents the y position. 

It is also acceptable for the first index to represent the y position and the second index to represent the x 

position. In memory, the table doesn’t exist as it is shown. Indexes are simply memory addresses, so the 

structure itself is abstracted. It is up to the programmer how they visualise the data structure in their own mind. 

Arrays can be declared in any number of dimensions. For example, when storing a linked list using an array, 

one dimension is used for the data item, a second dimension is used for the pointer to the next item. 

Operations on an array 

Typical operations that can be performed on an array include: 

• Declare: Initialise the size of an array – i.e., the number of indexes it will have – and reserve memory. 

• Access: Return an element from an index. 

• Assign: Set the element for a specific index. 

• Resize: Change the size of the array at run-time by reallocating it to a different part of the memory. 
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Efficiency of operations on an array 

Time complexity  Space complexity 

 Best 

case 

Average 

case 

Worst 

case 

 Best 

case 

Worst 

case 

Access, 

Assign 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

 

O(1) 

Constant 

O(1) 

Constant 

Search, 

Iterate 

O(1) 

Constant 

O(n) 

Linear 

(one-dimension) 

O(n2) 

Polynomial 

(two-dimension) 

   

Add item 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

   

Delete item 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

   

Resize 

O(n) 

Linear 

(one-dimension) 

O(n) 

Linear 

(one-dimension) 

O(n2) 

Polynomial 
(two-dimension) 

   

Since an array is considered a static data structure, its memory footprint is always known at run-time, so it has 

a constant space complexity of O(1). Some languages support the resizing of an array at run-time, which can 

require moving the structure in memory – an O(n) process for a one-dimension array. 

The advantage of using an array is that it can be randomly accessed, meaning you can jump immediately to 

any index/memory address in the data structure, resulting in basic operations executing in a constant time 

O(1) – for example, adding a new item to an empty index. However, if that index must be found first or the item 

needs to be inserted between two existing indexes to maintain an order to the data, the time complexity will 

degrade to O(n) because other elements must be considered or moved first. 

With multi-dimensional arrays, if a nested loop is required to iterate over all the elements – for example, with 

a bubble sort – the time complexity becomes polynomial, O(n2). The exponent represents the number of 

dimensions in the structure. In the case of a three-dimensional array, it would be O(n3).  
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Binary tree 

A binary tree is a dynamic structure of nodes and pointers. A binary tree is a special case of a graph where 

each node can only have zero, one or two pointers, with each pointer connecting to a different node. Unlike a 

regular tree, the binary tree is a rooted tree. It has a first node from which all operations start, known as the 

root node. The connected nodes are called child nodes, while the nodes at the very bottom of the structure are 

referred to as leaf nodes. Unlike graphs, trees do not allow for circular links between nodes. 

 

 

 

 

 

 

 

 

Since a binary tree is essentially a special type of undirected graph, the nodes and pointers can also be 

described as vertices and edges, respectively.  

There are two types of binary trees. With a binary unordered tree, items added to the tree are not maintained 

in a logical order. The balance of the tree is always maintained, with new nodes simply being added to the next 

available leaf node. However, when discussing binary trees, we are commonly referring to a binary search tree 

where a logical order to the items is maintained as they are entered into the tree. 

With a binary search tree, instead of new nodes being entered at the next available leaf node, items that are 

lower than the root or child node are placed to the left, while items that are greater than the root or child node 

are placed to the right.  

The structure may become unbalanced, with one side of the tree containing more nodes than the other. It is 

possible to rebalance a binary search tree so that each leaf node is the same distance away from the root node 

as any other leaf node. Doing so ensures the structure is as efficient as possible but does require you to output 

the data and recreate the tree. 

The significant advantage of a binary search tree is that by using traversal algorithms, it is possible to output 

nodes in order regardless of the order they were entered into the tree. 

From this point onwards, we will only consider the binary search tree, as this is the data structure you will be 

expected to understand for examinations. 

  

Child node B G 

E 

A C F H Leaf node 

Root node 
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Applications of a binary tree 

A binary tree has many uses in computer science. They are frequently used for storing and searching large data 

sets. Binary trees can be found in routing tables for packet switching within routers, where similar addresses 

are grouped under a single sub-tree. Decision trees are often used in supervised machine learning algorithms 

and expression evaluation for compilers.  

Huffman coding – used in compression algorithms such as JPEG and MP3 – utilises binary trees, as does 

cryptography with GGM trees. Binary trees are also useful for performing arithmetic with reverse Polish 

notation, which negates the use of brackets to define the order of precedence for operators in an expression. 

Storing a binary tree in memory 

A binary tree can be represented in memory using an array or list, with node objects or in a dictionary. 

Array Object Dictionary 

Index Element Left Right 

0 E 1 2 

1 B 3 4 

2 G 5 6 

3 A 7 8 

4 C 9 10 

5 F 11 12 

6 H 13 14 

 

A single node is defined as: 

Class Node 

 element = "" 

 left_pointer = Node 

 right_pointer = Node 

End Class 

 

binaryTree = { 

  "E": ["B", "G"], 

  "B": ["A", "C"], 

  "G": ["F", "H"], 

  "A": [], 

  "C": [], 

  "F": [], 

  "H": [] 

} 

Data structures are often confusing because they can be implemented using other data structures. For 

example, a dictionary is a hash map, and a hash map is a particular use of an array. So, storing a binary tree 

as a dictionary is also storing the binary tree using an array – just using it in a completely different way. 
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Operations on a binary tree 

Typical operations that can be performed on a binary tree include: 

• Add: Adds a new node to the tree. 

• Delete: Removes a node from the tree. 

• Binary search: Returns the data stored in a node. 

• Pre-order traversal: A type of depth-first traversal. 

• In-order traversal: A type of depth-first traversal. 

• Post-order traversal: A type of depth-first traversal. 

• Breadth-first search: Traverses the tree, starting at the root node and visiting each node at the same 

level before going deeper into the structure. 

• Rebalance: The Day-Stout-Warren (DSW) algorithm is a method of generating a compact, balanced tree 

by converting the tree into a linked list using in-order traversal and performing a series of rotations to 

reshape it. 

A traversal refers to the process of navigating through the structure and visiting each node only once. A 

traversal algorithm is used to find, update and output the data in a binary tree. 

  

Did you know? 

The binary tree used to be called a “bifurcating arborescence” – a name associated with 

graph theory – before its modern name became popular in computer science. 
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Array/list implementation of a binary tree 

When a binary tree is stored as an array, the total number of indexes required can be determined by calculating 

2^(depth + 1) – 1, the depth being the number of levels required. For example, a two-level binary tree will have 

2^3 – 1 = 7 nodes or indexes. 

Although a binary tree array is often depicted as having left and right index pointers, they are not necessary. 

However, they do make it easier to visualise the structure as a table and see how each node points to the next 

index. It is possible to reduce data storage requirements by using only a one-dimensional array to store a node 

and calculate the index of the left and right nodes when required: 

• The index of the left node can be calculated as 2 * current index + 1. 

• The index of the right node can be calculated as 2 * current index + 2. 

 

Index Element Left node Right node 

0 E (2 * 0) + 1 = 1 (2 * 0) + 2 = 2 

1 B (2 * 1) + 1 = 3 (2 * 1) + 2 = 4 

2 G (2 * 2) + 1 = 5 (2 * 2) + 2 = 6 

3 A (2 * 3) + 1 = 7 (2 * 3) + 2 = 8 

4 C (2 * 4) + 1 = 9 (2 * 4) + 2 = 10 

5 F (2 * 5) + 1 = 11 (2 * 5) + 2 = 12 

6 H (2 * 6) + 1 = 13 (2 * 6) + 2 = 14 

 

One of the problems of storing a binary tree as an array in this way is there may be many unused leaf nodes or 

indexes in the array, resulting in the data structure having a higher memory footprint than is necessary to store 

the data. To negate this, it would be possible to always use the next available index when adding new items 

and store the values of the left and right pointers instead of calculating them.  

The problem with this approach is you also need to store a pointer to the next available index or use an 

inefficient linear search to find it. The additional complexity arising from these operations means this 

implementation is rarely used but watch out for it in examinations. If a reduced memory footprint is required, 

an object-based approach is much easier to implement and more efficient. 
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When using an array, even though the underlying data structure is static with the reservation of empty space 

and unused indexes, it facilitates the creation of a dynamic data structure with a constant space complexity. 

Object implementation of a binary tree 

When implementing a binary tree with objects, a node class is defined. The class has the attributes: 

• element: To store the value of the node. 

• left_pointer: Another instance of the node class or null value if no child exists on the left edge. 

• right_pointer: Another instance of the node class or null value if no child exists on the right edge. 

Instances of the node class (objects) are created when required, making it a truly dynamic data structure. 

Data structures created with objects are often visualised with each node/object represented as a box or circle 

with the data element written inside. Lines between the boxes indicate how the nodes are connected to each 

other using the left_pointer and right_pointer attributes – these are references to the base memory address of 

the connected object on the heap. 

 

 

 

 

 

 

To create the structure depicted above, the root node, E, would be created first. Typically, objects are created 

(instantiated) with code like: new_node = new Node  

new_node is a variable, storing the base memory address of a new instance of the object created on the heap. 

Variables used in this way are more commonly called pointers. 

The root node of the binary tree can be assigned as: root_node = new_node 

The data element of the root node can be assigned as: root_node.element = "E" 

This does not create a new object because the keyword “new” was not used. Instead, root_node points to the 

base address of new_node. 

Instantiating node B and connecting it to E would require the code: 

new_node = new Node 
new_node.element = "B" 
root_node.left_pointer = new_node  
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E 
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Adding an item to a binary tree 

1. Check there is available memory for a new node – output an error if not. 

2. Create a new node and insert data into it. 

3. If the binary tree is empty: 

a. The new node becomes the first item – create a start pointer to it. 

4. If the binary tree is not empty: 

a. Start at the root node. 

b. If the new node should be placed before the current node, follow the left pointer. 

c. If the new node should be placed after the current node, follow the right pointer. 

d. Repeat from step 4b until the leaf node is reached. 

e. If the new node should be placed before the current node, set the left pointer to be the new 

node. 

f. If the new node should be placed after the current node, set the right pointer to be the new 

node. 

With an array implementation, step 2 is not necessary because, if the structure is not full, there will already be 

a vacant index. Instead, the position of the new node is found, and after step 3 or 4, the data can be inserted 

into the tree. Steps 4e and 4f are also unnecessary because it is possible to calculate the pointer from one 

node to any other node. 

Adding an item to a binary tree illustrated 

 

Start at the root node. D is less than E; follow the left pointer. D is more than B; follow the right pointer. D is 

more than C; create a right pointer from C to D.  

B G 

E 

A F H C 
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Pseudocode for adding an item to a binary tree 

If not memoryfull Then 

 new_node = New Node 

 new_node.left_pointer = Null 

 new_node.right_pointer = Null 

 current_node = start_pointer 

 If current_node == Null Then 

  start_pointer = new_node 

 Else 

  While current_node != Null 

   previous_node = current_node 

   If new_node < current_node Then 

    current_node = current_node.left_pointer 

   Else 

    current_node = current_node.right_pointer 

   End If 

  End While 

  If new_node < previous_node Then 

   previous_node.left_pointer = new_node 

  Else 

   previous_node.rigth_pointer = new_node 

  End If 

 

 End If 

End If 

 

  

Did you know? 

The maximum efficiency of a binary tree is achieved when the tree is balanced, meaning 

one branch is not significantly larger than another. A self-balancing binary tree 

automatically keeps its height small when items are added and deleted by moving nodes 

within the structure. A self-balancing operation decreases the efficiency of adding and 

deleting items but increases the efficiency of searches. 
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Deleting an item from a binary tree 

Firstly, we need to find the node to delete in the structure. 

1. Start at the root node. 

2. While the current node exists, and it is not the one to be deleted: 

a. Set the previous node to be the current node. 

b. If the item to be deleted is less than the current node: 

i. Follow the left pointer. 

ii. Set the node found to be the current node. 

c. If the item to be deleted is greater than the current node: 

i. Follow the right pointer. 

ii. Set the node found to be the current node. 

Assuming the node to be deleted exists in the binary tree, we can now proceed to delete it. As with all 

algorithms, there are many ways to implement the deletion of a node. The Thomas Hibbard algorithm is one 

approach. There are three possibilities that need to be considered when deleting a node from a binary tree 

using this approach, each with a different operation: 

i. The node is a leaf node and has no children. The node can be removed from the tree. 

ii. The node has one child. Copy the child node to the node to be deleted and remove the child. 

iii. The node has two children. The in-order successor node is copied to the node to be deleted and the 

in-order successor is deleted. The successor node is the leftmost/smallest node in the right sub-tree 

of the node to be deleted. 

The node to be deleted has no children 

Here, A is being deleted. The previous node’s left pointer is set to null because A is to the left of B. If C were to 

be removed, the previous node’s right pointer would be set to null. 

 

3. If the previous node is greater than the current node, the previous node’s left pointer is set to null. 

4. If the previous node is less than the current node, the previous node’s right pointer is set to null. 

B G 

E 

A F H C 
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The node to be deleted has one child 

Here, B is being deleted. The child node C and its pointers are copied to the node previously occupied by B and 

the child node is removed. 

This operation can also be accomplished by changing node E’s left pointer to be the left pointer of the node 

being deleted. In this case, E’s left pointer becomes C. 

In either case, E now points to node C instead of node B. 

 

 

 

5. If the current node is less than the previous node: 

a. Set the previous node’s left pointer to the current node’s left child. 

6. If the current node is greater than the previous node: 

b. Set the previous node’s right pointer to the current node’s right child. 
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The node to be deleted has two children but no left sub-tree on the right pointer 

Here, G is being deleted. In this case, there is no left sub-tree from H, so G is replaced with H and its right 

pointer is set to null. 

 

  becomes 

 

 

 

 

 

 

H is the successor node and is promoted to the position previously occupied by G. Note that H was not chosen 

simply because it is the right child of G but because it is the leftmost node on the right sub-tree from G. If there 

were further left nodes to follow, they would be followed to the final leaf node, the successor node. 

7. If a right node exists but has no left sub-tree: 

a. Set the current node to be the current node’s right pointer. 

b. Set the current node’s right pointer to be null. 

 

B G 

E 

A C F H 

B H 

E 

A C F H 

Did you know? 

In the example above, you could also replace H with F and delete node F instead. 
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The node to be deleted has two children and a left sub-tree on the right pointer 

Here, F is being deleted. The successor node is H. F is replaced with H, and J’s left pointer is set to null. 

However, it is a mistake to assume that it is always the first left node from the right sub-tree that is found. 

Instead, it is the leftmost leaf node that is swapped. Therefore, if H had a left pointer, it would be followed 

until the leftmost leaf node was found. 

 

 

becomes  

8. If a right node exists and has a left sub-tree, find the smallest leaf node in the right sub-tree. 

a. Change the current node to be the value of the smallest leaf node. 

b. Remove the leaf node. 

Alternative approaches to deleting a node 

One alternative approach would be to use the predecessor node (the rightmost node in the left sub-tree) 

instead of the successor node with the Hibbard algorithm. 

Another simple approach is for each node to have an additional Boolean field that is set to true if the node 

exists and false if it has been deleted. When the tree is traversed, if the node has been deleted and the Boolean 

flag is false, the node is not output. When a new node is added to the binary tree, the deleted node is still 

considered to ensure the new node is added to the correct branch. With this approach, the binary tree will 

continue to grow over time and contain many redundant nodes. Periodically, a rebalance operation would be 

performed, skipping over deleted nodes and effectively deleting them forever. 

  

B F 
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Pseudocode for deleting an item from a binary tree 

current_node = root node 

while current_node != null and current_node != item 

 previous_node = current_node 

 if item < current_node.data Then 

  current_node = current_node.left_pointer 

 Else 

  current_node = current_node.right_pointer 

 End If 

If current_node != null then 

 If current_node.left_pointer == null and current_node.right_pointer == null Then 

  If previous_node.data > current_node.data Then 

   previous_node.left_pointer = null 

  Else 

    previous_node.right_pointer = null 

  End If 

 Elseif current_node.right_pointer == null Then 

  If previous_node.data > current_node.data Then 

   previous_node.left_pointer = current_node.left_pointer 

  Else 

   previous_node.right_pointer = current_node.left_pointer 

  End If 

 Elseif current_node.left_pointer == null Then 

  If previous_node.data < current_node.data Then 

   previous_node.left_pointer = current_node.right_pointer 

  Else 

   previous_node.right_pointer = current_node.right_pointer 

  End If 

 Else 

  right_node = current_node.right_pointer 

  If right_node.left_pointer != null Then 

   smallest_node = right_node 

   While smallest_node.left_pointer != null 

    previous_node = smallest_node 

    smallest_node = smallest_node.left_pointer 

   End While 

   current_node.data = smallest_node.data 

   previous_node.left_pointer = null 

  Else 

   current_node.data = right_node.data 

   current_node.right_pointer = null 

End If 

 End If 

End If 
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Traversal operations 

Finding, updating or outputting the nodes from a binary tree requires a traversal algorithm. These algorithms 

visit each node in turn once, starting from the root node, until the desired node is found. Since there are many 

potential paths to follow in a binary tree, there are many ways to traverse the structure too, including depth-

first traversal (pre-, in- and post-order) or breadth-first traversal. 

Pre-order traversal (depth-first traversal) 

Pre-order traversal – a type of a depth-first traversal – is used to create a copy of a binary tree or return prefix 

expressions in Polish notation, which can be used by programming language interpreters to evaluate syntax. 

The algorithm can be described as node-left-right: 

1. Start at the root node. 

2. Output the node. 

3. Follow the left pointer and repeat from step 2 recursively until there is no pointer to follow. 

4. Follow the right pointer and repeat from step 2 recursively until there is no pointer to follow. 

Pre-order traversal illustrated 

A pre-order traversal can be pictured like this: 

 

 

Note the markers on the left side of each node. As you traverse the tree, starting from the root, the nodes are 

only output when the marker is passed: E, B, A, C, G, F, H. You can illustrate like this in exams to demonstrate 

your understanding of the algorithm. 
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Pseudocode for a pre-order traversal 

Procedure preorder(current_node) 

If current_node != null Then 

  Print(current_node.data) 

  If current_node.left_pointer != null Then 

   preorder(current_node.left_pointer) 

  End If 

  If current_node.right_pointer != null Then 

   preorder(current_node.right_pointer) 

  End If  

End If 

End procedure 

In-order traversal (depth-first traversal) 

An in-order traversal – a type of a depth-first traversal – is used to output the contents of the binary tree in 

order. One of the significant advantages of the binary search tree is that it automatically sorts the contents of 

the structure without moving data, irrespective of the order in which the data arrived. 

The algorithm can be described as left-node-right: 

1. Start at the root node. 

2. Follow the left pointer and repeat from step 2 recursively until there is no pointer to follow. 

3. Output the node. 

4. Follow the right pointer and repeat from step 2 recursively until there is no pointer to follow. 

  

Did you know? 

Don’t forget, all traversals including pre-order, in-order and post-order always follow the 

left path first – unless you want to output the items in reverse order. 
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In-order traversal illustrated 

An in-order traversal can be pictured like this: 

 

 

Note the markers on the bottom of each node. As you traverse the tree, starting from the root, the nodes are 

only output when the marker is passed: A, B, C, E, F, G, H. You can illustrate like this in exams to demonstrate 

your understanding of the algorithm. 

To output the nodes in reverse order, simply reverse the algorithm by following the right pointers before 

outputting the node and then follow the left pointers. 

Pseudocode for an in-order traversal 

Procedure inorder(current_node) 

If current_node != null Then 

  If current_node.left_pointer != null Then 

   inorder(current_node.left_pointer) 

  End If 

  Print(current_node.data) 

If current_node.right_pointer != null Then 

   inorder(current_node.right_pointer) 

  End If  

End If 

End procedure 
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Post-order traversal (depth-first traversal) 

A post-order traversal – a type of a depth-first traversal – is used to delete a binary tree or output post-fix 

expressions that can be used to evaluate mathematical expressions without brackets. This is how arithmetic 

logic units work in stack-machine computers, and it was popular in pocket calculators until the early 2010s. 

The algorithm can be described as left-right-node: 

1. Start at the root node. 

2. Follow the left pointer and repeat from step 2 recursively until there is no pointer to follow. 

3. Follow the right pointer and repeat from step 2 recursively until there is no pointer to follow.  

4. Output the node. 

Post-order traversal illustrated 

A post-order traversal can be pictured like this: 

 

 

Note the markers on the right side of each node. As you traverse the tree, starting from the root, the nodes are 

only output when the marker is passed: A, C, B, F, H, G, E. You can illustrate like this in exams to demonstrate 

your understanding of the algorithm.  
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Pseudocode for a post-order traversal 

Procedure postorder(current_node) 

If current_node != null Then 

  If current_node.left_pointer != null Then 

   postorder(current_node.left_pointer) 

  End If 

If current_node.right_pointer != null Then 

   postorder(current_node.right_pointer) 

  End If  

  Print(current_node.data) 

End If 

End procedure 

Breadth-first traversal using a binary tree 

Visiting each node on the same level of a tree before going deeper is an example of a breadth-first traversal. 

Although commonly associated with graphs, a binary tree can also be traversed in this way – however, it does 

require a queue structure. 

1. Start at the root node. 

2. While the current node exists: 

a. Output the current node. 

b. If the current node has a left child, enqueue the left node. 

c. If the current node has a right child, enqueue the right node. 

d. Dequeue and set the current node to the dequeued node. 

Breadth-first traversal on a binary tree illustrated 

A breadth-first traversal can be pictured like this: 
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Pseudocode for a breadth-first traversal on a binary tree 

current_node = root_node 

While current_node != null 

 Print(current_node) 

 If current_node.left_pointer Then enqueue(current_node.left_pointer) 

 If current_node.right_pointer Then enqueue(current_node.right_pointer) 

 current_node = dequeue() 

Binary tree coded in Python using an array 

class BinaryTree: 
 
    depth = 5 
    max = 2**(depth + 1) - 1 
    btree = ["" for item in range(max)] 
    root = 0 
     
    def add(self, item): 
        current_node = self.root 
        # Find correct position 
        while current_node < self.max and self.btree[current_node] != "": 
            if item < self.btree[current_node]: 
                current_node = (2 * current_node) + 1 
            else: 
                current_node = (2 * current_node) + 2 
        # Check overflow 
        if current_node < self.max: 
            self.btree[current_node] = item 
            return True 
        else: 
            return False 
 
    def delete(self, item): 
        # Using Hibbard's algorithm (leftmost node of right sub-tree is the successor) 
        # Find the node to delete 
        current_node = self.root 
        while current_node < self.max and self.btree[current_node] != item: 
            if item < self.btree[current_node]: 
                current_node = (2 * current_node) + 1 
            else: 
                current_node = (2 * current_node) + 2 
        if current_node < self.max and self.btree[current_node] == item: 
            # Handle 3 cases depending on the number of child nodes 
            left_node = (2 * current_node) + 1 
            right_node = (2 * current_node) + 2 
            if left_node < self.max and self.btree[left_node] == "" and right_node < 
self.max and self.btree[right_node] == "": 
                # Node has no children 
                self.btree[current_node] = "" 
            elif left_node < self.max and self.btree[left_node] != "" and right_node < 
self.max and self.btree[right_node] != "": 
                # Node has two children 
                # Find the smallest value in the right sub-tree (successor node) 
                smallest = right_node 
                while (2 * smallest) + 1 < self.max and self.btree[(2 * smallest) + 1] != 
"": 
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                    smallest = (2 * smallest) + 1 
                self.btree[current_node] = self.btree[smallest] 
                self.btree[smallest] = "" 
            elif left_node < self.max and self.btree[left_node] != "": 
                # Node has one left child 
                self.btree[current_node] = self.btree[left_node] 
                self.btree[left_node] = "" 
            elif right_node < self.max and self.btree[right_node] != "": 
                # Node has one right child 
                self.btree[current_node] = self.btree[right_node] 
                self.btree[right_node] = ""         
            return True 
        else: 
            return False 
         
    def preorder(self, current_node): 
        # Visit each node: NLR 
        if current_node < self.max and self.btree[current_node] != "": 
            print(self.btree[current_node]) 
            self.preorder((2 * current_node) + 1) 
            self.preorder((2 * current_node) + 2) 
 
    def inorder(self, current_node): 
        # Visit each node: LNR 
        if current_node < self.max and self.btree[current_node] != "": 
            self.inorder((2 * current_node) + 1) 
            print(self.btree[current_node]) 
            self.inorder((2 * current_node) + 2) 
 
    def postorder(self, current_node): 
        # Visit each node: LRN 
        if current_node < self.max and self.btree[current_node] != "": 
            self.postorder((2 * current_node) + 1) 
            self.postorder((2 * current_node) + 2) 
            print(self.btree[current_node]) 
 
    def bft(self): 
        # Visit each node: BFT 
        for current_node in range(self.max): 
            if self.btree[current_node] != "": 
                print(self.btree[current_node]) 
 
 
# Main program starts here 
items = ["E", "B", "G", "A", "C", "F", "H"] 
binary_tree = BinaryTree() 
for index in range(0, len(items)): 
    binary_tree.add(items[index]) 
# Traverse the binary tree 
print("Breadth first traversal:") 
binary_tree.bft() 
print("Pre-order traversal:") 
binary_tree.preorder(binary_tree.root) 
print("In-order traversal:") 
binary_tree.inorder(binary_tree.root) 
print("Post-order traversal:") 
binary_tree.postorder(binary_tree.root) 

 



 

 

D
A

T
A

 S
TR

U
C

TU
R

ES
 

29 

Binary tree coded in Python using objects 

A queue data structure has been included with this implementation to facilitate the breadth-first traversal. 

class Queue: 
 
    class Node: 
        data = None 
        pointer = None 
 
    front_pointer = None 
    back_pointer = None 
 
    def enqueue(self, item): 
        # Check queue overflow 
        try: 
            # Push the item 
            new_node = Queue.Node() 
            new_node.data = item 
            # Empty queue 
            if self.back_pointer == None: 
                self.front_pointer = new_node 
            else: 
                self.back_pointer.pointer = new_node 
            self.back_pointer = new_node 
            return True 
        except: 
            return False 
 
    def dequeue(self): 
        # Check queue underflow 
        if self.front_pointer != None: 
            # Dequeue the item 
            popped = self.front_pointer.data 
            self.front_pointer = self.front_pointer.pointer 
            # When the last item is dequeued reset the pointers 
            if self.front_pointer == None: 
                self.back_pointer = None 
            return popped 
        else: 
            return None 
 
    def peek(self): 
        # Check queue underflow 
        if self.front_pointer != None: 
            # Peek the item 
            return self.front_pointer.data 
        else: 
            return None 
 
 
class Binary_tree: 
    class Node: 
        data = None 
        left_pointer = None 
        right_pointer = None 
 
    root = None 
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    def add(self, item): 
        # Check memory overflow 
        try: 
            new_node = Binary_tree.Node() 
            new_node.data = item 
            current_node = self.root 
            new_node.left_pointer = None 
            new_node.right_pointer = None 
            # Tree is empty 
            if current_node == None: 
                self.root = new_node 
            else: 
                # Find correct position in the tree 
                while current_node != None: 
                    previous = current_node 
                    if item < current_node.data: 
                        current_node = current_node.left_pointer 
                    else: 
                        current_node = current_node.right_pointer 
                if item < previous.data: 
                    previous.left_pointer = new_node 
                else: 
                    previous.right_pointer = new_node 
                return True 
        except: 
            return False 
 
    def delete(self, item): 
        # Using Hibbard's algorithm (leftmost node of right sub-tree is the successor) 
        # Find the node to delete 
        current_node = self.root 
        while current_node != None and current_node.data != item: 
            previous = current_node 
            if item < current_node.data: 
                current_node = current_node.left_pointer 
            else: 
                current_node = current_node.right_pointer 
 
        # Handle 3 cases depending on the number of child nodes 
        if current_node != None: 
            if current_node.left_pointer == None and current_node.right_pointer == None: 
                # Node has no children 
                if previous.data > current_node.data: 
                    previous.left_pointer = None 
                else: 
                    previous.right_pointer = None 
            elif current_node.right_pointer == None: 
                # Node has one left child 
                if previous.data > current_node.data: 
                    previous.left_pointer = current_node.left_pointer 
                else: 
                    previous.right_pointer = current_node.left_pointer 
            elif current_node.left_pointer == None: 
                # Node has one right child 
                if previous.data < current_node.data: 
                    previous.left_pointer = current_node.right_pointer 
                else: 
                    previous.right_pointer = current_node.right_pointer 
            else: 
                # Node has two children 
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                right_node = current_node.right_pointer 
                if right_node.left_pointer != None: 
                    # Find the smallest value in the right sub-tree (successor node) 
                    smallest = right_node 
                    while smallest.left_pointer != None: 
                        previous = smallest 
                        smallest = smallest.left_pointer 
                    # Change the deleted node value to the smallest value 
                    current_node.data = smallest.data 
                    # Remove the successor node 
                    previous.left_pointer = None 
                else: 
                    # Handle special case of no left sub-tree from right node 
                    current_node.data = right_node.data 
                    current_node.right_pointer = None 
 
    def preorder(self, current_node): 
        if current_node != None: 
            # Visit each node: NLR 
            print(current_node.data) 
            if current_node.left_pointer != None: 
                self.preorder(current_node.left_pointer) 
            if current_node.right_pointer != None: 
                self.preorder(current_node.right_pointer) 
 
    def inorder(self, current_node): 
        if current_node != None: 
            # Visit each node: LNR 
            if current_node.left_pointer != None: 
                self.inorder(current_node.left_pointer) 
            print(current_node.data) 
            if current_node.right_pointer != None: 
                self.inorder(current_node.right_pointer) 
 
    def postorder(self, current_node): 
        if current_node != None: 
            # Visit each node: LRN 
            if current_node.left_pointer != None: 
                self.postorder(current_node.left_pointer) 
            if current_node.right_pointer != None: 
                self.postorder(current_node.right_pointer) 
            print(current_node.data) 
 
    def bft(self, current_node): 
        q = Queue() 
        # Visit each node: BFT 
        while current_node != None: 
            print(current_node.data) 
            if current_node.left_pointer != None: 
                q.enqueue(current_node.left_pointer) 
            if current_node.right_pointer != None: 
                q.enqueue(current_node.right_pointer) 
            current_node = q.dequeue() 
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# Main program starts here 
items = ["E", "B", "G", "A", "C", "F", "H"] 
# Create binary tree 
binary_tree = Binary_tree() 
for index in range(0, len(items)): 
    binary_tree.add(items[index]) 
# Traverse the binary tree 
print("Breadth first traversal:") 
binary_tree.bft(binary_tree.root) 
print("Pre-order traversal:") 
binary_tree.preorder(binary_tree.root) 
print("In-order traversal:") 
binary_tree.inorder(binary_tree.root) 
print("Post-order traversal:") 
binary_tree.postorder(binary_tree.root) 

 

Operations 

Adding items:  binary_tree.add(item) 

Deleting items:  binary_treet.delete(item) 

Outputting items:  binary_tree.bft() 

binary_tree.preorder(binary_tree.root) 

bt.inorder(binary_tree.root) 

bt.postorder(binary_tree.root) 

 

  

Did you know? 

