
Version 1.0 0712

General Certificate of Education (A-level)
June 2012

Computing

(Specification 2510)

COMP1

Unit 1: Problem Solving, Programming, Data
Representation and Practical Exercise

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the
relevant questions, by a panel of subject teachers. This mark scheme includes any
amendments made at the standardisation events which all examiners participate in and is the
scheme which was used by them in this examination. The standardisation process ensures
that the mark scheme covers the candidates’ responses to questions and that every
examiner understands and applies it in the same correct way. As preparation for
standardisation each examiner analyses a number of candidates’ scripts: alternative answers
not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, examiners encounter unusual answers which have not been raised
they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further
developed and expanded on the basis of candidates’ reactions to a particular paper.
Assumptions about future mark schemes on the basis of one year’s document should be
avoided; whilst the guiding principles of assessment remain constant, details will change,
depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy
any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered
charity (registered charity number 1073334).
Registered address: AQA, Devas Street, Manchester M15 6EX.

http://www.aqa.org.uk/

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

3

To Examiners:

1. When to award '0' (zero) when inputting marks on QMS and on scripts: A mark of 0

should be awarded where a candidate has attempted a question but failed to write
anything creditworthy. Insert a hyphen when a candidate has not attempted a question.
By these two actions the Principal Examiner will be able to distinguish between the two
(nothing creditworthy/unattempted) when analysing any statistics.

2. This mark scheme contains the correct responses which we believe that candidates are

most likely to give. Other valid responses are possible to some questions and should be
credited. Examiners should refer off-mark scheme responses that they believe are
creditworthy to a Team Leader.

The following annotation may be used in the mark scheme:

; - means a single mark
// - means alternative response
/ - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
NE - means not enough
I - means ignore
DPT -means 'Don't penalise twice'

No marks will be awarded for answers to testing questions where there is no evidence of
programming code for the question(s) asked or where the screen captures provided by
the candidate do not match what would be produced by the programming code.

Qu Part Marking Guidance Marks

1 01

 Answer Carry

0 0 0 0

0 1 1 0 ;

1 0 1 0 ;

1 1 0 1 ;

A. 10 instead of 0 in the Answer column for the final row of the table

3

2 02 011 0010;

R. If not 7 bits

1

 03 1011 0000

Mark as follows:
Correct data bits;
Correct parity bit for the candidate's data bits;
R. If not 8 bits

2

 04 Error correction (not just error detection) (for single errors);
Can detect when two errors have occurred in data transmission;
Reduces the need for the retransmission of data;
Decreases the likelihood of an undetected error // improved error

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

4

detection;
Can locate an error (not just detect that an error has occurred);

MAX
1

3 05 300; * 2;
//
600;;

NOTE: award 1 mark for doubling an incorrectly calculated highest
frequency

2

 06 Regular samples are taken (of the analogue signal);
Samples are quantised // the height of each sample is approximated
to an integer value // height of samples measured //
amplitude/volume measured;
Each integer value is encoded as a binary value // measurements
are coded in a fixed number of bits;
output the binary numbers as digital signals/voltage levels;

MAX
3

 07 Can (easily) synthesise musical notation from it;
Can be played on different instruments;
Can be (easily) transposed to a different key/pitch;
Produces (relatively) small files;
Easy to manipulate (the data);
Allows for easy interface with electronic musical instruments;
No data lost about a musical note;

MAX
1

 08 Length/duration (of note) // Note-on and Note-off;
Instrument;
Velocity//Speed;
Volume//Amplitude;
Timbre;
Pedal effects;
Channel;
Instructions about how to recreate a sound;
Aftertouch;
Pitch bend;
Note envelope;

R. Note/key/pitch/frequency;
A. Other sensible answers;

MAX
1

4 09

Note: order of completed rows not important

Original State Input New State

S0 10 S10

S0 20 S20 ;

S0 50 S50 ;

S0 R S0 ;

3

 10 20, 20, 10;
R, R, 50;

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

5

10, 20, 20;
20, 50, 50;
20, R, 50;

MAX

4

5 11 (Each pixel) can be one of 4/22 possible colours/values // Two bits
are needed to represent the 4 possible bit patterns/colours/values
 // because there are 4/more than 2 colours in the image;

1

 12

1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 ;;

//

1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 ;;

Mark as follows:
13th and 14th bits correct;
Other bits correct;

2

 13 8*8 =64; * 2 = 128; ÷ 8 = 16; //
8*8*2÷ 8;;;
16;;;
A. 128 bits as being worth 2 marks

3

 14 (Type of) shape // rectangle // square;
Coordinates of corner/corners // position of a corner // top left
coordinates;
Identifier;
Length of side(s) // width // height // coordinates of an opposing
corner;
Line colour // outer colour;
Line width;
Fill colour // inner colour;
Angle of rotation;

A. coordinates of midpoint/centre;
A. radius/diameter
A. circle/oval
NE. Position/coordinates
NE. Colour

MAX
3

 15 (For geometric images) less storage space/memory likely to be
needed; NE. less space
(For geometric images) will load faster from secondary storage;
(For geometric images) will download faster;
Can be scaled/resized without distortion; A. zoom
Image can be (more easily) searched for particular objects;
Can (more easily) manipulate individual objects in an image;

MAX
2

6 16 Correct variable declarations for Bit, Answer and Column; I.

additional variable declarations

Column initialised correctly before the start of the loop;

Answer initialised correctly before the start of the loop;

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

6

While/Repeat loop, with syntax allowed by the programming

language used, after the variable initialisations; and correct

condition for the termination of the loop; R. For loop

A. any While/Repeat loop with logic corresponding to that in

flowchart (for a loop with a condition at the start accept >=1 or >0
but reject <>0)

Correct prompt "Enter bit value: ";

followed by Bit assigned value entered by user;

followed by Answer given new value; R. if incorrect value would

be calculated

followed by value of Column divided by 2; A. multiplying by 0.5

correct prompt and the assignment statements altering Bit,

Answer and Column are all within the loop;

After the loop - output message followed by value of Answer;

I. Case of variable names, player names and output messages
A. Minor typos in variable names and output messages
I. spacing in prompts
A. answers where formatting of decimal values is included e.g.

