
Page 1

Section A

1 (a) Marks are AO2 (apply)

1 mark for row 8 correct
1 mark for row 11 correct
1 mark for both rows 10 and 12 correct
Do not award mark for a particular number if same number is written more
than once

3

(c) Mark is AO2 (analysis)

Order of complexity Tick one box

O(log2 n)

O(n)

O(n2)

Do not award mark if more than one box ticked
1

(b) Mark is AO2 (analysis)

8
1

[5 marks]

A-LEVEL COMPUTER SCIENCE MARK SCHEME

Practice Paper 1 Maximum marks: 100

View detailed guidance on the conclusions you can draw from your students' performance in

these papers on the MERiT welcome page. Understand how your students compare with

others and target revision effectively by entering marks into MERiT.

This document is licensed to Godalming College - MB42610

Page 2

2 (a) Mark is AO1 (understanding)

Values/cards need to be taken out of the data structure from the opposite
end that they are put in // cards removed from top/front and added at
end/bottom/rear;
Values/cards need to be removed in the same order that they are added;
A. It is First In First Out // It is FIFO;
A. It is Last In Last Out // It is LILO;
Max 1

1

(b) (i) Mark is AO2 (apply)

FrontPointer = 13

RearPointer = 52

QueueSize = 40

1 mark for all three values correct
1

(ii) Mark is AO2 (apply)

FrontPointer = 13

RearPointer = 3

QueueSize = 43

1 mark for all three values correct
A. Incorrect value for FrontPointer if it matches the value given in part (i) and

incorrect value for QueueSize if it is equal to the value given for QueueSize in part

(i) incremented by three (follow through of errors previously made). However,

RearPointer must be 3.

1

This document is licensed to Godalming College - MB42610

Page 3

(c) Marks are AO2 (apply)

If DeckQueue is empty THEN

 Report error

ELSE

 Output DeckQueue[FrontPointer]

 Decrement QueueSize

 Increment FrontPointer

 IF FrontPointer > 52 THEN

 FrontPointer ← 1

 ENDIF

ENDIF

1 mark for IF statement to check if queue is empty – alternative for test is
QueueSize = 0

1 mark for reporting an error message if the queue is empty // dealing with
the error in another sensible way – this mark can still be awarded if there is
an error in the logic of the IF statement, as long as there is an IF statement

with a clear purpose
1 mark for only completing the rest of the algorithm if the queue is not
empty – this mark can still be awarded if there is an error in the logic of the
IF statement, as long as there is an IF statement with a clear purpose

1 mark for outputting the card at the correct position
1 mark for incrementing FrontPointer and decrementing QueueSize

1 mark for IF statement testing if the end of the queue has been reached

1 mark for setting FrontPointer back to 1 if this is the case – this mark can

still be awarded if minor error in logic of IF statement, e.g. >= instead of =

A. FrontPointer = (FrontPointer MOD 52) + 1 for 3 marks or

FrontPointer = (FrontPointer MOD 52) for 2 marks, both as

alternatives to incrementing and using and the second IF statement –

deduct 1 mark from either of the above if QueueSize has not been

decremented
A. Any type of brackets for array indexing
I. Additional reasonable ENDIF Statements

MAX 5 unless all of the steps listed above are carried out and algorithm
fully working

6
[9 marks]

3 (a) Marks are for AO2 (analysis)
Connected // There is a path between each pair of vertices;

Undirected // No direction is associated with each edge;
Has no cycles // No (simple) circuits // No closed chains // No closed paths
in which all the edges are different and all the intermediate vertices are
different // No route from a vertex back to itself that doesn’t use an edge
more than once or visit an intermediate vertex more than once;
A no loops
Alternative definitions:
A simple cycle is formed if any edge is added to graph;
Any two vertices can be connected by a unique simple path;
Max 2

2

This document is licensed to Godalming College - MB42610

Page 4

(b) Marks is for AO2 (analysis)
No route from entrance to exit / through maze;
Maze contains a loop / circuit;
A more than one route through maze;
Part of the maze is inaccessible / enclosed;
R Responses that clearly relate to a graph rather than the maze
Max 1

1

(c) Marks are AO2 (apply)

(allow some symbol in the central diagonal to indicate unused)

or

(with the shaded portion in either half – some indication must be made that
half of the matrix is not being used. This could just be leaving it blank,
unless the candidate has also represented absence of an edge by leaving
cells blank)

1 mark for drawing a 7x7 matrix, labelled with indices on both axis and filled
only with 0s and 1s, or some other symbol to indicate presence/absence of
edge e.g. T/F. Absence can be represented by an empty cell.
1 mark for correct values entered into matrix, as shown above;

2

This document is licensed to Godalming College - MB42610

Page 5

(d) (i) Mark is AO1 (knowledge)
Routine defined in terms of itself // Routine that calls itself;
A alternative names for routine e.g. procedure, algorithm
NE repeats itself

1

(ii) Marks are AO1 (understanding)
Stores return addresses;
Stores parameters;
Stores local variables; NE temporary variables
Stores contents of registers;
A To keep track of calls to subroutines/methods etc.