Breadth- and depth-first traversals are also called breadth- and depth-first searches if the 

algorithm is used to find a particular node and then stop before visiting every node. 

Breadth- and depth-first traversals or searches can be used with any type of graph or tree 

structure, but a binary search can only be performed on a binary search tree. 
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Efficiency of operations on a binary tree 

Time complexity  Space complexity 

 Best 

case 

Average 

case 

Worst 

case 

 Array 

implementation 

Object 

implementation 

Access a 

node, binary 

search 

O(1) 

Constant 

O(log n) 

Logarithmic 

O(n) 

Linear 

 

O(1) 

Constant 

O(n) 

Linear 

Add node 

O(log n) 

Logarithmic 

O(log n) 

Logarithmic 

O(n) 

Linear 

   

Delete node 

O(log n) 

Logarithmic 

O(log n) 

Logarithmic 

O(n) 

Linear 

   

Rebalance 

O(n) 

Linear 

O(n) 

Linear 

O(n) 

Linear 

   

Traversal 

O(n) 

Linear 

O(n) 

Linear 

O(n) 

Linear 

   

 

If the binary tree is implemented with an array, the memory footprint will be fixed and constant, but the size of 

the structure will be limited and there will likely be a lot of unused space. An implementation using objects 

allows for dynamic memory allocation and for the size of the structure to grow in a linear fashion. 

Assuming the binary tree is not pre-populated, establishing the tree from a list of data items will require each 

item to be added sequentially. However, the input order of the items does not matter – therefore, the number 

of operations depends on the number of data items, O(n). 

Adding, deleting and searching nodes on a binary tree uses a technique called divide and conquer. With a 

balanced tree, the number of items to consider is halved each time a node is visited, providing logarithmic 

complexity, O(log n). If the tree is unbalanced, it becomes the same as a linear search to determine the location 

of an item to add or delete, demoting it to linear complexity, O(n). 
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Balanced tree where each level is complete: Unbalanced tree holding the same data: 

 

 

 

In the best-case scenario, the node to be found is the root node, so it will always be found first, O(1). Notice in 

the example above how the worst case becomes a linear search for item H. 

All traversal algorithms require each node to be visited. As the number of nodes in the tree increases, so does 

the execution time, so traversals are of linear complexity, O(n). 
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Did you know? 

Binary trees are often used to implement dictionary data structures. As a dictionary does 

not permit duplicate keys, it is often thought that binary trees do not allow duplicate nodes 

– this is not true. A binary tree can hold duplicate values as child nodes, either to the left 

or right of the node with the same value.  
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Dictionary 

A dictionary is used for storing related data and can be static or dynamic. Each item in a dictionary has a key 

and value, known as a key-value pair. The key must be unique for all data stored in the dictionary. For example, 

the registration number of a car is unique because no two vehicles can have the same registration, so it makes 

an ideal key. The value would be associated data about the car – for example: 

• Key: GB21 CWW 

• Value: Vauxhall Corsa 

A dictionary is an implementation of a hash table search using an array or list and is often called an associative 

array or hash map. Many high-level languages provide the dictionary as a primitive data structure for the 

programmer to use in their programs. The value in the key-value pair can be any another data structure – 

commonly a list – making the dictionary highly versatile. 

Applications of a dictionary 

A dictionary is used to hold data related to a unique key field. NoSQL – an acronym for not only SQL – makes 

extensive use of dictionaries to store databases. Dictionaries are also ideal for storing a graph as part of the 

implementation of depth- and breadth-first traversal algorithms. A dictionary is useful in any situation where 

an efficient value look-up is required. 

Storing a dictionary in memory 

The implementation of a dictionary is often abstracted from the programmer, who can use operations to add, 

remove and change key-value pairs without knowing how the dictionary works in memory. However, if the 

dictionary is not supported by your chosen programming language, you would use an array to implement your 

own dictionary structure, with the index being determined by the key. 

Operations on a dictionary 

Typical operations that can be performed on a dictionary include: 

• Add key/value: Adding a new key-value pair to the dictionary. 

• Delete key/value: Removing a key-value pair from the dictionary. 

• Modify key/value: Edit a key-value pair. 

• Lookup: Return the value from a key. 

• Rehashing: Optimise the data structure to reduce collisions. 
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Array/list implementation of a dictionary 

A key is changed into a number using a hashing function (also known as a hashing algorithm or hash). The 

number returned from the function is an index in an array or list where the value can be found.  

Consider the following dictionary: 

dictionary = { 
  "E": ["B", "G"], 
  "B": ["A", "C"], 
  "G": ["F", "H"], 
  "A": [], 
  "C": [], 
  "F": [], 
  "H": [] 
} 

Examining the first part of the structure, "E": ["B", "G"], the letter E is a key and ["B", "G"] is the value, 

a list holding more keys. Since the dictionary needs to be stored as an array, the key must be associated with 

an index in the array. Indexes are always integers, so the hashing function converts the character E into a 

useful integer. 

Each letter can easily be converted into a number using its ASCII value. The number returned will be 65 for the 

letter A, so by subtracting 65, A could be stored in the first index in the array. This is a simplistic hashing 

algorithm because the key in this example is a single alphanumeric character. When the key is a string or large 

integer, a more complex algorithm will be required to determine a suitable index for each key. 

 Array 

Key Hashing function Index Element 

A 65 – 65 = 0 [] 

B 66 – 65 =  1 ["A","C"] 

C 67 – 65 = 2 [] 

  3  

E 69 – 65 = 4 ["B","G"] 

F 70 – 65 = 5 [] 

G 71 – 65 = 6 ["F","H"] 
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Notice how the array may not be fully utilised, with some indexes never being generated by the hashing 

function. If it is possible to calculate the total number of items to be stored in advance, modulo can be used 

as part of the hashing function to ensure values that would result in indexes that fall out of the bounds of the 

array are not returned. 

The data in the dictionary looks remarkably like the binary tree from the previous chapter, albeit the indexes 

are being used differently – this is an example of how one data structure can be implemented using another 

data structure. All data structures are simply memory locations that can be accessed with their address. 

Adding an item to a dictionary 

To add an item to a dictionary, the hashing function is applied to the item’s key, which returns an index where 

the item can be stored in the array. However, the hashing function may return a value that is already occupied 

by a data item. There are several potential resolutions to this. See the Hash table search section of the 

Searching algorithms chapter for a detailed description of the essential properties of hashing functions and 

collision resolutions. 

Deleting an item from a dictionary 

When deleting an item from a dictionary, the hashing function will be applied to the key to determine the index 

of the element to delete. It may be that the item at that index is not the one to be deleted because the hashing 

function does not always return unique values. The solution to this problem is also described in the Hash table 

search section of the chapter on Searching algorithms. 

Assuming the item to be deleted is found at the index returned by the hashing value, indexes are not removed 

– this is because the dictionary is stored as an array. Instead, the data element can be set to a null value or an 

empty string. Alternatively, an additional dimension in the array can be used to store a Boolean value that is 

set to true when an item is added and false when the item is deleted. 

 

  

Did you know? 

Programs will often need to store data in a file permanently or transmit it across a network. 

A process called serialisation, marshalling, flattening or pickling produces a plain-text or 

binary output of a data structure. 



 

 

D
A

T
A

 S
TR

U
C

TU
R

ES
 

38 

Looking up and item in a dictionary 

1. Read a key. 

2. Look up the key in the dictionary. 

3. If the key exists, return the matching value; if not, return an error. 

Pseudocode for looking up an item in a dictionary 

key = input("Enter the key: ") 

If key in dictionary Then 

 Return dictionary[key].value 

Else 

 Return "Not found" 

End If 

Lookup operation coded in Python 

# Dictionary using primitive hash map 
dictionary = {"England": "London", "France": "Paris", "Germany": "Berlin"} 
key = input("Enter the key: ") 
if key in dictionary: 
    print(dictionary[key]) 
else: 
    print("Not found") 
 

  

Did you know? 

Dictionary data structures can also be implemented using a self-balancing binary tree.   

The advantage of this is that the hashing function traverses the tree to find the node, so 

collisions will not happen. Although finding an item may be slower on average, the time 

complexity of finding an item can also be reduced to O(log n) in the worst-case scenario 

because no collision resolution is necessary. 

It is important that the binary tree is balanced to achieve this efficiency, so the structure 

of the tree must be updated regularly. 
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It is worth noting that there is no known order to the items in a dictionary due to the hashing function. In the 

example, even though “England” was entered into the dictionary first, it is not necessarily the first item in the 

structure. For this reason, it does not make sense to try to return an item from an index number. Some 

languages support such commands, but the returned value often appears to be a random item. 

Efficiency of operations on a dictionary 

Time complexity  Space complexity 

 Best 

case 

Average 

case 

Worst 

case 

 Best 

case 

Worst 

case 

Lookup, 

Modify 

O(1) 

Constant 

O(1) 

Constant 

O(n) 

Linear 

 

O(1) 

Constant 

O(n) 

Linear 

Add key/ 

value 

O(1) 

Constant 

O(1) 

Constant 

O(n) 

Linear 

   

Delete key/ 

value 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

   

Rehash 

O(n) 

Linear 

O(n) 

Linear 

O(n) 

Linear 

   

 

The dictionary data structure aims to be extremely efficient, returning a value without having to search for the 

key in the data set. Since the index of an item is determined by the hashing function, there is no order to the 

items in a dictionary and some indexes may not be used.  

By using a key, items can still be randomly accessed. In most cases, with an appropriate hashing function, the 

key always delivers the index where the item is stored, O(1). New items are added instantly, and deleted items 

are replaced with null values. However, depending on the implementation, collisions are likely to occur and 

must be resolved, often degrading the lookup operation to a linear search, O(n). Rehashing to optimise the 

data structure is also a linear operation. 

Dictionaries are often implemented using arrays as their underlying data structure. An array will be of a fixed 

size with an O(1) space complexity, although it may be resized, or stored as a binary tree O(n).  
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Graph 

A graph is a dynamic structure of nodes (called vertices) and pointers (called edges). It is different from a binary 

tree because a root vertex is not required, and each vertex can have any number of edges. A graph is different 

from a regular tree because any vertex can point to any other vertex in the data structure, making loops 

between vertices possible. 

The edges on a graph can either point in one direction, known as a directed graph, or in both directions, known 

as an undirected graph. Graphs can also be weighted, with each edge given a value or cost that represents a 

relationship between the vertices such as the distance between them. 

Undirected graph Directed graph 

  

Undirected weighted graph Directed weighted graph 
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Applications of a graph 

Graphs have many uses in computer science – for example, mapping road networks for navigation systems, 

storing flight paths for aircraft, social networking data such as friends lists, resource allocation in operating 

systems, representing molecular structures and geometry. They may also be used for storing knowledge graphs 

for expert systems, modelling business problems and pathfinding algorithms. 

Storing a graph in memory 

Typically, an undirected graph is stored as a dictionary. The value in the key/value pair being a list of connected 

vertices. This is known as an adjacency list. In Python, the code would be: 

graph = { 
  "A": ["B", "C", "D"], 
  "B": ["A", "E"], 
  "C": ["A", "D"], 
  "D": ["A", "C", "F"], 
  "E": ["B", "G"], 
  "F": ["D"], 
  "G": ["E"] 
} 

This may also be presented in pseudocode as: 

edges { 
(A, B), (A, C), (A, D), (B, A,), (B, E), (C, A), (C, D), (D, A), (D, C), (D, F), (E, B),  
(E, G), (F, D), (G, E) 
} 

A directed graph stored as a dictionary: 

graph = { 
  "A": ["B", "C", "D"], 
  "B": ["E"], 
  "C": ["D"], 
  "D": ["F"], 
  "E": ["G"], 
  "F": [], 
  "G": [] 
} 

In this example, note how vertex A is connected to C, but C is only connected to D and not back to A. 

Costs on weighted graphs can be defined as: 

graph = { 
  "A": {"B": 4, "C": 3, "D": 2} 
} 

This means the cost between A and B is four, the cost between A and C is three, and the cost between A and 

D is two. Depending on what the data structure is being used for, costs between two vertices can represent 

many things including distance or bandwidth. Note how the graph becomes a dictionary of dictionaries when 

storing this additional data. 
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Abstraction of a graph data structure 

In the illustrations below, we can see how graph data can remain the same even though illustrations of it can 

look different. What is important is not what the graph looks like, but which vertices are connected. Using only 

the necessary detail and discarding unnecessary detail is known as abstraction. 

 

 

 

which is also the same as 

 

 

 

 

 

An example of abstraction is the map of the London Underground. It bears no resemblance to where the 

stations are located; all that matters is which stations are connected in which order and on which line. 

Similarly, it is important that students do not concern themselves with how a graph looks or what operation is 

being asked for in an examination– e.g., a pre-order traversal on a graph, which you might expect to only be 

relevant to a binary tree. Simply follow the algorithm on the structure provided. 
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Why use abstraction? 

Abstraction can often help simplify a problem and make it easier for humans to communicate. Abstractions are 

especially useful to explain and illustrate complex relationships. Sometimes, links between seemingly 

unrelated problems can be seen with abstractions. Computers do not benefit from abstract illustrations. 

Operations on a graph 

It is worth noting that because graphs and trees are very similar – with a few notable exceptions – the 

operations on a binary tree such as traversal can also be performed on a graph data structure. 

Typical operations that can be performed on a graph include: 

• Adjacent: Returns whether there is an edge between two vertices. 

• Neighbours: Returns all the vertices between two vertices. 

• Add: Adds a new vertex to the graph. 

• Remove: Removes a vertex from the graph. 

• Add edge: Adds a new edge to a vertex from another vertex. 

• Remove edge: Removes an edge between two vertices. 

• Get vertex value: Returns the data stored in a vertex. 

• Set vertex value: Sets the data for a vertex. 

• Get edge value: Returns the value of an edge between two vertices. 

• Set edge value: Sets the value of an edge between two vertices. 

• Depth-first traversal/search: Traverses the graph, starting at the root vertex, visiting each vertex and 

exploring each branch as far as possible before backtracking. 

• Breadth-first traversal/search: Traverses the graph, starting at the root vertex, visiting each 

neighbouring vertex before moving to the vertices at the next depth. 

• Pre-order traversal: A type of depth-first traversal (see the Binary tree section for an example). 

• In-order traversal: A type of depth-first traversal (see the Binary tree section for an example). 

• Post-order traversal: A type of depth-first traversal (see the Binary tree section for an example). 

Array implementation of a graph 

While it is typical to store a graph as a dictionary, known as an adjacency list, it is also possible to store a graph 

using an array. This implementation is known as an adjacency matrix, with rows and columns representing 

vertices and the intersections representing edges. 

An example of an adjacency matrix for an undirected graph is shown overleaf. The rows and columns are not 

usually labelled with the vertices with this approach because they would be indexes, but they are shown here 

for clarity. 

With undirected graphs a 1 represents an edge existing between the two vertices, while a 0 represents no 

edge. With directed graphs the edge value is stored instead. 
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Undirected graph Directed graph 

 A B C D E F G 

A 0 1 1 1 0 0 0 

B 1 0 0 0 1 0 0 

C 1 0 0 1 0 0 0 

D 1 0 1 0 0 1 0 

E 0 1 0 0 0 0 1 

F 0 0 0 1 0 0 0 

G 0 0 0 0 1 0 0 

 

 A B C D E F G 

A 0 1 1 1 0 0 0 

B 0 0 0 0 1 0 0 

C 0 0 0 1 0 0 0 

D 0 0 0 0 0 1 0 

E 0 0 0 0 0 0 1 

F 0 0 0 0 0 0 0 

G 0 0 0 0 0 0 0 

 

Undirected weighted graph Directed weighted graph 

 A B C D E F G 

A 0 4 3 2 0 0 0 

B 4 0 0 0 4 0 0 

C 3 0 0 5 0 0 0 

D 2 0 5 0 0 2 0 

E 0 4 0 0 0 0 2 

F 0 0 0 2 0 0 0 

G 0 0 0 0 2 0 0 

 

 A B C D E F G 

A 0 4 3 2 0 0 0 

B 0 0 0 0 4 0 0 

C 0 0 0 5 0 0 0 

D 0 0 0 0 0 2 0 

E 0 0 0 0 0 0 2 

F 0 0 0 0 0 0 0 

G 0 0 0 0 0 0 0 

 

 

Notice an undirected graph is symmetrical and a directed graph is not.  
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An adjacency matrix can also be stored as an adjacency list: 

graph ([[0,1,1,1,0,0,0], 

        [1,0,0,0,1,0,0], 

        [1,0,0,1,0,0,0], 

        [1,0,1,0,0,1,0], 

        [0,1,0,0,0,0,1], 

        [0,0,0,1,0,0,0], 

        [0,0,0,0,1,0,0]]) 

 

This can be abstracted to a table: 

Nodes Adjacency list 

A B; C; D 

B A; E 

C A; D 

D A; C; F 

E B; G 

F D 

G E 

Object implementation of a graph 

Another possibility for storing the graph in memory is for each vertex to be stored as an object. The object would 

have an attribute that is a list of edges – since they can be variable in number – with each edge being a pointer 

to the connected vertex. 

Traversal operations 

Finding, updating or outputting the vertices from a graph requires a traversal algorithm. These algorithms visit 

each vertex in turn until the desired vertex is found. Since there are many potential paths to follow in a graph, 

there are many ways to traverse the structure too including depth- and breadth-first traversals. 

If only one occurrence of an item needs to be found, the traversal algorithm can stop without evaluating any 

other vertices. In this situation the traversal is often referred to as a depth and breadth-first search. 
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Breadth-first traversal on a graph 

The breadth-first traversal is used to determine the shortest path between vertices on a graph. It is also used 

by search engines to index connected web pages using a crawler algorithm. The breadth-first search can also 

be used to find devices on peer-to-peer networks and to send broadcast frames or packets on a network too. 

GPS navigation systems, memory management using Cheney’s algorithm and finding nearby people on a social 

network are all applications of a breadth-first traversal. 

A breadth-first traversal requires the use of a queue data structure. 

1. Set the root vertex as the current vertex. 

2. Add the current vertex to the list of visited vertices if it is not already in the list. 

3. For every edge connected to the vertex: 

a. If the linked vertex is not in the visited list: 

i. Enqueue the linked vertex. 

ii. Add the linked vertex to the visited list. 

4. Dequeue and set the vertex removed as the current vertex. 

5. Repeat from step 2 until the queue is empty. 

6. Output all the visited vertices. 

 

Breadth-first traversal illustrated 

A breadth-first traversal can be pictured like this: 
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Stepping through the breadth-first traversal 

The front pointer in the queue is represented by the lowercase letter f. The back pointer in the queue is 

represented by the lowercase letter b. 

 Graph Queue Visited 

Step 1 Start at a root vertex – this can be any vertex, but A has been chosen. 

A is not in the visited list; add A to the list of visited vertices. Consider each edge of A. 
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Step 2 B is not in the visited list; enqueue B and add B to the visited list. 
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Step 3 C is not in the visited list; enqueue C and add C to the visited list. 
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Step 4 D is not in the visited list; enqueue D and add D to the visited list. 
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Step 5 All edges of A have been considered. Dequeue. New current vertex is B. 
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Step 6 B is in the visited list. Consider each edge of B. 
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Step 7 A is in the visited list; ignore the vertex. 
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Step 8 E is not in the visited list; enqueue E and add E to the visited list. 
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Step 9 All edges of B have been considered. Dequeue. New current vertex is C. 
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Step 10 C is in the visited list. Consider each edge of C. 
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Step 11 A is in the visited list; ignore the vertex. 
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Step 12 D is in the visited list; ignore the vertex. 
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Step 13 All edges of C have been considered. Dequeue. New current vertex is D. 
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Step 14 D is in the visited list. Consider each edge of D. 
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Step 15 A is in the visited list; ignore the vertex. 
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Step 16 C is in the visited list; ignore the vertex. 
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Step 17 F is not in the visited list; enqueue F and add F to the visited list. 
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Step 18 All edges of D have been considered. Dequeue. New current vertex is E. 
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Step 19 E is in the visited list. Consider each edge of E. 
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Step 20 B is in the visited list; ignore the vertex. 
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Step 21 G is not in the visited list; enqueue G and add G to the visited list. 
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Step 22 All edges of E have been considered. Dequeue. New current vertex is F. 
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Step 23 F is in the visited list. Consider each edge of F. 
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Step 24 D is in the visited list; ignore the vertex. 
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Step 25 All edges of F have been considered. Dequeue. New current vertex is G. 
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Step 26 G is in the visited list. Consider each edge of G. 
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Step 27 E is in the visited list; ignore the vertex. 
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Step 28 All edges of G have been considered. Dequeue. 

The queue is empty – the algorithm is complete. 
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Did you know? 

The breadth-first traversal was invented by Konrad Zuse, a pioneering computer scientist 

in 1945. He is best known for the creation of the world’s first programmable computer, the 

Turing-complete Z3. Zuse is often regarded as the inventor of the modern computer. 

Zuse worked entirely independently of other leading computer scientists of his day. 

Between 1936 and 1945 in near total isolation due to World War II. 

Re-invented in 1959 by Edward Moore, the breadth-first traversal was used to find the 

shortest path out of a maze. The algorithm was later developed by Chester Lee into a wire 

routing algorithm for printed circuit boards. 
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Outputs from a breadth first traversal 

It is worth noting that there is more than one valid output from a breadth-first traversal. This implementation 

examined the edges from A in the order B, C, D, from left to right. However, it would be perfectly valid to examine 

them from right to left. To achieve this, the edges would need to be enqueued in reverse order. 

Illustrated graph Valid output 1 Valid output 2 

 

A B C D E F G 

This is the most common output 

shown in examples of this algorithm. 

Therefore, it is the one you should 

illustrate in exams unless the question 

specifically states otherwise. 

A D C B F E G 

Reverse traversal. 

This algorithm demonstrates a full traversal of the graph. However, if the goal is to search the graph for a 

specific vertex, the algorithm can terminate when the vertex is found. 

Also note that we did not enqueue the root vertex. There seems little point considering it would be dequeued 

immediately. However, many implementations of this algorithm will do that. We also checked if the current 

vertex was in the visited list – it always will be, so we could introduce a further optimisation here. 

Pseudocode for a breadth-first traversal 

current_vertex = root 

While current_vertex != Nothing 

 If not visited.Contains(current_vertex) Then 

  Visited.Add(current_vertex) 

 End If 

For each edge in vertex 

  If not visited.Contains(edge.vertex) Then 

   Queue.enqueue(edge.vertex) 

   Visited.Add(edge.vertex) 

  End If 

 Next 

 current_vertex = Queue.dequeue 

End While 

For each vertex in visited 

 Output current_vertex 

Next 
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Breadth-first traversal coded in Python 

# Queue data structure for breadth-first traversal 
class Queue: 
    class Node: 
        data = None 
        pointer = None 
 
    front_pointer = None 
    back_pointer = None 
 
    def enqueue(self, item): 
        # Check queue overflow 
        try: 
            # Enqueue the item 
            new_node = Queue.Node() 
            new_node.data = item 
            # Empty queue 
            if self.back_pointer == None: 
                self.front_pointer = new_node 
            else: 
                self.back_pointer.pointer = new_node 
            self.back_pointer = new_node 
            return True 
        except: 
            return False 
 
    def dequeue(self): 
        # Check queue underflow 
        if self.front_pointer != None: 
            # Dequeue the item 
            item = self.front_pointer.data 
            self.front_pointer = self.front_pointer.pointer 
            # When the last item is dequeued reset the pointers 
            if self.front_pointer == None: 
                self.back_pointer = None 
            return item 
        else: 
            return None 
 
 
# Breadth-first traversal 
def bft(graph, root): 
    visited = [] 
    q = Queue() 
    current_vertex = root 
    while current_vertex != None: 
        if current_vertex not in visited: 
            visited.append(current_vertex) 
        for vertex in graph[current_vertex]: 
            if vertex not in visited: 
                q.enqueue(vertex) 
                visited.append(vertex) 
        current_vertex = q.dequeue() 
    print(visited) 
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# Main program starts here 
graph = {"A": ["B", "C", "D"], "B": ["A", "E"], "C": ["A", "D"], "D": ["A", "C", "F"], "E": 
["B", "G"], "F": ["D"], 
         "G": ["E"]} 
bft(graph, "A") 

 

Alternative implementations of the breadth-first search 

In the code examples above, a queue structure was created using a class with only the enqueue and dequeue 

methods. There was no way to determine if there were items in the queue until a dequeue operation was 

attempted. With the addition of a method to check if the queue was empty, the algorithm could be rewritten to 

iterate only while there were items in the queue. Dequeue could then become the first operation: 

Queue.Enqueue(Root) 

While not Queue.Empty 

 Current_vertex = Queue.Dequeue 

 Visited.Add(Current_Vertex) 

For each edge in Current_Vertex 

  If not visited.Contains(edge.vertex) Then 

   Queue.enqueue(edge.vertex) 

   Visited.Add(edge.vertex) 

  End If 

 Next 

Some programming languages support queue data structures without needing them to be implemented by the 

programmer. When asked to write the code for a graph traversal, it is safe to assume that there is no need to 

write the code for the queue methods too. 

Since queues are higher-order data structures, they can be implemented with arrays or lists in addition to an 

object-oriented approach. With lists, indexes change when items are added and deleted. Index zero will always 

be the front of the queue and new items will always be added to the end – so a list is already a queue. 

In Python, you could use this code to implement a queue with a list: 

Declare a list which will be the queue:  Queue = [] 

Enqueue an item:    Queue.append(Vertex) 

Dequeue an item:    Vertex = Queue.pop(0) 

Check if the queue has items: if len(Queue) > 0: 

Or more simply: if Queue: 

 

  

Did you know? 

It is possible to implement a parallel breadth-first traversal to increase efficiency. 
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Depth-first traversal on a graph 

A depth-first traversal is used for pathfinding algorithms, operating system instruction scheduling, the order of 

formula recalculation in a spreadsheet, linkers and maze solution algorithms. 

A depth-first traversal requires the use of a stack data structure. 

1. Set a root vertex as the current vertex. 

2. Add the current vertex to the list of visited vertices if it is not already in the list. 

3. For every edge connected to the vertex: 

a. If the linked vertex is not in the visited list: 

i. Push the linked vertex to the stack. 