Writeln('Decimal value is: ', Answer : 3)

A. initialisation of variables at declaration stage

A. no brackets around column * bit

11

 17 ****SCREEN CAPTURE****
Must match code from 16, including prompts on screen capture
matching those in code

Mark as follows:
'Enter bit value: ' + first user input of 1
'Enter bit value: ' + second user input of 1;
'Enter bit value: ' + third user input of 0
'Enter bit value: ' + fourth user input of 1;
Value of 13 outputted;

3

 18 15;

1

 19 16 // twice as many // double; 1

 20 Design;
A. Planning

1

 21 Implementation;

1

7 22 ResetCavern; (all languages)

// GetNewRandomPosition (Pascal only)

// WriteWithMsg (VB6 only)

// WriteLineWithMsg (VB6 only)

// WriteLine (VB6 only)

// WriteNoLine (VB6 only)

// ReadLine (VB6 only);

// SetUpTrapPostions (Python / Java only);

R. if any additional code (including routine interface)
R. if spelt incorrectly

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

7

I. case

1

 23 DisplayMenu // DisplayMoveOptions //
DisplayWonGameMessage // DisplayTrapMessage //

DisplayLostGameMessage // WriteWithMsg (VB6 only)

// WriteLineWithMsg (VB6 only) // WriteLine (VB6

only) // WriteNoLine (VB6 only);

A. DisplayCavern;

R. if any additional code (including routine interface)
R. if spelt incorrectly
I. case

1

 24 Count1 // Count2 // Count;

R. if any additional code
R. if spelt incorrectly
I. case

1

 25 Cavern // TrapPositions;

R. if any additional code (including routine interface)
R. if spelt incorrectly

A. LoadedGameData.TrapPositions

A. CurrentGameData.TrapPositions

I. case

1

 26 When the value of the cell in the Cavern array // When the value

of the cell to place the item in;

Indicated by the Position variable;

Contains a space // does not contain another item; R. is empty

MAX 2 if no variable names used in description

3

 27 The number of times to repeat is known;

A. fixed

1

 28 Makes the program code easier to understand;
Makes it easier to update the program;
Makes it easier to change the number of traps (in the game);

MAX

1

 29 In text files all data is stored as strings/ASCII values/lines/characters
// Text files use only byte values that display sensibly on a VDU //
stores only values that can be opened and read in a text editor;

Binary files store data using different data types; A. by example
A. Binary files can only be correctly interpreted by application that
created them

2

 30 Easier reuse of routines in other programs;
Routine can be included in a library;
Helps to make the program code more understandable;
Ensures that the routine is self-contained // routine is independent
of the rest of the program;

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

8

(Global variables use memory while a program is running) but local
variables use memory for only part of the time a program is running;
reduces possibility of undesirable side effects;
Using global variables makes a program harder to debug;

MAX
2

 31 (If it was not then) MonsterAwake is set to the Boolean value

returned by the second call to CheckIfSameCell;

this would overwrite any True value returned by the first call to

CheckIfSameCell;

//
Otherwise the monster would never wake up when the player
triggers the first trap;;
//
Otherwise the monster would only wake up when the player
triggers the second trap;;

2

8 32 Appropriate option added;

A. Any sensible prompt
A. Prompt added anywhere in subroutine
R. If prompt asks for character other than D

1

 33 Additional case statement for option D added correctly and all of
the rest of the code added inside the correct option of the case
statement;
A. any character instead of D (except N, S, W, E) – only if matches
prompt from 32

NoOfCellsSouth incremented within the correct option of the

case statement;

NoOfCellsEast incremented within the correct option of the

case statement;

3

 34 Additional condition added to IF statement ;

A. answers using an additional IF statement

R. if value of 'D' will result in False being returned by function

R. if function will always return True

1

 35 ****SCREEN CAPTURE(S)****
This is conditional on sensible code for 32, 33 and 34

Screen capture(s) showing modified menu shown to user and option
'D' selected;
Screen capture(s) showing both original position of player in the
cavern and the new position of the player in the cavern;

2

9 36 Selection structure with correct condition;
Inside the selection structure there is code that will display the
correct message on the screen;
I. Capitalisation and minor typos in message
R. different message
Selection structure is in the correct place in the code;

3

 37 If statement with a correct condition;

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

9

Correct logic and 2nd condition for If statement;

Value of False returned correctly by the function if illegal north

move is made;

R. if a value of False will always be returned by the function

R. if all north moves will return false

R. if all moves when PlayerPosition.NoOfCellsSouth is

in row 1 will return false

Value of True returned correctly by the function if legal north move

is made;

A. Answers which combine all the checks for a valid move into one

If statement

I. missing option 'D' in code

4

 38 ****SCREEN CAPTURE(S)****
This is conditional on sensible code for 36 and correct code for 37

Screen capture(s) showing correct cavern state with a player at the
northern end of the cavern (top line), 'N' being entered at prompt,
followed by correct error message being displayed;

1

10 39 NoOfMoves is assigned the value 0 – before the first repetition

structure in PlayGame;

 I. Case of variable names
A. Minor typos in variable name
A. assignment statement(s) in other subroutine(s) if correct
functionality would be obtained

NoOfMoves incremented in any sensible place in the code inside

the first selection structure in PlayGame subroutine;

One correct message displayed with NoOfMoves;

Second correct message displayed with NoOfMoves;

Correct logic – both of the messages will be displayed only under
the correct circumstances;

A. minor typos in messages I. capitalisation & spacing in messages
A. message displayed on more than one line
A. more than one line of code used to display a message

A. NoOfMoves declared as global

I. NoOfMoves declaration not shown in PROGRAM SOURCE

CODE

5

 40 ****SCREEN CAPTURE(S)****
This is conditional on sensible code for 39

Screen capture(s) showing correct cavern state:

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

10

followed by message "The

number of moves you took to find the flask was

3";

A. Different message – if it matches code in 39 and displays final

value of NoOfMoves correctly

R. If message "The number of moves that you

survived …" is also shown

 M *

1

 41 ****SCREEN CAPTURE(S)****
This is conditional on sensible code for 39

Screen capture(s) showing correct cavern state:

followed by message "The number of moves that you

survived in the cavern for was 2";

A. Different message – if it matches code in 39 and displays final

value of NoOfMoves correctly

R. If message "The number of moves you took…" is also

shown

 M

1

11 42 CalculateDistance subroutine created – with begin and

end of subroutine;

