Godalming College
	

	A-level Computer Science (7516/7517)
Spring Programming Benchmark
Preditor Prey
	Name:
Class:

	

	Time:
	1hr15mins

	Marks:
	75

	Comments:
	There is NO EAD!!! Most of the Paper is fill in the blanks.. For question 5 please paste into a word document with your name. Print and Staple Q5 to the back of this paper.

	

	Q1
	

	Q2
	

	Q3
	

	Q4
	

	Q5
	

	Total
	

Section A
Q1. Create a folder / directory for your new program.
One method for converting a decimal number into binary is to repeatedly divide by 2 using integer division. After each division is completed, the remainder is output and the integer result of the division is used as the input to the next iteration of the division process. The process repeats until the result of the division is 0.
Outputting the remainders in the sequence that they are calculated produces the binary digits of the equivalent binary number, but in reverse order.
For example, the decimal number 210 could be converted into binary as shown below.

	
	210 ÷ 2 =105
105 ÷ 2 = 52
 52 ÷ 2 = 26
26 ÷ 2 = 13
13 ÷ 2 = 6
6 ÷ 2 = 3
3 ÷ 2 = 1
1 ÷ 2 = 0
	remainder 0
remainder 1
remainder 0
remainder 0
remainder 1
remainder 0
remainder 1
remainder 1

 The sequence 0, 1, 0, 0, 1, 0, 1, 1 which would be output by this process is the reverse of the binary equivalent of 210 which is 11010010.
What you need to do
Task 1
Write a program that will perform the conversion process described above. The program should display a suitable prompt asking the user to input a decimal number to convert and then output the bits of the binary equivalent of the decimal number in reverse order.
Task 2
Improve the program so that the bits are output in the correct order, e.g. for 210 the output would be 11010010.
Task 3
Test the program works by entering the value 210.
Save the program in your new folder / directory.
Evidence that you need to provide
(a) Your PROGRAM SOURCE CODE after you have completed both Task 1 and Task 2.
If you complete Task 1 but do not attempt Task 2 then a maximum of 9 marks will be awarded.
(12)
(b) SCREEN CAPTURE(S) for the test showing the output of the program when 210 is entered.
The marks for this test will be awarded whether the binary digits are output in reverse order or in the correct order.
(2)
(Total 14 marks)

Q2.
The figure below shows an incomplete diagram of a typical computer system architecture.
[image:]
(a) {question removed}
(b) A third bus has been omitted from the diagram in the figure above.
Name this bus.
 ...(1)
(c) Explain why the data bus is bi-directional, but the address bus is one-way only.
……..
…………………………………………………………
………………………………………………………..
………………………………………………………...(2)
(d) The processor performs different types of operations; for example, arithmetic operations.
Name one other type of operation. ..
..
(1)

(e) Explain the stored program concept. ..
..
..
..
(3)
(Total 9 marks)

Q3.
The diagram below shows some of the registers used in the fetch-execute cycle of a simple processor and the contents of a small section of main memory that it is connected to by the system bus ([image:]).
[image:]

(a) In the diagram above the first 4 bits of an instruction represent the opcode and give the type of instruction to be executed.
What name is given to the second 4 bits of an instruction?
..
(1)

(b) (i) Currently the value in the Program Counter (PC) is example 0001.
Complete the table below by writing the values, expressed in binary, in the following registers after completing the fetch part of the fetch-execute cycle.

	
	Register
	Value

	
	PC
	

	
	MAR
	

	
	MBR
	

(3)

(ii) Describe what will happen during the decode and execute part of the cycle.
...
...
...
...
...
...
...
(3)

(c) What would be the outcome of executing the instruction 01000011?
..
..
..
..
(1)
(Total 8 marks)

Q4. The class diagram below is an attempt to represent the relationships between some of the classes in the Predator Prey Simulation. ALL of question 4 refers only to the correct [image: \\godalming.ac.uk\dfs\Users\Staff\jmh\Desktop\PredPrey for mock .png]classes from the Skeleton Program shown in the diagram.