4. Pop the stack and set the item removed as the current vertex. 

5. Repeat from step 2 until the stack is empty. 

6. Output all the visited vertices. 

 

Depth-first traversal illustrated 

A breadth-first traversal can be pictured like this: 
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Depth-first traversal with recursion 

This type of traversal assumes that a user-defined stack is being used with an iterative algorithm. However, it 

is also common to implement the depth-first traversal using only the call stack and recursion: 

1. Set a root vertex as the current vertex. 

2. Add the current vertex to the list of visited vertices. 

3. For every edge connected to the vertex: 

a. If the linked vertex is not in the visited list: 

i. Recursively repeat from step 2 passing the linked vertex. 

 

Stepping through the depth-first traversal using iteration and a user-defined stack 

There are many different approaches to the depth-first traversal algorithm. Each one uses a stack in different 

ways to achieve an output. Using iteration as shown below, each vertex linked to an edge is added to the stack 

before moving to the next vertex. Later in the chapter, we will contrast this by using a recursive technique where 

we rely only on the call stack. 

 Graph Stack Visited 

Step 1 Start at a root vertex – this can be any vertex, but A has been chosen. 

A is not in the visited list; add A to the list of visited vertices. Consider each edge of A. 
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Step 2 D is not in the visited list; push D onto the stack. 

We are exploring the vertices from right to left so they are output in the expected order, 

but it would be fine to push B instead and explore from left to right. 
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A 

Step 3 C is not in the visited list; push C. 
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Step 4 B is not in the visited list; push B. 
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Step 5 All edges of A have been considered; pop the stack. 

New current vertex is B. 

 

 

  

  

  

  

 B 

→ C 

 D 
 

 

A 

Step 6 B is not in the visited list; add B to the list of visited vertices. 

Consider each edge of B. 
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AB 

Step 7 A is in the visited list; ignore the vertex. 
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Step 8 E is not in the visited list; push E onto the stack. 
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 D 
 

 

AB 

Step 9 All edges of B have been considered; pop the stack. 

New current vertex is E. 
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AB 

Step 10 E is not in the visited list; add E to the list of visited vertices. 

Consider each edge of E. 
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Step 11 B is in the visited list; ignore the vertex. 

 

 

  

  

  

  

 E 

→ C 

 D 
 

 

ABE 

Step 12 G is not in the visited list; push G onto the stack. 
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Step 13 All edges of E have been considered; pop the stack. 

New current vertex is G. 
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Step 14 G is not in the visited list; add G to the list of visited vertices. 

Consider each edge of G. 
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Step 15 E is in the visited list; ignore the vertex. 
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Step 16 All edges of G have been considered; pop the stack. 

New current vertex is C. 
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Step 17 C is not in the visited list; add C to the list of visited vertices. 

Consider each edge of C. 
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Step 18 D is not in the visited list; push D onto the stack. 
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Step 19 A is in the visited list; ignore the vertex. 
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Step 20 All edges of C have been considered; pop the stack. 

New current vertex is D. 
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Step 21 D is not in the visited list; add D to the list of visited vertices. 

Consider each edge of D. 
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Step 22 A is in the visited list; ignore the vertex. 
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Step 23 C is in the visited list; ignore the vertex. 
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Step 24 F is not in the visited list; push F onto the stack. 
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Step 25 All edges of D have been considered; pop the stack. 

New current vertex is F. 
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Step 26 F is not in the visited list; add F to the list of visited vertices. 

Consider each edge of F. 
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Step 27 D is in the visited list; ignore the vertex. 
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Step 28 All edges of F have been considered; pop the stack. 

New current vertex is D. 
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Step 29 D is in the visited list; ignore the vertex. Pop the stack. 

The stack is empty – the algorithm is complete. 

 

Stepping through the depth-first traversal using recursion and the call stack 

Although the use of a user-defined stack delivers the correct output, using only the procedure call stack with 

recursion is somewhat simpler. This approach is most likely to feature in mark schemes of depth-first traversal-

related questions. 

Step 1 Start at a root vertex. Push A to the stack and list of visited vertices. 
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Step 2 Push B to the stack and list of visited vertices. 
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Step 3 Push E to the stack and list of visited vertices. 

 

 

  

  

  

  

→ E 

 B 

 A 
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Step 4 Push G to the stack and list of visited vertices. 
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 A 
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Step 5 G has no unvisited edges. Pop the stack. 

E has no unvisited edges. Pop the stack. 

B has no unvisited edges. Pop the stack. 

Push C to the stack and list of visited vertices. 
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Step 6 Push D to the stack and list of visited vertices. 
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Step 7 Push F to the stack and list of visited vertices. 
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Did you know? 

All algorithms with repeating instructions can be coded using iteration instead of recursion. 

It is usually the best choice because iterative algorithms execute within a defined memory 

space and are not reliant on free space in the call stack. However, it is often easier to write 

recursive algorithms, and more readable code is created. It may even be possible to use 

parallel processing to maximise efficiency. 
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Step 8 F has no unvisited edges. Pop the stack. 

D has no unvisited edges. Pop the stack. 

C has no unvisited edges. Pop the stack. 

A has no unvisited edges. Pop the stack. 

Algorithm complete. 
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Outputs from the depth-first traversal 

It is worth noting that there can be multiple valid outputs from a depth-first traversal. You will typically see the 

leftmost path being traversed first in mark schemes and other sources. However, it is also valid to follow the 

rightmost path first or choose any random edge from a vertex to follow. In doing so, the results of the algorithm 

will be different – but nonetheless, it is still a depth-first traversal. Providing the algorithm follows edges to the 

bottom of the structure for any vertex, the output is valid as shown below. 

Illustrated graph Valid output 1 Valid output 2 Other valid outputs 

 

A B E G C D F 

This is the most 

common output shown 

in examples of this 

algorithm. Therefore, it 

is the one you should 

illustrate in exams 

unless the question 

specifically states 

otherwise. 

A D F C B E G 

Reverse traversal. 

A C D F B E G 

A D C F B E G 

A B E G D F C 

A B E G D C F 
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Pseudocode for a depth-first traversal using iteration 

current_vertex = root 

While current_vertex != Nothing 

 If not visited.Contains(current_vertex) Then 

  Visited.Add(current_vertex) 

 End If 

For each edge in vertex 

  If not visited.Contains(edge.vertex) Then 

   Stack.push(edge.vertex) 

  End If 

 Next 

 current_vertex = Stack.pop 

End While 

For each vertex in visited 

 Output current_vertex 

Next 
 

Depth-first traversal coded in Python using iteration 

# Stack data structure for depth-first traversal 
class Stack: 
    class Node: 
        data = None 
        pointer = None 
 
    stack_pointer = None 
 
    def push(self, item): 
        # Check stack overflow 
        try: 
            # Push the item 
            new_node = Stack.Node() 
            new_node.data = item 
            new_node.pointer = self.stack_pointer 
            self.stack_pointer = new_node 
            return True 
        except: 
            return False 
 
    def pop(self): 
        # Check stack underflow 
        if self.stack_pointer != None: 
            # Pop the item 
            popped = self.stack_pointer.data 
            self.stack_pointer = self.stack_pointer.pointer 
            return popped 
        else: 
            return None 
 
    def peek(self): 
        # Check stack underflow 
        if self.stack_pointer != None: 
            # Peek the item 
            return self.stack_pointer.data 
        else: 
            return None 
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# Depth-first traversal 
def dft(graph, root): 
    visited = [] 
    s = Stack() 
    current_vertex = root 
    while current_vertex != None: 
        if current_vertex not in visited: 
            visited.append(current_vertex) 
        for vertex in reversed(graph[current_vertex]): 
            if vertex not in visited: 
                s.push(vertex) 
        current_vertex = s.pop() 
    print(visited) 
 
 
# Main program starts here 
graph = {"A": ["B", "C", "D"], "B": ["A", "E"], "C": ["A", "D"], "D": ["A", "C", "F"], "E": 
["B", "G"], "F": ["D"], "G": ["E"]} 
dft(graph, "A") 

Depth-first traversal coded in Python using recursion 

# Depth-first search using a graph 
def dft(graph, current_vertex, visited): 
    visited.append(current_vertex) 
    for vertex in graph[current_vertex]: 
        if vertex not in visited: 
            dft(graph, vertex, visited) 
    return visited 
 
 
# Main program starts here 
graph = {"A": ["B", "C", "D"], "B": ["A", "E"], "C": ["A", "D"], "D": ["A", "C", "F"], "E": 
["B", "G"], "F": ["D"], "G": ["E"]} 
print(dft(graph, "A", [])) 
 

  

Did you know? 

Graph databases were created to overcome the limitations of relational databases. 

Unlike relational databases where there is a universal query language (SQL), there are a 

wide variety of query languages for graph databases such as Gremlin, SPARQL and 

Cipher. A proposal to create a universal query language known as GQL was approved 

by the International Organization for Standardization (ISO) in 2019. 
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Efficiency of operations on a graph 

Time complexity 
 

Space complexity 

 
Object 

implementation, 

adjacency list 

Array 

implementation, 

adjacency 

matrix 

 

Best 

case 

Worst 

case 

Storing 

graph 

O(V+E) 

Linear 

O(V2) 

Polynomial 

 

O(1) 

Constant 

O(n) 

Linear 

Add vertex 

O(1) 

Constant 

O(V2) 

Polynomial 

   

Add edge 

O(1) 

Constant 

O(1) 

Constant 

   

Remove 

vertex 

O(E) 

Linear 

O(V2) 

Polynomial 

   

Remove 

edge 

O(V) 

Linear 

O(1) 

Constant 

   

Although the examples presented in this chapter use a static dictionary, a graph is considered a dynamic data 

structure. When implemented using object-oriented techniques, its memory footprint grows and shrinks as data 

is added and deleted from the structure. Using only the required amount of memory is the most efficient way 

of implementing a graph. 

When implementing a graph as an array, the memory footprint remains constant but operations such as adding 

new vertices may require the matrix to be recreated. 

When expressing the time complexity of operations on a graph, V represents the number of vertices and E 

represents the number of edges. Storing a graph using object-oriented techniques is far superior to using an 

array in most cases – the only exception being removing edges and checking the adjacency of two vertices.  
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Both of these operations are constant O(1) with an adjacency matrix, as you can immediately return an element 

of an index in an array. However, they are linear O(V) with an object-oriented approach because it is necessary 

to follow the edges to find a particular vertex. 

Efficiency of a breadth and depth-first traversal 

Best 

case 

Average 

case 

Worst 

case 

O(1) 

Constant 

O(V+E) 

Linear 

O(V+E) 

Linear 

The breadth-first traversal can be used to find a single vertex in the structure or output all the data stored in it. 

At best, the graph contains just one vertex, so it can be found immediately – O(1) – but if that were the case, 

there wouldn’t be any point in having the data structure at all.  

Usually, many vertices need to be visited, so it is of linear complexity O(V+E), where V represents the number 

of vertices and E the number of edges. Although the nested loop in an algorithm often indicates polynomial 

complexity, the time complexity is O(V + E) or linear at worst case because items are enqueued once. 

  

Did you know? 

One proposed optimisation of the breadth-first search is the direction-optimising algorithm 

described by Scott Beamer in 2016. A conventional top-down approach is combined with 

a new bottom-up approach. The resulting algorithm examines fewer edges and improves 

the efficiency of the breadth-first search in many cases. 
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Linked list 

A linked list is a dynamic, ordered structure of nodes and pointers. Unlike a regular list, items in a linked list 

are not necessarily stored in contiguous memory, they do not use an index and they must maintain their own 

references to the next item in the structure. A start pointer is used to identify the first node in a linked list, and 

each item points to the next. 

Start pointer 

 

          

Andy → Craig → Dave → Mark → Sam null   

Circular and doubly linked lists 

By using the pointer from the last node to point to the first node, a circular linked list can be created. 

Start pointer 

 

          

Andy → Craig → Dave → Mark → Sam    

 

 

By adding an extra pointer to each element, a node can point to both the previous and next nodes – we refer 

to this as a doubly linked list. 

Start pointer 

 

          

Andy 

→ 

Craig 

→ 

Dave 

→ 

Mark 

→ 

Sam 

null   

null       
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With a circular linked list, the pointers on the first and last elements can also point to each other, creating a 

doubly circular linked list. 

Start pointer 

 

          

            

Andy 

→ 

Craig 

→ 

Dave 

→ 

Mark 

→ 

Sam 

   

       

 

Applications of a linked list 

Linked lists can be used to store process blocks in a ready state for operating systems managing a processor, 

image viewers moving between previous and next images, music players storing tracks in a playlist or 

navigating backwards and forwards in a web browser. Linked lists can also be used for hash table collision 

resolution as an overflow or maintaining a file allocation table of linked clusters on a secondary storage medium 

such as a hard disk. 

Although a linked list can simply be an implementation of a list without indexes, it is common to use a linked 

list to maintain a logical order to the items in the structure irrespective of their physical order. New items are 

always added to the end of the structure, but the pointers are updated so that if they were followed from the 

start pointer, they would visit each node in the order of the data stored. 

  

Did you know? 

Hans Peter Luhn, the inventor of the hash map and check digit, first proposed linked lists 

as a structure in 1953. 
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Storing a linked list in memory 

A linked list can be represented in memory using an array, a list or with node objects. 

Array Object 

start = 1 

nextFree = 4 

 

Index Element Pointer 

0 Dave 3 

1 Craig 0 

2 Sam -1 

3 Mark 2 

4  5 

5  6 

6  -1 

A doubly linked list would have another dimension 

for a second pointer. 

A circular linked list would have the pointer at 

index 6 assigned to zero. 

A single node is defined as: 

Class Node 

 element = "" 

 Pointer = Node 

End Class 

 

  

Did you know? 

Some implementations of the linked list use sentinel or dummy nodes, empty nodes at the 

start or end of the structure. These empty nodes can be used to ensure a linked list always 

has a first and last node, simplifying the operations. 
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Operations on a linked list 

Typical operations that can be performed on a linked list include: 

• Add: Adds a node to the linked list. 

• Delete: Removes a node from the linked list. 

• Next: Moves to the next item in the list. 

• Previous: Moves to the previous item in a doubly linked list. 

• Traverse: A linear search through the linked list. 

Array implementation of a linked list 

With an array implementation of a linked list, two pointers need to be maintained – one pointer to the index of 

the first node containing data and another pointer to the index of the next available free element. The value 

for the start pointer can be set to -1 to indicate the linked list is empty. The value of the pointer for the last 

element in the array can be set to -1 to indicate there is no more free space in the structure.  

With a linked list, each item points to the next – this is achieved with a two-dimensional array where one 

dimension holds the value and another dimension holds the index to the next item. Items are added at the next 

available free element. When an item is deleted, it becomes the next available free element and its pointer is 

updated to be the previous free element. 

A linked list is still considered to be dynamic even though, with an array implementation, it is constrained in 

size by the static structure. 

Object implementation of a linked list 

With an object implementation, only one pointer needs to be maintained, pointing to the first node containing 

data. When an item is added or deleted, memory is taken or returned to the heap and the pointers of the other 

nodes are changed. Object implementations are truly dynamic and can grow or shrink in size. 
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Adding an item to a linked list 

1. Check there is free memory for a new node. Output an error if not. 

2. Create a new node and insert data into it. 

3. If the linked list is empty: 

a. The new node becomes the first item. Create a start pointer to it. 

4. If the new node should be placed before the first node: 

a. The new node becomes the first node. Change the start pointer to it. 

b. The new node points to the second node. 

5. If the new node is to be placed inside the linked list: 

a. Start at the first node. 

b. If the data in the current node is less than the value of the new node: 

i. Follow the pointer to the next node. 

ii. Repeat from step 5b until the correct position is found or the end of the linked list is 

reached. 

c. The new node is set to point where the previous node pointed. 

d. The previous node is set to point to the new node. 

 

Start pointer 

 

          

Andy → Craig → Dave  Mark → Sam Null   

     ⋮ ⋮      

     Fran       

 

The assumption here is that we are maintaining an ordered list. If that is not necessary, a new node can simply 

be added to the end of the structure and the pointers updated. For the purposes of examinations, you should 

always assume that the linked list will be ordered. 
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Pseudocode for adding an item to a linked list 

If not memoryfull Then 

 new_node = New Node 

 current_node = start_pointer 

 If current_node == Null Then 

  new_node.pointer = Null 

  start_pointer = new_node 

 Else 

  If item < current_node.data Then 

   start_pointer = new_node 

   new_node.pointer = current_node 

  Else 

   While current_node != Null And item < current_node.data 

    previous_node = current_node 

    current_node = current_node.pointer 

   End While 

   new_node.pointer = previous_node.pointer 

   previous_node.pointer = new_node 

  End If 

 End If 

End If 

Deleting an item from a linked list 

1. Check if the linked list is empty and output an error if there is no start node. 

2. If the first item is the item to delete, set the start pointer to the next node. 

3. If the item to delete is inside the linked list: 

a. Start at the first node. 

b. If the current node is the item to delete: 

i. The previous node’s pointer is set to point to the next node. 

c. Follow the pointer to the next node. 

d. Repeat from step 3b until the item is found or the end of the linked list is reached. 

 

Start pointer 

 

          

Andy → Craig → Dave → Mark → Sam null   

 

The node is not physically removed but, rather, the pointer from the previous item is updated. The garbage 

collection process will reclaim the unused memory. 



 

 

D
A

T
A

 S
TR

U
C

TU
R

ES
 

85 

Pseudocode for deleting an item from a linked list 

current_node = start_pointer 

If current_node != Null Then 

 If item == current_node.data Then 

  start_pointer = current_node.pointer 

 Else 

  While current_node != Null And item != current_node.data 

   previous_node = current_node 

   current_node = current_node.pointer 

  End While 

  previous_node.pointer = current_node.pointer 

 End If 

End If 

Traversing a linked list 

1. Check if the linked list is empty. 

2. Start at the node that the start pointer is pointing to. 

3. Output the item. 

4. Follow the pointer to the next node. 

5. Repeat from step 3 until the end of the linked list is reached. 

Pseudocode for traversing a linked list 

current_node = start_pointer 

If current_node != Null Then 

 While current_node != Null 

  Output current_node 

  current_node = current_node.pointer 

 End While 

End If 

  

Did you know? 

In 1955, Allen Newell, Cliff Shaw and Herbert Simon used linked lists as a primary data 

structure for their Information Processing Language (IPL). IPL was used to develop AI 

programs including Newell, Shaw and Simon’s Logic Theory Machine. 
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Linked list coded in Python using an array 

class LinkedList: 
    max = 10 
    llist = [["" for pointer in range(2)] for item in range(max)] 
    # Initialise the free items list 
    for index in range(max - 2): 
        llist[index][1] = index + 1 
    llist[max - 1][1] = -1 
    nextFree = 0 
    start = -1 
 
    def add(self, item): 
        current_node = self.start 
        # Check memory overflow 
        if self.nextFree != -1: 
            new_node = self.nextFree 
            self.llist[new_node][0] = item 
            self.nextFree = self.llist[self.nextFree][1] 
            # List is empty 
            if self.start == -1: 
                self.llist[new_node][1] = -1 
                self.start = new_node 
            else: 
                # Item becomes the new start item 
                if item < self.llist[current_node][0]: 
                    self.start = new_node 
                    self.llist[new_node][1] = current_node 
                else: 
                    # Find correct position in the list 
                    while current_node != -1 and self.llist[current_node][0] < item: 
                        previous_node = current_node 
                        current_node = self.llist[current_node][1] 
                    self.llist[new_node][1] = self.llist[previous_node][1] 
                    self.llist[previous_node][1] = new_node 
            return True 
        else: 
            return False 
 
    def delete(self, item): 
        current_node = self.start 
        # Check the list is not empty 
        if current_node != -1: 
            # Item is the start node 
            if item == self.llist[current_node][0]: 
                self.start = self.llist[current_node][1] 
            else: 
                # Find the item in the list 
                while current_node != -1 and item != self.llist[current_node][0]: 
                    previous_node = current_node 
                    current_node = self.llist[current_node][1] 
                self.llist[previous_node][1] = self.llist[current_node][1] 
            # Return deleted node to the free list 
            self.llist[current_node][1] = self.nextFree 
            self.nextFree = current_node 
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    def output(self): 
        items = [] 
        current_node = self.start 
        if self.start != -1: 
            # Visit each node 
            while current_node != -1: 
                items.append(self.llist[current_node][0]) 
                current_node = self.llist[current_node][1] 
        return items 
 
 
# Main program starts here             
items = ["Florida", "Georgia", "Delaware", "Alabama", "California", "Wyoming"] 
linked_list = LinkedList() 
# Adding items to the linked list 
for index in range(0, len(items)): 
    linked_list.add(items[index]) 
# Deleting items from a linked list 
linked_list.delete("Florida") 
# Output the linked list 
print(linked_list.output()) 

Linked list coded in Python using objects 

class LinkedList: 
    class Node: 
        data = None 
        pointer = None 
 
    start = None 
 
    def add(self, item): 
        # Check memory overflow 
        try: 
            new_node = LinkedList.Node() 
            new_node.data = item 
            current_node = self.start 
            # List is empty 
            if current_node == None: 
                new_node.pointer = None 
                self.start = new_node 
            else: 
                # Item becomes the new start item 
                if item < current_node.data: 
                    self.start = new_node 
                    new_node.pointer = current_node 
                else: 
                    # Find correct position in the list 
                    while current_node != None and current_node.data < item: 
                        previous_node = current_node 
                        current_node = current_node.pointer 
                    new_node.pointer = previous_node.pointer 
                    previous_node.pointer = new_node 
            return True 
        except: 
            return False 
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   def delete(self, item): 
        current_node = self.start 
        # Check the list is not empty 
        if current_node != None: 
            # Item is the start node 
            if item == current_node.data: 
                self.start = current_node.pointer 
            else: 
                # Find item in the list 
                while current_node != None and item != current_node.data: 
                    previous_node = current_node 
                    current_node = current_node.pointer 
                previous_node.pointer = current_node.pointer 
 
   def output(self): 
        items = [] 
        current_node = self.start 
        if current_node != None: 
            # Visit each node 
            while current_node != None: 
                items.append(current_node.data) 
                current_node = current_node.pointer 
        return items 
 
 
# Main program starts here             
items = ["Florida", "Georgia", "Delaware", "Alabama", "California", "Wyoming"] 
linked_list = LinkedList() 
# Adding items to the linked list 
for index in range(0, len(items)): 
    linked_list.add(items[index]) 
# Deleting items from a linked list 
linked_list.delete("Florida") 
# Output the linked list 
print(linked_list.output()) 

 

Operations 

Adding items:  linked_list.add("Idaho") 

Deleting items:  linked_list.delete("Idaho") 

Outputting items:  print(linked_list.output) 

  

Did you know? 

The disadvantage of a linked list is that elements cannot be randomly accessed – finding 

an element requires a linear search, which is slow. 
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Efficiency of operations on a linked list 

Time complexity  Space complexity 

 Best 

case 

Average 

case 

Worst 

case 

 Best 

case 

Worst 

case 

Access 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

 

O(1) 

Constant 

O(n) 

Linear 

Next, 

Previous 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

   

Search, 

Traverse 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

   

Add item 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

   

Delete item 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

   

A linked list is a dynamic data structure. Implemented using object-oriented techniques, its memory footprint 

grows and shrinks as data is added and deleted. Using only the required amount of memory is the most efficient 

way to implement a linked list. However, a linked list can also be implemented using an array. In this case, the 

dynamic structure is created upon a static data structure and the memory footprint remains constant – this is 

inefficient, as the linked list reserves more memory than it needs unless it is full. 

If the order of items is important, you can find the correct position to add or delete a node using a linear search. 

At best, a new node becomes the first node, O(1), or it is the first to be deleted, O(1). Typically, this will not be 

the case, resulting in a linear complexity, O(n). 

If the order of the items in a linked list is not important, adding a new item will always have a time complexity 

of O(1). In this situation, a pointer to the last item would be used to prevent having to follow the pointers from 

node to node to find the position of the last item in the structure.  
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List 

A list is a dynamic collection of elements of different data types. Like arrays, lists are indexed and references 

to items are held in contiguous memory. Unlike arrays, the size of the list can change when a program is 

running, and memory is allocated when it is required.  

When choosing between an array and a list, programmers need to consider the purpose of the structure. If the 

number of items is known in advance and is of the same data type, an array is a better choice. Not only can 

addresses of indexes in an array be calculated, but a list may need to be moved in memory as new items are 

added to ensure the structure is held in contiguous memory space. However, lists are often more memory-

efficient because they only use the memory they need for the data they are storing at the time. 

A list declaration and assignment in Python: 

items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 

Two-dimensional lists can also be implemented as a list of lists.  

The first item in a list is often referred to as the head and all other items in the list except the head are the tail. 

Some programming languages support head-and-tail operations to extract those items from the list for further 

processing. 

Lists are implemented in different ways by different programming languages – for example, as a linked list 

using objects. You will often hear list and linked list being used synonymously when, in fact, the linked list is 

just one possible implementation of a list. 

Applications of a list 

Lists are used in situations where a set of related data items needs to be stored but the number of items may 

vary and be of different data types. Lists are typically used to implement other data structures such as stacks 

and queues and to hold values of a dictionary. 
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Storing a list in memory 

Given that each element can be a different data type – and therefore use a different amount of memory – it is 

not possible to use both indexes and contiguous data items. To overcome this problem, references to the data 

items are stored contiguously instead. 

 
Heap 

 
Address Value Notes 

 
     

R
e

fe
re

n
c
e

s
 t

o
 d

a
ta

 

it
e

m
s
 

0x5D 0x63 item[0] 

0x5E  0x8E item[1] 

 0x5F 0xA3 item[2] 

 0x60 0xA4 item[3] 

 
…    

D
a

ta
 i
te

m
s
 

0x63 Sword string 

…    

0x8E 20 integer 

…    

0xA3 Shield string 

0xA4 100 integer 

 

In the example above, a list identified as item has four elements at indexes 0 to 3, with the first index stored 

at memory address 0x5D. The address of the other indexes of the list can now be calculated because 

addresses are all a fixed size. What is stored in address 0x5D is not the item but the address where the item 

is stored. The data for item[0] is actually stored in 0x63, Sword. This is an example of indirect addressing. 

  

Did you know? 

Lists can be made from objects too. In this implementation, they become linked lists. 
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Operations on a list 

Typical operations that can be performed on a list include: 

• Access: Return an item by its index. 

• Add: Append or insert an item in the list. 

• Delete: Remove an item from the list. 

• Display: Output all the items in the list. 

• Head: Return the first item in the list. 

• Exists: Find if an item is in the list. 

• Tail: Return all the items in the list except for the first item. 

Efficiency of operations on a list 

Time complexity  Space complexity 

 Best 

case 

Average 

case 

Worst 

case 

 Best 

case 

Worst 

case 

Access, 

Head 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

 

O(1) 

Constant 

O(n) 

Linear 

Search, 

Exists, 

Display,  

Tail 

O(1) 

Constant 

O(n) 

Linear 

(one-dimension) 

O(n2) 

Polynomial 
(two-dimension) 

   

Add item 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

   

Delete item 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

   

 

Since a list is a dynamic data structure, its memory footprint is not usually known in advance, so it has a linear 

space complexity, O(n). A tuple is immutable – therefore, in a best-case scenario, the list may have a constant 

space complexity, O(1). 
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Like arrays, list elements can be accessed using an index. While this may require a second hop to where the 

data is actually stored on the heap (in order to support multiple data types), items can still be accessed in a 

constant time, O(1). 

Searching for an item in a list may return the first item checked, O(1), or require checking every item until the 

one required is reached, O(n). Lists of lists may also further degrade the complexity to polynomial, O(n2), 

because of the requirement for a nested loop. 

New items are typically added to the end of the list. If an item to be deleted is the last index, both operations 

can be performed in a constant time, O(1). However, the dynamic nature of lists and the fact indexes remain 

contiguous as items are deleted – even from the middle of the list – means these operations are frequently 

linear, O(n), due to the moving of other references in the structure. 

 

 

  

Did you know? 

References to items in lists are stored in contiguous memory like an array. However, as items 

are added and removed from the middle of a list, no empty space remains. The items in 

subsequent indexes fill the available space. 

For example, if item[0] is deleted, item[1] will become item[0] – this is extremely useful for 

programming data structures like queues using a list. 

As new items are added to the list, it may become necessary to move the entire structure 

in memory to ensure references to items remain contiguous. 
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Object 

The first computers used arrays for storing data. By 1965, Simula had introduced a new way of programming 

using an object-oriented approach. Programs were built from fundamental constructs called objects.  

