Q1.
The algorithm, represented using pseudo-code below, outputs a series of integers or the message No result. The output depends upon the value entered by the user.
OUTPUT "Enter an integer greater than 1: "
INPUT X
Product ← 1
Factor ← 0
WHILE Product < X
  Factor ← Factor + 1
  Product ← Product * Factor
ENDWHILE
IF X = Product THEN
  Product ← 1
  FOR N ← 1 TO Factor
    Product ← Product * N
    OUTPUT N
  ENDFOR
ELSE
  OUTPUT "No result"
ENDIF
What you need to do:
Task 1
Write a program to implement the algorithm.
Task 2
Test that your program works:
•   run your program, then enter the number 720
•   run your program, then enter the number 600
Evidence that you need to provide
(a)  Your PROGRAM SOURCE CODE for Task 1.
(9)
(b)  SCREEN CAPTURE(S) showing the tests described in Task 2.
(1)
(c)  What is true for all valid inputs for X that output a number of numbers which is not true for all other valid inputs that output No result?
(1)
(Total 11 marks)


Q2.
The algorithm below, represented using pseudo-code, outputs a numeric result.
The numeric result depends upon the value entered by the user.
OUTPUT "Enter a positive whole number: "
INPUT NumberIn
NumberOut ← 0
Count ← 0
WHILE NumberIn > 0
  Count ← Count + 1
  PartValue ← NumberIn MOD 2
  NumberIn ← NumberIn DIV 2
  FOR i ← 1 TO Count – 1
    PartValue ← PartValue * 10
  ENDFOR
  NumberOut ← NumberOut + PartValue
ENDWHILE
OUTPUT "The result is: " NumberOut
The table below lists the MOD and DIV operators for each of the available programming languages. You should refer to the row for your programming language.
 
	Programming language
	MOD
	DIV

	C#
	%
	/

	Java
	%
	/

	Pascal
	mod
	div

	Python
	%
	//

	VB.Net
	Mod
	\


What you need to do:
Task 1
Write a program to implement the algorithm above.
Task 2
Test that your program works:
•   run your program, then enter the number 22
•   run your program, then enter the number 29
•   run your program, then enter the number -1
Evidence that you need to provide
(a)  Your PROGRAM SOURCE CODE for Task 1.
(11)
(b)  SCREEN CAPTURE(S) showing the test described in Task 2.
(1)
(c)  What is the purpose of this algorithm?
(1)
(Total 13 marks)


Q3.
The algorithm represented using pseudo-code in Figure 1 describes a method to find the greatest common factor (GCF) of two whole numbers (integers) entered by the user.
Figure 1
OUTPUT "Enter a whole number: "
INPUT Number1
OUTPUT "Enter another whole number: "
INPUT Number2
Temp1 ← Number1
Temp2 ← Number2
WHILE Temp1 ≠ Temp2
  IF Temp1 > Temp2 THEN
    Temp1 ← Temp1 – Temp2
  ELSE
    Temp2 ← Temp2 – Temp1
  ENDIF
ENDWHILE
Result ← Temp1
OUTPUT Result, " is GCF of ", Number1, " and ", Number2
What you need to do:
Task 1
Write a program to implement the algorithm in Figure 1.
Task 2
Test the program by showing the result of entering 12 and then 39.
Evidence that you need to provide
(a)  Your PROGRAM SOURCE CODE for Task 1.
(6)
(b)  SCREEN CAPTURE(S) showing the test described in Task 2.
(1)
The algorithm copies the values of Number1 and Number2 into Temp1 and Temp2 respectively.
(c)  Explain why the WHILE loop was written using Temp1 and Temp2 instead of Number1 and Number2.
___________________________________________________________________
___________________________________________________________________
(1)
(Total 8 marks)