Max 1

Procedures / invocations / calls must be returned to in reverse order
(of being called);
As it is a LIFO structure;
A FILO
As more than one / many return addresses / sets of values may need
to be stored (at same time) // As the routine calls itself and for each
call/invocation a new return address / new values must be stored;

Max 1
2

This document is licensed to Godalming College - MB42610

Page 6

(e) Marks are AO2 (apply)

1 mark for having the correct values changes in each region highlighted by
a rectangle and no incorrect changes in the region. Ignore the contents of
any cells that are not changed.

A alternative indicators that clearly mean True and False.
A it is not necessary to repeat values that are already set (shown lighter in
table)

5
[13 marks]

This document is licensed to Godalming College - MB42610

Page 7

4 Marks are AO1 (understanding)
Static structures have fixed (maximum) size whereas size of dynamic structures can
change // Size of static structure fixed at compile-time whereas size of dynamic
structure can change at run-time;
Static structures can waste storage space / memory if the number of data items stored
is small relative to the size of the structure whereas dynamic structures only take up
the amount of storage space required for the actual data;
Dynamic data structures (typically) require memory to store pointer(s) to the next
item(s) which static structures (typically) do not need // Static structures (typically) store
data in consecutive memory locations, which dynamic data structures (typically) do not;
Max 2
A just one side of points, other side is by implication
NE Dynamic data structures use pointers

[2 marks]

5 (a) Marks are AO2 (apply)
18, 23, 21, 36, 40, 45, 58, 59

Mark as follows:

18 in the first place;

23 and 21 in correct order and in the second and third places;

21 and 36 in the correct order and in the third and fourth places;

40, 45, 58 and 59 in the correct order and in the last four places;

A Table 3 instead of Table 2 as long as the bottom cell of each of the
scores column is correct (I. any working out)

4

(b) Mark is AO1 (knowledge)
Bubble sort;
NE sort

1

(c) Mark is AO2 (analysis)

Order of Time Complexity Tick one box

O(n)

O(n2)

O(2n)

A alternative indicators instead of a tick e.g. a cross, Y, Yes
R responses in which more than one box is ticked

1
[6 marks]

This document is licensed to Godalming College - MB42610

Page 8

6 (a) Marks are AO1 (knowledge)
Is it possible in general to write a program / algorithm; that can tell, given any
program and its inputs and without running / executing the program;, whether

the given program with its given inputs will halt?

A “it” in second reference to program
A “create a Turing machine” for “write an algorithm”

2

(b) Mark is AO1 (understanding)
Shows that some problems are non-computable / undecidable // shows that
some problems cannot be solved by a computer / algorithm;

In general, inspection alone cannot always determine whether any given
algorithm will halt for its given inputs // a program cannot be written that can
determine whether any given algorithm will halt for its given inputs;
A it is not computable
Max 1

1
[3 marks]

Section B

7 (a) 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Level Description Mark
range

4 A line of reasoning has been followed to arrive at a logically
structured working or almost fully working programmed solution
that meets most of the requirements. All of the appropriate design
decisions have been taken. To award 12 marks, all of the
requirements must be met.

10-12

3 There is evidence that a line of reasoning has been followed to
produce a logically structured program. The program displays
relevant prompts, inputs the two words and includes one iterative
structure and two selection structures. An attempt has been
made to check if the words are anagrams of each other, although
this may not work correctly under all circumstances. The solution
demonstrates good design work as most of the correct design
decisions have been made.

7-9

2 A program has been written and some appropriate, syntactically
correct programming language statements have been written.
There is evidence that a line of reasoning has been partially
followed as although the program may not have the required
functionality, it can be seen that the response contains some of
the statements that would be needed in a working solution. There
is evidence of some appropriate design work as the response
recognises at least one appropriate technique that could be used
by a working solution, regardless of whether this has been
implemented correctly.

4-6

1 A program has been written and a few appropriate programming
language statements have been written but there is no evidence
that a line of reasoning has been followed to arrive at a working
solution. The statements written may or may not be syntactically
correct. It is unlikely that any of the key design elements of the
task have been recognised.

1-3

This document is licensed to Godalming College - MB42610

Page 9

Guidance
Evidence of AO3 design – 4 points:

Evidence of design to look for in responses:

1. Identifying that a selection structure is needed after all letter counts
have been compared to output a message saying the words are
anagrams or are not.

2. Identifying that a loop is needed that repeats a number of times
based on the length of the first or second word // identifying that a
loop is needed that repeats 26 times // identifying that a loop is
needed that repeats a number of times determined by the number of
unique characters in the first or second word

3. Identifying that the number of times a letter occurs in the first string
needs to be equal to the number of times it occurs in the second
string

4. Boolean (or equivalent) variable used to indicate if the first word is an
anagram of the second word // array of suitable size to store the
count of each letter

Note that AO3 (design) points are for selecting appropriate techniques to
use to solve the problem, so should be credited whether the syntax of
programming language statements is correct or not and regardless of
whether the solution works.