An object has attributes (variables) and methods (subroutines). Like a record data structure, an object may 

contain many related attributes of different data types. Unlike records, attributes of an object can be public or 

private; a similar concept to the scope of a variable being global or local. Public attributes are like global 

variables and can be used and accessed by other objects. Private attributes can only be accessed by methods 

of the object – this is known as encapsulation.  

Over the years, the concept of object-oriented programming (OOP) changed from its original intentions of self-

contained data structures – messages being passed between objects – into a more complex model. Today, 

OOP includes many additional features like sub-classes, inheritance and polymorphism, which are beyond the 

scope of this book. Instead, we will look at how objects are used as data structures for algorithms. 

An object is defined by using a class structure. For example, part of a person object might look like this 

expressed as a class diagram: 

Class: 

Person 

Attributes: 

Name: string 

EyeColour: string 

HeightInCm: integer 

Methods: 

SetName() 

SetHeight() 

 

Objects are also known as instances of a class. You can create (instantiate) as many copies of an object as you 

need from a single class structure. Since the number of objects can change at run-time, objects are dynamic 

data structures. 

Maintaining groups of objects is usually important when programming – so you can use an iteration to call the 

methods in all the objects one at a time, for example. Objects can be stored in arrays, known as a collection. 

Alternatively, you can use an attribute of an object as a pointer to store the address of another object, effectively 

linking them together.  
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Applications of an object 

Objects are used in situations where there are many related data items of different data types. Objects are 

useful when the number of data items to be stored in the structure cannot be known in advance and fast 

access to data is required. All algorithms can use an object as their base data structure. 

Storing an object in memory 

Like all dynamic data structures, when an object is created, memory is allocated to store it on the heap and a 

reference to the start of that block of memory is returned and stored on the call stack. 

Attributes of an object may be stored as key-value pairs like a dictionary. 

Operations on an object 

Typical basic operations that can be performed on an object include: 

• Construct: A method run when an object is first instantiated. 

• Delete: When the last reference to an object is removed, the garbage collector makes the memory 

available to other processes. 

• Get: A public method to retrieve the value of a private, encapsulated attribute. 

• Set: A public method to store a value to a private, encapsulated attribute. 

• Receive a message from another object. 

• Send a message to another object. 

 

 

  

Did you know? 

In Java, every data structure is an object – including arrays. 
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Efficiency of operations on an object 

Time complexity  Space complexity 

 Best 

case 

Average 

case 

Worst 

case 

 Best 

case 

Worst 

case 

Access 

O(1) 

Constant 

O(1) 

Constant 

O(n) 

Linear 

 

O(1) 

Constant 

O(n) 

Linear 

Construct 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

   

Get, Set 

O(1) 

Constant 

O(1) 

Constant 

O(n) 

Linear 

   

Delete 

O(1) 

Constant 

O(1) 

Constant 

O(n) 

Linear 

   

 

Since an object is a dynamic data structure, the number of objects required is usually not known in advance, 

so it has a linear space complexity, O(n). In some applications, the maximum number of objects is fixed to 

maintain performance. Objects are constructed in advance and referenced in a collection or pool. Take a video 

game, for example, where no more enemies can be spawned than the maximum number of enemies available 

in the pool. In this unique situation, the memory footprint is known, O(1). 

Creating, deleting and accessing an object can usually be done in a constant time, O(1), because an object is 

an unordered structure. An object in memory can be accessed immediately from its block address, with 

individual attributes often stored as key-value pairs. This could potentially increase the complexity of operations 

to O(n) depending on how the object and its attributes are stored. 

The time complexity of other operations on a collection of objects depends on what the objects are being used 

for. For example, if objects are being used to store a binary tree for a post-order traversal, consider the time 

complexity of that implementation.  
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Queue 

A queue is a dynamic data structure. Items are enqueued (added) at the back of the queue and dequeued 

(removed) from the front of the queue. It is also possible to peek at the front item without removing it. 

Imagine a queue at a checkout. The person at the front is served first and people join at the back. This strict 

process can also allow for people to jump the queue – when implemented in computer science, this is known 

as a priority queue. In special circumstances, new items can join either the front or back of the queue. 

A queue is known as a first-in, first-out or FIFO structure. 

A queue has a back pointer that always points to the last item in the queue, sometimes referred to as the tail 

or rear pointer. A queue also has a front pointer that always points to the first item in the queue, sometimes 

referred to as the head pointer. 

Front     Back   

Craig Dave Sam Mark Carol  

Applications of a queue 

Queues are used for process scheduling, transferring data between processors and printer spooling. They are 

also used as buffers between input/output devices operating at different speeds.  

In programming, queues are useful for reversing the elements in an array. In game design, they can be used 

to manage the spawning of objects to ensure the CPU is not overloaded with operations. Queues are required 

to perform a breadth-first traversal on graph data structures. Simulations of real-world models such as 

modelling traffic congestion can also use queues. 

  

Did you know? 

With a priority queue, each element also has an additional priority attribute. When items 

are enqueued in a priority queue, they are inserted into the correct position from highest 

to lowest in the queue. Two elements with the same priority are served in the order they 

arrived. Priority queues are very useful for implementing operating system scheduling 

algorithms such as shortest remaining time. 
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Storing a queue in memory 

Queues can be represented in memory using an array, a list or objects.  

Array List Object 

front = 0 
back = 4 

 

Index Element 

0 Craig 

1 Dave 

2 Sam 

3 Mark 

4 Carol 

5  

6  

 

front = 0 

back = 4 

 

Index Element 

0 Craig 

1 Dave 

2 Sam 

3 Mark 

4 Carol 

Note, there is no free space with 

a list implementation because it 

is truly dynamic. The front pointer 

is always at index 0. 

Class Queue 

 frontPointer = None 

 backPointer = None 

 

  Class Node 

 element = "" 

 pointer = Node 

  End Class 

 

End Class 

Operations on a queue 

Typical operations that can be performed on a queue include: 

• Enqueue: Add an item to the back of the queue. 

• Dequeue: Remove an item from the front of the queue. 

• Peek: Return the value from the front of the queue without removing it. 

• Is Empty: Return whether the queue is empty. 

• Is Full: Return whether the queue is full. 

An attempt to enqueue an item to a queue that is already full is called a queue overflow, while trying to dequeue 

an item from an empty queue is called a queue underflow. Both situations should be considered before 

attempting to enqueue or dequeue an item. 
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Array implementation of a queue 

An array is declared large enough to accommodate the maximum number of items. The front and back pointers 

are held using variables that are indexes to elements of the array, set to -1 when they are not pointing to any 

elements – i.e., when the queue is empty. 

When implementing a queue using an array, a unique problem arises because the array is a static structure of 

a fixed size. As items are enqueued and dequeued, the values of the front and back pointers will continue to 

increase. Eventually, they will reach the end of the structure, preventing any more items from being added – 

this is known as a linear queue because the pointers never decrease in value. 

A potential solution would be to move all the items in the array down by one index when they are dequeued. 

However, moving data items is not efficient, O(n), so it is avoided. A better solution is to cycle back to the start 

of the array when the bounds are reached, known as a circular queue. 

Linear queue 

The status of a linear queue after five items have been enqueued using an array with seven indexes: 

Index 0 1 2 3 4 5 6 

Pointers Front     Back    

Element Craig Dave Sam Mark Carol   

The status of the linear queue after dequeuing an item using an array: 

Index 0 1 2 3 4 5 6 

Pointers  Front    Back    

Element Craig Dave Sam Mark Carol   

Note that Craig was not actually removed from the structure; the front pointer moved instead. 

The status of the linear queue after enqueuing the next item using an array: 

Index 0 1 2 3 4 5 6 

Pointers  Front     Back   

Element Craig Dave Sam Mark Carol Andy  

 



 

 

D
A

T
A

 S
TR

U
C

TU
R

ES
 

100 

The status of the queue after enqueuing another item using an array: 

Index 0 1 2 3 4 5 6 

Pointers  Front      Back  

Element Craig Dave Sam Mark Carol Andy James 

Note how the array is now full and no more items can be enqueued. 

Circular queue 

Often shown in illustrations as a cycle: 

 

 

The status of a circular queue before enqueuing a new item: 

Index 0 1 2 3 4 5 6 

Pointers  Front      Back  

Element Craig Dave Sam Mark Carol Andy James 

 

  

0
Craig

1
Dave

2
Sam

3
Mark

4
Carol

5
Andy

6
James
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The status of the circular queue after enqueuing a new item: 

Index 0 1 2 3 4 5 6 

Pointers Back  Front       

Element Fran Dave Sam Mark Carol Andy James 

Notice that the back pointer has looped back around to the start of the structure. There are still a finite number 

of items that can be stored, but it is less restrictive than a linear queue. An array with a circular queue is ideal 

if you know the memory footprint and want to restrict the number of items in the structure.  

It is particularly useful in game design where the number of sprites on the screen affects the framerate. By only 

spawning sprites up to the limit of the queue, a stable framerate can be achieved. Changing the value of a 

pointer when an item is enqueued or dequeued can be achieved with the following code: 

pointer = pointer + 1  

if pointer = max then pointer = 0 

However, by making use of the modulo operator, the new position of a pointer can be calculated in a single 

statement as: 

pointer = mod max (In Python: pointer = pointer % max) 

Here is an easier way to check if a queue is full before attempting to add a new item regardless of the values 

of the front and back pointers: 

if (pointer + 1) mod max = front then queueFull 

 

  

Did you know? 

In computer science, modulo is the operator used to calculate modulus. 

The modulus can be found by calculating the integer division of one number by another 

(called the quotient), multiplying the quotient by the divisor and subtracting the resulting 

number from the initial number – e.g., 3 modulo 2 is: 

3 / 2 = 1 (rounded down) 

1 * 2 = 2 

2 – 1 = 1 
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How modulus works 

Modulo is an arithmetic operator that returns the remainder from a division of two numbers. In Python, this is 

represented by the percent symbol – e.g., pointer + 1 % max. 

pointer pointer + 1 max (pointer + 1) mod max 

0 1 7 1 

1 2 7 2 

2 3 7 3 

3 4 7 4 

4 5 7 5 

5 6 7 6 

6 7 7 0 

List implementation of a queue 

When implementing a queue using a list, we can use the special property of list indexes. As items are removed 

from a list, references to subsequent items are moved down to replace the deleted element, the back pointer 

is decremented, and the front of the queue is always at index zero – this negates the need for an additional 

variable to store the value of the front pointer because it is always constant.  

There is no need to implement a circular queue because a list is dynamic. New elements are allocated from 

the heap and indexed as they are required. The linear queue works with list and object implementations. 

The status of a queue after five items have been enqueued with a list: 

Index 0 1 2 3 4 

Pointers Front     Back  

Element Craig Dave Sam Mark Carol 
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The status of the queue after dequeuing an item with a list: 

Index 0 1 2 3 

Pointers Front    Back  

Element Dave Sam Mark Carol 

The status of the queue after enqueuing the next item with a list: 

Index 0 1 2 3 4 

Pointers Front     Back  

Element Dave Sam Mark Carol Andy 

Note how the number of indexes grows and shrinks as items are enqueued and dequeued. 

Object implementation of a queue 

With an object implementation, memory is allocated from the heap to new items as necessary. Each object is 

a node, with each node pointing to the next. Front and back pointers are also maintained. 

The status of a queue after five items have been enqueued with objects: 

Front pointer 

 

      Back pointer 

 

  

Craig → Dave → Sam → Mark → Carol null   

The status of the queue after dequeuing an item with objects: 

  Front pointer 

 

    Back pointer 

 

  

Craig → Dave → Sam → Mark → Carol null   

The front pointer is changed to be the node pointed to by the front pointer. Although the node Craig will still 

exist in memory on the heap, it does not have an active reference, so it will be reclaimed by the garbage 

collection process. 
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The status of the queue after enqueuing an item with objects: 

  Front pointer 

 

     Back pointer 

 

Craig → Dave → Sam → Mark → Carol → Andy null 

Available memory is taken from the heap and the back pointer is updated to point to the new item. 

Enqueuing an item to a queue 

1. Check for queue overflow. Output an error if no free memory is available. 

2. Create a new node and insert data into it. 

3. The back pointer is set to point to the new node. 

4. If this is the first node in the list, the front pointer is set to point to the new node. 

Pseudocode for enqueuing an item 

If not memoryfull Then 

 new_node = New Node 

 If back_pointer = Null Then 

  front_pointer = new_node 

 Else 

  Previous_back_node.pointer = new_node 

 End If 

 Back_pointer = new_node 

End If 

Dequeuing an item from a queue 

1. Check for queue underflow. Output an error if the front pointer does not point to a node. 

2. Output the node pointed to by the front pointer. 

3. Set the front pointer to the previous item. 

Pseudocode for dequeuing an item 

If front_pointer != Null Then 

 Output front_pointer.data 

 front_pointer = front_pointer.pointer 

 If front_pointer = Null Then back_pointer = Null 

End If 
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Peeking an item in a queue 

1. Output an error if the front pointer does not point to a node. 

2. Output the node pointed to by the front pointer. 

Pseudocode for peeking an item from a queue 

If front_pointer != Null Then 

 Output front_pointer.data 

End If 

Circular queue coded in Python using an array/list 

class Queue: 
    max = 10 
    items = ["" for index in range(max)] 
 
    front_pointer = -1 
    back_pointer = -1 
 
    def enqueue(self, item): 
        # Check queue overflow 
        if (self.back_pointer + 1) % self.max != self.front_pointer: 
            self.back_pointer = (self.back_pointer + 1) % self.max 
            # Enqueue the item 
            self.items[self.back_pointer] = item 
            # Set first item if queue was empty  
            if self.front_pointer == -1: 
                self.front_pointer = 0 
            return True 
        else: 
            return False 
 
    def dequeue(self): 
        # Check queue underflow 
        if self.front_pointer != -1: 
            # Dequeue the item 
            item = self.items[self.front_pointer] 
            # If the queue is not empty change the front pointer 
            if self.front_pointer != self.back_pointer: 
                self.front_pointer = (self.front_pointer + 1) % self.max 
            else: 
                # When the last item is dequeued reset the pointers 
                self.front_pointer = -1 
                self.back_pointer = -1 
            return item 
        else: 
            return None 
 
    def peek(self): 
        # Check queue underflow 
        if self.front_pointer != -1: 
            # Peek the item 
            return self.items[self.front_pointer] 
        else: 
            return None 
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# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
q = Queue() 
# Add items to the queue 
for index in range(0, len(items)): 
    q.enqueue(items[index]) 
# Remove items from the queue 
print(q.dequeue()) 
# Output the next item in the queue 
print(q.peek()) 

Queue coded in Python using objects 

class Queue: 
    class Node: 
        data = None 
        pointer = None 
 
    front_pointer = None 
    back_pointer = None 
 
    def enqueue(self, item): 
        # Check queue overflow 
        try: 
            # Enqueue the item 
            new_node = Queue.Node() 
            new_node.data = item 
            # Empty queue 
            if self.back_pointer == None: 
                self.front_pointer = new_node 
            else: 
                self.back_pointer.pointer = new_node 
            self.back_pointer = new_node 
            return True 
        except: 
            return False 
 
    def dequeue(self): 
        # Check queue underflow 
        if self.front_pointer != None: 
            # Dequeue the item 
            item = self.front_pointer.data 
            self.front_pointer = self.front_pointer.pointer 
            # When the last item is dequeued reset the pointers 
            if self.front_pointer == None: 
                self.back_pointer = None 
            return item 
        else: 
            return None 
 
    def peek(self): 
        # Check queue underflow 
        if self.front_pointer != None: 
            # Peek the item 
            return self.front_pointer.data 
        else: 
            return None 
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# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
q = Queue() 
# Add items to the queue 
for index in range(0, len(items)): 
    q.enqueue(items[index]) 
# Remove items from the queue 
print(q.dequeue()) 
# Output the next item in the queue 
print(q.peek()) 

 

Operations 

Enqueue items: q.enqueue(item) 

Dequeue items: print(q.dequeue()) 

Peeking an item: print(q.peek()) 

  



 

 

D
A

T
A

 S
TR

U
C

TU
R

ES
 

108 

Efficiency of operations on a queue 

Time complexity  Space complexity 

 Best 

case 

Average 

case 

Worst 

case 

 Best 

case 

Worst 

case 

Enqueue 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

 

O(1) 

Constant 

O(n) 

Linear 

Dequeue 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

   

Is Empty, 

Is Full 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

   

Peek 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

   

A queue is a dynamic data structure. When implemented using object-oriented techniques, its memory footprint 

grows and shrinks as data is enqueued and dequeued from the structure. Using only the required amount of 

memory is the most efficient way of implementing a queue. 

However, a queue can also be implemented using an array. In this case, you are creating a dynamic structure 

on top of a static data structure, so the memory footprint remains constant. This method is inefficient because, 

unless it is full, the queue will be reserving more memory than it needs. 

Items are enqueued at the back of the queue and dequeued from the front. Peeking looks at the item at the 

front of the queue. Detecting if a queue is empty or full only requires examining the value of the pointers. 

Therefore, the time complexity of all operations on a queue is constant, O(1). 
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Record 

A record, sometimes called a structure or compound data is a collection of related items – often of different 

data types – called fields. A record is like an object with attributes, although records do not require the object-

oriented paradigm and do not have methods. Records are often thought of as special cases of objects, referred 

to as plain old data structures or PODs. 

It is useful to define a fixed maximum size of each field in bytes when using string fields in records in order to 

minimise data storage requirements and speed up searches. 

Applications of a record 

The history of the record can be traced to the punched card, where columns on the card related to each field. 

In early programming applications, the record was an ideal structure for reading and writing data from 

secondary storage. The size of a record could be calculated by adding the fixed size of all the fields.  

By using a unique numeric primary key field called a record number, the location of the record on the storage 

medium can be found by multiplying the record number by the record size. It is also possible to determine the 

record number using a hashing function.  

Records were so common in early computing that there are special characters for delimiting fields and records 

(ASCII codes 28-31). If fixed-size data types are not used, these special characters can be used to easily identify 

where one data item ends and the next one begins. 

Today, records are still used extensively as an alternative structure for groups of related variables and use the 

with statement in many programming languages. Records are also used to construct databases, although their 

operations are largely abstracted by database management systems. It is more common to connect a program 

to a DBMS if records need to be stored or use a data interchange format such as JSON or XML. 

Operations on a record 

Typical operations that can be performed on a record structure include: 

• Declare: When using records, the structure of the record type is defined first, much like an object being 

declared in a class. 

• Add/Construct: Make a new record using a set of specific values and possibly field names. 

• Assign/Update: Attribute a value to a field. 

• Hash: Compute a record number from the key. 

• Search: Find a record by hashing the primary key, using a linear search or a linked list secondary key. 

• Delete: Remove a record. 

• Compare: Return whether two records are the same or one is greater than the other using lexicographic 

order.  
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Using a record structure 

Before a record structure can be used, the fields must be defined. The syntax will vary between languages. In 

Visual Basic, a record declaration statement might look like this: 

    Structure Person 
        <VBFixedString(6)> Public StaffCode As String 
        <VBFixedString(20)> Public Forename As String 
        <VBFixedString(20)> Public Surname As String 
        <VBFixedString(10)> Public StaffType As String 

    End Structure 

<VBFixedString(20)> means the Forename field will be of a fixed length of 20 characters – this is optional. 

The StaffCode field is being used as the unique primary key. 

The record structure must be declared before it can be used: 

        Dim Employee As Person 

However, it is typically more useful to have more than one record, so an array of records can be declared: 

        Dim Employee(50) As Person 

The records can then be used: 

        Employee(1).StaffCode = "CRS" 
        Employee(1).Forename = "Craig" 
        Employee(1).Surname = "Sargent" 
        Employee(1).StaffType = "Teacher" 
        Employee(2).StaffCode = "DHI" 
        Employee(2).Forename = "Dave" 
        Employee(2).Surname = "Hillyard" 
        Employee(2).StaffType = "Teacher" 

Not all languages support the record data structure – Python being an example – but it can be simulated with 

objects or dictionaries quite easily. 

For example, using a dictionary in Python, a record structure could be defined and declared as follows: 

Employee = { 

  "CRS": {"Surname": "Sargent", "Forename": "Craig", "StaffType": "Teacher"}, 

  "DAH": {"Surname": "Hillyard", "Forename": "Dave", "StaffType": "Teacher"}, 

} 

Records can then be output… 

        print(Employee["DAH"]["Surname"]) 

…and updated: 

        Employee["CRS"]["StaffType"] = "Admin" 
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Efficiency of operations on a record 

Time complexity  Space complexity 

 Best 

case 

Average 

case 

Worst 

case 

 Best 

case 

Worst 

case 

Add, Delete 

O(1) 

Constant 

O(1) 

Constant 

O(n) 

Linear 

 

O(1) 

Constant 

O(n) 

Linear 

Search 

O(1) 

Constant 

O(1) 

Constant 

O(n) 

Linear 

   

Compare 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

   

 

If there are a known number of records with a fixed field size, the memory footprint can be calculated, making 

the space complexity constant, O(1). However, record structures are frequently used in database applications 

where the number of records stored is variable. Although using fixed-length fields is more efficient for finding 

records in a data set, it is also possible to use variable-length fields, which require end-of-field markers – the 

memory footprint will then change as records are added to the data set, O(n). 

Calculating the time complexity of a record depends on the algorithms being implemented. New records are 

usually added to the end of the data set because it is inefficient to insert them between existing records. Linked 

lists are often maintained as secondary keys in order to maintain a logical order of records. As records need to 

be appended, the time complexity is O(1).  

When finding records with fixed-length fields, a hash function can be used on the key field to calculate the byte 

position of the required record, O(1). However, variable-length records will require a linear search; O(1) at best 

– if the record is the first in the data set – but usually O(n). The time complexity for both adding a record and 

searching the data set assumes that records are being held either in memory or on random-access secondary 

storage such as a hard disk or solid-state drive. In the past, records were frequently held on linear drives such 

as tape or punched cards, so the time complexity would always be linear, O(n).  

Deleting records can be done in several ways. One approach is to flag the record as deleted but not actually 

remove it until the record set is maintained in a batch process. Alternatively, the record can be removed, but 

this is inefficient because all the other records would need to be moved to fill space in the data set. Both 

methods require searching for the record – O(1) with fixed-length records or O(n) with variable-length.  
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Stack 

A stack is a dynamic data structure. Items are both pushed (added) onto the top of the stack and popped 

(removed) from the top of the stack. It is also possible to peek at the top item without removing it. 

Imagine a stack of coins. A coin can be added or removed from the top but not the middle. The only way of 

accessing items in the stack is from the top.  

A stack is known as a last-in, first-out or LIFO structure. 

It has a stack pointer that always points to the item at the top – this is also called the top pointer. 

Top → Carol 

 Mark 

 Sam 

 Dave 

 Craig 

Applications of a stack 

Stacks are essential to the operation of a computer system. A stack frame is pushed onto a call stack when 

subroutines are called. The stack frame includes the values of the registers when the subroutine was called, 

parameters and local variables. Many compilers use a stack for parsing syntax expressions.  

Stacks are used for depth-first traversal of graph data structures, undo operations that track user inputs and 

backtracking algorithms – for example, pathfinding maze solutions. Stacks are also used to evaluate 

mathematical expressions without brackets using a shunting yard algorithm and reverse Polish notation. 

  

Did you know? 

In 1946, Alan Turing first used the terms bury and unbury to describe calling and returning 

from subroutines. In 1955, Klaus Samelson and Friedrich Bauer filed a patent for the idea of 

a stack. 
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Storing a stack in memory 

Array List Object 

top = 4 

 

Index Element 

0 Carol 

1 Mark 

2 Sam 

3 Dave 

4 Craig 

5  

6  

 

top = 0 

 

Index Element 

0 Craig 

1 Dave 

2 Sam 

3 Mark 

4 Carol 

Note that there is no free space 

with a list implementation 

because it is truly dynamic. New 

items are always added and 

removed from index 0. 

Class Stack 

 stackPointer = None 

 

  Class Node 

 element = "" 

 pointer = Node 

  End Class 

 

End Class 

Operations on a stack 

Typical operations that can be performed on a stack include: 

• Push: adding an item to the top of the stack. 

• Pop: removing an item from the top of the stack. 

• Peek: return the value from the top of the stack without removing it. 

• Is Empty: return whether the stack is empty. 

• Is Full: return whether the stack is full. 

An attempt to push an item onto a stack that is already full is called a stack overflow, while attempting to pop 

an item from an empty stack is called a stack underflow. Both of these situations should be considered before 

attempting to push or pop an item. 
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Array implementation of a stack 

An array is declared large enough to accommodate the maximum number of items. A variable is used to hold 

the stack pointer, the index of the item at the top of the stack. This index is set to -1 when the stack is empty. 

It feels counterintuitive to illustrate a stack with index 0 at the top, but as it is an abstraction, it doesn’t matter. 

To avoid confusion, index 0 will be shown at the bottom of the structure. 

The status of the stack after five items have been pushed using an array with seven indexes: 

Pointer Index Element 

 6  

 5  

Top → 4 Craig 

 3 Dave 

 2 Sam 

 1 Mark 

 0 Carol 

The status of the stack after popping an item using an array: 

Pointer Index Element 

 6  

 5  

 4 Craig 

Top → 3 Dave 

 2 Sam 

 1 Mark 

 0 Carol 

Note that Craig was not actually removed from the structure; instead, the pointer was moved. 
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The status of the stack after pushing the next item using an array: 

Pointer Index Element 

 6  

 5  

Top → 4 Andy 

 3 Dave 

 2 Sam 

 1 Mark 

 0 Carol 

The status of the stack after pushing another item using an array: 

Pointer Index Element 

 6  

Top → 5 James 

 4 Andy 

 3 Dave 

 2 Sam 

 1 Mark 

 0 Carol 

Notice how previously popped items are overwritten when new items are pushed. 

  



 

 

D
A

T
A

 S
TR

U
C

TU
R

ES
 

116 

List implementation of a stack 

When implementing a stack using a list, it is easier to push a new item to index 0 and move all the other 

elements down one index – this is not very efficient, O(n), but list methods can be used to handle the operation 

and make the implementation easier. 

The status of a stack after five items have been pushed with a list: 

Pointer Index Element 

Top → 0 Craig 

 1 Dave 

 2 Sam 

 3 Mark 

 4 Carol 

The status of the stack after popping an item with a list: 

Pointer Index Element 

Top → 0 Dave 

 1 Sam 

 2 Mark 

 3 Carol 

The status of the stack after pushing the next item with a list: 

Pointer Index Element 

Top → 0 Andy 

 1 Dave 

 2 Sam 

 3 Mark 

 4 Carol 

Note how the number of indexes grows and shrinks as items are pushed and popped. 
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Object implementation of a stack 

With an object implementation, memory is allocated to new items as necessary. Each object is a node, with 

each node pointing to the next. The stack pointer is still maintained. 

The status of a stack after five items have been pushed with objects: 

Stack pointer 

 

         

Craig → Dave → Sam → Mark → Carol null   

The status of the stack after popping an item with objects: 

  Stack pointer 

 

       

Craig → Dave → Sam → Mark → Carol Null   

The stack pointer is changed to be the node pointed to by the top node. Although the node Craig will still exist 

in memory, it does not have an active reference, so it will be reclaimed by the garbage collection process. 

The status of the stack after pushing an item with objects: 

Stack pointer 

 

         

Andy → Dave → Sam → Mark → Carol null   

The new item is added, and the stack pointer is changed to point to the new node. The pointer on the new node 

points to the node previously pointed to by the stack pointer.  
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Pushing an item onto a stack 

1. Check for stack overflow. Output an error if no free memory is available. 

2. Create a new node and insert data into it. 

3. The new node points to the previous node. 

4. The stack pointer is set to point to the new node. 

Pseudocode for pushing an item onto a stack 

If not memoryfull Then 

 new_node = New Node 

 new_node.pointer = stack_pointer 

stack_pointer = new_node 

End If 

Popping an item from a stack 

1. Check for stack underflow. Output an error if the stack pointer does not point to a node. 

2. Output the node pointed to by the stack pointer. 

3. Set the stack pointer to the previous item. 

Pseudocode for popping an item from a stack 

If stack_pointer != Null Then 

 Output stack_pointer.data 

 stack_pointer = stack_pointer.pointer 

End If 

  

Did you know? 

Popping is sometimes called pulling. 

In addition to pushing, popping and peeking items from a stack, a third operation called 

rotate or roll can be used to move items around a stack – e.g., A-B-C becomes B-C-A, 

where the first item has rolled around to become the last item. 
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Peeking an item from a stack 

1. Output an error if the stack pointer does not point to a node. 

2. Output the node pointed to by the stack pointer. 

 

Pseudocode for peeking an item from a stack 

If stack_pointer != Null Then 

 Output stack_pointer.data 

End If 

 

  

Did you know? 