Q4.
One method that can be used to compress text data is run length encoding (RLE). When RLE is used the compressed data can be represented as a set of character/frequency pairs. When the same character appears in consecutive locations in the original text it is replaced in the compressed text by a single instance of the character followed by a number indicating the number of consecutive instances of that character. Single instances of a character are represented by the character followed by the number 1.
Figure 1 and Figure 2 show examples of how text would be compressed using this method.
Figure 1
Original text: AAARRRRGGGHH
Compressed text: A 3 R 4 G 3 H 2
Figure 2
Original text: CUTLASSES
Compressed text: C 1 U 1 T 1 L 1 A 1 S 2 E 1 S 1
What you need to do
Task 1
Write a program that will perform the compression process described above. The program should display a suitable prompt asking the user to input the text to compress and then output the compressed text.
Task 2
Test the program works by entering the text AAARRRRGGGHH.
Task 3
Test the program works by entering the text A.
Evidence that you need to provide
(a)     Your PROGRAM SOURCE CODE.
(12)
(b)     SCREEN CAPTURE(S) for the test showing the output of the program when AAARRRRGGGHH is entered.
(1)
(c)     SCREEN CAPTURE(S) for the test showing the output of the program when A is entered.
(1)
(Total 14 marks)
Q5.
The algorithm, represented using pseudo-code in the figure below, describes a method to calculate the additive or multiplicative persistence of a two-digit integer. The examples below illustrate how additive and multiplicative persistence are calculated.
Example: calculating the additive persistence of 87
8 + 7 = 15
1 + 5 = 6
After 2 steps the method results in a one digit answer so the additive persistence of 87 is 2.
Example: calculating the multiplicative persistence of 39
3 * 9 = 27
2 * 7 = 14
1 * 4 = 4
After 3 steps the method results in a one digit answer so the multiplicative persistence of 39 is 3.
OUTPUT "Enter integer (0-99):"
INPUT Value
OUTPUT "Calculate additive or multiplicative persistence (a or m)?"
INPUT Operation
Count ← 0
WHITE Value > 9
    IF Operation = "a" THEN
        Value ← (Value DIV 10) + (Value MOD 10)
    ELSE
        Value ← (Value DIV 10) * (Value MOD 10)
    ENDIF
    Count ← Count + 1
ENDWHILE
OUTPUT "The persistence is: "
OUTPUT Count
The MOD operator calculates the remainder resulting from an integer division, for example, 10 MOD 3 = 1.
The DIV operator calculates integer division, for example 10 DIV 3 = 3.
What you need to do
Task 1
Write a program for the algorithm in the figure.
Task 2
Test the program by showing the result of entering 47, followed by m when prompted by the program.
Task 3
Test the program by showing the result of entering 77, followed by a when prompted by the program.
Evidence that you need to provide
(a)     Your PROGRAM SOURCE CODE
(8)
(b)     SCREEN CAPTURE(S) showing the tests described.
(1)
The part of the program where the calculations are performed uses a WHILE repetition structure.
(c)     Explain why a WHILE repetition structure was chosen instead of a FOR repetition structure.
___________________________________________________________________
___________________________________________________________________
(1)
(Total 10 marks)


Q6.
Figure 1 contains the pseudo-code for a program to output a sequence according to the ‘Fizz Buzz’ counting game.
Figure 1
OUTPUT "How far to count?"
INPUT HowFar
WHILE HowFar < 1
  OUTPUT "Not a valid number, please try again."
  INPUT HowFar
ENDWHILE
FOR MyLoop ← 1 TO HowFar
  IF MyLoop MOD 3 = 0 AND MyLoop MOD 5 = 0
  THEN
      OUTPUT "FizzBuzz"
    ELSE
      IF MyLoop MOD 3 = 0
        THEN
          OUTPUT "Fizz"
        ELSE
          IF MyLoop MOD 5 = 0
            THEN
              OUTPUT "Buzz"
            ELSE
              OUTPUT MyLoop
          ENDIF
      ENDIF
  ENDIF
ENDFOR
What you need to do:
Write a program that implements the pseudo-code as shown in Figure 1.
Test the program by showing the result of entering a value of 18 when prompted by the program.
Test the program by showing the result of entering a value of -1 when prompted by the program.
Evidence that you need to provide
(a)     Your PROGRAM SOURCE CODE for the pseudo-code in Figure 1.
(8)
(b)     SCREEN CAPTURE(S) for the tests conducted when a value of 18 is entered by the user and when a value of -1 is entered by the user.
(1)
The main part of the program uses a FOR repetition structure.
(c)     Explain why a FOR repetition structure was chosen instead of a WHILE repetition structure.
___________________________________________________________________
___________________________________________________________________
(1)
(d)     Even though a check has been performed to make sure that the variable HowFar is greater than 1 there could be inputs that might cause the program to terminate unexpectedly (crash).
Provide an example of an input that might cause the program to terminate and describe a method that could be used to prevent this.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(3)
(e)     Programs written in a high level language are easier to understand and maintain than programs written in a low level language.
The use of meaningful identifier names is one way in which high level languages can be made easier to understand.
State three other features of high level languages that can make high level language programs easier to understand.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(3)
(f)      The finite state machine (FSM) shown in Figure 2 recognises a language with an alphabet of a and b.
Figure 2
 
Input strings of a and aabba would be accepted by this FSM.
In the table below indicate whether each input string would be accepted or not accepted by the FSM in Figure 2.
If an input string would be accepted write YES.
If an input string would not be accepted write NO.
 
	Input string
	Accepted by FSM?

	aaab
	 

	abbab
	 

	bbbbba
	 


(2)
(g)     In words, describe the language (set of strings) that would be accepted by this FSM shown in Figure 2.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(2)
(Total 20 marks)
Page 1 of 2

image1.png