(a) Describe three errors that have been made in the class diagram.
(3)
Arrows should go FROM Rabbit/Fox to Animal;
FOX arrow should not be a diamond (as inherited not composed)
Rabbit to Warren line should be a diamond showing composition
(b) Give an example of instantiation
Rabbits() as Rabbit ; A another example correct in the code but not shown on diagram (1)
(c) State the name of an identifier for an array variable. Rabbits ; IsFemale
(1)

(d) State the name of an identifier for a subclass. Rabbits; Fox
(1)

(e) State the name of an identifier for a variable that is used to store a whole number.
 Any Integer variable (1)

(f) State the name of an identifier for a class that uses composition. Warren (1)

(h) Look at the Rabbit class in the Skeleton Program.
Why has a named constant DefaultLifeSpan been used instead of the numeric value 4? (2)

 (Total 10 marks)

Q5.
(a) This question refers to the Main Program
The Skeleton Program currently does not validate the user input for the number of foxes.
The subroutine Main needs to be adapted so that it displays an error message to the user if an illegal value is entered. A message should state "That is not a valid value".
Evidence that you need to provide

(i) Your amended PROGRAM SOURCE CODE for the MAIN subroutine.
(3)

 (ii) SCREEN CAPTURE(S) for a test run showing a player trying to enter the string “wibble” in the number of foxes
(1)

(iii) SCREEN CAPTURE(S) for a test run showing a player trying to enter more foxes than there are locations
(1)

	
(b)		This question will require you to create a new class

		You are required to create a new class called Owl that inherits Animal, The DefaultLifeSpan should be a constant and set to 5. No other changes need to be made

You should instantiate an object named “Barney” of type OWL in the Location Class
NB this is not a complete solution and will not run! You will need to comment out the instantiation if you need to go back to a previous question

(i) Your PROGRAM SOURCE CODE for the OWL Class.
(3)

(ii) Your PROGRAM SOURCE CODE for the Location Class.					(3)

M1.
(a) 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

	
	Level
	Description
	Mark
Range

	
	4
	A line of reasoning has been followed to arrive at a logically structured working or almost fully working programmed solution that meets all of the requirements of Task 1 and some of the requirements of Task 2. All of the appropriate design decisions have been taken. To award 12 marks, all of the requirements of both tasks must be met.
	10-12

	
	3
	There is evidence that a line of reasoning has been followed to produce a logically structured program. The program displays a prompt, inputs the decimal value and includes a loop, which might be a definite or indefinite loop. An attempt has been made to do the integer division, output the remainder within the loop and use the result of the division for the next iteration, although some of this may not work. The solution demonstrates good design work as most of the correct design decisions have been taken. To award 9 marks, all of the requirements of Task 1 must have been met.
	7-9

	
	2
	A program has been written and some appropriate, syntactically correct programming language statements have been written. There is evidence that a line of reasoning has been partially followed as although the program may not have the required functionality for either task, it can be seen that the response contains some of the statements that would be needed in a working solution to Task 1. There is evidence of some appropriate design work as the response recognises at least one appropriate technique that could be used by a working solution, regardless of whether this has been implemented correctly.
	4-6

	
	1
	A program has been written and a few appropriate programming language statements have been written but there is no evidence that a line of reasoning has been followed to arrive at a working solution. The statements written may or may not be syntactically correct. It is unlikely that any of the key design elements of the task have been recognised.
	1-3

Guidance
Task 1:
Evidence of AO3 (design) – 3 points:
Evidence of design to look for in responses:
• Identifying that an indefinite loop must be used (as the length of the input is variable)
• Identifying the correct Boolean condition to terminate the loop
• Correct identification of which commands belong inside and outside the loop
Note that AO3 (design) points are for selecting appropriate techniques to use to solve the problem, so should be credited whether the syntax of programming language statements is correct or not and regardless of whether the solution works.
Evidence of AO3 (programming) – 6 points:
Evidence of programming to look for in responses:
• Prompt displayed
• Value input by user and stored into a variable with a suitable name
• Loop structure coded
• Remainder of integer division calculated
• Remainder of integer division output to screen
• Result of integer division calculated and assigned to variable so that it will be used in the division operation for the next iteration
Note that AO3 (programming) points are for programming and so should only be awarded for syntactically correct code.