PlayerPosition and MonsterPosition passed as

parameters to the CalculateDistance subroutine;

I. additional unnecessary parameters
R. global variables

A. four integer values instead of two CellReference values

R. passing by value for parameters of type CellReference

(VB6 only)

Integer value returned by subroutine either as parameter passed by
reference or by function return value; R. global variable A. real
value

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

11

Calculates difference between the NoOfCellsEast for the

monster and the player; R. if the result can be a negative distance

Calculates difference between the NoOfCellsSouth for the

monster and the player; R. if the result can be a negative distance

Calculates the total distance between the monster and the player;

A. Incorrect values for differences in NoOfCellsEast and

NoOfCellsSouth being added together

Distance calculated is actually returned by the subroutine; A. use of
global variable

I. Case of identifiers
A. Minor typos in identifiers
I. Order of parameters in routine interface

7

 43 Call to CalculateDistance subroutine;

R. if parameter list does not match answer to 42

Displays "Distance between monster and player:

" in correct place;

A. any place in code after call to DisplayMoveOptions and

before call to MakeMove

A. minor typos in prompt
I. capitalisation

Displays the calculated distance;
R. if no evidence of any calculation for the distance

R. if distance is displayed before call to CalculateDistance

subroutine

R. if distance returned by CalculateDistance stored in a global

variable
R. if distance calculated in part 42 would not actually be displayed
e.g. program would not compile/run
A. use of temporary variable to store the value returned by

CalculateDistance with contents of temporary variable

then displayed using output message

I. Case of identifiers and output messages
A. Minor typos in output messages
I. spacing in output messages

3

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

12

 44 ****SCREEN CAPTURE(S)****
This is conditional on sensible code for 42 and/or 43

Player shown in the cell 3 south and 5 east of the northwest corner
AND
"Distance between monster and player: 3"

shown;

 *

I. monster symbol (M) displayed in the cavern

1

 45 ****SCREEN CAPTURE(S)****
This is conditional on sensible code for 42 and/or 43

Player shown in the cell 2 south and 5 east of the northwest corner
AND
"Distance between monster and player: 2"

shown;

 *

I. monster symbol (M) displayed in the cavern

1

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

13

 46 ****SCREEN CAPTURE(S)****
This is conditional on sensible code for 42 and/or 43

Player shown in the cell 2 south and 3 east of the northwest corner
AND
"Distance between monster and player: 2"

shown;

I. monster symbol (M)

displayed in the cavern

 *

1

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

14

PASCAL Mark Scheme

Qu Part Marking Guidance Marks

6 16 Program Question6;

 Var

 Answer : Integer;

 Column : Integer;

 Bit : Integer;

 Begin

 Answer := 0;

 Column := 8;

 Repeat

 Writeln('Enter bit value: ');

 Readln(Bit);

 Answer := Answer + (Column * Bit);

 Column := Column DIV 2;

 Until Column < 1;

 Writeln('Decimal value is: ', Answer);

 Readln;

 End.

11

8 32 Procedure DisplayMoveOptions;

 Begin

 Writeln;

 Writeln('Enter N to move NORTH');

 Writeln('Enter E to move EAST');

 Writeln('Enter S to move SOUTH');

 Writeln('Enter W to move WEST');

 Writeln('Enter D to move SOUTHEAST');

 Writeln('Enter M to return to the Main Menu');

 Writeln;

 End;

1

 33 Case Direction Of

 'N' : PlayerPosition.NoOfCellsSouth :=

PlayerPosition.NoOfCellsSouth - 1;

 'S' : PlayerPosition.NoOfCellsSouth :=

PlayerPosition.NoOfCellsSouth + 1;

 'W' : PlayerPosition.NoOfCellsEast :=

PlayerPosition.NoOfCellsEast - 1;

 'E' : PlayerPosition.NoOfCellsEast :=

PlayerPosition.NoOfCellsEast + 1;

 'D' : Begin

 PlayerPosition.NoOfCellsSouth :=

PlayerPosition.NoOfCellsSouth + 1;

 PlayerPosition.NoOfCellsEast :=

PlayerPosition.NoOfCellsEast + 1;

 End;

End;

3

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

15

 34 ValidMove := True;

If Not (Direction In ['N','S','W','E','D','M'])

 Then ValidMove := False;

CheckValidMove := ValidMove;

1

9 36 Repeat

 DisplayMoveOptions;

 MoveDirection := GetMove;

 ValidMove := CheckValidMove(PlayerPosition,

MoveDirection);

 If Not ValidMove

 Then Writeln('That is not a valid move, please

try again');

Until ValidMove;

Alternative answer
If ValidMove = False...

3

 37 ValidMove := True;

If Not (Direction In ['N','S','W','E','D','M'])

 Then ValidMove := False;

If (PlayerPosition.NoOfCellsSouth = 1) And

(Direction = 'N')

 Then ValidMove := False;

CheckValidMove := ValidMove;

Alternative answer

If ValidMove And (Direction = 'N')

 Then ValidMove := ValidMove And

 (PlayerPosition <> 1);

4

10 39 Eaten:= False;

FlaskFound := False;

DisplayCavern(Cavern, MonsterAwake);

NoOfMoves := 0;

Repeat

 ...

 If MoveDirection <> 'M'

 Then

 Begin

 MakeMove(Cavern, MoveDirection,

PlayerPosition);

 NoOfMoves := NoOfMoves + 1;

 DisplayCavern(Cavern, MonsterAwake);

 ...

 If FlaskFound

 Then

 Begin

 DisplayWonGameMessage;

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

16

 Writeln('The number of moves you took

to find the flask was ',NoOfMoves);

 End;

 ...

 If Eaten

 Then

 Begin

 DisplayLostGameMessage;

 Writeln('The number of moves you

survived in the cavern for was ', NoOfMoves);

 End;

Alternative answer

Until Eaten Or FlaskFound Or (MoveDirection = 'M');

If Eaten

 Then Writeln('The number of moves that you

survived in the cavern for was ', NoOfMoves);

If FlaskFound

 Then Writeln('The number of moves you took to

find the flask was ', NoOfMoves);

Alternative answer

 If FlaskFound

 Then DisplayWonGameMessage(NoOfMoves);

 ...