Stacks can also be used in the architecture of a computer. The x87 floating point co-

processor used by old x86 machines is one example. The registers inside the co-processor 

were organised as a stack, but direct access to individual registers was also possible. 

Today these maths co-processors are integrated into the main CPU architecture. 
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Stack coded in Python using an array/list 

class Stack: 
    max = 10 
    items = ["" for index in range(max)] 
 
    stackPointer = -1 
 
    def push(self, item): 
        # Check stack overflow 
        if self.stackPointer < self.max: 
            self.stackPointer = self.stackPointer + 1 
            # Push the item 
            self.items[self.stackPointer] = item 
            return True 
        else: 
            return False 
 
    def pop(self): 
        # Check queue underflow 
        if self.stackPointer != -1: 
            # Pop the item 
            item = self.items[self.stackPointer] 
            self.stackPointer = self.stackPointer - 1 
            return item 
        else: 
            return None 
 
    def peek(self): 
        # Check stack underflow 
        if self.stackPointer != -1: 
            # Peek the item 
            return self.items[self.stackPointer] 
        else: 
            return None 
 
 
# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
s = Stack() 
# Add items to the stack 
for index in range(0, len(items)): 
    s.push(items[index]) 
# Remove items from the stack 
print(s.pop()) 
# Output the next item in the stack 
print(s.peek()) 
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Stack coded in Python using objects 

class Stack: 
    class Node: 
        data = None 
        pointer = None 
 
    stack_pointer = None 
 
    def push(self, item): 
        # Check stack overflow 
        try: 
            # Push the item 
            new_node = Stack.Node() 
            new_node.data = item 
            new_node.pointer = self.stack_pointer 
            self.stack_pointer = new_node 
            return True 
        except: 
            return False 
 
    def pop(self): 
        # Check stack underflow 
        if self.stack_pointer != None: 
            # Pop the item 
            popped = self.stack_pointer.data 
            self.stack_pointer = self.stack_pointer.pointer 
            return popped 
        else: 
            return None 
 
    def peek(self): 
        # Check stack underflow 
        if self.stack_pointer != None: 
            # Peek the item 
            return self.stack_pointer.data 
        else: 
            return None 
 
 
# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
s = Stack() 
# Add items to the stack 
for index in range(0, len(items)): 
    s.push(items[index]) 
# Remove items from the stack 
print(s.pop()) 
# Output the next item in the stack 
print(s.peek()) 
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Operations 

Adding items:  s.push("Colarado") 

Deleting items:  print(s.pop()) 

Peeking an item: print(s.peek()) 

  

Did you know? 

The peek operation is not necessary. It can be implemented with a pop operation 

followed by a push operation. 

Other operations on a stack can include duplicate, where the top item is popped and 

then pushed twice, and swap or exchange, where the top two items are popped and 

then pushed back to the stack in the opposite order. 

While these additional operations do not feature in the specification, examples of them 

can make great examination questions to test your understanding of how a stack works. 

Did you know? 

Computers use a stack to store data when subroutines are called – this includes the values 

of the registers (so a program can resume when the subroutine ends), fixed-length local 

variables and memory address references to other data structures. 

As the size of the stack frame is not fixed, it poses a security risk. When an oversized frame 

is written to the stack, the values of the registers stored in another stack frame can be 

overwritten, causing the program to branch unexpectedly, known as stack smashing. This 

is a technique used by viruses. 
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Efficiency of operations on a stack 

Time complexity  Space complexity 

 Best 

case 

Average 

case 

Worst 

case 

 Best 

case 

Worst 

case 

Push 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

 

O(1) 

Constant 

O(n) 

Linear 

Pop 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

   

Is Empty, 

Is Full 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

   

Peek 

O(1) 

Constant 

O(1) 

Constant 

O(1) 

Constant 

   

A stack is a dynamic data structure. When implemented using object-oriented techniques, its memory footprint 

grows and shrinks as data is pushed onto and popped from the structure. Using only as much memory as 

needed is the most efficient way of implementing a stack. 

However, a stack could also be implemented using an array. In this case, the dynamic structure has been 

created upon a static data structure, so the memory footprint remains constant. This method is inefficient 

because the stack will be reserving more memory than it needs unless it is full. 

Items are always pushed onto and popped from the top of the stack. Peeking an item looks at the item at the 

stack pointer and detecting if a stack is full or empty only requires examining the value of the stack pointer. 

Therefore, the time complexity of all operations on a stack is constant, O(1). 
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Tree 

A tree is a connected, undirected graph with no cycles. A tree may have a root node – known as a rooted tree 

– or no identifiable root node. Unlike a graph, a rooted tree is often used to define parent-child relationships 

between nodes and store hierarchical data. 

There are many different types of tree structures including general trees, AVL trees, b-trees, binary trees, binary 

interval trees, cartesian trees, KD trees, search trees, quad trees, R-trees, red-black trees, splay trees, and 

treaps to name a few. For the purposes of examinations, it is sufficient for you to only understand the 

similarities and differences between general trees and binary search trees. 

Unlike a binary tree, a general tree is not limited to a maximum of two child nodes. A node can have any number 

of children, but loops between nodes are not permitted and it is common for one node to have a single parent. 

Therefore, there is only one path to any one node. 

  

 

 

 

 

 

 

 

 

 

 

Applications of a tree 

General trees are used to model file systems, represent abstract syntax trees for program compilation, parse 

natural language and store geometric data. Interval trees are used in vector graphic processing to find visible 

elements inside three-dimensional space. Quad trees are used in image processing for compression 

algorithms, mesh generation and spatial partitioning for collision detection in games.  

R-trees may be used to store objects on maps, allowing for queries such as, “Find all the banks within 5km of 

my location.” Splay trees are used to implement caching and garbage collection algorithms.  
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Storing a general tree in memory 

Since trees are very similar to graphs, they can be stored in the same way using a dictionary or objects. 

Operations on a tree 

• Add: Add a new node at a certain position in the tree. 

• Delete: Remove a node from the tree. 

• Find ancestor: Find the common parent of one or more nodes. 

• Graft: Add a whole section to a tree – e.g., copying a node and its children from another tree. 

• Prune: Remove a node and all its children. 

• Search: Find an item using a breadth- or depth-first search. 

 

 

 

 

 

 

 

 

  

Did you know? 

In graph theory, an undirected graph where any two vertices are connected by one edge 

at most is also known as a forest. In computer science, a forest is often defined as multiple 

disconnected trees. If you remove the root node of a binary tree that has two children, 

the result is a forest of two trees.  

Think about the organisation of files on a computer, presented in a tree data structure with 

one folder connected to one or more sub-folders. The computer may also have multiple 

drives – e.g., C:\, D:\. This is an example of a forest, where each tree is a drive. 



 

 

D
A

T
A

 S
TR

U
C

TU
R

ES
 

126 

Efficiency of a tree 

Time complexity  Space complexity 

 Best 

case 

Average 

case 

Worst 

case 

 Best 

case 

Worst 

case 

Add, Delete 

O(1) 

Constant 

O(log n) 

Logarithmic 

O(log n) 

Linear 

 

O(1) 

Constant 

O(n) 

Linear 

Search 

O(1) 

Constant 

O(log n) 

Logarithmic 

O(n) 

Linear 

   

Graft, Prune 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

   

A tree is a dynamic data structure that grows and shrinks as necessary. If the items in a tree are fixed, the 

space complexity is O(1), but this is rarely the case. 

When performing operations on a tree, one branch will be followed. There is only one route to a node because 

cycles are not permitted. Therefore, it may be possible to discount whole branches of a tree when an edge is 

followed, resulting in a divide-and-conquer algorithm of O(log n).  

It could also be the case that the operation to be performed only requires accessing the root node of a rooted 

tree. In this best case, the time complexity will be constant, O(1) – but again, this is rarely the case.  

Due to the nature of the tree, it may be necessary to use breadth- and depth-first algorithms – which are linear 

operations, O(n) – to find items.  

Grafting and pruning trees may be straightforward if the new branches can be added to existing nodes, O(1). 

However, they may also require some restructuring of the tree, resulting in a linear operation, O(n). 
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In summary 

Array List Object 

Elements are all the same data 

type. 

Elements can be different data 

types. 

Attributes can be different data 

types. 

Elements are stored in 

contiguous memory. 

Elements are stored in 

contiguous memory. 

Objects are not stored in 

contiguous memory. 

Uses the index register. Uses the index register. Does not use the index register. 

Static data structure. Dynamic data structure. Dynamic data structure. 

Uses an index to set or retrieve an 

element at a specific address. 

Uses an index to set or retrieve an 

element at a specific address. 

Uses methods to get and set 

private attributes. 

Does not use methods. May use additional methods to 

perform operations on elements. 

May use additional methods to 

perform operations on attributes. 

Items are not added; vacant 

indexes are assigned with data 

elements. 

When items are added, memory 

is reserved from the heap. 

When new instances of objects 

are constructed, memory is 

reserved from the heap. 

Indexes are not deleted; when 

data items are removed, the 

element is set to an empty string 

or null value. 

When items are removed, other 

items fill the available space. 

Objects that are not referenced 

with a pointer are reclaimed 

during garbage collection. 

As elements are of the same data 

type, the address of each index 

can be calculated easily, making 

arrays efficient for arithmetic. 

The address of each element 

cannot be calculated because 

they can hold data of different 

types, making lists inefficient. 

Maintaining pointers to obsolete 

objects can cause memory leaks 

in algorithms, degrading their 

performance over time. 
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Dictionary 

Static or dynamic data structure, depending on the implementation. 

Uses key-value pairs. Values are stored at an index determined by a hashing function applied to the key. 

Uses a hash table search or binary tree search to retrieve a value from a key. 

 

Linked list 

Dynamic data structure. 

Elements can be different data types. 

Elements are not stored contiguously. 

Elements are accessed sequentially with a linear search. 

May have special implementations, enabling it to be doubly linked or circular. 

 

Stack Queue 

LIFO – last-in, first-out structure. FIFO – first-in, first-out structure. 

Items are inserted (pushed) onto and deleted 

(popped) from the top of the structure. 

Items are inserted (enqueued) to the back of the 

structure and removed (dequeued) from the front. 

One pointer at the top of the structure. Two pointers – one at the back of the structure 

where new data items are added and one at the 

front where data items are removed. 
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Graph Binary tree Tree 

No root vertex. Has a root node. May have a root node, but it is not 

essential. 

Vertices can have any number of 

edges. 

Nodes can only have zero, one or 

two child nodes. 

Nodes can have zero or any 

number of child nodes. 

There may be many paths to a 

vertex. Loops are permitted 

between vertices. 

Only one path to a node. Only one path to a node. 

Any vertex can be a starting point 

for breadth- and depth-first 

traversal or search. 

All operations start from the root 

node. 

Operations can start from any 

node. 

Used to represent related data. Can be used to implement binary 

searches using a binary search 

tree and many other data 

structures including dictionaries. 

Used to represent hierarchical 

related data. 
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SEARCHING ALGORITHMS 
Routines that find data within a data structure.  



 

 

SE
A

R
C

H
IN

G
 A

LG
O

R
IT

H
M

S 

132 

Binary search 

The binary search is an efficient algorithm for finding an item in a sorted data set. It repeatedly checks the 

middle item in the data set and discards half the data during each pass until either the item is found at the 

middle position, it is the only item left to check or it is not found. 

The binary search can be performed on an array, list or binary search tree, implemented with either arrays, lists 

or objects. For the algorithm to work, the data set must be sorted – this can be achieved by inserting new items 

into their correct place, by applying a sorting algorithm to an array, or as a consequence of storing the data in 

a binary search tree. 

Applications of a binary search 

The binary search is an efficient algorithm, providing the data is already sorted. It is most typically used with 

binary search trees on large data sets. Compared to alternative searching algorithms, the binary search is 

particularly useful for range searches – for example, returning all the items greater than x. 

Binary search in simple-structured English 

1. Start at the middle item in the list. 

2. If the middle item is the one to be found, the search is complete. 

3. If the item to be found is lower than the middle item, discard all items to the right. 

4. If the item to be found is higher than the middle item, discard all items to the left. 

5. Repeat from step 2 until the item is found or there are no more items in the list. 

6. If the item has been found, output its data. If it has not, output “Not found”. 

Visualising a binary search 

Sorted array/list 

   

Binary search tree 

  ↓         ↓    

                     

↓          ↙  ↘   

                      

 ↓       ↙  ↘  ↙  ↘ 
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Stepping through an example of a binary search on a sorted array 

Searching for California: 

Index: 0 1 2 3 4 

Step 1 Calculate the middle as the first index (0) + the last index (4) integer division by 2 = 2: Delaware 

Alabama California Delaware Florida Georgia 

Step 2 Delaware is not the item to be found. California is lower. Discard all items to the right. 

Alabama California Delaware Florida Georgia 

Step 3 Calculate the middle as the first index (0) + the last index (1) integer division by 2: = 0: Alabama 

Alabama California Delaware Florida Georgia 

Step 4 Alabama is not the item to be found. California is higher. Discard all items to the left. 

Alabama California Delaware Florida Georgia 

Step 5 Calculate the middle as the first index (1) + the last index (1) integer division by 2 = 1: California 

Alabama California Delaware Florida Georgia 

Three comparisons were needed to find the item. 

Note how the number of items to be checked is halved after each comparison – this is what makes the binary 

search so efficient, but it also explains why the items must be in order for the algorithm to work. 

Use of integer division to find the middle point 

In this example, the middle position was calculated as first index + last index integer division by 2 – this ensures 

that the result of the division is always an integer (whole number) because dividing odd numbers by two causes 

a fractional component of 0.5. The number is rounded down, but this is not important. Another acceptable 

implementation could round the result of the division up instead. It just feels less intuitive for experienced 

programmers to do this because it requires an additional function. 
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Stepping through an example of a binary search on a binary search 

tree stored as an array 

Searching for Alabama: 

Index: 0 1 2 3 4 5 6 

Step 1 Start at the root node. Index 0: Delaware 

Delaware California Florida Alabama   Georgia 

Step 2 Delaware is not the item to be found. Alabama is lower. Follow the left pointer (2 * 0) + 1 = Index 1 

Delaware California Florida Alabama   Georgia 

Step 3 California is not the item to be found. Alabama is lower. Follow the left pointer (2 * 1) + 1 = Index 3 

Delaware California Florida Alabama   Georgia 

For an explanation of how binary search trees are stored in arrays, see the Binary tree section of the chapter 

on Data structures. 

An object implementation 

The binary tree can also be stored using objects. The algorithm is the same, but instead of calculating the index 

of the next item, each node has attributes for the left and right pointers. Each of those attributes stores the 

address of the object it is connected to. For example, imagine the items are being stored at memory addresses 

0xA0, 0xB3, 0xB6, 0xC8 and 0xCF. The memory map for the binary tree would look like this: 

Address: 0xA0  Address: 0xB3  Address: 0xC8 

Item: Delaware  Item: California  Item: Alabama 

Left pointer: 0xB3  Left pointer: 0xC8  Left pointer: null 

Right pointer: 0xB6  Right pointer: null  Right pointer: null 

        

   Address: 0xB6  Address: 0xCF 

   Item: Florida  Item: Georgia 

   Left pointer: null  Left pointer: null 

   Right pointer: 0xCF  Right pointer: null 

 

In this case, to find Alabama, the algorithm would begin at the start pointer, which would point to the root node 

at address 0xA0. The item is compared, and the left pointer is followed to address 0xB3, then 0xC8.  
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Pseudocode for the binary search using an array/list 

Function binarySearch(items, item_to_find) 

found = False 

first = 0 

last = items.Length -1 

While first <= last and found == False 

midpoint = (first + last) DIV 2 

If items[midpoint] == item_to_find then 

found = True 

Else 

If items[midpoint] < item_to_find then 

first = midpoint + 1 

Else 

last = midpoint – 1 

End If 

End If 

End while 

If found == True then 

 Return "Item found at position ", midpoint 

Else 

 Return "Item not found" 

End If 

End function 

 

 

  

Did you know? 

The binary search is also known as the half-interval search, logarithmic search or binary 

chop. There are many different types of binary search including uniform, exponential, 

interpolation, fractional cascading, noisy and quantum. 

First proposed by Bernard Chazelle and Leonidas Guibas in 1986, fractional cascading 

uses multiple arrays or lists to optimise the search for frequently searched items. Thankfully, 

you only need to know about the classic binary search for examinations. 
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Binary search coded in Python using an array/list 

def binary_search(items, item_to_find): 
    found = False 
    first = 0 
    last = len(items) - 1 
    # Repeat until the item is found or no items are left to check 
    while first <= last and not found: 
        # Calculate the mid point using integer division 
        midpoint = (first + last) // 2 
        # Item found 
        if items[midpoint] == item_to_find: 
            found = True 
        else: 
            # Recalculate the mid point 
            if items[midpoint] < item_to_find: 
                first = midpoint + 1 
            else: 
                last = midpoint - 1 
    if found: 
        print("Item found at position", midpoint) 
    else: 
        print("Item not found") 
 
 
items = ["Alabama", "California", "Delaware", "Florida", "Georgia"] 
item_to_find = input("Enter the state to find: ") 
binary_search(items, item_to_find) 
 

  

Did you know? 

As the binary search requires you to calculate the mid-point, the algorithm can fail in 

certain situations.  Midpoint = (first + last) DIV 2 can result in an arithmetic overflow 

if the result is greater than the maximum value for an integer – this occurs when the 

number of items in the data structure is larger than the maximum number the computer 

can store. For a 32-bit signed integer, that’s 2,147,483,6437. 

The Java programming language failed to trap this error in a library providing a binary 

search function for more than nine years, causing programs to crash unexpectedly. 
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Efficiency of a binary search 

 Time complexity  

Space 

complexity 
 Best 

case 

Average 

case 

Worst 

case 

 

Sorted 

array 

O(1) 

Constant 

O(log n) 

Logarithmic 

O(log n) 

Logarithmic 

 O(1) 

Constant 

Binary 

search tree 

O(1) 

Constant 

O(log n) 

Logarithmic 

O(n) 

Linear 

 O(1) 

Constant 

 

A binary search will usually be more efficient than a linear search and less efficient than a hash table search. 

The biggest disadvantage of a binary search is that data items must be sorted for the algorithm to work – this 

can be achieved logically when items are added to a binary search tree by maintaining an order to the items in 

an array/list or using a searching algorithm. 

Given that maintaining the order to items in an array requires a linear algorithm O(n), this is not usually an 

efficient approach unless items are added infrequently and searches are performed very frequently. It is 

typically better to use a binary search tree implemented with an array (although that can result in a lot of 

unused indexes) or the most optimised object-based approach in terms of both time and space complexity. 

In the best case, the item to be found is either in the middle position of an array or at the root node of a binary 

search tree. In this special case, the algorithm has a time complexity of O(1) since the item to be found will 

always be the first item checked – however, this is not usually the case. 

In most cases, the time it takes to find an item increases with the size of the data set, but because half the 

items can be discarded at a time, the algorithm is usually logarithmic, O(log n). 
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Unbalanced binary tree 

If a binary tree is used to store the data, it is possible that an unbalanced tree could be created: 

   ↓    

   12    

  ↙  ↘   

     36  

↙  ↘  ↙  ↘ 

         78 

 

In a worst-case scenario, finding number 78 would require checking all the items, increasing the time 

complexity to O(n) – this does not usually happen, and if a binary tree is to be used, it should be balanced. 

  

Did you know? 

Careful consideration of all the nuances of an algorithm and its data structure results in 

higher-level responses to examination questions such as, “Compare and contrast the 

linear and binary search.” You will want to consider: 

• The underlying data structure – e.g., an array or objects. 

• The implementation of the data structure – e.g., a binary search tree stored as an 

array or objects and how such a choice affects space complexity. 

• The number of items in the data set and how it affects time complexity. 

• The position of the item to be found in the data set and how it affects the best-, 

worst- and average-case scenarios. 

• Maintaining the data structure as items are added and deleted or the need for a 

sorting algorithm – and how this affects the usefulness of the algorithm. 
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Hash table search 

The goal with a hash table search is to immediately find an item without needing to compare other items in the 

data set first – this makes it the most efficient searching algorithm in most cases. Often called a hash map, a 

hash table search is also how programming languages implement a dictionary data structure. A hashing 

function is used to calculate the position of an item in a hash table. 

Applications of a hash table search 

Hash tables are used in situations where items in a large data set need to be found quickly – for example, 

looking up vehicle details from a car registration plate using the police ANPR system. Hash tables are also used 

to create a symbol table during program compilation.  

The Rabin-Karp algorithm uses a hash table search to find pattern matches in strings – for example, detecting 

plagiarism in student essays. Search engine indexes are stored and searched using a hash table and, as the 

name suggests, the dictionary compression algorithm also uses a hash table search.  

Hashing functions 

A hashing function is applied to a key to determine a hash value – the position of the item in a hash table. 

There are many different hashing functions in use today. A simple example might be to add up the ASCII values 

of all the characters in a string and calculate the modulus of that value by the size of the hash table.  

Assuming a table size of 10: 

Florida: F = 70, l = 108, o = 111, r = 114, i = 105, d = 100, a = 97 

70 + 108 + 111 + 114 + 105 + 100 + 97 = 705 

705 mod 10 = 5 

The position of Florida in the table is 5. 

A hash table needs to be at least large enough to store all the data items but is usually significantly larger to 

minimise the chance of returning the same value for more than one item, known as a collision: 

Delaware: D = 68, e = 101, l = 108, a = 97, w = 119, a = 97, r = 114, e = 101 

68 + 101 + 108 + 97 + 119 + 97 + 114 + 101 = 805 

805 mod 10 = 5 

The position of Delaware in the table is 5. 

Since two items cannot occupy the same position in a hash table, a collision has occurred. 
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Properties of good hashing functions 

A good hashing function should: 

1. Be calculated quickly. 

2. Result in as few collisions as possible. 

3. Use as little memory as possible. 

Resolving collisions 

There are many strategies to resolve collisions generated from hashing functions. A simple solution is open 

addressing, repeatedly checking the next available space in the hash table until an empty position is found and 

storing the item in that location. To find the item later, the hashing function delivers the start position from 

which a linear search can be applied until the item is found – this is known as linear probing: 

1 2 3 4 5 6 7 8 9 10 

Alabama Georgia   Florida Delaware California    

 

In this example, we can see that Delaware has a hash value of 5, but that position is occupied by Florida. 

Delaware is therefore placed at 6, the next available position. California has a hash value of 6 but cannot 

occupy its intended position, so it must be stored at the next available position, 7. 

A disadvantage of this form of linear probing is that it prevents other items from being stored at their correct 

locations in the hash table. It also results in what we refer to as clustering, several positions being filled around 

common collision values. 

Notice that with a table size of ten, two collisions occur. With a table size of five, three collisions occur, resulting 

in a less efficient algorithm but a reduced memory footprint. If the table size is increased to eleven, no collisions 

occur. With hashing algorithms, there is often a trade-off between the efficiency of the algorithm and the size 

of the hash table. 

A potential solution to clustering is to skip several positions before storing the item, resulting in more even 

distribution throughout the table. A simple approach would be to skip to every third item. A variation of this 

known as quadratic probing increases the number of items skipped with each jump – e.g., 1, 4, 9, 16. 

It may also be necessary to increase the size of the hash table in the future and recalculate new positions for 

the items. The process of finding an alternative position for items in a hash table is known as rehashing. 
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An alternative method of handling collisions is to use a two-dimensional hash table, making it possible for more 

than one item to be placed at the same position – this is called chaining: 

 1 2 3 4 5 6 7 8 9 10 

0 Alabama Georgia   Florida California     

1     Delaware      

In this example, we can see that both Florida and Delaware are occupying the same position but different 

elements of a two-dimensional array. Another possibility would be to use a second table for collisions, referred 

to as an overflow table: 

1 2 3 4 5 6 7 8 9 10 

Alabama Georgia   Florida California     

 

0 1 2 3 4 5 6 7 8 9 

Delaware          

Hash table search in simple-structured English 

1. Calculate the position of the item in the hash table using a hashing function. 

2. Check if the item at that position is the item to be found. 

3. If it is not, move to the next item. 

4. Repeat from step 2 until the item is found or there are no more items in the hash table. 

5. If the item has been found, output its data. If it has not, output “Not found”. 
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Visualising a hash table search 

   ↓  

          

   ↘  
          

 

 

Stepping through an example of a hash table search 

Searching for California: 

Index: 1 2 3 4 5 6 7 8 9 10 

Step 1 Calculate the hash value for California: 

C = 67, a = 97, l = 108, I = 105, f = 102, o =111, r =114, n = 110, I = 105, a = 97 

67 + 97 + 108 + 105 + 102 + 111 + 114 + 110 + 105 + 97 = 1016 

1016 mod 10 = 6. 

Compare California to Delaware. 

Delaware is not the item to be found – move to the next item in the hash table. 
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Step 2 Compare California to California. 

Item found. 
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Two comparisons were required to find the item. 
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Pseudocode for the hash table search 

Function hashSearch(items, item_to_find) 

hash = calculate_hash(item_to_find) 

If hash_table(hash) != “”: 

 If hash_table(hash) == item_to_find: 

  Found = True 

 Else 

  Do While hash < hash_table.Length and not found: 

   If hash_table(hash) != item_to_find: 

    hash = hash + 1 

   Else 

    found = True 

   End If 

  End While 

 End If 

End If 

If found == True then 

 Return "Item found at position ", index 

Else 

 Return "Item not found" 

End If 

End function 

 

  

Did you know? 

The efficiency of a hash table search is reliant on the suitability of the hashing function. If 

the data set is known in advance and does not change, it is possible to construct a perfect 

hash function that guarantees constant time complexity without any collisions. 
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Hash table search coded in Python using an array/list 

class HashTable: 
    array_table = [] 
 
    def hashing_function(self, item, table_size): 
        # Simple hashing algorithm adds ascii values of characters modulus table size 
        total = 0 
        for character in range(len(item)): 
            total = total + ord(item[character]) 
        return total % table_size 
 
    def create_table(self, items, table_size): 
        # Reserve memory for hashing table 
        for counter in range(table_size): 
            self.array_table.append("") 
 
        # Place data into hashing table 
        for item_index in range(len(items)): 
            table_index = self.hashing_function(items[item_index], table_size) 
            if self.array_table[table_index] != "": 
                print("Collision inserting", items[item_index], "at", table_index) 
                # On collision insert in next available space 
                while self.array_table[table_index] != "": 
                    table_index = table_index + 1 
            self.array_table[table_index] = items[item_index] 
            print("Inserted", items[item_index], "at index", table_index) 
        return self.array_table 
 
    def search(self, item_to_find): 
        found = False 
        index = self.hashing_function(item_to_find, len(self.array_table)) 
        # Attempt to find item at hash value 
        if self.array_table[index] != "": 
            if self.array_table[index] == item_to_find: 
                found = True 
            else: 
                # Degrade to linear search for collisions 
                while index < len(self.array_table) and not found: 
                    if self.array_table[index] != item_to_find: 
                        index = index + 1 
                    else: 
                        found = True 
        if found: 
            print("Item found at position", index) 
        else: 
            print("Item not found") 
 
 
# Main algorithm starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
# The larger the table the fewer collisions 
store = HashTable() 
table_size = 10 
store.create_table(items, table_size) 
item_to_find = input("Enter the state to find: ") 
store.search(item_to_find) 
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Efficiency of a hash table search 

Time complexity  

Space 

complexity 
Best 

case 

Average 

case 

Worst 

case 

 

O(1) 

Constant 

O(1) 

Constant 

O(n) 

Linear 

 O(1) 

Constant 

 

On average, the hash table search outperforms a linear or binary search. It does not require the data to be 

sorted – instead, it finds the position of an item immediately using a hashing function, resulting in a constant 

time complexity of O(1) in both best and average cases. 

However, if the item cannot be found immediately because of a collision, linear probing must be used instead 

– this results in a time complexity of O(n) because each item must be checked in turn until either the item is 

found or the end of the table is reached. 

With hash table searching, it is important to use an efficient hashing function that will calculate quickly but 

also produce as few collisions as possible – this is often achieved using a larger hash table than required to 

store the data, increasing the number of unique positions and reducing the number of possible collisions. 

 

 

  

Did you know? 

It is also a good idea to swap data items where collisions occur so that the more frequently 

searched item is stored in the location determined by the hashing function. This approach 

is known as Robin Hood hashing. 
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Linear search 

The linear search finds an item in a sorted or unsorted list. A linear search starts at the first item in the list and 

checks each item one by one. Think about searching for a card in a shuffled deck, starting with the top card 

and checking each one until you find the card you want. 

Applications of a linear search 

The linear search is ideal for finding items in small data sets and performing searches with unordered data 

such as settings files. It is the easiest searching algorithm to implement but usually the most inefficient. 