Task 2:
Evidence of AO3 (design) – 1 point:
Evidence of design to look for in responses:
• A sensible method adopted for reversing the output eg appending to a string or storing into an array
Note that AO3 (design) points are for selecting appropriate techniques to use to solve the problem, so should be credited whether the syntax of programming language statements is correct or not and regardless of whether the solution works.
Evidence of AO3 (programming) – 2 points:
Evidence of programming to look for in responses:
• After each iteration remainder digit is stored into array / string or similar
• At end of program bits output in correct order
Note that AO3 (programming) points are for programming and so should only be awarded for syntactically correct code.

Example Solution VB.Net
Task 1:

Dim DecimalNumber As Integer
Dim ResultOfDivision As Integer
Dim BinaryDigit As Integer

Console.WriteLine("Please enter decimal number to convert")
DecimalNumber = Console.ReadLine

Do
 ResultOfDivision = DecimalNumber \ 2
 BinaryDigit = DecimalNumber Mod 2
 Console.Write(BinaryDigit)
 DecimalNumber = ResultOfDivision
Loop Until ResultOfDivision = 0

Task 2:

Dim DecimalNumber As Integer
Dim ResultOfDivision As Integer
Dim BinaryDigit As Integer
Dim BinaryString As String

Console.WriteLine("Please enter decimal number to convert")
DecimalNumber = Console.ReadLine
BinaryString = ""

Do
 ResultOfDivision = DecimalNumber \ 2
 BinaryDigit = DecimalNumber Mod 2
 BinaryString = BinaryDigit.ToString() + BinaryString
 DecimalNumber = ResultOfDivision
Loop Until ResultOfDivision = 0

Console.WriteLine(BinaryString)
12

(b) All marks AO3 (evaluate)
****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (a), including prompts on screen capture matching those in code. Code for (a) must be sensible.
1 mark: Display of suitable prompt and user input of value 210;
1 mark: Display of correct bits in reverse (01001011) or forward (11010010) order;
A Each bit value displayed on a separate line
2
[14]

M2.
(a) removed
(b) Control (bus) ;
1
(c) Data bus has to transport data values to and from various devices /internal components ;
Only the processor assigns address values to the different devices ;
Max 2
(d) Logical // read // write // jump/branch // input // output // data transfer ;
A Boolean
1
(e) Program instructions are transferred from backing store to main memory ;
Program consists of a sequence of instructions ;
Program is stored in main memory ;
and can be replaced by another program at any time ;
Instructions are fetched (in sequence) ;
Decoded ;
and then executed ;
Max 3
[9]
[bookmark: _GoBack]

M3.
(a) operand;
R operand code
1
(b) (i) PC 0010;
MAR 0001;
MBR 00100100;
3
(ii) The instruction is held in the CIR // instruction in CIR is decoded;
A IR
The control unit / instruction decoder decodes the instruction;
NE the processor decodes the instruction
Instruction will be split into opcode and operand;
R if it is implied that a register will do this splitting / decoding
Relevant part of processor / CPU executes instruction // using ALU to perform calculations;
A instruction executed by the control unit / ALU
NE processor executes instruction
Further memory fetches / saves carried out if required;
Result of computation stored in accumulator / register / written to main memory;
Status register updated;
If jump / branch instruction PC is updated;
By example:
Will ADD contents memory location 0100 to accumulator;
MAX 3

(c) The current value in the accumulator would be stored in (memory) address / location 0011 / 3;
Number 011 / 3 stored in (memory) address / location 0011 / 3;
MAX 1
[8]

M4.
(a) All marks AO2 (analyse)
1 mark: The arrow should be pointing towards the base class;
1 mark: There is no class called Monster / / it should say Enemy, not Monster;
2

(b) Mark is for AO2 (apply)
VB.Net
Dim MyGame As New Game(False) / /
Dim MyGame As New Game(True) / /
Private Player As New Character / /
Private Cavern As New Grid(NSDistance, WEDistance) / /
Private Monster As New Enemy / /
Private Flask As New Item / /
Private Trap1 As New Trap / /
Private Trap2 As New Trap;
R If any additional code
R If spelt incorrectly
I Case
1

(c) Mark is for AO2 (apply)
VB.Net
CavernState;
R If any additional code
R If spelt incorrectly
I Case
1

(d) Mark is for AO2 (apply)
Trap / / Character / / Enemy;
A SleepyEnemy
R If any additional code
R If spelt incorrectly
I Case
1