 If Eaten

 Then DisplayLostGameMessage(NoOfMoves);

together with modified DisplayWonGameMessage to include

additional output message (I. missing parameter if NoOfMoves

declared as global)

Procedure DisplayWonGameMessage(NoOfMoves :

Integer);

 Begin

 Writeln('Well done! You have found the flask

containing the Styxian potion.');

 Writeln('You have won the game of MONSTER!');

 Writeln('The number of moves you took to find

the flask was ',NoOfMoves);

 Writeln;

 End

and modified DisplayLostGameMessage to include additional

output message (I. missing parameter if NoOfMoves

declared as global)

Procedure DisplayLostGameMessage(NoOfMoves :

Integer);

 Begin

 Writeln('ARGHHHHHH! The monster has eaten you.

GAME OVER.');

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

17

 Writeln('Maybe you will have better luck next

time you play MONSTER!');

 Writeln('The number of moves you survived in

the cavern for was ', NoOfMoves);

 Writeln;

 End;

5

11 42 Function CalculateDistance(PlayerPosition,

MonsterPosition : TCellReference) : Integer;

 Var

 Distance : Integer;

 Begin

 If PlayerPosition.NoOfCellsEast >

MonsterPosition.NoOfCellsEast

 Then Distance := PlayerPosition.NoOfCellsEast

– MonsterPosition.NoOfCellsEast

 Else Distance :=

MonsterPosition.NoOfCellsEast –

PlayerPosition.NoOfCellsEast;

 If PlayerPosition.NoOfCellsSouth >

MonsterPosition.NoOfCellsSouth

 Then Distance := Distance +

PlayerPosition.NoOfCellsSouth –

MonsterPosition.NoOfCellsSouth

 Else Distance := Distance +

MonsterPosition.NoOfCellsSouth –

PlayerPosition.NoOfCellsSouth;

 CalculateDistance := Distance;

End;

Alternative answer
Distance := Abs(PlayerPosition.NoOfCellsEast –

MonsterPosition.NoOfCellsEast) +

Abs(PlayerPosition.NoOfCellsSouth –

MonsterPosition.NoOfCellsSouth));

Alternative answer
Distance :=

Trunc(Sqrt(Sqr(PlayerPosition.NoOfCellsEast –

MonsterPosition.NoOfCellsEast)) +

Sqrt(Sqr(PlayerPosition.NoOfCellsSouth –

MonsterPosition.NoOfCellsSouth)));

Alternative answer

Distance :=

Round(Sqrt(Sqr(PlayerPosition.NoOfCellsEast –

MonsterPosition.NoOfCellsEast)) +

Sqrt(Sqr(PlayerPosition.NoOfCellsSouth –

MonsterPosition.NoOfCellsSouth)));

Alternative answer

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

18

Distance2 : Integer;

...

Distance := PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast;

If Distance < 0

 Then

 Distance := Distance * -1;

Distance2 := PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth;

If Distance2 < 0

 Then

 Distance2 := Distance2 * -1;

Distance := Distance + Distance2;

7

 43 DisplayMoveOptions;

Writeln('Distance between monster and player: ',

CalculateDistance(PlayerPosition,

MonsterPosition));

3

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

19

VB.NET Mark Scheme

Qu Part Marking Guidance Marks

6 16 Sub Main()

 Dim Answer As Integer

 Dim Column As Integer

 Dim Bit As Integer

 Answer = 0

 Column = 8

 Do

 Console.Write("Enter bit value: ")

 Bit = Console.ReadLine

 Answer = Answer + (Column * Bit)

 Column = Column / 2

 Loop Until Column < 1

 Console.Write("Decimal value is: " & Answer)

 Console.ReadLine()

End Sub

Alternative Answer
Column = Column \ 2

11

8 32 Sub DisplayMoveOptions()

 Console.WriteLine()

 Console.WriteLine("Enter N to move NORTH")

 Console.WriteLine("Enter E to move EAST")

 Console.WriteLine("Enter S to move SOUTH")

 Console.WriteLine("Enter W to move WEST")

 Console.WriteLine("Enter D to move SOUTHEAST")

 Console.WriteLine("Enter M to return to the Main

Menu")

 Console.WriteLine()

End Sub

1

 33 Case "E"

 PlayerPosition.NoOfCellsEast =

PlayerPosition.NoOfCellsEast + 1

Case "D"

 PlayerPosition.NoOfCellsSouth =

PlayerPosition.NoOfCellsSouth + 1

 PlayerPosition.NoOfCellsEast =

PlayerPosition.NoOfCellsEast + 1

3

 34 ValidMove = True

If Not (Direction = "N" Or Direction = "S" Or

Direction = "W" Or Direction = "E" Or Direction =

"M" Or Direction = "D") Then

 ValidMove = False

End If

CheckValidMove = ValidMove

1

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

20

9 36 Do

 DisplayMoveOptions()

 MoveDirection = GetMove()

 ValidMove = CheckValidMove(PlayerPosition,

MoveDirection)

 If Not ValidMove Then

 Console.WriteLine("That is not a valid move,

please try again")

 End If

Loop Until ValidMove

3

 37 If Not (Direction = "N" Or Direction = "S" Or

Direction = "W" Or Direction = "E" Or Direction =

"D" Or Direction = "M") Then

 ValidMove = False

End If

If PlayerPosition.NoOfCellsSouth = 1 And Direction

= "N" Then

 ValidMove = False

End If

CheckValidMove = ValidMove

Alternative answer

If Not (Direction = "N" Or Direction = "S" Or

Direction = "W" Or Direction = "E" Or Direction =

"M") Then

 ValidMove = False

End If

If ValidMove And (Direction = "N") Then

 ValidMove = (ValidMove And

(PlayerPosition.NoOfCellsSouth <> 1))

End If

4

10 39 Dim ValidMove As Boolean

Eaten = False

FlaskFound = False

DisplayCavern(Cavern, MonsterAwake)

NoOfMoves = 0

Do

...

If MoveDirection <> "M" Then

 MakeMove(Cavern, MoveDirection, PlayerPosition)

 NoOfMoves = NoOfMoves + 1

 DisplayCavern(Cavern, MonsterAwake)

...