Evidence for AO3 programming – 8 points:

Evidence of programming to look for in response:

5. (Suitable prompts asking user to enter the two words followed by)
user inputs being assigned to appropriate variables
(R. if inside or after iterative structure),
two variables with appropriate data types created to store the two
words entered by the user

6. Iterative structure to look at each letter in first or second word has
correct syntax and start/end conditions // iterative structure to look at
each letter in the alphabet has correct syntax and start/end conditions

7. Correctly counts the number of times that a letter occurs in one of the
words

8. Selection structure that compares the count of a letter in the first word
with the count of that letter in the second word
A. incorrect counts
A. incorrect comparison operator

9. Correctly counts the number of times each letter occurs in one of the
two words

10. Program works correctly if the two words entered are the same word

11. Program works correctly if the two words entered are not anagrams

12. Program works correctly for all word pairs consisting of just uppercase
letters

This document is licensed to Godalming College - MB42610

Page 10

Alternative mark scheme

(based on removing a single instance of a letter from the 2nd word
each time it appears in the 1st word or vice-versa)

1. Identifying that a selection structure is needed after all the letters that
appear in both words have been removed from the first/second word
to output a message saying the words are or are not anagrams

3. Identifying that a letter can be removed from the second/first word if it
appears in the first/second word

7. Selection structure that checks if letter in first/second word appears in
the second/first word

8. Removes a letter from the second/first word if it appears in the
first/second word

9. Sets indicator to false if there are any letters that occur in one word
but not the other

12

This document is licensed to Godalming College - MB42610

Page 11

VB.NET
Dim Word1, Word2 As String

Dim IsAnagram As Boolean = True

Dim Counts(25, 1) As Integer

Console.Write("Enter the first word: ")

Word1 = Console.ReadLine

Console.Write("Enter the second word: ")

Word2 = Console.ReadLine

For Each ch In Word1

 Counts(Asc(ch) - 65, 0) += 1

Next

For Each ch In Word2

 Counts(Asc(ch) - 65, 1) += 1

Next

For Pos As Integer = 0 To 25

 If Counts(Pos, 0) <> Counts(Pos, 1) Then

 IsAnagram = False

 End If

Next

If IsAnagram Then

 Console.WriteLine("Yes")

Else

 Console.WriteLine("No")

End If

PYTHON 2
Word1 = ""

Word2 = ""

IsAnagram = True

Word1 = raw_input("Enter the first word: ")

Word2 = raw_input("Enter the second word: ")

if len(Word1) <> len(Word2):

 print "No"

else:

 for Pos in range(0, len(Word1)):

 if Word1.count(Word1[Pos]) <>

Word2.count(Word1[Pos]):

 IsAnagram = False

 if IsAnagram:

 print "Yes"

 else:

 print "No"

PYTHON 3
Word1 = ""

Word2 = ""

IsAnagram = True

Word1 = input("Enter the first word: ")

Word2 = input("Enter the second word: ")

if len(Word1) != len(Word2):

 print("No")

else:

 for Pos in range(0, len(Word1)):

 if Word1.count(Word1[Pos]) !=

Word2.count(Word1[Pos]):

 IsAnagram = False

 if IsAnagram:

 print("Yes")

 else:

 print("No")

This document is licensed to Godalming College - MB42610

Page 12

C#
string word1, word2;

bool IsAnagram = true;

int[,] counts = new int[26, 2];

Console.Write("Enter the first word: ");

word1 = Console.ReadLine();

Console.Write("Enter the second word: ");

word2 = Console.ReadLine();

foreach (var ch in word1) counts[ch - 65, 0]++;

foreach (var ch in word2) counts[ch - 65, 1]++;

int pos = 0;

while (pos <= 25)

{

 if (counts[pos, 0] != counts[pos, 1])

 {

 IsAnagram = false;

 }

 pos++;

}

if (IsAnagram) Console.WriteLine("Yes");

else Console.WriteLine("No");

PASCAL
var

 word1, word2: string;

 characterCount: array['A' .. 'Z'] of integer;

 character: char;

 canBeMade: boolean;

begin

 for character := 'A' to 'Z' do

 characterCount[character] := 0;

 write('First word: ');

 readln(word1);

 write('Second word: ');

 readln(word2);

 for character in word2 do

 inc(characterCount[character]);

 canBeMade := true;

 for character in word1 do

 dec(characterCount[character]);

 canBeMade := True;

 for character := 'A' to 'Z' do

 if characterCount[character]<>0 then

 canBeMade := False;

 if canBeMade then

 writeln('Yes')

 else

 writeln('No');

 readln;

end.

This document is licensed to Godalming College - MB42610

Page 13

JAVA
 String word1, word2;

 boolean IsAnagram = true;

 int pos;

 int[][] counts = new int[26][2];

 Console.write("Enter the first word: ");

 word1 = Console.readLine();

 Console.write("Enter the second word: ");

 word2 = Console.readLine();

 for (pos = 0; pos < word1.length(); pos++) {

 counts[(int)word1.charAt(pos) - 65][0]++;

 }

 for (pos = 0; pos < word2.length(); pos++) {

 counts[(int)word2.charAt(pos) - 65][1]++;

 }

 pos = 0;

 while (pos <= 25) {

 if (counts[pos][0] != counts[pos][1]) {

 IsAnagram = false;

 }

 pos++;

 }

 if (IsAnagram) {

 Console.writeLine("Yes");

 } else {

 Console.writeLine("No");

 }

 Console.readLine();

(b) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from part (a), including prompts on screen capture
matching those in code.

Code for part (a) must be sensible.