(e) Mark is for AO2 (apply)
Choice / / NoOfCellsEast / / NoOfCellsSouth / / Count / / NSDistance / / WEDistance / / Count1 / / Count2;
R If any additional code
R If spelt incorrectly
I Case
1

(f) Mark is for AO2 (apply)
Game;
R If any additional code
R If spelt incorrectly
I Case
1

(g) Mark is for AO2 (analyse)
So that a position of (0,0) is rejected / / so that the item can't be in the player's starting position;
1

(h) Marks are for AO1 (understanding)
Makes the program code easier to understand;
Makes it easier to update the program;
Makes it easier to change the size of the cavern (in the game);
Max 2 points from the list above
2

(i) Marks are for AO2 (analyse)
1 mark: Create a new object (Trap3) of class Trap;
1 mark: Change the (3rd) If statement in the PlayGame subroutine by adding conditions to check if the player is in the same cell as Trap3 and that Trap3 has not been triggered already;
2
[12]

M5.
(a) (i) Marks are for AO3 (programming)
1 mark: Selection structure with one correct condition;
1 mark: Both conditions correct and correct logical operator(s);
1 mark: Subroutine returns the correct True / False value under all conditions;
A New conditions added to existing selection structure
VB.Net
Public Function CheckValidMove(ByVal Direction As Char) As Boolean
 Dim ValidMove As Boolean
 ValidMove = True
 If Not (Direction = "N" Or Direction = "S" Or Direction = "W" Or Direction = "E" Or Direction = "M") Then
 ValidMove = False
 End If
 If Direction = "W" And
Player.GetPosition.NoOfCellsEast = 0 Then
 ValidMove = False
 End If
 Return ValidMove
End Function
3

(ii) Marks are for AO3 (programming)
1 mark: Selection structure with correct condition added in correct place in the code;
1 mark: Correct error message displayed which will be displayed when move is invalid, and only when the move is invalid;
I Case of output message
A Minor typos in output message
I Spacing in output message
VB.Net
 ...
 ValidMove = CheckValidMove(MoveDirection)
 If Not ValidMove Then
 Console.WriteLine("That is not a valid move, please try again")
 End If
Loop Until ValidMove
...
2

(iii) Mark is for AO3 (evaluate)
****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (a)(i) and (a)(ii), including prompts on screen capture matching those in code. Code for (a)(i) and (a)(ii) must be sensible.
Screen capture(s) showing the error message being displayed after the player tried to move to the west from a cell at the western end of the cavern;
A Alternative output messages if match code for (a)(ii)
1

(b) (i) Marks are for AO3 (programming)
1 mark: SleepyEnemy class created;
1 mark: Inheritance from Enemy class;
1 mark: MovesTillSleep property declared;
1 mark: Subroutine MakeMove that overrides the one in the base class;
1 mark: MovesTillSleep decremented in the MakeMove subroutine;
1 mark: Selection structure in MakeMove that calls ChangeSleepStatus if the value of MovesTillSleep is 0; A Changing Awake property instead of call to ChangeSleepStatus
1 mark: Subroutine ChangeSleepStatus that overrides the one in the base class;
1 mark: Value of MovesTillSleep set to 4 in the ChangeSleepStatus subroutine;
I Case of identifiers
A Minor typos in identifiers
VB.Net
Class SleepyEnemy
 Inherits Enemy
 Private MovesTillSleep As Integer

 Public Overrides Sub MakeMove(ByVal PlayerPosition As CellReference)
 MyBase.MakeMove(PlayerPosition)
 MovesTillSleep = MovesTillSleep - 1
 If MovesTillSleep = 0 Then
 ChangeSleepStatus()
 End If
 End Sub

 Public Overrides Sub ChangeSleepStatus()
 MyBase.ChangeSleepStatus()
 MovesTillSleep = 4
 End Sub
End Class
8

(ii) Marks are for AO3 (evaluate)
****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (b)(i), including prompts on screen capture matching those in code. Code for (b)(i) must be sensible.
1 mark: Screen capture(s) showing the player moving east and then east again at the start of the training game. The monster then wakes up and moves two cells nearer to the player. The player then moves south;
1 mark: The monster moves two cells nearer to the player and then disappears from the cavern display;
2