If FlaskFound Then

 DisplayWonGameMessage()

 Console.WriteLine("The number of moves you took

to find the flask was " & NoOfMoves)

End If

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

21

...

If Eaten Then

 DisplayLostGameMessage()

 Console.WriteLine("The number of moves that you

survived in the cavern for was " & NoOfMoves)

End If
...

Alternative answer

Loop Until Eaten Or FlaskFound Or MoveDirection =

"M"

If Eaten Then

 Console.WriteLine("The number of moves that you

survived in the cavern for was " & NoOfMoves)

End If

If FlaskFound Then

 Console.WriteLine("The number of moves you took

to find the flask was " & NoOfMoves)

End If

Alternative answer

If FlaskFound Then

 DisplayWonGameMessage(NoOfMoves)

End If

...

If Eaten Then

 DisplayLostGameMessage(NoOfMoves)

End If

together with modified DisplayWonGameMessage to include additional

output message (I. missing parameter if NoOfMoves declared as global)

Sub DisplayWonGameMessage(ByVal NoOfMoves As

Integer)

 Console.WriteLine("Well done! You have found the

flask containing the Styxian potion.")

 Console.WriteLine("You have won the game of

MONSTER!")

 Console.Writeline("The number of moves you took

to find the flask was " & NoOfMoves)

 Console.WriteLine()

End Sub

and modified DisplayLostGameMessage to include additional output

message (I. missing parameter if NoOfMoves declared as global)

Sub DisplayLostGameMessage(ByVal NoOfMoves As

Integer)

 Console.WriteLine("ARGHHHHHH! The monster has

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

22

eaten you. GAME OVER.")

 Console.WriteLine("Maybe you will have better

luck next time you play MONSTER!")

 Console.WriteLine("The number of moves you

survived in the cavern for was " & NoOfMoves);

 Console.WriteLine()

End Sub

5

11 42 Function CalculateDistance(ByVal PlayerPosition As

CellReference, ByVal MonsterPosition As

CellReference) As Integer

 Dim Distance As Integer

 If PlayerPosition.NoOfCellsEast >

MonsterPosition.NoOfCellsEast Then

 Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

 Else

 Distance = MonsterPosition.NoOfCellsEast -

PlayerPosition.NoOfCellsEast

 End If

 If PlayerPosition.NoOfCellsSouth >

MonsterPosition.NoOfCellsSouth Then

 Distance = Distance +

PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

 Else

 Distance = Distance +

MonsterPosition.NoOfCellsSouth -

PlayerPosition.NoOfCellsSouth

 End If

 CalculateDistance = Distance

End Function

Alternative answer
Distance =

System.Math.Abs(PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) +

System.Math.Abs(PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth)

A. this alternative answer if System.Math included

A. give benefit of doubt for this answer if no evidence of System.Math

included

Alternative answer
Distance = (((PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) ^ 2) ^ 0.5) +

(((PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth) ^ 2) ^ 0.5)

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

23

Alternative answer
Dim Distance2 As Integer

...

Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

If Distance < 0 Then

 Distance = Distance * -1

End If

Distance2 = PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

If Distance2 < 0 Then

 Distance2 = Distance2 * -1

End If

Distance = Distance + Distance2

7

 43 DisplayMoveOptions()

Console.WriteLine("Distance between monster and

player: " & CalculateDistance(PlayerPosition,

MonsterPosition))

3

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

24

VB6 Mark Scheme

Qu Part Marking Guidance Marks

6 16 Private Sub Form_Load()

 Dim Answer As Integer

 Dim Column As Integer

 Dim Bit As Integer

 Answer = 0

 Column = 8

 Do

 Bit = InputBox("Enter bit value: ")

 Answer = Answer + (Column * Bit)

 Column = Column / 2

 Loop Until Column < 1

 MsgBox ("Decimal value is: " & Answer)

End Sub

Alternative Answer
Column = Column \ 2

11

8 32 Private Sub DisplayMoveOptions()

 WriteLine ("")

 WriteLine ("Enter N to move NORTH")

 WriteLine ("Enter E to move EAST")

 WriteLine ("Enter S to move SOUTH")

 WriteLine ("Enter W to move WEST")

 WriteLine ("Enter D to move SOUTHEAST")

 WriteLine ("Enter M to return to the Main Menu")

 WriteLine ("")

End Sub

A. Text1.Text = Text1.Text & "Enter D to move

SOUTHEAST "

1

 33 Case "E"

 PlayerPosition.NoOfCellsEast =

PlayerPosition.NoOfCellsEast + 1

Case "D"

 PlayerPosition.NoOfCellsSouth =

PlayerPosition.NoOfCellsSouth + 1

 PlayerPosition.NoOfCellsEast =

PlayerPosition.NoOfCellsEast + 1

3

 34 ValidMove = True

If Not (Direction = "N" Or Direction = "S" Or

Direction = "W" Or Direction = "E" Or Direction =

"M" Or Direction = "D") Then

 ValidMove = False

End If

CheckValidMove = ValidMove

1

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

25

9 36 Do

 Call DisplayMoveOptions()

 MoveDirection = GetMove()

 ValidMove = CheckValidMove(PlayerPosition,

MoveDirection)

 If Not ValidMove Then

 WriteLine("That is not a valid move, please try

again")

 End If

Loop Until ValidMove

A. Text1.Text = Text1.Text & "That is not a valid

move, please try again "

A. WriteLineWithMsg

3

 37 If Not (Direction = "N" Or Direction = "S" Or

Direction = "W" Or Direction = "E" Or Direction =

"D" Or Direction = "M") Then

 ValidMove = False

End If

If PlayerPosition.NoOfCellsSouth = 1 And Direction

= "N" Then

 ValidMove = False

End If

CheckValidMove = ValidMove

Alternative answer

If Not (Direction = "N" Or Direction = "S" Or

Direction = "W" Or Direction = "E" Or Direction =

"M") Then

 ValidMove = False

End If

If ValidMove And (Direction = "N") Then

 ValidMove = (ValidMove And

(PlayerPosition.NoOfCellsSouth <> 1))

End If

4

10 39 Dim ValidMove As Boolean

Eaten = False

FlaskFound = False

Call DisplayCavern(Cavern, MonsterAwake)

NoOfMoves = 0

Do

...