Screen captures showing:
• the string STOOL being entered followed by the string TOOLS and

then a message displayed saying that the words are anagrams.
• the string THE being entered followed by the string HE and then a

message displayed saying that the words are not anagrams.
1

[13 marks]

This document is licensed to Godalming College - MB42610

Page 14

Section C

8 (a) Marks are for AO2 (analyse)

Feature Is present in Figure 11? (Yes/No)

Composition Yes

Private method Yes

Protected attribute No

A. alternative indicators instead of Yes/No e.g. Y/N.

Mark as follows:
One mark per correct row

3

(b) Mark is for AO2 (analyse)
Animal;

R. if spelt incorrectly
R. if any additional code
I. case

1

(c) Marks are for AO1 (understanding)
A protected attribute can be accessed (within its class and) by derived
class instances / subclasses;
A public attribute can be accessed in any class; A. anywhere

2

(d) 1 mark for AO1 (understanding)
The way IsAlive is represented can be modified without having to change

any other classes that interact with Animal // this allows

IsAlive/data/properties to be modified in a controlled way;
1

(e) Mark is for AO2 (analyse)
To ensure that there is an equal probability that a rabbit will be male or
female;
A. to try to achieve equal numbers of male and female rabbits

1

(f) Marks are for AO1 (knowledge) and AO2 (analyse)
AO1 (knowledge): A method shared (up and down the inheritance
hierarchy chain) but with a subclass implementing it differently to the base
class;
AO2 (analyse): So that the Rabbit class can display additional

information about a rabbit that is not displayed by the Animal class; A.

“different” for “additional”
2

(g) Marks is for AO2 (analyse)
If all the rabbits were killed by the call to KillByOtherFactors there

would be no need to call AgeRabbits // there would be no rabbits to age;

R. the code would crash / not work
1

(h) Marks are for AO2 (analyse)
To select a rabbit for the rabbit to mate with;
That isn’t another female rabbit (or the rabbit itself) // a different rabbit will
be selected if the selected rabbit is a female (or the rabbit itself);

2

(i) Marks are for AO2 (analyse)
The check that the rabbit is not going to mate with itself could be removed;
as if the rabbit chosen to mate with was itself then it would be a female
rabbit, so the other condition would always (A. also) be true;

2
[15 marks]

This document is licensed to Godalming College - MB42610

Page 15

Section D

9 (a) (i) Marks are for AO3 (programming)

1 mark: 1. Calculation of the square of the landscape size //
calculation of the square root of the number of warrens
1 mark: 2. Comparison that initial warren count is greater than / less
than or equal to square of landscape size // comparison that square
root of initial warren count is greater than / less than or equal to
landscape size
1 mark: 3. Error message displayed in correct circumstances
1 mark: 4. 1-3 happen repeatedly until valid input and forces re-entry
of data each time

Max 3 if not fully working

4

VB.NET
Do

 Console.Write("Initial number of warrens: ")

 InitialWarrenCount = CInt(Console.ReadLine())

 If InitialWarrenCount > Math.Pow(LandscapeSize, 2) Then

 Console.WriteLine("Error: Too many warrens to fit on

landscape")

 End If

Loop Until InitialWarrenCount <= Math.Pow(LandscapeSize, 2)

PYTHON 2
InitialWarrenCount = int(raw_input("Initial number of

warrens: "))

while InitialWarrenCount>math.pow(LandscapeSize,2):

 print "Error: Too many warrens to fit on landscape"

 InitialWarrenCount = int(raw_input("Initial number of

warrens: "))

PYTHON 3
InitialWarrenCount = int(input("Initial number of

warrens: "))

while InitialWarrenCount>math.pow(LandscapeSize,2):

 print("Error: Too many warrens to fit on landscape")

 InitialWarrenCount = int(input("Initial number of

warrens: "))

C#
do

{

 Console.Write("Initial number of warrens: ");

 InitialWarrenCount =

Convert.ToInt32(Console.ReadLine());

 if (InitialWarrenCount > Math.Pow(LandscapeSize, 2))

 Console.WriteLine("Error: Too many warrens to fit on

landscape");

} while (InitialWarrenCount > Math.Pow(LandscapeSize,

2));

This document is licensed to Godalming College - MB42610

Page 16

PASCAL
repeat

 write('Initial number of warrens: ');

 readln(InitialWarrenCount);

 if InitialWarrenCount > Math.Power(LandScapeSize,2)

then

 writeln('Error: Too many warrens to fit on

landscape');

until InitialWarrenCount <= Math.Power(LandScapeSize,2);

JAVA
do

{

 InitialWarrenCount = Console.readInteger("Initial

number of warrens: ");

 if (InitialWarrenCount > Math.pow(LandscapeSize,2))

 Console.println("Error: Too many warrens to fit on

landscape");

} while (InitialWarrenCount >

Math.pow(LandscapeSize,2));

(ii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (a)(i), including error message. Code for
part (a)(i) must be sensible.

1 mark: Screen capture(s) showing the required sequence of inputs
(16, 257, 256), an error message being displayed for 257, and

that 256 has been accepted as the program has displayed next

prompt.