(c) (i) Mark is for AO3 (programming)
Appropriate option added to menu;
VB.Net
Public Sub DisplayMoveOptions()
 Console.WriteLine()
 Console.WriteLine("Enter N to move NORTH")
 Console.WriteLine("Enter S to move SOUTH")
 Console.WriteLine("Enter E to move EAST")
 Console.WriteLine("Enter W to move WEST")
 Console.WriteLine("Enter A to shoot an arrow")
 Console.WriteLine("Enter M to return to the Main Menu")
 Console.WriteLine()
End Sub
1

(ii) Marks are for AO3 (programming)
1 mark: Direction of A is allowed;
1 mark: Direction of A allowed only if player has got an arrow;
Maximum 1 mark: If any other invalid moves would be allowed or any valid moves not allowed
VB.Net
Public Function CheckValidMove(ByVal Direction As Char) As Boolean
 Dim ValidMove As Boolean
 ValidMove = True
 If Not (Direction = "N" Or Direction = "S" Or Direction = "W" Or Direction = "E" Or Direction = "M" Or Direction = "A") Then
 ValidMove = False
 End If
 If Direction = "A" And Not Player.GetHasArrow Then
 ValidMove = False
 End If
 Return ValidMove
End Function
2

(iii) Marks are for AO3 (programming)
1 mark: Property HasArrow created;
1 mark: HasArrow set to True when an object is instantiated;
1 mark: Subroutine GetHasArrow created;
1 mark: GetHasArrow returns the value of HasArrow;
1 mark: Subroutine GetArrowDirection created;
1 mark: GetArrowDirection has an appropriate output message and then gets a value entered by the user;
1 mark: In GetArrowDirection, value keeps being obtained from user until it is one of N, S, W or E;
1 mark: HasArrow is set to False in GetArrowDirection;
I Additional output messages
I Case of identifiers
A Minor typos in identifiers
VB.Net
Class Character
 Inherits Item
 Private HasArrow As Boolean
 Public Sub MakeMove(ByVal Direction As Char)
 Select Case Direction
 Case "N"
 NoOfCellsSouth = NoOfCellsSouth - 1
 Case "S"
 NoOfCellsSouth = NoOfCellsSouth + 1
 Case "W"
 NoOfCellsEast = NoOfCellsEast - 1
 Case "E"
 NoOfCellsEast = NoOfCellsEast + 1
 End Select
 End Sub

 Public Sub New()
 HasArrow = True
 End Sub

 Public Function GetHasArrow() As Boolean
 Return HasArrow
 End Function

 Public Function GetArrowDirection() As Char
 Dim Direction As Char
 Do
 Console.Write("What direction (E, W, S, N) would you like to shoot in?")
 Direction = Console.ReadLine
 Loop Until Direction = "E" Or Direction = "W" Or Direction = "S" Or Direction = "N"
 HasArrow = False
 Return Direction
 End Function
End Class
8

(iv) Marks are for AO3 (programming)
1 mark: Check for A having been entered – added in a sensible place in the code;
1 mark: If A was entered there is a call to GetArrowDirection;
1 mark: Selection structure that checks if the arrow direction is N;
1 mark: Detects if the monster is in any of the cells directly north of the player's current position;
[bookmark: code2]1 mark: If the monster has been hit by an arrow then the correct output message is displayed and the value of FlaskFound is set to True;
1 mark: The code for moving the player and updating the cavern display is inside an else structure (or equivalent) so that this code is not executed if the player chooses to shoot an arrow;
I Case of output message
A Minor typos in output message
I Spacing in output message
VB.Net
If MoveDirection "M" Then
 If MoveDirection = "A" Then
 MoveDirection = Player.GetArrowDirection
 Select MoveDirection
 Case "N"
 If Monster.GetPosition.NoOfCellsSouth
 Console.WriteLine("You have shot the monster and it cannot stop you finding the flask")
 FlaskFound = True
 End If
 End Select
 Else
 Cavern.PlaceItem(Player.GetPosition, " ")
 Player.MakeMove(MoveDirection)
 Cavern.PlaceItem(Player.GetPosition, "*")
 Cavern.Display(Monster.GetAwake)
 FlaskFound = Player.CheckIfSameCell(Flask.GetPosition)
 End If
 If FlaskFound Then
 ...
6