If MoveDirection <> "M" Then

 Call MakeMove(Cavern, MoveDirection,

PlayerPosition)

 NoOfMoves = NoOfMoves + 1

 Call DisplayCavern(Cavern, MonsterAwake)

...

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

26

If FlaskFound Then

 Call DisplayWonGameMessage()

 WriteLine("The number of moves you took to find

the flask was " & NoOfMoves)

End If

...

If Eaten Then

 Call DisplayLostGameMessage()

 WriteLine("The number of moves that you survived

in the cavern for was " & NoOfMoves)

End If
...

Alternative answer
Loop Until Eaten Or FlaskFound Or MoveDirection =

"M"

If Eaten Then

 WriteLine("The number of moves that you survived

in the cavern for was " & NoOfMoves)

End If

If FlaskFound Then

 WriteLine("The number of moves you took to find

the flask was " & NoOfMoves)

End If

Alternative answer

If FlaskFound Then

 DisplayWonGameMessage(NoOfMoves)

End If

...

If Eaten Then

 DisplayLostGameMessage(NoOfMoves)

End If

together with modified DisplayWonGameMessage to include additional

output message (I. missing parameter if NoOfMoves declared as global)

Sub DisplayWonGameMessage(ByVal NoOfMoves As

Integer)

 WriteLine("Well done! You have found the flask

containing the Styxian potion.")

 WriteLine("You have won the game of MONSTER!")

 Writeline("The number of moves you took to find

the flask was " & NoOfMoves);

 WriteLine("")

End Sub

and modified DisplayLostGameMessage to include additional output

message (I. missing parameter if NoOfMoves declared as global)

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

27

Sub DisplayLostGameMessage(ByVal NoOfMoves As

Integer)

 WriteLine("ARGHHHHHH! The monster has eaten you.

GAME OVER.")

 WriteLine("Maybe you will have better luck next

time you play MONSTER!")

 WriteLine("The number of moves you survived in

the cavern for was " & NoOfMoves);

 WriteLine("")

End Sub

A. Text1.Text = Text1.Text & "The number of moves

that you survived in the cavern for was "

A. Text1.Text = Text1.Text & "The number of moves

you took to find the flask was "

A. WriteLineWithMsg

5

11 42 Private Function CalculateDistance(ByRef

PlayerPosition As CellReference, ByRef

MonsterPosition As CellReference) As Integer

 Dim Distance As Integer

 If PlayerPosition.NoOfCellsEast >

MonsterPosition.NoOfCellsEast Then

 Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

 Else

 Distance = MonsterPosition.NoOfCellsEast -

PlayerPosition.NoOfCellsEast

 End If

 If PlayerPosition.NoOfCellsSouth >

MonsterPosition.NoOfCellsSouth Then

 Distance = Distance +

PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

 Else

 Distance = Distance +

MonsterPosition.NoOfCellsSouth -

PlayerPosition.NoOfCellsSouth

 End If

 CalculateDistance = Distance

End Function

Alternative answer
Distance = (((PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) ^ 2) ^ 0.5) +

(((PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth) ^ 2) ^ 0.5)

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

28

Alternative answer
Distance = Abs(PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) +

Abs(PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth)

Alternative answer

Dim Distance2 As Integer

...

Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

If Distance < 0 Then

 Distance = Distance * -1

End If

Distance2 = PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

If Distance2 < 0 Then

 Distance2 = Distance2 * -1

End If

Distance = Distance + Distance2

7

 43 DisplayMoveOptions()

WriteLine("Distance between monster and player: " &

CalculateDistance(PlayerPosition, MonsterPosition))

A. Text1.Text = Text1.Text & "Distance between

monster and player: " &

CalculateDistance(PlayerPosition, MonsterPosition)

A. WriteLineWithMsg

3

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

29

JAVA Mark Scheme

Qu Part Marking Guidance Marks

6 16 public class Question6 {

 AQAConsole console=new AQAConsole();

 public Question6(){

 int column;

 int answer;

 int bit;

 answer=0;

 column=8;

 do{

 console.print("Enter bit value: ");

 bit=console.readInteger("");

 answer=answer+(column*bit);

 column=column/2;

 }while(column>=1);

 console.print("Decimal value is: ");

 console.println(answer);

 }

 public static void main(String[] arrays){

 new Question6();

 }

}

11

8 32 void displayMoveOptions() {

 console.println();

 console.println("Enter N to move NORTH");

 console.println("Enter E to move EAST");

 console.println("Enter S to move SOUTH");

 console.println("Enter W to move WEST");

 console.println("Enter D to move SOUTHEAST");

 console.println("Enter M to return to the Main

Menu");

 console.println();

}

1

 33 switch (direction) {

 case 'N':

 playerPosition.noOfCellsSouth--;

 break;

 case 'S':

 playerPosition.noOfCellsSouth++;

 break;

 case 'W':

 playerPosition.noOfCellsEast--;

 break;

 case 'E':

 playerPosition.noOfCellsEast++;

 break;

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

30

 case 'D':

 playerPosition.noOfCellsSouth++;

 playerPosition.noOfCellsEast++;

 break;

}

3

 34 validMove = true;

if (!(direction == 'N' || direction == 'S' ||

direction == 'W'|| direction == 'E' || direction

== 'D' || direction == 'M')) {

 validMove = false;

}

return validMove;

1

9 36 do {

 displayMoveOptions();

 moveDirection = getMove();

 validMove = checkValidMove(playerPosition,

moveDirection);

 if (!validMove) {

 console.println("That is not a valid move,

please try again");

 }

} while (!validMove);

Alternative answer
if (validMove == false)

3

 37 validMove = true;

if (!(direction == 'N' || direction == 'S' ||

direction == 'W'|| direction == 'E' || direction

== 'D' || direction == 'M')) {

 validMove = false;

}

if (validMove && direction == 'N') {

 validMove = validMove &&

 (playerPosition.noOfCellsSouth != 1);

 }

return validMove;

Alternative answer
if (playerPosition.noOfCellsSouth == 1 &&

direction == 'N') {

 validMove = false;

}

4

10 39 eaten = false;

flaskFound = false;

displayCavern(cavern, monsterAwake);

noOfMoves = 0;

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

31

do {

 ...