Linear search in simple-structured English 

1. Start at the first item in the list. 

2. If the item in the list is the one to be found, the search is complete. 

3. If it is not, move to the next item. 

4. Repeat from step 2 until the item is found or there are no more items in the list. 

5. If the item has been found, output its data. If it has not, output “Not found”. 

Visualising a linear search 

↓     

          

 ↓    

          

  ↓   

          

   ↓  
          

   

Did you know? 

Linear searches can also be performed on serial files. If you are asked to perform a linear 

search on a file, don’t forget to include a line of pseudocode to open the file before the 

algorithm and to close the file afterwards – it may be worth a mark. 
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Stepping through an example of a linear search 

Searching for California: 

Index: 0 1 2 3 4 

Step 1 Start at the first item in the list. Compare California to Florida. 

Florida is not the item to be found – move to the next item in the list. 

Florida Georgia Delaware Alabama California 

Step 2 Compare California to Georgia. 

Georgia is not the item to be found – move to the next item in the list. 

Florida Georgia Delaware Alabama California 

Step 3 Compare California to Delaware. 

Delaware is not the item to be found – move to the next item in the list. 

Florida Georgia Delaware Alabama California 

Step 4 Compare California to Alabama. 

Alabama is not the item to be found – move to the next item in the list. 

Florida Georgia Delaware Alabama California 

Step 5 Compare California to California. 

Item found. 

Florida Georgia Delaware Alabama California 

Five comparisons were required to find the item. 

  

Did you know? 

It was once thought that an unstructured search could never perform better than O(n) on 

average. However, Grover’s algorithm and later modifications make O(√n) a possibility 

with quantum computers. 
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Pseudocode for the linear search 

Function linearSearch(items, item_to_find) 

index = 0 

found = False 

While found == False and index < items.Length 

 If items[index] == item_to_find then 

found = True 

 Else 

  index = index + 1 

 End If 

End while 

If found == True then 

 Return "Item found at position ", index 

Else 

 Return "Item not found" 

End If 

End function 

Linear search coded in Python using an array/list 

def linear_search(items, item_to_find): 
    index = 0 
    found = False 
    # Check every item until found or until there are no more items to check 
    while not found and index < len(items): 
        if items[index] == item_to_find: 
            found = True 
        else: 
            index = index + 1 
    if found: 
        print("Item found at position", index) 
    else: 
        print("Item not found") 
 
 
# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
item_to_find = input("Enter the state to find: ") 
linear_search(items, item_to_find) 
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Efficiency of a linear search 

Time complexity  

Space 

complexity 
Best 

case 

Average 

case 

Worst 

case 

 

O(1) 

Constant 

O(n) 

Linear 

O(n) 

Linear 

 O(1) 

Constant 

 

A linear search is only efficient on small, unsorted data sets. It is usually inferior to a binary or hash table 

search, but it does benefit from not requiring the data to be sorted and has the smallest memory footprint. 

In the best case, the item to be found is the first in the data set. In this situation, the linear search performs as 

well as a binary search when the first item is in the middle of the list, O(1) – that means the linear search can 

perform better than a binary search on very small lists. 

In the worst case, the item to be found is last on the list or not in the list at all, so all the items need to be 

checked, O(n). Typically, the item to be found will be somewhere in the data set and, as the data set grows, 

more searching must be performed. Therefore, the algorithm has a complexity of O(n). 

 

  

Did you know? 

Although inefficient, the linear search is the only option if items need to be found in an 

unordered data set. 

If certain items are likely to be searched for more frequently, it would also be better to 

place them towards the beginning of the list to maximise the efficiency of the algorithm. 

When programming a linear search, use a WHILE statement if only one occurrence of an 

item needs to be found and a FOR statement if all occurrences need to be found. 
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Did you know? 

Cache is high speed memory located inside the CPU. If the number of items in the data 

set is less than 16,000, the entire data set can probably be held in the L1 cache. If the 

number of items is less than 64,000, the entire data set can probably be held in the L2 

cache.  

Even though the linear search is inefficient, it can be performed so quickly that it likely 

won’t matter. Any data that can be processed within a couple of hundred milliseconds is 

considered small – and you’d be surprised how much data that is with modern processors. 

Benchmarks have shown it is possible to execute a linear search on over 10 million items in 

less than 200ms. 

Many optimisations of algorithms include caching the results of calculations or frequently 

required data. If the number of data items is less than 100, the inefficient linear search 

executes so quickly that it can be more expensive to store and retrieve the result instead 

of searching on demand. Optimisations often only become worthwhile if the algorithm 

needs to be run several thousand times. 

Modern CPUs have single instruction, multiple data (SIMD) capabilities, enabling parallel 

operations where the same instruction can be carried out on multiple memory locations 

simultaneously. With just four cores, a small data set for a linear search can become as 

many as 200 million data items. 

A final consideration when optimising algorithms includes the human factor. Sometimes, 

optimising approaches to code can take time and are also more complex than the 

solutions they might replace. Premature optimisation has its own cost in terms of 

development time. 

Even if it is not optimal, any algorithm that can execute quickly is usually good enough, 

providing it is not required for critical, real-time applications or maximising frame rate. The 

surprising conclusion is that although the linear search is considered inefficient, it is often a 

suitable solution. 
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In summary 

Binary search Hash table search Linear search 

Items must be in order for the 

algorithm to work. 

Items do not need to be in order. Items do not need to be in order. 

Start at the middle item. Uses a hashing function on the 

key to determine the item index. 

Start at the first item. 

Halve the item set after each 

comparison until the item is 

found or there are no more items. 

Hashing function delivers the 

item’s location unless it doesn’t 

exist or there is a collision. 

Search each item in sequence 

until the item is found or there 

are no more items to check. 

Can be implemented using an 

array or binary search tree. 

Can be implemented with an 

array or list. Used to implement a 

dictionary. 

Can be implemented using an 

array, list or linked objects. 

Suitable for a large number of 

items and range searches. 

Suitable for a large number of 

items but not range searches. 

Only suitable for a small number 

of items. 

Requires log2 n + 1 comparisons. Usually requires one comparison 

or <n in the worst case. 

Requires n comparisons. 

 On average, the fastest of the 

searching algorithms. 

On average, the slowest of the 

searching algorithms. 
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SORTING ALGORITHMS 
Routines that organise data in fundamental data structures. 
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Bubble sort 

The bubble sort orders a data set by comparing each item with the next one and swapping the items if they are 

out of order. Comparing each item with its neighbour until the end of the data set is reached is known as a 

pass. If a swap is made at any time during a pass, the algorithm must start again with a new pass until no more 

swaps are made. The largest (or smallest) item bubbles up to the end of the data set with each pass. 

Applications of a bubble sort 

The bubble sort is usually the most inefficient sorting algorithm but easy to implement, so it is a popular choice 

for very small data sets. It is ideal for situations that require a simple, easy-to-program sorting algorithm. 

Bubble sort in simple-structured English 

1. Start at the first item in the list. 

2. Compare the current item with the next item. 

3. If the two items are in the wrong position, swap them. 

4. Move up one item to the next item in the list. 

5. Repeat from step 2 until all the unsorted items have been compared. 

6. If any items were swapped, repeat from step 1. Otherwise, the algorithm is complete. 

Visualising a bubble sort 

Pass 1 

 

Pass 2 Pass 3 

                          

 ↓ ↓   ↓ ↓    ↓ ↓   

                          

  ↓ ↓   ↓ ↓       
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Stepping through an example of a bubble sort 

Index: 0 1 2 3 4 

Step 1 Compare Florida and Georgia – no swap required. 

→Florida Georgia Delaware Alabama California 

Step 2 Compare Georgia and Delaware – swap the items. 

Florida →Georgia Delaware Alabama California 

Step 3 Compare Georgia and Alabama – swap the items. 

Florida Delaware →Georgia Alabama California 

Step 4 Compare Georgia and California – swap the items. 

Florida Delaware Alabama →Georgia California 

Step 5 Georgia has bubbled to the end of the list. 

At least one swap was made, so start the algorithm again. 

Compare Florida with Delaware – swap the items. 

→Florida Delaware Alabama California Georgia 

Step 6 Compare Florida with Alabama – swap the items. 

Delaware →Florida Alabama California Georgia 

Step 7 Compare Florida with California – swap the items. 

Delaware Alabama →Florida California Georgia 

Step 8 Florida has bubbled to the end of the list. 

At least one swap was made, so start the algorithm again. 

Compare Delaware with Alabama – swap the items. 

→Delaware Alabama California Florida Georgia 
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Step 9 Compare Delaware with California – swap the items. 

Alabama →Delaware California Florida Georgia 

Step 10 Delaware has bubbled to the end of the list. 

At least one swap was made, so start the algorithm again. 

Compare Alabama with California – no swap required. 

→Alabama California Delaware Florida Georgia 

Step 11 No swaps were made – the list is sorted. 

Alabama California Delaware Florida Georgia 

Pseudocode for the bubble sort 

Function bubbleSort(items) 

n = items.Length 

swapped = True 

While n > 0 AND swapped 

swapped = False 

 n = n - 1 

       For index = 0 TO n - 1 

If items[index] > items[index+1] then 

Swap(items[index], items[index+1]) 

swapped = True 

          End If 

 End For 

End while 

Return items 

End function 

  

Did you know? 

The bubble sort is also called the sinking sort. Although it is regarded as an inefficient 

sorting algorithm, it is a good solution if a data set is almost sorted already. It has an 

advantage over the merge sort and quicksort because it can detect when the sort is 

complete, making it more efficient in some situations.  
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Bubble sort coded in Python using an array/list 

def bubble_sort(items): 
    n = len(items) 
    swapped = True 
    # Start a new pass until no swap is made 
    while n > 0 and swapped: 
        swapped = False 
        # Last item has bubbled to the top and no longer needs to be checked 
        n = n - 1 
        # Compare all items except those already sorted 
        for index in range(0, n): 
            if items[index] > items[index + 1]: 
                temp = items[index] 
                items[index] = items[index + 1] 
                items[index + 1] = temp 
                swapped = True 
    return items 
 
 
# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
print(bubble_sort(items)) 
 

Optimisations 

Note that the number of items being compared is reduced by one with each pass. Once items have bubbled to 

their correct position, there is no need to compare them again – only items that could potentially be swapped 

are considered, making the bubble sort more efficient. However, it will still work if all items are compared in 

each pass, albeit less efficiently. 

Another feature of the bubble sort is to nest a counter-controlled loop (FOR statement) inside a condition-

controlled loop (WHILE statement) so the algorithm can terminate early if no swaps are made during a pass, 

further increasing its efficiency. It will still work with two counter-controlled loops – but again, less efficiently. 

  

Did you know? 

There have been attempts to improve the efficiency of the bubble sort – one includes 

reversing the direction of the algorithm after each iteration, known as a cocktail sort.  The 

comb sort is another method that compares non-adjacent items. At best, a comb sort can 

perform as well as a quicksort.  
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Efficiency of a bubble sort 

Time complexity  

Space 

complexity 
Best 

case 

Average 

case 

Worst 

case 

 

O(n) 

Linear 

O(n2) 

Polynomial 

O(n2) 

Polynomial 

 O(1) 

Constant 

 

In the best case, the data set is already sorted, in which case, only one pass is required to check all the items 

in the list and no swaps will be made, so it is of linear complexity, O(n) – this is not usually the case, as the 

purpose of the algorithm is to sort data. 

As the algorithm contains a nested loop, it has polynomial time complexity, O(n2), because the time it takes to 

execute both iterations increases with the size of the data set.  

However, it does not require any additional memory, making it an in-place sort. It can be performed on the data 

structure containing the data set, so the space complexity is O(1). 

The most efficient method of implementing a bubble sort is to stop the algorithm when no swaps are made. 

The bubble sort was ideal in the early days of computing when data was stored on tape drives and computers 

had very little RAM. Rewinding and fast-forwarding a tape was so slow that executing a random-access 

algorithm was impractical. If possible, you would always want to process data sequentially with no more than 

two records at a time being compared.  

Did you know? 

It is a misconception to assume the bubble sort is always the least efficient sorting 

algorithm. There are certain edge-case situations where one algorithm may outperform 

another. In the case of the bubble sort, that situation would be when the data set is 

already sorted – however, this cannot be known in advance. 

Big O notation considers the worst case, where the bubble sort is outperformed by other 

algorithms. On the other hand, Big Ω (Omega) considers the best case, where the bubble 

sort may have an advantage. 
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Insertion sort 

The insertion sort inserts items into their correct position amongst previously placed items. It is a useful 

algorithm for small data sets. 

Applications of an insertion sort 

The insertion sort is particularly useful for inserting items into an already sorted list. It is usually replaced by 

more efficient sorting algorithms for large data sets. 

Insertion sort in simple-structured English 

1. Start at the second item in the list. This becomes the item to be inserted. 

2. Compare the item to be inserted with the next adjacent item to the left. 

3. If the adjacent item is greater than the item to be inserted move the adjacent item up one place. 

4. Repeat from step 2 until the position of the item to be inserted has been found. 

5. Insert the current item. 

6. Repeat from step 2 with the next item in the list until all the items have been inserted. 

Visualising an insertion sort 

 ↓   

        

  ↓  

        

   ↓ 

        

    

        

The steps of an insertion sort are often visualised in examination mark schemes with a table: 

Unsorted: Florida Georgia Delaware Alabama California 

Insert Georgia: Florida Georgia Delaware Alabama California 

Insert Delaware: Delaware Florida Georgia Alabama California 

Insert Alabama Alabama Delaware Florida Georgia California 

Insert California: Alabama California Delaware Florida Georgia 
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Stepping through an example of an insertion sort 

Index: 0 1 2 3 4 

Step 1 Start at the second item (index 1): Georgia. 

Compare Georgia to Florida. Florida is less than Georgia, so the correct position has been 

found. Georgia is inserted.   

→Florida Georgia Delaware Alabama California 

Step 2 Move to the next item: Delaware. Compare Delaware with Georgia. 

Georgia is greater than Delaware, so the position of Delaware has not been found. 

Florida →Georgia Delaware Alabama California 

Step 3 Move Georgia up. Compare Delaware with Florida. 

Florida is greater than Delaware, so the position of Delaware has not been found. 

→Florida Georgia Georgia Alabama California 

Step 4 Move Florida up. There are no more items to compare. 

Delaware is inserted. 

→Delaware Florida Georgia Alabama California 

Step 5 Move to the next item: Alabama. Compare Alabama with Georgia. 

Georgia is greater than Alabama, so the position of Alabama has not been found. 

Delaware Florida →Georgia Alabama California 

Step 6 Move Georgia up. Compare Alabama with Florida. 

Florida is greater than Alabama, so the position of Alabama has not been found. 

Delaware →Florida Georgia Georgia California 

Step 7 Move Florida up. Compare Alabama with Delaware. 

Delaware is greater than Alabama, so the position of Alabama has not been found. 

→Delaware Florida Florida Georgia California 
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Step 8 Move Delaware up. There are no more items to compare. 

Alabama is inserted. 

→Alabama Delaware Florida Georgia California 

Step 9 Move to the next item: California. Compare California with Georgia. 

Georgia is greater than California, so the position of California has not been found. 

Alabama Delaware Florida →Georgia California 

Step 10 Move Georgia up. Compare California to Florida. 

Florida is greater than California, so the position of California has not been found. 

Alabama Delaware →Florida Georgia Georgia 

Step 11 Move Florida up. Compare California to Delaware. 

Delaware is greater than California, so the position of California has not been found. 

Alabama →Delaware Florida Florida Georgia 

Step 12 Move Delaware up. Compare California to Alabama. 

Alabama is less than California, so the correct position has been found. California is inserted. 

There are no more items to check – the list is sorted.  

→Alabama California Delaware Florida Georgia 

Notice the algorithm started at the second item. The first item is assumed to already be inserted into the sorted 

list. This is one implementation of the insertion sort. It is possible to write the algorithm in several different 

ways. For example, instead of comparing every item with the one before it until the correct position is found, 

you could start at the beginning of the list (index 0) and work up to the item to be inserted instead. 

  

Did you know? 

There are often many different implementations of the same algorithm. You could also 

write the insertion sort to take items from a list and insert them into a new list. When 

algorithms move items within the same data structure and do not use additional data 

structures for their operation, they are called in-place algorithms.   
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Pseudocode for the insertion sort 

Function insertionSort(items) 

For index = 1 TO items.Length 

 current = items[index] 

index2 = index 

While index2 > 0 AND items[index2 -1] > current 

items[index2] = items[index2 -1] 

index2 = index2 -1 

 End while 

items[index2] = current 

End For 

Return items 

End function 

Insertion sort coded in Python using an array/list 

def insertion_sort(items): 
    n = len(items) 
    # Consider all the items 
    for index in range(1, n): 
        current = items[index] 
        index2 = index 
        # Find position and move items down one index to make space for new item 
        while index2 > 0 and items[index2 - 1] > current: 
            items[index2] = items[index2 - 1] 
            index2 = index2 - 1 
        # Insert new item in correct position 
        items[index2] = current 
    return items 
 
 
# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
print(insertion_sort(items)) 
 

Did you know? 

Sorting algorithms are often combined to achieve maximum performance with a variety 

of different data sets. 

The binary merge sort uses an insertion sort on groups of 32 elements and completes the 

process with a merge sort on the groups. It combines the speed of the insertion sort on 

small data sets with the speed of the merge sort on large data sets. 
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Efficiency of an insertion sort 

Time complexity  

Space 

complexity 
Best 

case 

Average 

case 

Worst 

case 

 

O(n) 

Linear 

O(n2) 

Polynomial 

O(n2) 

Polynomial 

 O(1) 

Constant 

 

In the best case, the data set is already ordered, so no data needs to be moved. The algorithm has a linear 

time complexity, O(n), because each item must still be checked – this is not usually the case, as the purpose 

of the algorithm is to sort data. 

The algorithm contains a nested iteration – one loop to check each item and another to move items so an item 

can be slotted into place. Due to these iterations, the algorithm has polynomial complexity, O(n2).  

The algorithm does not require any additional memory, as it can be performed on the data structure containing 

the data set. Therefore, it has a space complexity of O(1). 

An alternative version of the algorithm puts sorted data into a new list instead of working on the original list – 

this does not change the time complexity of the algorithm but would increase the space complexity to O(n). 

 

 

  

Did you know? 

Attempts have been made to further optimise the insertion sort.  The Shellsort, invented in 

1959 by Douglas Shell, was the most notable, achieving significantly better performance. 

Another optimisation uses a linked list instead of an array, negating the need to move 

items within the data structure. 

In 2006, a new variant of the insertion sort was proposed, called the library sort or gapped 

insertion sort. This version leaves a small number of unused spaces in the array to avoid 

having to move large numbers of items when one is inserted. 
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Merge sort 

A merge sort can sort a data set extremely quickly using divide and conquer. The principle of divide and conquer 

is to create two or more identical sub-problems from the larger problem, solve them individually and combine 

their solutions to solve the bigger problem. With the merge sort, the data set is repeatedly split in half until 

each item is in its own list. Adjacent lists are then merged back together, with each item being entered into the 

correct place in the new, combined list. 

Applications of a merge sort 

The merge sort works best with larger data sets where memory usage is not a concern. It is ideal for parallel 

processing environments where the concept of divide and conquer can be used to maximise efficiency. 

Merge sort in simple-structured English 

The merge sort has two stages, often called the split and merge steps. 

Split step: 

1. Repeatedly divide each list in half until each item is in its own list. 

 

Merge step: 

 

2. Take two adjacent lists and start with the first item in each one. 

3. Compare the two items. 

4. Insert the lowest item into a new list. Move to the next item in the list it was taken from. 

5. Repeat steps 3 and 4 until all the items from one of the lists have been put into the new list. 

6. Append all the items from the list still containing items to the new list. 

7. Replace the two adjacent lists with the one new list. 

8. Repeat from step 2 until only one list remains. 

 

When programming this algorithm using iteration, step 1 can be achieved by putting each item into a new list 

one at a time – a simple optimisation that is worth implementing. However, in examinations, you should show 

that the data set is repeatedly split until each item is in its own list. 
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Visualising a merge sort 

            

   ↙ ↘    

            
↙ ↘     ↙ ↘ 

            

        

            

 ↘ ↙   ↘ ↙  

            

   ↘ ↙    

            
 

 

Unlike the bubble and insertion sort, the classic merge sort is not an in-place algorithm. It requires additional 

memory beyond that which is used to store the data to perform its operation. Although this is a significant 

disadvantage, it does enable multiple processors to work on different parts of the data set at the same time, 

significantly increasing the algorithm’s performance and enabling it to perform better with larger data sets.   

Did you know? 

The merge sort is very expensive in terms of space complexity because it repeatedly 

creates new lists. Most optimisations have explored reducing the amount of memory the 

algorithm requires. 

Although the merge sort usually includes the splitting and merging of new, separate lists, it 

is also possible to write the algorithm to execute within one structure. A smaller amount of 

additional memory is used as a temporary space outside of the merge routine. 

Jyrki Katajainen proved it is possible to write a variation of the classic merge sort with O(1) 

space. 
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Stepping through an example of a merge sort 

Index: 0 1 2 3 4 

Step 1 

Split 

Divide the list in half to create two smaller lists. 

Florida Georgia Delaware Alabama California 

Step 2 

Split 

Divide the two lists in half to create four smaller lists. 

Florida Georgia Delaware Alabama California 

Step 3 

Split 

Divide the four lists to create five lists. 

Florida Georgia Delaware Alabama California 

Step 4 

Merge 

Compare the first items in two lists: Florida and Georgia are in the correct order. 

Copy Florida into a new list. Copy Georgia into the list. 

→Florida Georgia Delaware Alabama California 

New list Florida Georgia    

Step 5 

Merge 

Compare the first items in two lists: Alabama and Delaware are in the correct order. 

Copy Alabama into a new list. Copy Delaware into the list. 

Florida Georgia →Alabama Delaware California 

New lists Florida Georgia Alabama Delaware  

Step 6 

Merge 
No list to compare California with. 
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Step 7 

Merge 

Compare the first items in two lists: Florida and Alabama. 

Copy Alabama into a new list. Move to the next item in that list. 

→Florida Georgia Alabama Delaware California 

New lists Alabama     

Step 8 

Merge 

Compare Florida to Delaware. 

Copy Delaware into the new list. There are no more items in that list. 

→Florida Georgia Alabama Delaware California 

New list Alabama Delaware    

Step 9 

Merge 
Copy all the items from the other list into the new list. 

New list Alabama Delaware Florida Georgia  

Step 10 

Merge 

Compare the first item in two lists: Alabama and California. 

Copy Alabama into a new list. Move to the next item in that list. 

→Alabama Delaware Florida Georgia California 

New list Alabama     

Step 11 

Merge 

Compare the first item in two lists: Delaware and California. 

Copy California into a new list. There are no more items in that list. 

Alabama →Delaware Florida Georgia California 

New list Alabama California    

Step 12 

Merge 
Copy all the items from the other list into the new list. 

New list Alabama California Delaware Florida Georgia 

When only one list remains, the items are sorted.  
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Pseudocode for the merge sort 

Function mergeSort(items) 

listofitems = [] 

item = [] 

 

For n = 0 TO items.Length - 1 

 item = items[n] 

 listofitems.append(item) 

Next n 

While listofitems.Length != 1 

 index = 0 

 While index < listofitems.Length - 1  

        newlist = merge(listofitems[index],listofitems[index+1])      

        listofitems[index] = newlist      

        del listofitems[index+1]  

        index = index + 1 

    End while 

End while 

return listofitems 

End function 

 
Function merge(list1,list2) 

 newlist = [] 

 index1 = 0 

 index2 = 0 

 While index1 < list.Length and index2 < list2.Length 

  If list1[index1] > list2[index2] Then 

   newlist.append list2[index2] 

   index2 = index2 + 1 

  ElseIf list1[index1] < list2[index2] Then 

   newlist.append list1[index1] 

   index1 = index1 + 1 

  ElseIf list1[index1] == list2[index2] Then 

   newlist.append list1[index1] 

   newlist.append list2[index2] 

   index1 = index1 + 1 

   index2 = index2 + 1 

  End If 

 End While 

 If index1 < list1.Length Then 

  For item = index1 to list1.Length 

   newlist.append list1[item] 

  Next item 

 ElseIf index2 < list2.Length Then 

  For item = index2 to list2.Length 

   newlist.append list2[item] 

  Next item 

 End If 

 Return newlist 

End Function  
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Merge sort coded in Python using arrays/lists and iteration 

def merge_sort(items): 
    # Split step 
    items_list = split(items) 
 
    # Merge step 
    while len(items_list) != 1: 
        index = 0 
        # Merge pairs of lists 
        while index < len(items_list) - 1: 
            new_list = merge(items_list[index], items_list[index + 1]) 
            items_list[index] = new_list 
            # Once merged, delete one of the now redundant lists 
            del items_list[index + 1] 
            index = index + 1 
    return items_list[0] 
 
 
def split(items): 
    # Every item is put into its own list within a container list 
    list_of_items = [] 
    for n in range(len(items)): 
        item = [items[n]] 
        list_of_items.append(item) 
    return list_of_items 
 
 
def merge(list1, list2): 
    # Merge two lists into a new list 
    new_list = [] 
    index1 = 0 
    index2 = 0 
    # Check each item in each list, and add the smallest item to a new list 
    while index1 < len(list1) and index2 < len(list2): 
        if list1[index1] > list2[index2]: 
            new_list.append(list2[index2]) 
            index2 = index2 + 1 
        elif list1[index1] < list2[index2]: 
            new_list.append(list1[index1]) 
            index1 = index1 + 1 
        elif list1[index1] == list2[index2]: 
            new_list.append(list1[index1]) 
            new_list.append(list2[index2]) 
            index1 = index1 + 1 
            index2 = index2 + 1 
 
    # Add left over items from the remaining list 
    if index1 < len(list1): 
        for item in range(index1, len(list1)): 
            new_list.append(list1[item]) 
    elif index2 < len(list2): 
        for item in range(index2, len(list2)): 
            new_list.append(list2[item]) 
 
    return new_list 
 
 
# Main algorithm starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
print(merge_sort(items)) 
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An alternative implementation using recursion 

While it is more memory-efficient to implement the merge sort using iteration alone, the algorithm can be 

optimised for parallel processing using recursion. 

A merge sort coded in Python using arrays/lists and recursion 

def mergeSort(items): 
    # Split step 
    if len(items) > 1: 
        mid = len(items) // 2 
        list1 = items[:mid] 
        list2 = items[mid:] 
 
        mergeSort(list1) 
        mergeSort(list2) 
 
        index1 = 0 
        index2 = 0 
        items_index = 0 
 
        # Merge step 
        while index1 < len(list1) and index2 < len(list2): 
            if list1[index1] < list2[index2]: 
                items[items_index] = list1[index1] 
                index1 = index1 + 1 
            else: 
                items[items_index] = list2[index2] 
                index2 = index2 + 1 
            items_index = items_index + 1 
 
        while index1 < len(list1): 
            items[items_index] = list1[index1] 
            index1 = index1 + 1 
            items_index = items_index + 1 
 
        while index2 < len(list2): 
            items[items_index] = list2[index2] 
            index2 = index2 + 1 
            items_index = items_index + 1 
    return items 
 
# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
print(mergeSort(items)) 
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Efficiency of a classic merge sort 

Time complexity  

Space 

complexity 
Best 

case 

Average 

case 

Worst 

case 

 

O(n log n) 

Linearithmic 

O(n log n) 

Linearithmic 

O(n log n) 

Linearithmic 

 O(n) 

Linear 

 

In all cases, the data in a merge sort needs to be manipulated so each item is in its own list. The time this takes 

will increase with more data, as will the memory requirements, O(n). However, by using a divide-and-conquer 

algorithm, the data set can be repeatedly divided, O(log n).  

When the lists are merged back together, it is possible to merge more than one list simultaneously, although 

each item in the list needs to be considered in turn to determine its position in the new list. Therefore, the 

algorithm has a linearithmic time complexity, O(n log n), and a space complexity of O(n). 

  

Did you know? 

The merge sort was extremely popular in the early days of computing because the 

algorithm could be run on multiple tape drives. Modern solid-state drives and magnetic 

hard disks allow for any item of data on the drive to be randomly accessed. However, 

with tape drives, data could only be accessed serially, one item at a time. 

The linear nature of the merge sort makes it ideal for drives such as tape that can only 

be efficiently read and written forwards. 
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Quicksort 

As its name suggests, the quicksort orders a data set extremely quickly using divide and conquer. The principle 

of divide and conquer is to create two or more identical, smaller sub-problems from the larger problem, solve 

them individually and combine their solutions to solve the bigger problem. There are many different 

implementations of the quicksort, which can be confusing, but they all share two common features identifying 

the algorithm as a quicksort: 

1. A pivot – a single item in the data set that all other items are compared to. 

2. Partitioning step – an algorithm that swaps items so that, after each pass, items less than the pivot are 

placed to its left and items greater than the pivot are placed to its right. 