(v) Mark is for AO3 (evaluate)
****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (c)(i), (c)(ii), (c)(iii) and (c)(iv), including prompts on screen capture matching those in code. Code for (c)(i), (c)(ii), (c)(iii) and (c)(iv) must be sensible.
Screen capture(s) showing the user shooting an arrow northwards at the start of the training game and the message about the monster being shot is displayed;
A Alternative output messages if match code for (c)(iv)
1

(vi) Mark is for AO3 (evaluate)
****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (c)(i), (c)(ii), (c)(iii) and (c)(iv), including prompts on screen capture matching those in code. Code for (c)(i), (c)(ii), (c)(iii) and (c)(iv) must be sensible.
Screen capture(s) showing an arrow being shot, no message about the monster being hit is displayed and then the invalid move message is displayed when the player tries to shoot an arrow for a second time;
1
[35]

Page 11
image1.png
Address bus

L

IT

ROM

Processor

l—— Sysem Clock:

{1

Scanner

Data bus

i

Parallel
interface

i

Magnetic
Disk
Storage

L

Disk Co

T

image2.png

image3.png
Processor

PC Ta0L Memory Address | Main Memory Contents.
(in binary) (in binary)
MAR 0000 00010101
MBR 0001 00100100
CR A 0010 01000011
Acc 00000000 0011 00000000
STATUS 0100 00000011
0101 00000000
OPCODE | INSTRUCTION | DESCRIPTION
os Load the contents of the provided memory location into the
accumulator
Add the contents of the provided memory location to the
0010 200 current contents of the accumulator, storing the result in the
accumulator
s . Copy the contents of the accumulator into the provided

memory location

image4.png
Fox

Animal

- FoodUnitsNeeded : Integer
- FoodUnitsConsumedThisPeriod : Integer
- DefaultLifespan : Integer

- DefaultProbabilityDeathOtherCauses : Double

New(Variability : Integer)

ResetFoodConsumed()
ReproduceThisPeriod() : Boolean
GiveFood(FoodUnits : Integer)
Inspect()

+ + + + + +

AdvanceGeneration(ShowDetail): Boolean) ‘

NaturalLifespan : Double

#ID : Integer

NextID : Integer

Age : Integer

ProbabilityOfDeathOtherCauses : Double
IsAlive : Boolean

Rnd : New Random()

+ New(AvglLifespan : Integer, AvgProbabilityOfDeathOtherCauses : Double, Variability : Integer)
+ Overridable CalculateNewAge()

+ Overridable ChecklfDead() : IsAlive

+ Inspect()

+ ChecklfKilledByOtherFactor() : Boolean

CalculateRandomValue(BaseValue : Integer, Variability : Integer) : Double

Warren

- MaxRabbitsInWarren : Integer
- Rabbits() : Rabbit

- RabbitCount : Integer

- PeriodsRun : Integer

- AlreadySpread : Boolean

- Variability : Integer

Rnd : New Random()

+ New(Variability : Integer)

+

+ o+ A+ o+

+
+

New(Variability : Integer, RabbitCount : Integer)
CalculateRandomValue(BaseValue : Integer, Variability : Integer) : Double
GetRabbitCount() : RabbitCount
NeedToCreateNewWarren() : Boolean
WarrenHasDiedOut() : Boolean

AdvanceGeneration(ShowDetail : Boolean):RabbitsToEat
KillByOtherFactors(ShowDetail : Boolean)

AgeRabbits(ShowDetail : Boolean)

MateRabbits(ShowDetail : Boolean)

CompressRabbitList(DeathCount : Integer)
ContainsMales() : Males

Inspect()

ListRabbits()

’+Const DefaultProbabilityDeathOtherCauses : Double = 0.05
+Gender : Genders

Rabbit

+ ReproductionRate : Double
+ Const DefaultReproductionRate : Double = 1.2
+Const DefaultLifespan : Integer = 4

+ New(Variability : Integer)

+ New(Variability : Integer, ParentsReproductionRate : Double)
+ Overrides Inspect()

+ IsFemale() : Boolean

+ GetReproductionRate() : ReproductionRate