 if (moveDirection != 'M') {

 makeMove(cavern, moveDirection,

playerPosition);

 noOfMoves++;

 displayCavern(cavern, monsterAwake);

 flaskFound = checkIfSameCell(playerPosition,

flaskPosition);

 if (flaskFound) {

 displayWonGameMessage();

 console.println("The number of moves you took

to find the flask was " + noOfMoves);

 }

 ...

 if (eaten) {

 displayLostGameMessage();

 console.println("The number of moves you

survived in the " + "cavern for was " +

noOfMoves);

 }

Alternative answer
} while (!(eaten || flaskFound || moveDirection ==

'M'));

if (flaskFound) {

 console.println("The number of moves you took to

find the flask was " + noOfMoves);

}

if (eaten) {

 console.println("The number of moves you

survived in the " + "cavern for was " +

noOfMoves);

}

Alternative answer
eaten = false;

flaskFound = false;

displayCavern(cavern, monsterAwake);

noOfMoves = 0;

do {

 ...

 if (moveDirection != 'M') {

 makeMove(cavern, moveDirection,

playerPosition);

 noOfMoves++;

 displayCavern(cavern, monsterAwake);

 ...

together with modified displayLostGameMessage and

displayWonGameMessage to include additional output message (I.

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

32

missing parameter if NoOfMoves declared as global)

void displayWonGameMessage(int noOfMoves){

console.println("ARGHHHHHH! The monster has eaten

you. GAME OVER.");

 console.println("Maybe you will have better luck

next time you play MONSTER!");

 console.println("The number of moves you

survived in the cavern was " + noOfMoves);

 console.println();

}

void displayWonGameMessage(int noOfMoves){

 console.println("Well done! You have found the

flask containing the Styxian potion.");

 console.println("You have won the game of

MONSTER!");

 console.println("The number of moves you took to

find the flask was " + noOfMoves);

}

5

11 42 int calculateDistance(CellReference

playerPosition, CellReference monsterPosition) {

 int distance;

if(playerPosition.noOfCellsEast>monsterPosition.no

OfCellsEast){

 distance=playerPosition.noOfCellsEast-

monsterPosition.noOfCellsEast;

 } else{

 distance=monsterPosition.noOfCellsEast-

playerPosition.noOfCellsEast;

 }

if(playerPosition.noOfCellsSouth>monsterPosition.n

oOfCellsSouth){

distance=distance+playerPosition.noOfCellsSouth-

monsterPosition.noOfCellsSouth;

 }else{

distance=distance+monsterPosition.noOfCellsSouth-

playerPosition.noOfCellsSouth;

 }

 return distance;

}

Alternative Answer
int calculateDistance(CellReference

playerPosition, CellReference

monsterPosition) {

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

33

 int distance;

 distance =

Math.abs(playerPosition.noOfCellsSouth

- monsterPosition.noOfCellsSouth);

 distance +=

Math.abs(playerPosition.noOfCellsEast -

monsterPosition.noOfCellsEast);

 return distance;

}

Alternative Answer
distance=(int)Math.sqrt(Math.pow((double)(playerPo

sition.noOfCellsSouth -

monsterPosition.noOfCellsSouth), 2))

+(int)Math.sqrt(Math.pow((double)(playerPosition.n

oOfCellsEast - monsterPosition.noOfCellsEast),

2));

Alternative Answer
distance=(int)Math.round(Math.sqrt(Math.pow((doubl

e)(playerPosition.noOfCellsSouth -

monsterPosition.noOfCellsSouth), 2))

+Math.sqrt(Math.pow((double)(playerPosition.noOfCe

llsEast - monsterPosition.noOfCellsEast), 2)));

Alternative answer

int distance2;

...

distance = playerPosition.noOfCellsEast -

monsterPosition.noOfCellsEast;

if (distance < 0) {

 distance = distance * -1;

}

distance2 = playerPosition.noOfCellsSouth -

monsterPosition.noOfCellsSouth;

if (distance2 < 0) {

 distance2 = distance2 * -1;

}

distance = distance + distance2;

7

 43 displayMoveOptions();

 console.println("Distance between monster and

player: " + calculateDistance(playerPosition,

monsterPosition));

3

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

34

PYTHON Mark Scheme

Qu Part Marking Guidance Marks

6 16 # Section B Q6 Python 2.6
Answer = 0

Bit = 0

Column = 8

while Column >= 1:

 print "Enter bit value: "

 # Accept: Bit = int(raw_input("Enter bit value: "))

 Bit = input()

 Answer = Answer + (Column * Bit)

 Column = Column // 2

print "Decimal value is: ", Answer

or + str(Answer)

Section B Q6 Python 3.1
Answer = 0

Bit = 0

Column = 8

while Column >= 1:

 print("Enter bit value: ")

 # Accept: Bit = int(input("Enter bit value: "))

 Bit = int(input())

 Answer = Answer + (Column * Bit)

 Column = Column // 2

print("Decimal value is: " + str(Answer))

or print("Decimal value is: {0}".format(Answer))

A. Answer and Bit not declared at start as long as they are spelt correctly

and when they are given an initial value that value is of the correct data type

11

8 32 Python 2
def DisplayMoveOptions():

 print ''

 print 'Enter N to move NORTH'

 print 'Enter E to move EAST'

 print 'Enter S to move SOUTH'

 print 'Enter W to move WEST'

 print 'Enter D to move SOUTHEAST'

 print 'Enter M to return to the Main Menu'

 print ''

Python 3

def DisplayMoveOptions():

 print ()

 print ('Enter N to move NORTH')

 print ('Enter E to move EAST')

 print ('Enter S to move SOUTH')

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

35

 print ('Enter W to move WEST')

 print ('Enter D to move SOUTHEAST')

 print ('Enter M to return to the Main Menu')

 print ()

1

 33 elif Direction == 'E':

 PlayerPosition.NoOfCellsEast += 1

elif Direction == 'D':

 PlayerPosition.NoOfCellsSouth += 1

 PlayerPosition.NoOfCellsEast += 1

3

 34 def CheckValidMove(PlayerPosition,Direction):

 ValidMove = True

 if not (Direction in ['N','S','W','E','D','M']):

 ValidMove = False

 return ValidMove

1

9 36 while not ValidMove:

 DisplayMoveOptions()

 MoveDirection = GetMove()

 ValidMove = CheckValidMove(PlayerPosition,

MoveDirection)

 if not ValidMove:

 # Python 2:

 print 'That is not a valid move, please try

again'

 # Python 3:

 print('That is not a valid move, please try

again')

Alternative answer
if ValidMove = False...