A. prompt for initial number of foxes not shown if clear from code that
256 would be accepted

1

(b) (i) Marks are for AO3 (programming)

1 mark: 1. New subroutine created, with correct name, that overrides
the subroutine in the Animal class

I. private, protected, public modifiers
1 mark: 2. CalculateNewAge subroutine in Animal class is always

called
1 mark: 3. Check made on gender of rabbit, and calculations done
differently for each gender
I. incorrect calculations
1 mark: 4. Probability of death by other causes calculated correctly
for male rabbits
1 mark: 5. Probability of death by other causes calculated correctly
for female rabbits

5

This document is licensed to Godalming College - MB42610

Page 17

VB.NET
Public Overrides Sub CalculateNewAge()

 MyBase.CalculateNewAge()

 If Gender = Genders.Male Then

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses * 1.4

 Else

 If Age >= 2 Then

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses + 0.1

 End If

 End If

End Sub

PYTHON 2
def CalculateNewAge(self):

 super(Rabbit, self).CalculateNewAge()

 if self.__Gender == Genders.Male:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses * 1.4

 else:

 if self._Age >= 2:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses + 0.1

PYTHON 3
def CalculateNewAge(self):

 super(Rabbit, self).CalculateNewAge()

 if self.__Gender == Genders.Male:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses * 1.4

 else:

 if self._Age >= 2:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses + 0.1

C#
public override void CalculateNewAge()

{

 base.CalculateNewAge();

 if (Gender == Genders.Male)

 {

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses * 1.4;

 }

 else

 {

 if (Age >= 2)

 {

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses + 0.1;

 }

 }

}

This document is licensed to Godalming College - MB42610

Page 18

PASCAL
procedure Rabbit.CalculateNewAge();

 begin

 inherited;

 if Gender = Male then

 ProbabilityOfDeathOtherCauses :=

ProbabilityOfDeathOtherCauses * 1.4

 else

 if Age >= 2 then

 ProbabilityOfDeathOtherCauses :=

ProbabilityOfDeathOtherCauses + 0.1;

 end;

JAVA
@Override

public void CalculateNewAge()

{

 super.CalculateNewAge();

 if (Gender == Genders.Male)

 {

 ProbabilityOfDeathOtherCauses *= 1.4;

 }

 else if(Age >= 2)

 {

 ProbabilityOfDeathOtherCauses += 0.1;

 }

}

(ii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (b)(i). Code for part (b)(i) must be
sensible.

1 mark: Any screen capture(s) showing the correct probability of
death by other causes for a male rabbit (0.10 to 2dp) and a female
rabbit (0.15);

Example:

1

(c) (i) Marks are for AO3 (programming)

1 mark: Property created to indicate whether a location contains a
trap or not
1 mark: Trap indicator passed to constructor as parameter
1 mark: Trap indicator stored into property by constructor

3

VB.NET
Class Location

 Public Fox As Fox

 Public Warren As Warren

 Public Trap As Boolean

 Public Sub New(ByVal T As Boolean)

 Fox = Nothing

 Warren = Nothing

 Trap = T

 End Sub

End Class

This document is licensed to Godalming College - MB42610

Page 19

PYTHON 2
class Location:

 def __init__(self, T):

 self.Fox = None

 self.Warren = None

 self.Trap = T

PYTHON 3
class Location:

 def __init__(self, T):

 self.Fox = None

 self.Warren = None

 self.Trap = T

C#
class Location

 {
 public Fox Fox;
 public Warren Warren;

 public bool Trap;

 public Location(bool T)
 {
 Fox = null;
 Warren = null;
 Trap = T;
 }

}

PASCAL
type

 Location = class

 Fox : Fox;

 Warren : Warren;

 Trap : boolean;

 constructor New(T : boolean);

 end;

constructor Location.New(T : boolean);

 begin

 Fox := nil;

 Warren := nil;

 Trap := T;

 end;

JAVA
class Location

{

 public Fox Fox;

 public Warren Warren;

 public Boolean Trap;

 public Location(Boolean T)

 {

 Fox = null;

 Warren = null;

 Trap = T;

 }

}

This document is licensed to Godalming College - MB42610

Page 20

(ii) Marks are for AO3 (programming)
1 mark: 1. An indicator of whether a trap is present or not will be
stored for every location
I. wrong value stored in a location
1 mark: 2. Trap created at (4,10)
1 mark: 3. Trap created at (12,14)
MAX 2 if creates any traps in incorrect locations 3

VB.NET
For x = 0 To LandscapeSize - 1

 For y = 0 To LandscapeSize - 1

 If x = 4 And y = 10 Or x = 12 And y = 14 Then

 Landscape(x, y) = New Location(True)

 Else

 Landscape(x, y) = New Location(False)

 End If

 Next

Next

PYTHON 2
for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if x == 4 and y == 10 or x == 12 and y == 14:

 self.__Landscape[x][y] = Location(True)

 else:

 self.__Landscape[x][y] = Location(False)

PYTHON 3
for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if x == 4 and y == 10 or x == 12 and y == 14:

 self.__Landscape[x][y] = Location(True)

 else:

 self.__Landscape[x][y] = Location(False)

C#
for (int x = 0; x < LandscapeSize; x++)

{

 for (int y = 0; y < LandscapeSize; y++)