A typical data set after one pass of a quicksort: 

9 12 6 20 33 25 47 

Values less than the pivot Pivot Values greater than the pivot 

The algorithm is called recursively on the set of values to the left of the pivot first and then the values to the 

right until the complete data set is sorted. 

The choice of pivot and partitioning step can make a significant difference to the efficiency of the algorithm. 

Any item in the data set can be chosen as the pivot, although typically, it is either the first item (Hoare scheme), 

the last item (Lomuto scheme), the middle item or a random item. Middle and random items are often swapped 

with the first item before the algorithm begins so the pivot is always the first item in the list. 

The quicksort has been continually evolving since its publication by Tony Hoare in 1961, and many different 

partition schemes are used today. These include finding the median for the pivot, sub-dividing the data set into 

smaller data sets first, the dual pivot and three pivots. In this book, we will explore three simple approaches, 

but you will only need to be familiar with one for examinations. 

Applications of a quicksort 

The quicksort is suitable for any data set but shines with larger data sets. It is ideal for parallel processing 

environments where the concept of divide and conquer can be used. Typically found in real-time situations due 

to its efficiency, the quicksort has applications in medical monitoring, life support systems, aircraft controls 

and defence systems. 
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Hoare scheme in simple-structured English 

A pivot item is chosen, against which other items will be compared – this is usually the first item in the list, but 

it can be any item including the last item or even a random item. Two pointers are each compared with the 

pivot in turn until the correct position for the pivot is determined. The algorithm is then repeated recursively on 

the items to the left and right of this position. 

This approach can be described with the following steps: 

1. Set the pivot value as the first item in the list. 

2. Set a pointer to the second and last items in the list. 

3. While the second pointer is greater than or equal to the first pointer: 

a. While the first pointer is less than or equal to the second pointer and the item at the first pointer 

is less than or equal to the pivot value, increase the first pointer by one. 

b. While the second pointer is greater than or equal to the first pointer and the item at the second 

pointer is greater than or equal to the pivot, decrease the second pointer by one. 

c. If the second pointer is greater than the first pointer, swap the items. 

4. Swap the pivot value with the item at the second pointer. 

5. Repeat from step 1 on the list of items to the left of the second pointer. 

6. Repeat from step 1 on the list of items to the right of the second pointer.  

  

Did you know? 

Many sources present the quicksort using only one of the popular algorithms. This can be 

confusing when you compare this to examination mark schemes that may be using an 

alternative quicksort scheme. Be aware there is more than one valid approach to a 

quicksort. 

In 2009, Vladimir Yaroslavskiy proposed a new implementation of the quicksort that used 

two pivots instead of one. At the time, Java was using a variant of the quicksort created 

by Jon Bentley and Doug McIlroy in the 1990s. After extensive performance tests, 

Yaroslavskiy proved beyond doubt that his implementation was superior, and it is now the 

default sorting algorithm for Java. 
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Visualising one pass of the Hoare scheme 

Step 3a: Position the first pointer in relation to the pivot. Move up the data set until an item greater than the 

pivot is found. 

↓ ↓   

        

    

↓  ↓  

        

    

↓   ↓ 

        

Step 3b: Position the second pointer in relation to the pivot. Move down the data set until an item less than 

the pivot is found: 

↓   ↓ 

        

    

↓  ↓  

        

Step 3c and 4: Set the position of the pivot by swapping the item at the pivot with the item at the position of 

the second pointer: 

↓  ↓  
        

    

        

Repeat on all the items to the left of the pivot first and then all the items to the right of the pivot until all items 

are in the correct position. 

< <   > 
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Stepping through an example of the Hoare scheme 

Index: 0 1 2 3 4 

Step 1 Set the pivot to the first item. Set pointers to indexes 1 and 4. 

Florida →Georgia Delaware Alabama California 

Step 2 Consider the first pointer: Georgia is greater than Florida. First pointer finished. 

Florida →Georgia Delaware Alabama California 

Step 3 Consider the second pointer: California is less than Florida. Second pointer finished. 

Florida →Georgia Delaware Alabama California 

Step 4 The second pointer is greater than the first pointer, so swap the items. 

Florida →California Delaware Alabama Georgia 

Step 5 The second pointer is greater than the first pointer, so consider the first pointer again. 

Consider the first pointer: California is less than Florida. Increment the first pointer. 

Florida →California Delaware Alabama Georgia 

Step 6 Consider the first pointer: Delaware is less than Florida. Increment the first pointer. 

Florida California →Delaware Alabama Georgia 

Step 7 Consider the first pointer: Alabama is less than Florida. Increment the first pointer. 

Florida California Delaware →Alabama Georgia 

Step 8 Consider the first pointer: Georgia is greater than Florida. First pointer finished. 

Florida California Delaware Alabama →Georgia 

Step 9 Consider the second pointer: Georgia is greater than Florida. Decrement the second pointer. 

Florida California Delaware Alabama →Georgia 
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Step 10 Consider the second pointer: Alabama is less than Florida. Second pointer finished. 

Florida California Delaware Alabama →Georgia 

Step 11 The second pointer is not greater than the first pointer. 

Swap the pivot item with the item at the second pointer. 

Alabama California Delaware Florida →Georgia 

Step 12 Quicksort the items to the left of the second pointer. 

Set the pivot to the first item. Set pointers to indexes 1 and 2. 

Alabama →California Delaware Florida Georgia 

Step 13 Consider the first pointer: California is greater than Alabama. First pointer finished. 

Alabama →California Delaware Florida Georgia 

Step 14 Consider the second pointer: Delaware is greater than Alabama. Decrement the second pointer. 

Alabama →California Delaware Florida Georgia 

Step 15 Consider the second pointer: California is greater than Alabama. Decrement the second pointer. 

Alabama →California Delaware Florida Georgia 

Step 16 The second pointer is less than the first pointer. 

Swap the pivot item with the item at the second pointer. (No change) 

Alabama →California Delaware Florida Georgia 

Step 17 Quicksort the items to the left of the second pointer. There are none. 

Quicksort the items to the right of the second pointer. 

Set the pivot to the first item. Set pointers on indexes 2 and 2. 

Alabama California →Delaware Florida Georgia 

Step 18 Consider the first pointer: Delaware is greater than California. First pointer finished. 

Alabama California →Delaware Florida Georgia 



 

 

SO
R

TI
N

G
 A

LG
O

R
IT

H
M

S 

177 

Step 19 Consider the second pointer: Delaware is greater than California. Decrement the second pointer. 

Alabama California →Delaware Florida Georgia 

Step 20 The second pointer is less than the first pointer. 

Swap the pivot item with the item at the second pointer. (No change) 

Alabama California →Delaware Florida Georgia 

Step 21 Quicksort the items to the left of the second pointer – there are none. 

Quicksort the items to the right of the second pointer. Delaware is the only item in the list. 

Alabama California Delaware Florida Georgia 

Step 22 Continue the algorithm from step 11 before the recursive calls.  

Quicksort the items to the right of the second pointer. Georgia is the only item in the list. 

Alabama California Delaware Florida Georgia 

Pseudocode for the Hoare scheme 

Function quicksort(list) 

 If items.Length <= 1 Then Return items 

 pointer1 = 1 

 pointer2 = items.Length – 1 

 pivot = items[0] 

 While pointer2 >= pointer1 

  While pointer1 <= pointer2 And items[pointer1] <= pivot 

   pointer1 = pointer1 + 1 

  End While 

  While pointer2 >= pointer1 And items[pointer2] >= pivot 

   pointer2 = pointer2 – 1 

  End While 

  If pointer2 > pointer1 Then Swap(items[pointer1],items[pointer2]) 

 End While 

 Swap(pivot,items[pointer2]) 

 left = quicksort(items[0 to pointer2]) 

 right = quicksort(items[pointer2 + 1 to items.Length]) 

 Return left + items[pointer2] + right 

End Function  
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Hoare scheme coded in Python using an array/list 

def quicksort(items): 
    # A single item does not need sorting 
    if len(items) <= 1: 
        return items 
    else: 
        # Set the two pointer positions and pivot to be the first item 
        pointer1 = 1 
        pointer2 = len(items) - 1 
        pivot_value = items[0] 
        # Partitioning step 
        while pointer2 >= pointer1: 
            # Move first pointer 
            while pointer1 <= pointer2 and items[pointer1] <= pivot_value: 
                pointer1 = pointer1 + 1 
            # Move second pointer 
            while pointer2 >= pointer1 and items[pointer2] >= pivot_value: 
                pointer2 = pointer2 - 1 
            # Swap items 
            if pointer2 > pointer1: 
                temp = items[pointer1] 
                items[pointer1] = items[pointer2] 
                items[pointer2] = temp 
        # Put pivot item in position 
        temp = items[0] 
        items[0] = items[pointer2] 
        items[pointer2] = temp 
 
        # Divide and conquer left and right of the pivot 
        left = quicksort(items[0:pointer2]) 
        right = quicksort(items[pointer2 + 1:len(items)]) 
        return left + [items[pointer2]] + right 
 
 
# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
print(quicksort(items)) 

There are many variations of this algorithm, but what identifies it as a Hoare scheme are the two condition-

controlled iterations in the partitioning step. One pointer increments up the data set, while a second pointer 

decrements down the data set. 

Did you know? 

If you choose three random elements from the data set, select the median of the three 

and swap it with the rightmost element, you will have improved the chance of an optimal 

pivot to 68 percent. Take the median of five random elements, and the chance increases 

to 79 percent. Seven random items, and it’s 90 percent! That’s because the best-case 

scenario for a quicksort is to have half the elements on either side of the pivot. 
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Lomuto scheme in simple-structured English 

The Lomuto scheme is a popular alternative quicksort algorithm. It does not perform as well as the Hoare 

scheme, as it swaps more items than necessary, which is computationally slow. However, many consider it 

easier to understand because it only uses a single counter-controlled iteration in the partitioning step. 

This approach can be described with the following steps: 

1. Set the pivot value as the last item in the list. 

2. Set a pointer to the first item in the list. 

3. For every item in the list: 

a. If the item is less than the pivot: 

i. swap the item with the item at the pointer. 

ii. Increment the pointer. 

4. Swap the pivot with the item at the pointer. 

5. Repeat from step 1 on the list of items to the left of the pointer. 

6. Repeat from step 1 on the list of items to the right of the pointer.  

  

Did you know? 

The quicksort was invented by Tony Hoare while he was a student in the Soviet Union.   

He was working on a machine translation project and needed to sort Russian words before 

looking them up in an English-Russian dictionary. Having initially developed the insertion 

sort, he realised it was too slow and developed the quicksort instead. 

When back in England, Tony Hoare was asked to write code for a Shellsort by his boss and 

placed a bet that his sorting algorithm was the fastest. His boss coded the quicksort – and 

Tony won a sixpence! 
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Visualising one pass of the Lomuto scheme 

Step 3: The pivot is always the last item. The pink arrow represents the counter-controlled FOR loop. The black 

arrow is the pointer, which increments only after the item at the pink arrow is less than the pivot. 

↓    

↓   ↓ 

        

    

 ↓   

↓   ↓ 

        

    

  ↓  

 ↓  ↓ 

        

    

   ↓ 

 ↓  ↓ 

        

   ↓ 

 ↓  ↓ 

        

Step 4: At the end of the iteration, swap the pivot with the item at the pointer. 

   ↓ 

 ↓  ↓ 

        

Repeat on all the items to the left of the pivot first and then all the items to the right of the pivot until all the 

items are in the correct position. 

<   > > 

 

Did you know? 

The quicksort can also be visualised as a binary tree. Each node is a pivot for the child 

nodes below it. 
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Stepping through an example of the Lomuto scheme 

Index: 0 1 2 3 4 

Step 1 Set the pivot to the last item. Set both the pointer and counter to index 0. 

→Florida Georgia Delaware Alabama California 

Step 2 Consider the item at the counter. Florida is greater than California – no swap is required. 

Increment the counter. 

→Florida Georgia Delaware Alabama California 

Step 3 Consider the item at the counter. Georgia is greater than California – no swap is required. 

Increment the counter. 

→Florida Georgia Delaware Alabama California 

Step 4 Consider the item at the counter. Delaware is greater than California – no swap is required. 

Increment the counter. 

→Florida Georgia Delaware Alabama California 

Step 5 Consider the item at the counter. Alabama is less than California – swap the items  

at the pointer and counter. Increment the pointer. Increment the counter. 

→Florida Georgia Delaware Alabama California 

Step 6 The end of the list is reached. 

Alabama →Georgia Delaware Florida California 

Step 7 Swap the pivot with the item at the pointer. 

Alabama →California Delaware Florida Georgia 

Step 8 Quicksort the items to the left of the pivot. Alabama is the only item. 

Quicksort the items to the right of the pivot. 

Alabama California →Delaware Florida Georgia 
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Step 9 Consider the item at the counter. Delaware is less than Georgia – swap the items  

at the pointer and counter – they are the same. Increment the pointer. Increment the counter. 

Alabama California →Delaware Florida Georgia 

Step 10 Consider the item at the counter. Florida is less than Georgia – swap the items at the pointer and 

counter – they are the same. Increment the pointer. Increment the counter. 

Alabama California Delaware →Florida Georgia 

Step 11 The end of the list is reached. 

Alabama California Delaware Florida →Georgia 

Step 12 Swap the pivot with the item at the pointer – they are the same. 

Alabama California Delaware Florida →Georgia 

Step 13 Quicksort the items to the left of the pivot. 

Quicksort the items to the right of the pivot – no items. 

Alabama California →Delaware Florida Georgia 

Step 14 Consider the item at the counter. Delaware is less than Florida – swap the items  

at the pointer and counter – they are the same. Increment the pointer. Increment the counter. 

Alabama California →Delaware Florida Georgia 

Step 15 The end of the list is reached. 

Alabama California Delaware →Florida Georgia 

Step 16 Swap the pivot with the item at the pointer – they are the same. 

Alabama California Delaware →Florida Georgia 

Step 17 Quicksort the items to the left of the pivot. Delaware is the only item. 

Quicksort the items to the right of the pivot – no items. 

Alabama California Delaware Florida Georgia 
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Pseudocode for the Lomuto scheme 

Function quicksort(list) 

 If items.Length <= 1 Then Return items 

 pointer2 = 0 

 pivot = items[items.Length -1] 

 For pointer1 = 0 TO items.Length - 1 

  If items[pointer1] < pivot then 

   Swap(items[pointer1], items[pointer2]) 

   pointer2 = pointer2 + 1 

  End If 

 End For 

 Swap(pivot, items[pointer2]) 

 left = quicksort(items[0 to pointer2]) 

 right = quicksort(items[pointer2 + 1 to items.Length]) 

 Return left + items[pointer2] + right 

End Function 

Lomuto scheme coded in Python using an array/list 

def quicksort(items): 
    # A single item does not need sorting 
    if len(items) <= 1: 
        return items 
    else: 
        # Set the pointer position and pivot to be the last item 
        pointer2 = 0 
        pivot_value = items[len(items) - 1] 
        # Partitioning step 
        for pointer1 in range(0, len(items) - 1): 
            if items[pointer1] < pivot_value: 
                temp = items[pointer2] 
                items[pointer2] = items[pointer1] 
                items[pointer1] = temp 
                pointer2 = pointer2 + 1 
        # Put pivot item in position 
        temp = items[pointer2] 
        items[pointer2] = pivot_value 
        items[len(items) - 1] = temp 
 
        # Divide and conquer left and right of the pivot 
        left = quicksort(items[0:pointer2]) 
        right = quicksort(items[pointer2 + 1:len(items)]) 
        return left + [items[pointer2]] + right 
 
 
# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
print(quicksort(items)) 
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Lomuto variant in simple-structured English 

An adaptation of the Lomuto scheme was demonstrated as a Hungarian folk dance by a dance group at 

Romania’s Sapientia University and has appeared in examination mark schemes.  

Although the coded solution appears more complex, it is perhaps even easier to understand because it only 

uses one pointer and a pivot. Two items are compared and, if necessary, swapped. The pointer starts at the 

first item and always moves towards the pivot. If the pointer is less than the pivot, it moves to the right. If the 

pointer is greater than the pivot, it moves to the left. Once the pointer has reached the pivot, the position of 

the pivot has been found. This approach can be described with the following steps: 

1. Set a pointer to the first item and set the pivot to be the last item in the list. 

2. While the pointer is not equal to the pivot: 

a. If the items are in the wrong order, swap the item with the pivot. 

b. Move the pointer one index towards the pivot. (Note: This could be a move left or right.) 

3. Repeat from step 1 on the list of items to the left of the pointer. 

4. Repeat from step 1 on the list of items to the right of the pointer. 

Visualising one pass of the Lomuto variant 

Step 2: Compare the items at opposite ends and swap them if necessary: 

↓   ↓ 

        

    

 ↓  ↓ 

        

    

 ↓  ↓ 

        

    

 ↓ ↓  

        

    

 ↓   

 ↓   

        

    

        

Repeat on all the items to the left of the pivot first and then all the items to the right of the pivot until all the 

items are in the correct position. 

<   > > 
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Stepping through an example of the Lomuto variant 

Index: 0 1 2 3 4 

Step 1 Set the pointer to index 0 and set the pivot to be the last item. 

→Florida Georgia Delaware Alabama California 

Step 2 Compare Florida and California. Florida is greater than California – swap them over. 

→Florida Georgia Delaware Alabama California 

Step 3 Move the pointer towards the pivot. 

California Georgia Delaware →Alabama Florida 

Step 4 Compare Alabama with California. Alabama is less than California – swap them over. 

California Georgia Delaware →Alabama Florida 

Step 5 Move the pointer towards the pivot. 

Alabama →Georgia Delaware California Florida 

Step 6 Compare Georgia with California. Georgia is greater than California – swap them over. 

Alabama →Georgia Delaware California Florida 

Step 7 Move the pointer towards the pivot. 

Alabama California →Delaware Georgia Florida 

Step 8 Compare Delaware with California. Delaware is greater than California – no swap required. 

Alabama California →Delaware Georgia Florida 

Step 9 Move the pointer towards the pivot. 

Alabama →California Delaware Georgia Florida 
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Step 10 The pointer is at the pivot. 

Quicksort items to the left of the pivot. Alabama is the only item. 

Quicksort items to the right of the pivot. 

Alabama California Delaware Georgia Florida 

Step 11 Set the pointer to index 2 and set the pivot to be the last item. 

Alabama California →Delaware Georgia Florida 

Step 12 Compare Delaware with Florida. Delaware is less than Florida – no swap required. 

Alabama California →Delaware Georgia Florida 

Step 13 Move the pointer towards the pivot. 

Alabama California Delaware →Georgia Florida 

Step 14 Compare Georgia with Florida. Georgia is greater than Florida – swap them over. 

Alabama California Delaware →Georgia Florida 

Step 15 Move the pointer towards the pivot. 

Alabama California Delaware →Florida Georgia 

Step 16 The pointer is at the pivot. 

Quicksort items to the left of the pivot. Delaware is the only item. 

Quicksort items to the right of the pivot. Georgia is the only item. 

Alabama California Delaware Florida Georgia 
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Pseudocode for the Lomuto variant 

Function quicksort(items) 

If items.Length <= 1 Then Return items 

 pointer = 0 

pivot = items.Length – 1 

 While pointer != pivot 

If (items[pointer] > items[pivot] and pointer < pivot)  
Or (items[pointer] < items[pivot] and pointer > pivot) Then 

   Swap(items[pointer], items[pivot]) 
   Swap(pointer, pivot) 

  End If 

  If pointer < pivot Then 

   pointer = pointer + 1 

  Else 

   pointer = pointer – 1 

  End If 

End While 

 left = quicksort(items[0 to pointer]) 

 right = quicksort(items[pointer + 1 to items.Length]) 

 Return left + items[pointer] + right 

End Function 

Lomuto variant coded in Python using an array/list 

def quicksort(items): 
    # A single item does not need sorting 
    if len(items) <= 1: 
        return items 
    else: 
        # Set the pointer position and pivot to be the last item 
        pointer = 0 
        pivot = len(items) - 1 
        # Partitioning step 
        while pointer != pivot: 
            # Put pivot item in position 
            if (items[pointer] > items[pivot] and pointer < pivot) or ( 
                    items[pointer] < items[pivot] and pointer > pivot): 
                temp = items[pointer] 
                items[pointer] = items[pivot] 
                items[pivot] = temp 
                temp_pointer = pointer 
                pointer = pivot 
                pivot = temp_pointer 
            # Move the pointer 
            if pointer < pivot: 
                pointer = pointer + 1 
            else: 
                pointer = pointer - 1 
 
        # Divide and conquer left and right of the pivot 
        left = quicksort(items[0:pointer]) 
        right = quicksort(items[pointer + 1:len(items)]) 
        return left + [items[pointer]] + right 
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# Main program starts here 
items = ["Florida", "Georgia", "Delaware", "Alabama", "California"] 
print(quicksort(items)) 

Efficiency of a quicksort 

Time complexity  

Space 

complexity 
Best 

case 

Average 

case 

Worst 

case 

 

O(n log n) 

Linearithmic 

O(n log n) 

Linearithmic 

O(n2) 

Polynomial 

 O(log n) 

Logarithmic 

 

Once the position of the pivot is found, the quicksort divides the list in half and recursively sorts each of the 

sub-lists, making it ideal for parallel processing.  

Dividing the data set in this way provides a linearithmic time complexity, O(n log n). It is unlikely that the data 

set will be divided equally in half, but in the worst case, the pivot will always be the first or last item and the 

time complexity becomes polynomial, O(n2). At best, the data set will be divided equally, resulting in linearithmic 

complexity, O(n log n). On average, the position of the pivot item will be somewhere between the first and last 

item in the data set, and the time complexity will average out. 

The code examples presented here are not memory-efficient because they create new lists for each recursive 

call. Implementing the algorithm in this way increases the space complexity but makes the algorithm easier to 

code and understand. An alternative approach would be to use the same data set, passing the pointers as 

parameters to the quicksort function, not the data structure.  

However, any recursive algorithm – even if it does not create new data sets – will require a call stack, so the 

space complexity is still considered O(log n), not O(1).  

Using the first item as a pivot is often a bad choice for data that is not in a random order because the item at 

the beginning of a data set is often a small one. In this situation, the number of swaps is increased, so the 

algorithm is more likely to be O(n2). A random pivot is more likely to achieve O(n log n) performance. 

One method of further optimising the quicksort is to recognise when the number of items in the data set is 

small and switch to an algorithm that is better suited to small data sets such as an insertion sort. 

The quicksort is often considered more efficient than a merge sort due to requiring less memory than a typical 

recursive merge sort implementation. 

One of the goals of a good sorting algorithm is to not change the order of items that are the same. Moving 

items unnecessarily is called instability and is a weakness of the quicksort. 
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Did you know? 

Nico Lomuto’s partition scheme is generally considered to be less efficient than Tony 

Hoare’s algorithm because it may perform unnecessary swaps – three times as many, on 

average. 

 

Did you know? 

In 1987, Tony Hoare met Nico Lomuto at the Continental Club in Austin, Texas. 

“Listen, Tony,” Nico said as the chit chat petered off, “about that partitioning algorithm. I never 

meant to publish or—” 

“Oh yes, yes, the partitioning algorithm”, interrupted Tony. 

“Yeah, that partitioning algorithm that keeps on getting mentioned together with yours. I’m not 

much of an algorithms theorist… the bothersome part about it is that it’s not even a better 

algorithm. My partitioning scheme will always do the same number of comparisons and at least 

as many swaps as yours. In the worst case, mine does n additional swaps — n! I can’t understand 

why they keep on mentioning the blessed thing. It’s out of my hands now. I can’t tell them what 

algorithms to teach and publish.” 

“I understand, Nico. Yet please consider the following. Your algorithm is simple and regular, moves 

in only one direction, and does at most one swap per step. That may be appropriate for some 

future machines that…” 

“No matter the machine, more swaps can’t be better than fewer swaps. It’s common sense,” 

Nico replied. 

“I would not be so sure. Computers do not have common sense. Computers are surprising. It 

stands to reason they’ll continue to be.” 

dlang.org/blog/2020/05/14/lomutos-comeback/ 
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Why are there so many sorting algorithms? 

It is easy to jump to the conclusion that there must be a “best” sorting algorithm. While it is true that sorting 

algorithms have developed over time and research is still ongoing today, there is no perfect sorting algorithm. 

Each algorithm’s performance depends on the data set it is being applied to. 

When writing algorithms, there are four significant factors to consider: 

1. The processing architecture. Parallel processors usually execute more efficiently than single 

processors. If a data set can be divided and the same algorithm applied to each sub-set of data, it is 

well-suited to parallelism. Good examples of this are the merge sort and quicksort, which take 

advantage of divide and conquer and work best with large, unsorted data sets. 

2. The memory footprint. The amount of memory an algorithm has to work with can be a limiting factor. In 

computer science, there is often a balance between the efficiency of processing and the efficiency of 

memory. In the past, memory was a significant limiting factor and programmers would strive to save 

every byte they could. In the past, computers had only kilobytes of memory to store the operating 

system, as well as programs and data – today, we have gigabytes. Algorithms that perform well in a 

defined memory space include the bubble sort and insertion sort. 

3. The volume of code. More efficient algorithms often require more complex code – this is difficult to 

write for novice programmers and requires more memory to store. Sometimes, the speed of execution 

is not the most important factor. A good example of this is the bubble sort, which is easy to write, 

requires very few lines of code and works on all storage media. 

4. The state and size of the data set. Some algorithms that are often less efficient can outperform others 

if the data set is already partially sorted. A good example is the bubble sort, which can outperform a 

quicksort on a partially sorted list but is quickly beaten if the data set is large and random. 

A great exercise is to take the code for each algorithm in this book and apply it to different types of data sets 

to see how the speed of execution is affected. Different data sets might include ordered, reverse-ordered, 

random, small and large volumes of data. 

 

 

 

  Did you know? 

In 2001, recognising that no one algorithm is best, Tim Peters invented the Timsort, which is 

used by the Python sort() method. It is now the default algorithm in Java and across the 

Android platform. The Timsort is different from other algorithms in that it pre-processes the 

data to compute which algorithm would be most efficient before applying it. If the array 

or list has less than 64 elements, it uses an insertion sort. If the data set has more than 64 

elements, it uses a variation of a merge sort. 
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In summary 

Bubble sort Insertion sort Merge sort Quicksort 

Adjacent items are 

compared and swapped 

if they are out of order. 

Each item is compared 

to every other item from 

the start until its place 

is found. 

Items in one list are 

compared to items in 

another list to create a 

new list. 

Items are compared to 

a pivot. 

Uses a nested iteration. Uses a nested iteration. Uses either a nested 

iteration or recursion. 

Uses either a nested 

iteration or recursion. 

Slow. Slow. Quick. Quick. 

Suitable for a small 

number of items. 

Suitable for a small 

number of items. 

Suitable for a large 

number of items. 

Suitable for a large 

number of items. 

Easy to program. Easy to program. More difficult to 

program. 

More difficult to 

program. 

Known memory 

footprint. In-place 

algorithm. 

Known memory 

footprint. In-place 

algorithm. 

Memory footprint can 

increase as the 

algorithm executes. 

Classic implementation 

is not an in-place 

algorithm. 

Memory footprint can 

increase as the 

algorithm executes. 

Can be an in-place 

algorithm depending on 

the implementation. 
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OPTIMISATION ALGORITHMS 
Routines that find optimal paths between vertices on a graph. 
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A* pathfinding 

The A* algorithm finds the shortest path between two vertices on a weighted graph using a heuristic. It performs 

better than Dijkstra’s algorithm because not every vertex is considered. Instead, an optimal path is followed 

towards the goal. A* is an example of a best-first search algorithm.  

To avoid the need to consider every vertex, a heuristic estimates the cost of the path between adjacent vertices 

and the goal. It then follows this path. It is important that the heuristic is admissible by not over-estimating the 

cost, thereby choosing an incorrect vertex to move to next and ultimately taking a longer path to the goal. The 

vertices being considered are referred to as the fringe, frontier or border. The usefulness of the A* algorithm 

is determined by the suitability of the heuristic. 

About heuristics 

In addition to the cost of each edge, you might be able to calculate the distance 

between a vertex and the goal, represented by the dotted lines in Figure 1. This 

additional data, called the heuristic, allows you to determine that B is closer to 

the goal than C or D. Therefore, B is the vertex that should be followed, even 

though the cost from A to B is higher than the cost from A to C or A to D. When 

determining the shortest path, the cost is added to the heuristic to determine the 

best path. It is worth noting that the calculation of the heuristic does not need to 

be accurate, it just needs to deliver an admissible result. 

