3.7. Computer Organisation and Architecture – Test 2

a)	Explain why	y RAM is primary storage and a hard disk is secondary storage.	[2]
b)	Explain the	concept of 'addressable memory'.	[2]
Fill	in the missin	ng details on the following:	[3]
	Name	Role	
	Data bus		
		Carries the details that are required in order to keep operations running at the correct time	
A	Address bus		
Exp	plain how the	following can affect the performance of a processor.	
a)	Clock speed	d	[2]
b)	Word lengt	th	[2]

4. Use the following list of machine-code instructions to answer the next two questions.

LDR Rd, <memory ref=""></memory>	Load the value stored in the memory location specified by <memory ref=""> into register d.</memory>
STR Rd, <memory ref=""></memory>	Store the value that is in register d into the memory location specified by <memory ref="">.</memory>
ADD Rd, Rn, <operand2></operand2>	Add the value specified in <pre><pre>operand2></pre> to the value in register n and store the result in register d.</pre>
SUB Rd, Rn, <operand2></operand2>	Subtract the value specified by <pre><pre>operand2></pre> from the value in register r and store the result in register d.</pre>
MOV Rd, <operand2></operand2>	Copy the value specified by <pre><pre>coperand2> into register d.</pre></pre>
CMP Rn, <operand2></operand2>	Compare the value stored in register n with the value specified by <pre><operand2>.</operand2></pre>
B <label></label>	Always branch to the instruction at position <pre><label></label></pre> in the program.
B <condition> <label></label></condition>	Conditionally branch to the instruction at position <label> in the program if the last comparison met the criteria specified by the <condition>. Possible values for <condition> and their meaning are • EQ: Equal to. • NE: Not equal to. • GT: Greater than. • LT: Less than.</condition></condition></label>
AND Rd, Rn, <operand2></operand2>	Perform a bitwise logical AND operation between the value in register n and the value specified by <pre><pre>operand2></pre> and store the result in register d</pre>
ORR Rd, Rn, <operand2></operand2>	Perform a bitwise logical OR operation between the value in register n and the value specified by <pre><pre>operand2></pre> and store the result in register d</pre>
EOR Rd, Rn, <operand2></operand2>	Perform a bitwise logical exclusive or (XOR) operation between the value in register n and the value specified by <pre><operand2></operand2></pre> and store the result in register d.
MVN Rd, <operand2></operand2>	Perform a bitwise logical NOT operation on the value specified by <pre><operand2> and store the result in register d.</operand2></pre>
LSL Rd, Rn, <operand2></operand2>	Logically shift left the value stored in register n by the number of bits specified by <pre><pre>operand2></pre> and store the result in register d.</pre>
LSR Rd, Rn, <operand2></operand2>	Logically shift right the value stored in register n by the number of bits specified by <pre><pre>operand2></pre> and store the result in register d.</pre>
HALT	Stops the execution of the program.

a)	Explain what 'immediate addressing' is and show how immediate addressing is used by giving an example that uses the CMP instruction.	[2]
	Example:	

	HDD Optical discs		Advanta	<u>je</u>			, isaavana		
			Advanta	Je			, isaavana		
	Storage Device		Advantag	Je			, isaavaiita		
		Advantage			Disadvantage				
	solid state drives (SS Give one advantage		dvantage f	or each ty	pe.				
(Common secondary	storage devi	ces used by	compute	rs include l	hard disk d	rives (HDD)), optical dis	cs, a
C	d) MBR								
(c) MAR								
â	b) CIR								
	a) PC								
١	What do the followi	ng abbreviatio	ons stand f	or?		Mair	T n memory		
	<u> </u>		ALU	PC	CIR	MAR	MBR	unit	
	General-purpo	ose registers	A 111	D.C.	CID	MAR	MADD	control	
7	Γhis diagram shows	memory used	d by the pro	ocessor.					
	Write a sequenc program code a stores the value	bove. Assume	that registe	r R1 currer	ntly stores th	ne value ass	ociated wit	th X, register F	R2

b) Consider the following code written in a high-level language:

7.	A school is considering changing from using paper registers to storing all the register info computer.				
	a)	Briefly describe two technologies that could be used to help enter data into the computer. [2]			
		1			
		2			
	b)	Outline the potential advantages and disadvantages of storing the information on a computer rather than in a register.			
		Total marks = /33			