 {

 if ((x == 4 && y == 10) || (x == 12 && y == 14))

 Landscape[x, y] = new Location(true);

 else

 Landscape[x, y] = new Location(false);

 }

}

PASCAL
for x := 0 to LandscapeSize - 1 do

 for y := 0 to LandscapeSize - 1 do

 if (x = 4) and (y = 10) or (x = 12) and (y = 14)

then

 Landscape[x][y] := Location.New(true)

 else

 Landscape[x][y] := Location.New(false);

JAVA
for(int x = 0 ; x < LandscapeSize; x++)

{

 for(int y = 0; y < LandscapeSize; y++)

 {

 if (((x == 4 && y == 10) || (x == 12 && y == 14)))

 Landscape[x][y] = new Location(true);

 else

 Landscape[x][y] = new Location(false);

 }

}

This document is licensed to Godalming College - MB42610

Page 21

(iii) Marks are for AO3 (programming)

1 mark: T or other indicator displayed in each location where there is
a trap (could be different letters, use of different colours)

1 mark: Row containing column indices matches new display of
landscape I. number of dashes not adjusted to match new width R. if
trap indicators not displayed A. no adjustment made if indicators for
traps used mean no adjustment to width of display for trap was
needed

2

VB.NET
Private Sub DrawLandscape()

 Console.WriteLine()

 Console.WriteLine("TIME PERIOD: " & TimePeriod)

 Console.WriteLine()

 Console.Write(" ")

 For x = 0 To LandscapeSize - 1

 Console.Write(" ")

 If x < 10 Then

 Console.Write(" ")

 End If

 Console.Write(x & " |")

 Next

 Console.WriteLine()

 For x = 0 To LandscapeSize * 5 + 3

 Console.Write("-")

 Next

 Console.WriteLine()

 For y = 0 To LandscapeSize - 1

 If y < 10 Then

 Console.Write(" ")

 End If

 Console.Write(" " & y & "|")

 For x = 0 To LandscapeSize - 1

 If Not Landscape(x, y).Warren Is Nothing Then

 If Landscape(x, y).Warren.GetRabbitCount() <

10 Then

 Console.Write(" ")

 End If

 Console.Write(Landscape(x,

y).Warren.GetRabbitCount())

 Else

 Console.Write(" ")

 End If

 If Not Landscape(x, y).Fox Is Nothing Then

 Console.Write("F")

 Else

 Console.Write(" ")

 End If

 If Landscape(x, y).Trap Then

 Console.Write("T")

 Else

 Console.Write(" ")

 End If

 Console.Write("|")

 Next

 Console.WriteLine()

 Next

End Sub

This document is licensed to Godalming College - MB42610

Page 22

PYTHON 2
def __DrawLandscape(self):

 print

 print "TIME PERIOD:", str(self.__TimePeriod)

 print

 sys.stdout.write(" ")

 for x in range (0, self.__LandscapeSize):

 sys.stdout.write(" ")

 if x < 10:

 sys.stdout.write(" ")

 sys.stdout.write(str(x) + " |")

 print

 for x in range (0, self.__LandscapeSize * 5 + 3):

 sys.stdout.write("-")

 print

 for y in range (0, self.__LandscapeSize):

 if y < 10:

 sys.stdout.write(" ")

 sys.stdout.write(str(y) + "|")

 for x in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Warren is None:

 if

self.__Landscape[x][y].Warren.GetRabbitCount() < 10:

 sys.stdout.write(" ")

 sys.stdout.write(self.__Landscape[x][y].

Warren.GetRabbitCount())

 else:

 sys.stdout.write(" ")

 if not self.__Landscape[x][y].Fox is None:

 sys.stdout.write("F")

 else:

 sys.stdout.write(" ")

 if self.__Landscape[x][y].Trap:

 sys.stdout.write("T")

 else:

 sys.stdout.write(" ")

 sys.stdout.write("|")

 print

This document is licensed to Godalming College - MB42610

Page 23

PYTHON 3
def __DrawLandscape(self):

 print()

 print("TIME PERIOD:", self.__TimePeriod)

 print()

 print(" ", end = "")

 for x in range (0, self.__LandscapeSize):

 print(" ", end = "")

 if x < 10:

 print(" ", end = "")

 print(x, "|", end = "")

 print()

 for x in range (0, self.__LandscapeSize * 5 + 3):

#CHANGE

 print("-", end = "")

 print()

 for y in range (0, self.__LandscapeSize):

 if y < 10:

 print(" ", end = "")

 print("", y, "|", sep = "", end = "")

 for x in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Warren is None:

 if

self.__Landscape[x][y].Warren.GetRabbitCount() < 10:

 print(" ", end = "")

 print(self.__Landscape[x][y].Warren.GetRabbitC

ount(), end = "")

 else:

 print(" ", end = "")

 if not self.__Landscape[x][y].Fox is None:

 print("F", end = "")

 else:

 print(" ", end = "")

 if self.__Landscape[x][y].Trap:

 print("T", end = "")

 else:

 print(" ", end = "")

 print("|", end = "")

 print()

This document is licensed to Godalming College - MB42610

Page 24

C#
private void DrawLandscape()

{

 Console.WriteLine();