Consider a video game where we want to maximise 

the frames per second by reducing the number of 

operations to be performed in a specific amount of 

time. In Figure 2, a character at position S (10,2 on 

the screen) is required to travel to E (8,16). A heuristic measuring the distance 

between S and E could be calculated using Pythagoras’ theorem on the right-angle 

triangle: √22 + 142 = 14.142  

However, simply adding the two sides (a and o) requires fewer processing cycles 

but still delivers a useful result (2 + 14 = 16). We have used the Manhattan 

distance (the sum of the opposite and adjacent) to estimate h instead of the 

accurate Euclidian distance (hypotenuse). Estimating results in this way – where 

only a best guess matters – is called a heuristic in computer science. 

Although the heuristic could potentially be calculated in advance for each 

vertex, it is usually only calculated as needed to maximise the efficiency of the algorithm. 
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The A* algorithm has some notation that programmers of the algorithm will be familiar with: 

• The distance from the start of a vertex plus the edge value is referred to as the g value. 

• The heuristic is known as the h value. 

• The distance from the start of a vertex plus the edge value plus the heuristic is called the f value. 

Applications of A* pathfinding 

Although useful in travel routing systems, A* is generally outperformed by other algorithms that pre-process 

the graph to enhance performance. A* was originally developed as part of the Shakey project to build a robot 

with artificial intelligence.  

Frequently found in video games, the algorithm is used to move non-playable characters in a way that makes 

them appear to move intelligently. It can also be found in network packet routing, financial modelling for trading 

assets and goods (arbitrage opportunity), solving puzzles like word ladders and social networking analyses – 

calculating degrees of separation between individuals to suggest friends, for example. 

A* pathfinding in simple-structured English 

To calculate the shortest path between two nodes: 

1. Set initial g (and optionally h and f) values for all vertices in graph. 

2. Until the goal vertex has been visited: 

a. Find the vertex with the lowest f value that has not been visited. 

b. For each connected vertex that has not been visited: 

i. Calculate the distance from the start by adding the edge value and the heuristic. 

ii. If the distance is lower than the currently recorded f value: 

1. Set the f value of the connected vertex to the newly calculated distance. 

2. Set the previous vertex to be the current vertex. 

c. Set the current vertex as visited. 

To output the shortest path: 

3. Start from a goal vertex. 

4. Add the previous vertex to the start of a list. 

5. Repeat from step 4 until the start vertex is reached. 

6. Output the list. 
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Visualising A* pathfinding 

 

 

Blue nodes represent the fringe. Grey nodes are never considered. 

Stepping through A* pathfinding 

Note that many sources do not show the initial values for the distance from the start or f in their illustration of 

the A* algorithm. However, they need to be infinity for all vertices, except for the start, which has a value of 

zero. The heuristic for the goal should also be zero. 

Representing infinity 

Some programming languages support infinity as a value. In Python, float("inf") uses the IEEE 754 standard 

which has special floating-point values for infinity. An alternative is to use sys.maxsize from the sys library. In 

languages that do not support infinity, you would need to set infinity as a very large number that cannot occur. 

For example, 999999999. 

In this example, we have chosen to show the calculated heuristic for each vertex to the goal in advance. 

Although the heuristic is often be calculated as needed in most implementations, the algorithm can also be 

optimised with pre-calculations if it makes sense to do so. 
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Step 1 Set the distance from the start to infinity for all vertices. 

Set the distance from the start to zero for vertex A. Set f value to the heuristic. 

Select the vertex with the lowest f value that has not been visited: A. 

Consider each edge from A that has not been visited: B, C, D. 

 
Vertex 

Distance 

from start 
Heuristic f Visited 

Previous 

vertex 

A 0 10 10 No  

B ∞ 6 ∞ No  

C ∞ 8 ∞ No  

D ∞ 12 ∞ No  

E ∞ 2 ∞ No  

F ∞ 10 ∞ No  

G ∞ 0 ∞ No  
 

Step 2 f = A’s distance from the start + edge weight + heuristic. 

   B: 0 + 4 + 6 = 10  (lower than ∞) Update 

   C: 0 + 3 + 8 = 11  (lower than ∞) Update 

   D: 0 + 2 + 12 = 14  (lower than ∞) Update 

Set A to visited. 

 
Vertex 

Distance 

from start 
Heuristic f Visited 

Previous 

vertex 

A 0 10 10 Yes  

B 4 6 10 No A 

C 3 8 11 No A 

D 2 12 14 No A 

E ∞ 2 ∞ No  

F ∞ 10 ∞ No  

G ∞ 0 ∞ No  
 

4 2 
3 

4 

2 

B 

F 

A 

C D 

E 

G 

2 

10 

5 

4 2 
3 

4 

2 

B 

F 

A 

C D 

E 

G 

2 

10 

5 



 

 

O
P

TI
M

IS
A

T
IO

N
 A

LG
O

R
IT

H
M

S 

198 

Step 3 Select the vertex with the lowest f value that has not been visited: B. 

Consider each edge from B that has not been visited: E. 

 
Vertex 

Distance 

from start 
Heuristic f Visited 

Previous 

vertex 

A 0 10 10 Yes  

B 4 6 10 No A 

C 3 8 11 No A 

D 2 12 14 No A 

E ∞ 2 ∞ No  

F ∞ 10 ∞ No  

G ∞ 0 ∞ No  
 

Step 4 f = B’s distance from the start + edge weight + heuristic. 

   E: 4 + 4 + 2 = 10 (lower than ∞) Update 

Set B to visited. 

 
Vertex 

Distance 

from start 
Heuristic f Visited 

Previous 

vertex 

A 0 10 10 Yes  

B 4 6 10 Yes A 

C 3 8 11 No A 

D 2 12 14 No A 

E 8 2 10 No B 

F ∞ 10 ∞ No  

G ∞ 0 ∞ No  
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Step 5 Select the vertex with the lowest f value that has not been visited: E. 

Consider each edge from E that has not been visited: G. 

 
Vertex 

Distance 

from start 
Heuristic f Visited 

Previous 

vertex 

A 0 10 10 Yes  

B 4 6 10 Yes A 

C 3 8 11 No A 

D 2 12 14 No A 

E 8 2 10 No B 

F ∞ 10 ∞ No  

G ∞ 0 ∞ No  
 

Step 6 f = E’s distance from the start + edge weight + heuristic. 

   G: 8 + 2 + 0 = 10 (lower than ∞) Update 

Set E to visited. 

 
Vertex 

Distance 

from start 
Heuristic f Visited 

Previous 

vertex 

A 0 10 10 Yes  

B 4 6 10 Yes A 

C 3 8 11 No A 

D 2 12 14 No A 

E 8 2 10 Yes B 

F ∞ 10 ∞ No  

G 10 0 10 No E 
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Step 7 Select the vertex with the lowest f value that has not been visited: G. 

Consider each edge from G that has not been visited: F. 

 
Vertex 

Distance 

from start 
Heuristic f Visited 

Previous 

vertex 

A 0 10 10 Yes  

B 4 6 10 Yes A 

C 3 8 11 No A 

D 2 12 14 No A 

E 8 2 10 Yes B 

F ∞ 10 ∞ No  

G 10 0 10 No E 
 

Step 8 f = G’s distance from the start + edge weight + heuristic. 

   F: 10 + 10 + 10 = 30 (lower than ∞)  Update 

Set G to visited. 

 
Vertex 

Distance 

from start 
Heuristic f Visited 

Previous 

vertex 

A 0 10 10 Yes  

B 4 6 10 Yes A 

C 3 8 11 No A 

D 2 12 14 No A 

E 8 2 10 Yes B 

F 15 10 30 No G 

G 10 0 10 Yes E 
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Step 9 At this point, although vertices C, D and F have not been visited, the goal vertex G has been visited and 

all vertices connected to it have been considered – this means we have found the optimal path. 

 
Vertex 

Distance 

from start 
Heuristic f Visited 

Previous 

vertex 

A 0 10 10 Yes  

B 4 6 10 Yes A 

C 3 8 11 No A 

D 2 12 14 No A 

E 8 2 10 Yes B 

F 15 10 30 No G 

G 10 0 10 Yes E 
 

Step 10 To output the optimal path, start with the goal vertex and follow the previous vertices back to the start, 

inserting the new vertex at the front of the list: 

Optimal path from A to G is: A→B→E→G 
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Did you know? 

A search algorithm is said to be admissible if it is guaranteed to return an optimal solution. 

If the heuristic function used by A* is admissible, then A* is admissible. 
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Pseudocode for A* pathfinding 

Function astar(graph, start, goal) 

For each vertex in graph 

 distance[vertex] = infinity : f[vertex] = infinity 

Next 

distance[start] = 0 : f[start] = 0 

While goal in graph 

 shortest = null 

 For each vertex in graph 

  If shortest == null Then 

   shortest = vertex 

  ElseIf distance[vertex] < distance[shortest] Then shortest = vertex 

  End If 

 Next 

 For each neighbour in graph[shortest] 

  If neighbour in graph and cost + distance[shortest] < 
distance[neighbour] then 

   distance[neighbour] = cost + distance[shortest] 

   f[neighbour] = cost + g[shortest] + h[neighbour] 

   previous_vertex[neighbour] = shortest 

  End If 

 Next 

 graph.pop(shortest) 

End While 

vertex = goal 

While vertex != start 

 optimal_path.insert(vertex) 

 vertex = previous_vertex[vertex] 

End While 

Return optimal_path 

End Function 

 

  

Did you know? 

The * symbol in computer science is referred to as an asterisk. However, when speaking, 

we refer to the A* algorithm as the A-star algorithm. 
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A* pathfinding coded in Python using a dictionary and graph 

def astar(graph, h, start, goal): 
    # Initialise 
    infinity = float("inf") 
    g = {} 
    f = {} 
    previous_vertex = {} 
    optimal_path = [] 
 
    # Set the g and f for all vertices to infinity 
    for vertex in graph: 
        g[vertex] = infinity 
        f[vertex] = infinity 
    # Set the g from the start vertex to 0 and the f value to the heuristic of the start 
    g[start] = 0 
    f[start] = h[start] 
 
    # Consider each vertex until goal is visited 
    while goal in graph: 
        # Find the vertex with the shortest f from the start 
        shortest = None 
        for vertex in graph: 
            if shortest == None: 
                shortest = vertex 
            elif f[vertex] < f[shortest]: 
                shortest = vertex 
 
        # Calculate g & f value for each node 
        for neighbour, cost in graph[shortest].items(): 
            # Update f value and previous vertex if lower 
            if neighbour in graph and cost + g[shortest] + h[neighbour] < f[neighbour]: 
                g[neighbour] = cost + g[shortest] 
                f[neighbour] = cost + g[shortest] + h[neighbour] 
                previous_vertex[neighbour] = shortest 
 
        # The vertex has now been visited, remove it from the vertices to consider 
        graph.pop(shortest) 
 
    # Generate the shortest path 
    # Start from the goal, adding vertices to the front of the list 
    vertex = goal 
    while vertex != start: 
        optimal_path.insert(0, vertex) 
        vertex = previous_vertex[vertex] 
    # Add the start vertex 
    optimal_path.insert(0, start) 
 
    # Return the shortest shortest_path 
    return optimal_path 
 
 
# Main program starts here 
graph = {"A": {"B": 4, "C": 3, "D": 2}, "B": {"A": 4, "E": 4}, "C": {"A": 3, "D": 5}, "D": 
{"A": 2, "C": 5, "F": 2}, "E": {"B": 4, "G": 2}, "F": {"D": 2, "G": 10}, "G": {"E": 2, "F": 
10}} 
h = {"A": 10, "B": 6, "C": 8, "D": 12, "E": 2, "F": 10, "G": 0} 
 
print(astar(graph, h, "A", "G")) 
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Application of A* to a grid 

The A* algorithm is often associated with finding the shortest path on a grid – this is especially useful for video 

games. Consider the graph below. As this is an abstraction, it can be drawn in any number of different ways. 

The only important data is the vertex, its connections and their edge values. 

 

 

  A     

    D   

      F 

B C     

        

        

  G     

E       

The grid above contains the same data but visualised in a different way. The edge values are the number of 

squares to the next letter, location or waypoint. 

If the waypoints are not important, they could be removed completely. In that case, each square becomes a 

vertex. Using the A* algorithm, it is possible to find the shortest path between any two squares, even around 

walls. A wall prevents squares from having an edge connection between them. The distance from the start (g) 

is the distance to the start square. The heuristic (h) is the Manhattan distance to the goal, ignoring walls. 

Therefore, the f value becomes the distance from the start plus the distance to the goal. 

 

         C is the start. G is the goal. The diamonds indicate the vertices connected to C for which the g, 

h and f values need to be calculated. 
         

  ◆      The g value of this square is the g value of the previous square plus one (0 + 1 = 1). 

The h value is 4 (four squares from the goal using the Manhattan distance). 

The f value is 1 + 4 = 5.   C      

  ◆      The g value of this square is the g value of the previous square plus one (0 + 1 = 1). 

The h value is 2 (two squares from the goal using the Manhattan distance). 

The f value is 1 + 2 = 3.          

  G       
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The illustration below shows the shortest path calculated using the A* algorithm from C to G. The f values are 

calculated as needed and shown inside the square to make the example easier to follow. The initial g values 

of the squares are null, which is another way of representing infinity. 

The current vertex is shaded dark grey. The visited vertices are shaded lighter grey. In this example, if more 

than one square has the lowest f value, the one closest to the top-left is considered first. 

Step 1    Step 2    Step 3    Step 4    Step 5   

                                      9     

                    7        7        7     

  5        5        5        5        5     

  C        C        C        C 7      C 7   

  3        3 5      3 5      3 5      3 5   

                                            

  G        G        G        G        G     

                                            

 

Step 6    Step 7    Step 8    Step 9    Step 10   

  9        9      11 9 11    11 9 11    11 9 11   

  7        7        7        7 11    11 7 11   

  5        5 9      5 9      5 9      5 9   

  C 7      C 7      C 7      C 7      C 7   

  3 5      3 5      3 5      3 5      3 5   

                                            

  G        G        G        G        G     

                                            

 

Step 11    Step 12    Step 13    Step 14    Step 15   

11 9 11    11 9 11    11 9 11    11 9 11    11 9 11   

11 7 11    11 7 11    11 7 11 13  11 7 11 13  11 7 11 13 

  5 9    11 5 9    11 5 9    11 5 9    11 5 9   

  C 7      C 7      C 7    11 C 7    11 C 7   

  3 5      3 5      3 5      3 5    11 3 5   

                                            

  G        G        G        G        G     
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Step 16    Step 17    Step 18    Step 19    Step 20   

11 9 11    11 9 11    11 9 11    11 9 11    11 9 11   

11 7 11 13  11 7 11 13  11 7 11 13  11 7 11 13  11 7 11 13 

11 5 9    11 5 9    11 5 9    11 5 9 13  11 5 9 13 

11 C 7    11 C 7    11 C 7    11 C 7    11 C 7 13 

11 3 5    11 3 5    11 3 5    11 3 5    11 3 5   

11        11        11        11        11       

  G      11 G      11 G      11 G      11 G     

                  13        13        13       

 

Step 21    Step 22    Step 23    Step 24    Step 25   

11 9 11    11 9 11    11 9 11    11 9 11    11 9 11   

11 7 11 13  11 7 11 13  11 7 11 13  11 7 11 13  11 7 11 13 

11 5 9 13  11 5 9 13  11 5 9 13  11 5 9 13  11 5 9 13 

11 C 7 13  11 C 7 13  11 C 7 13  11 C 7 13  11 C 7 13 

11 3 5 13  11 3 5 13  11 3 5 13  11 3 5 13  11 3 5 13 

11        11     13  11     13  11     13  11     13 

11 G      11 G      11 G   13  11 G   13  11 G   13 

13        13        13        13     15  13 13   15 

 

Step 26    Step 27   

11 9 11    11 9 11   

11 7 11 13  11 7 11 13 

11 5 9 13  11 5 9 13 

11 C 7 13  11 C 7 13 

11 3 5 13  11 3 5 13 

11     13  11 15   13 

11 13   13  11 13   13 

13 13   15  13 13   15 

 

Because of the configuration of the maze, almost all squares were visited. However, there were some squares 

(shaded yellow) that were not, demonstrating the efficiency savings of the algorithm. With a larger grid and 

fewer or no walls, the efficiency of the A* algorithm would be more profound. 
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Efficiency of A* pathfinding 

Time complexity 

Best 

case 

Average 

case 

Worst 

case 

O(bd) 

Linear 

O(bd) 

Linear 

O(bd) 

Polynomial 

Determining the efficiency of the A* algorithm is not simple because there are several optimisations that can 

be implemented and different perspectives on how to calculate the time complexity. 

Depending on the purpose of A* pathfinding within a larger program, it may only be necessary to compute one 

path, not necessarily the most optimal path. Therefore, once the goal vertex has been reached, the algorithm 

could stop prematurely, possibly reducing the execution time but at the cost of not backtracking to consider 

other, potentially more optimal routes. 

A common optimisation with A* pathfinding is to pre-calculate the f values of some vertices and store these in 

another data structure such as a hash table. If a value is needed again, instead of being calculated to return 

the same result, it can simply be looked up – assuming the heuristic has not changed. 

Having a suitable heuristic that can be calculated quickly is essential – the complexity of this is usually 

considered to be O(1). Where it makes sense to use a Manhattan distance, the heuristic is as optimal as it can 

be. However, A* can be used in situations where the heuristic is just a computation to deliver a best guess. 

Computer science theorists usually consider the execution time of A* as the result of the number of vertices 

and edges in the graph. However, those working with artificial intelligence consider what is known as the 

branching factor (b). In AI processing, the number of edges to consider can be extremely large, so an 

optimisation that avoids having to consider all the vertices would be used. In this case, the number of vertices 

and edges has less relevance, so time complexity is more a measurement of the depth to the goal vertex (d).  

The time complexity of A* pathfinding is often calculated as polynomial, O(bd). The values of the branching 

factor, the goal vertex and the heuristic affect the efficiency of the algorithm so significantly that it can either 

be almost linear at best or polynomial at worst. 
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Dijkstra’s shortest path 

Dijkstra’s shortest path algorithm is a special case of the A* pathfinding algorithm. It finds the shortest path 

between one vertex and all other vertices on a weighted graph. It does not use a heuristic and is a type of 

breadth-first traversal. A limitation of Dijkstra’s shortest path is that it does not work for edges with a negative 

weight value. The Bellman–Ford algorithm later provided a solution to that problem. 

Applications of Dijkstra’s shortest path 

Developed before the A* optimisation for a single path, Edsger Dijkstra developed his algorithm to find the 

shortest route of travel between Rotterdam and Groningen. It can be used for many purposes where the 

shortest path between two points needs to be established. Maps, IP routing and the telephone network make 

use of Dijkstra’s algorithm. 

Dijkstra’s shortest path in simple-structured English 

To calculate the shortest path: 

1. Set initial distance-from-the-start values for all vertices in graph. 

2. For each vertex in the graph: 

a. Find the vertex with the shortest distance from the start that has not been visited. 

b. For each connected vertex that has not been visited: 

i. Calculate the distance from the start. 

ii. If the distance from the start is lower than the currently recorded distance from the 

start: 

1. Set the shortest distance to the start of the connected vertex to the newly 

calculated distance. 

2. Set the previous vertex to be the current vertex. 

3. Set the vertex as visited. 

To output the shortest path: 

4. Start from a goal vertex 

5. Add the previous vertex to the start of a list. 

6. Repeat from step 5 until the start vertex is reached. 

7. Output the list. 
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Visualising Dijkstra’s shortest path 

 

Stepping through Dijkstra’s shortest path 

Step 1 Set the distance from the start for all vertices to infinity. 

Set the distance from the start for vertex A to zero. 

Select the vertex with the lowest distance from the start that has not been visited: A. 

Consider each edge from A that has not been visited: B, C, D. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 No  

B ∞ No  

C ∞ No  

D ∞ No  

E ∞ No  

F ∞ No  

G ∞ No  
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Step 2 Distance from the start = A’s distance from the start + edge weight. 

   B: 0 + 4 = 4  (lower than ∞)  Update 

   C: 0 + 3 = 3  (lower than ∞)  Update 

   D: 0 + 2 = 2  (lower than ∞)  Update 

Set A to visited. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 No A 

C 3 No A 

D 2 No A 

E ∞ No  

F ∞ No  

G ∞ No  
 

Step 3 Select the vertex with the lowest distance from the start that has not been visited: D. 

Consider each edge from D that has not been visited: C, F. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 No A 

C 3 No A 

D 2 No A 

E ∞ No  

F ∞ No  

G ∞ No  
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Step 4 Distance from the start = D’s distance from the start + edge weight. 

 

   C: 2 + 5 = 7 (higher than 3) No update 

   F: 2 + 2 = 4 (lower than ∞) Update 

Set D to visited. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 No A 

C 3 No A 

D 2 Yes A 

E ∞ No  

F 4 No D 

G ∞ No  
 

Step 5 Select the vertex with the lowest distance from the start that has not been visited: C. 

Consider each edge from C that has not been visited: none. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 No A 

C 3 No A 

D 2 Yes A 

E ∞ No  

F 4 No D 

G ∞ No  
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Step 6 No edges to consider. 

Set C to visited. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 No A 

C 3 Yes A 

D 2 Yes A 

E ∞ No  

F 4 No D 

G ∞ No  
 

Step 7 Select the vertex with the lowest distance from the start that has not been visited: B. 

This could also have been F – it doesn’t matter which is chosen first. 

Consider each edge from B that has not been visited: E. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 No A 

C 3 Yes A 

D 2 Yes A 

E ∞ No  

F 4 No D 

G ∞ No  
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Step 8 Distance from the start = B’s distance from the start + edge weight. 

   E: 4 + 4 = 8  (lower than ∞) Update 

Set B to visited. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 Yes A 

C 3 Yes A 

D 2 Yes A 

E 8 No B 

F 4 No D 

G ∞ No  
 

Step 9 Select the vertex with the lowest distance from the start that has not been visited: F. 

Consider each edge from F that has not been visited: G. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 Yes A 

C 3 Yes A 

D 2 Yes A 

E 8 No B 

F 4 No D 

G ∞ No  
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Step 10 Distance from the start = F’s distance from the start + edge weight. 

G: 4 + 10 = 14 (lower than ∞) Update 

Set F to visited. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 Yes A 

C 3 Yes A 

D 2 Yes A 

E 8 No B 

F 4 Yes D 

G 14 No F 
 

Step 11 Select the vertex with the lowest distance from the start that has not been visited: E. 

Consider each edge from F that has not been visited: G. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 Yes A 

C 3 Yes A 

D 2 Yes A 

E 8 No B 

F 4 Yes D 

G 14 No F 
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Step 12 Distance from the start = E’s distance from the start + edge weight. 

   G: 8 + 2 = 10 (lower than 14) Update 

Set E to visited. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 Yes A 

C 3 Yes A 

D 2 Yes A 

E 8 Yes B 

F 4 Yes D 

G 10 No E 
 

Step 13 Select the vertex with the lowest distance from the start that has not been visited: G. 

Consider each edge from G that has not been visited: none. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 Yes A 

C 3 Yes A 

D 2 Yes A 

E 8 Yes B 

F 4 Yes D 

G 10 No E 
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3 

4 

2 

B 

F 

A 
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E 

G 
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Step 14 No edges to consider. 

Set G to visited. 

 
Vertex 

Distance 

from start 
Visited 

Previous 

vertex 

A 0 Yes  

B 4 Yes A 

C 3 Yes A 

D 2 Yes A 

E 8 Yes B 

F 4 Yes D 

G 10 Yes E 
 

Step 15 There are no unvisited vertices. The algorithm is complete. 

To output the shortest path from the start to the goal, begin with the goal vertex and follow the previous 

vertices back to the start, inserting the new vertex at the front of the list: 

Shortest path from A to G is: A→B→E→G. 

 

Note how Dijkstra’s algorithm finds the shortest path between every vertex to the start. You can pick any vertex 

and follow the previous vertices back to vertex A – a key difference between Dijkstra and the A* algorithm. 
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Did you know? 

Dijkstra’s algorithm was used to demonstrate the computing ability of the new ARMAC 

computer in 1956. The computer was able to find the shortest routes between 64 cities in 

the Netherlands on a transport map. 64 was the limit because it only required six bits (26) 

to encode a city name as a number. 
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Pseudocode for Dijkstra’s shortest path 

Function dijkstra(graph, start, goal) 

For each vertex in graph 

 distance[vertex] = infinity 

Next 

distance[start] = 0 

While unvisited_vertices in graph 

 shortest = null 

 For each vertex in graph 

  If shortest == null Then 

   shortest = vertex 

  ElseIf distance[vertex] < distance[shortest] Then  

   shortest = vertex 

  End If 

 Next 

 For each neighbour in graph 

  If cost + distance[shortest] < distance[neighbour] then 

   distance[neighbour] = cost + distance[shortest] 

   previous_vertext[neighbour] = shortest 

  End If 

 Next 

 vertex = visited 

End While 

vertex = goal 

While vertex != start 

 shortest_path.insert(vertex) 

 vertex = previous_vertex[vertex] 

End While 

Return shortest_path 

End Function 

 

  

Did you know? 

Adaptations of Dijkstra’s shortest path are often the algorithms behind routing protocols in 

packet switching networks. 
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Dijkstra’s shortest path coded in Python using a dictionary and graph 

def dijkstra(graph, start, goal): 
    # Initialise 
    infinity = float("inf") 
    distance = {} 
    previous_vertex = {} 
    shortest_path = [] 
 
    # Set the shortest distance from the start for all vertices to infinity 
    for vertex in graph: 
        distance[vertex] = infinity 
    # Set the shortest distance from the start for the start vertex to 0 
    distance[start] = 0 
 
    # Loop until all the vertices have been visited 
    while graph: 
        # Find the vertex with the shortest distance from the start 
        shortest = None 
        for vertex in graph: 
            if shortest == None: 
                shortest = vertex 
            elif distance[vertex] < distance[shortest]: 
                shortest = vertex 
 
        # Calculate shortest distance for each edge 
        for neighbour, cost in graph[shortest].items(): 
            # Update the shortest distance for the vertex if the new value is lower 
            if neighbour in graph and cost + distance[shortest] < distance[neighbour]: 
                distance[neighbour] = cost + distance[shortest] 
                previous_vertex[neighbour] = shortest 
 
        # The vertex has now been visited, remove it from the vertices to consider 
        graph.pop(shortest) 
 
    # Generate the shortest path 
    # Start from the goal, adding vertices to the front of the list 
    vertex = goal 
    while vertex != start: 
        shortest_path.insert(0, vertex) 
        vertex = previous_vertex[vertex] 
    # Add the start vertex 
    shortest_path.insert(0, start) 
 
    # Return the shortest shortest_path 
    return shortest_path 
 
 
# Main program starts here 
graph = {"A": {"B": 4, "C": 3, "D": 2}, "B": {"A": 4, "E": 4}, "C": {"A": 3, "D": 5}, "D": 
{"A": 2, "C": 5, "F": 2}, 
         "E": {"B": 4, "G": 2}, "F": {"D": 2, "G": 10}, "G": {"E": 2, "F": 10}} 
print(dijkstra(graph, "A", "G")) 
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Efficiency of Dijkstra’s shortest path 

Time complexity 

Best 

case 

Average 

case 

Worst 

case 

O(E+V log V) 

Linearithmic 

O(E log V) 

Linearithmic 

O(V2) 

Polynomial 

A FOR loop is used to set the shortest distance of all the vertices. This part of the algorithm is linear, O(n). The 

main algorithm uses a graph stored as a dictionary, and we assume a time complexity of O(1) for looking up 

data about each vertex.  

A FOR loop is nested in a WHILE loop when the shortest distance for each neighbouring vertex is calculated 

from every connected edge – this means the algorithm has a polynomial complexity at worst, O(V2), but different 

implementations can reduce this to O(E log V), where E is the number of edges and V the number of vertices. 

 

  

Did you know? 

Dijkstra’s shortest path does not work with negative edge values. The Bellman-Ford 

algorithm and a further development, Johnson’s algorithm, would later provide a solution 

to this problem. 

Dijkstra’s shortest path is also an example of a breadth-first traversal. 
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In summary 

A* pathfinding Dijkstra’s shortest path 

Finds the shortest path between two vertices only. Finds the shortest path from one vertex to all other 

vertices. 

Uses a heuristic. No heuristic. 

Only promising vertices are expanded during the 

search. 

All vertices are expanded during the search. 

The heuristic helps find a solution more quickly. Slower than A* pathfinding. 

Fails with negative edge values and if the heuristic is 

over-estimated. 

Fails with negative edge values. 

A typical heuristic might be calculated as the 

distance to the goal vertex. 
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