3

 37 def CheckValidMove(PlayerPosition,Direction):

 ValidMove = True

 if not (Direction in ['N','S','W','E','D','M']):

 ValidMove = False

 if (PlayerPosition.NoOfCellsSouth == 1) and

(Direction == 'N'):

 ValidMove = False

 return ValidMove

Alternative answer
if not (Direction in ['N','S','W','E','D','M']):

 ValidMove = False

if ValidMove and (Direction == 'N'):

 ValidMove = (ValidMove and (PlayerPosition.

NoOfCellsSouth != 1))

4

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

36

10 39 Eaten = False

FlaskFound = False

MoveDirection = ''

DisplayCavern(Cavern, MonsterAwake)

NoOfMoves = 0

while not (Eaten or FlaskFound or (MoveDirection ==

'M')):

 ValidMove = False

 while not ValidMove:

 DisplayMoveOptions()

 MoveDirection = GetMove()

 ValidMove = CheckValidMove(PlayerPosition,

MoveDirection)

 if not ValidMove:

 print 'That is not a valid move, please try

again'

 if MoveDirection != 'M':

 MakeMove(Cavern, MoveDirection, PlayerPosition)

 NoOfMoves += 1

 DisplayCavern(Cavern, MonsterAwake)

...

 if FlaskFound:

 DisplayWonGameMessage()

 # Python 2:

 print 'The number of moves you took to find the

flask was', NoOfMoves

 # Alternative answer:

 print 'The number of moves you took to find the

flask was ' + str(NoOfMoves)

 # Python 3:

 print('The number of moves you took to find the

flask was ' + str(NoOfMoves)

 # Alternative answer:

 print('The number of moves you took to find the

flask was {0}'.format(NoOfMoves)) #Py3

...

if Eaten:

 DisplayLostGameMessage()

 # Python 2:

 print 'The number of moves that you survived in the

cavern for was', NoOfMoves

 # Alternative answer:

 print 'The number of moves that you survived in the

cavern for was ' + str(NoOfMoves)

 # Python 3:

 print('The number of moves that you survived in the

cavern for was ' + str(NoOfMoves))

 # Alternative answer:

 print('The number of moves that you survived in the

cavern for was {0}'.format(NoOfMoves))

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

37

Alternative Answer
Python 2

if Eaten:

 print 'The number of moves that you survived in the

cavern for was', NoOfMoves

else:

 print 'The number of moves you took to find the

flask was', NoOfMoves

Python 3

if Eaten:

 print('The number of moves that you survived in the

cavern for was' + str(NoOfMoves))

else:

 print('The number of moves you took to find the

flask was' + str(NoOfMoves))

A. .format(NoOfMoves)

Alternative answer
if FlaskFound:

 DisplayWonGameMessage(NoOfMoves)

...

if Eaten:

 DisplayLostGameMessage(NoOfMoves)

together with modified displayLostGameMessage and

displayWonGameMessage to include additional output message (I.

missing parameter if NoOfMoves declared as global)

Python 2
def DisplayWonGameMessage(NoOfMoves):

 print 'Well Done! You have found the flask

containing the Styxian potion.'

 print 'You have won the game of MONSTER!'

 print 'The number of moves you took to find the

flask was ‘, NoOfMoves

def DisplayLostGameMessage(NoOfMoves):

 print 'ARGHHHHHH! The monster has eaten you. GAME

OVER.'

 print 'Maybe you will have better luck the next

time you play MONSTER!'

 print 'The number of moves that you survived in the

cavern for was', NoOfMoves

Python 3
def DisplayWonGameMessage(NoOfMoves):

 print('Well Done! You have found the flask

containing the Styxian potion.')

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

38

 print('You have won the game of MONSTER!')

 print('The number of moves you took to find the

flask was' + str(NoOfMoves))

def DisplayLostGameMessage(NoOfMoves):

 print('ARGHHHHHH! The monster has eaten you. GAME

OVER.')

 print('Maybe you will have better luck the next

time you play MONSTER!')

print('The number of moves that you survived in the

cavern for was'+ str(NoOfMoves))

5

11 42 def CalculateDistance(PlayerPosition,

MonsterPosition):

 if PlayerPosition.NoOfCellsEast >

MonsterPosition.NoOfCellsEast:

 Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

 else:

 Distance = MonsterPositionNoOfCellsEast -

PlayerPosition.NoOfCellsEast

 if PlayerPosition.NoOfCellsSouth >

MonsterPosition.NoOfCellsSouth:

 Distance = Distance +

PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

 else:

 Distance = Distance +

MonsterPositionNoOfCellsSouth -

PlayerPosition.NoOfCellsSouth

 return Distance

Alternative Answer
Distance = abs(PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) +

abs(PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth)

Alternative Answer
return abs(PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) +

abs(PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth)

Alternative Answer

import math

Distance =

math.trunc(math.sqrt(pow((PlayerPosition.NoOfCellsEas

t - MonsterPosition.NoOfCellsEast),2)) +

math.sqrt(pow((PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth),2)))

Mark Scheme – General Certificate of Education (A-level) Computing – COMP1 – June 2012

39

Alternative Answer
import math

Distance =

round(math.sqrt((PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast)**2) +

math.sqrt((PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth)**2))

Alternative Answer
Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

if Distance < 0:

 Distance = Distance * -1

Distance2 = PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

if Distance2 < 0:

 Distance2 = Distance2 * -1

Distance = Distance + Distance2

7

 43 # Python 2:

DisplayMoveOptions()

print 'Distance to monster:',

CalculateDistance(PlayerPosition, MonsterPosition)

Alternative answer:

DisplayMoveOptions()

print 'Distance to monster:' +

str(CalculateDistance(PlayerPosition,

MonsterPosition))

Python 3:

DisplayMoveOptions()

print('Distance to monster:' +

str(CalculateDistance(PlayerPosition,

MonsterPosition))

3

UMS conversion calculator www.aqa.org.uk/umconversion

http://www.aqa.org.uk/umconversion