 Console.WriteLine("TIME PERIOD: " + TimePeriod);

 Console.WriteLine();

 Console.Write(" ");

 for (int x = 0; x < LandscapeSize; x++)

 {

 if (x < 10)

 {

 Console.Write(" ");

 }

 Console.Write(x + " |");

 }

 Console.WriteLine();

 for (int x = 0; x <= LandscapeSize * 5 + 3; x++)

 {

 Console.Write("-");

 }

 Console.WriteLine();

 for (int y = 0; y < LandscapeSize; y++)

 {

 if (y < 10) { Console.Write(" "); }

 Console.Write(" " + y + "|");

 for (int x = 0; x < LandscapeSize; x++)

 {

 if (Landscape[x, y].Warren != null)

 {

 if (Landscape[x, y].Warren.GetRabbitCount() < 10)

 {

 Console.Write(" ");

 }

 Console.Write(Landscape[x, y].Warren.GetRabbitCount());

 }

 else

 {

 Console.Write(" ");

 }

 if (Landscape[x, y].Trap) Console.Write("T");

 else Console.Write(" ");

 if (Landscape[x, y].Fox != null)

 {

 Console.Write("F");

 }

 else

 {

 Console.Write(" ");

 }

 Console.Write("|");

 }

 Console.WriteLine();

 }

}

This document is licensed to Godalming College - MB42610

Page 25

PASCAL
procedure Simulation.DrawLandscape();

 var

 x : integer;

 y : integer;

 begin

 writeln;

 writeln('TIME PERIOD: ', TimePeriod);

 writeln;

 write(' ');

 for x := 0 to LandscapeSize - 1 do

 begin

 write(' ');

 if x < 10 then

 write(' ');

 write(x, ' |');

 end;

 writeln;

 for x:=0 to LandscapeSize * 5 + 3 do

 write('-');

 writeln;

 for y := 0 to LandscapeSize - 1 do

 begin

 if y < 10 then

 write(' ');

 write(' ', y, '|');

 for x:= 0 to LandscapeSize - 1 do

 begin

 if not(self.Landscape[x][y].Warren =

nil) then

 begin

 if

self.Landscape[x][y].Warren.GetRabbitCount() < 10 then

 write(' ');

 write(Landscape[x][y].Warren.GetRab

bitCount());

 end

 else

 write(' ');

 if not(self.Landscape[x][y].fox = nil)

then

 write('F')

 else

 write(' ');

 if Landscape[x][y].Trap then

 write('T')

 else

 write(' ');

 write('|');

 end;

 writeln;

 end;

 end;

This document is licensed to Godalming College - MB42610

Page 26

JAVA
private void DrawLandscape()

{

 Console.println();

 Console.println("TIME PERIOD: " + TimePeriod);

 Console.println();

 Console.print(" ");

 for(int x = 0; x < LandscapeSize; x++)

 {

 Console.print(" ");

 if (x < 10)

 {

 Console.print(" ");

 }

 Console.print(x + " |");

 }

 Console.println();

 for(int x = 0; x < LandscapeSize * 5 + 4; x++)

 {

 Console.print("-");

 }

 Console.println();

 for(int y = 0; y < LandscapeSize; y++)

 {

 if(y < 10)

 {

 Console.print(" ");

 }

 Console.print(" " + y + "|");

 for(int x = 0; x < LandscapeSize; x++)

 {

 if (Landscape[x][y].Warren != null)

 {

 if (Landscape[x][y].Warren.GetRabbitCount() <

10)

 {

 Console.print(" ");

 }

Console.print(Landscape[x][y].Warren.GetRabbitCount());

 }

 else

 {

 Console.print(" ");

 }

 if (Landscape[x][y].Fox != null)

 {

 Console.print("F");

 }

 else

 {

 Console.print(" ");

 }

 if (Landscape[x][y].Trap)

 Console.print("T");

 else

 Console.print(" ");

 Console.print("|");

 }

 Console.println();

 }

}

This document is licensed to Godalming College - MB42610

Page 27

(iv) Marks are for AO3 (programming)

1 mark: Fox will not be placed in a location that contains a trap

1 mark: Fox will not be placed where there is already a fox

2

VB.NET
Private Sub CreateNewFox()

 Dim x As Integer

 Dim y As Integer

 Do

 x = Rnd.Next(0, LandscapeSize)

 y = Rnd.Next(0, LandscapeSize)

 Loop While Not Landscape(x, y).Fox Is Nothing Or

Landscape(x, y).Trap

 If ShowDetail Then

 Console.WriteLine(" New Fox at (" & x & "," & y &

")")

 End If

 Landscape(x, y).Fox = New Fox(Variability)

 FoxCount += 1

End Sub

PYTHON 2
def __CreateNewFox(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Fox is None or

self.__Landscape[x][y].Trap:

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 sys.stdout.write(" New Fox at (" + str(x) + "," +

str(y) + ")")

 self.__Landscape[x][y].Fox = Fox(self.__Variability)

 self.__FoxCount += 1

PYTHON 3
def __CreateNewFox(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Fox is None or

self.__Landscape[x][y].Trap:

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 print(" New Fox at (", x, ",", y, ")", sep = "")

 self.__Landscape[x][y].Fox = Fox(self.__Variability)

 self.__FoxCount += 1

This document is licensed to Godalming College - MB42610

Page 28

C#
private void CreateNewFox()

{

 int x, y;

 do

 {

 x = Rnd.Next(0, LandscapeSize);

 y = Rnd.Next(0, LandscapeSize);

 } while ((Landscape[x, y].Fox != null) ||

(Landscape[x, y].Trap));

 if (ShowDetail) { Console.WriteLine(" New Fox at (" +

x + "," + y + ")"); }

 Landscape[x, y].Fox = new Fox(Variability);

 FoxCount++;

}

PASCAL
procedure Simulation.CreateNewFox();

 var

 x : integer;

 y : integer;

 begin

 randomize();

 repeat

 x := Random(LandscapeSize);

 y := Random(LandscapeSize);

 until (Landscape[x][y].fox = Nil) and

(Landscape[x][y].Trap = False);

 if ShowDetail then

 writeln(' New Fox at (',x, ',',y, ')');

 Landscape[x][y].Fox := Fox.New(Variability);

 inc(FoxCount);

 end;

JAVA
private void CreateNewFox()

{

 int x;

 int y;

 do

 {

 x = Rnd.nextInt(LandscapeSize);

 y = Rnd.nextInt(LandscapeSize);

 }while (Landscape[x][y].Fox != null ||

Landscape[x][y].Trap);

 if (ShowDetail)

 {

 Console.println(" New Fox at (" + x + "," + y +

")");

 }

 Landscape[x][y].Fox = new Fox(Variability);

 FoxCount += 1;

}

This document is licensed to Godalming College - MB42610

Page 29

(v) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (c)(i) to (c)(iv). Code for these parts must
be sensible

1 mark: Screen capture(s) indicating which locations contain traps
A. incorrect location of traps if these match those set in parts (c)(ii)

1

(d) (i) Marks are for AO3 (programming)

Structure of subroutine:
1. 1 mark: Subroutine created with correct name

CheckIfTrapNearFox I. private/public/protected modifiers

2. 1 mark: Subroutine has two parameters of appropriate data
type, which are the coordinates of a fox to check for a trap
nearby I. self parameter in Python answers I. additional

parameters
3. 1 mark: Subroutine returns a Boolean value
4. 1 mark: One or more locations that a trap that would catch the

fox could be in are checked
5. 1 mark: All locations that a trap that would catch the fox could

be in are checked
6. 1 mark: Checks would work for foxes that are near to the edge

of the landscape (ie distance from fox to edge of landscape is
less than two)

7. 1 mark: True or False correctly returned depending on whether
trap found or not A. if only some locations are checked, the
correct value is returned based on the locations checked

MAX 6 if not fully working
7

This document is licensed to Godalming College - MB42610

Page 30

VB.NET
Private Function CheckIfTrapNearFox(ByVal FoxX As Integer, ByVal

FoxY As Integer) As Integer

 Dim LeftBound As Integer = Math.Max(0, FoxX - 2)

 Dim RightBound As Integer = Math.Min(LandscapeSize - 1, FoxX +

2)

 Dim TopBound As Integer = Math.Max(0, FoxY - 2)

 Dim BottomBound As Integer = Math.Min(LandscapeSize - 1, FoxY +

2)

 For X As Integer = LeftBound To RightBound

 For Y As Integer = TopBound To BottomBound

 If Landscape(X, Y).Trap Then

 Return True

 End If

 Next

 Next

 Return False

End Function

PYTHON 2
def __CheckIfTrapNearFox(self, FoxX, FoxY):

 LeftBound = max(0, FoxX - 2)

 RightBound = min(self.__LandscapeSize - 1, FoxX + 2)

 TopBound = max(0, FoxY - 2)

 BottomBound = min(self.__LandscapeSize - 1, FoxY + 2)

 for x in range (LeftBound, RightBound + 1):

 for y in range (TopBound, BottomBound + 1):

 if self.__Landscape[x][y].Trap:

 return True

PYTHON 3
def __CheckIfTrapNearFox(self, FoxX, FoxY):

 LeftBound = max(0, FoxX - 2)

 RightBound = min(self.__LandscapeSize - 1, FoxX + 2)

 TopBound = max(0, FoxY - 2)

 BottomBound = min(self.__LandscapeSize - 1, FoxY + 2)

 for x in range (LeftBound, RightBound + 1):

 for y in range (TopBound, BottomBound + 1):

 if self.__Landscape[x][y].Trap:

 return True

 return False

C#
private bool CheckIfTrapNearFox(int foxx, int foxy)

{

 int leftbound = Math.Max(0, foxx - 2);

 int rightbound = Math.Min(LandscapeSize - 1, foxx + 2);

 int topbound = Math.Max(0, foxy - 2);

 int bottombound = Math.Min(LandscapeSize - 1, foxy + 2);

 for (int x=leftbound;x<=rightbound;x++)

 {

 for (int y=topbound;y<=bottombound;y++)

 {

 if (Landscape[x,y].Trap) return true;

 }

 }

 return false;

}

This document is licensed to Godalming College - MB42610

Page 31

PASCAL
function Simulation.CheckIfTrapNearFox(FoxX : integer;

FoxY : integer) : boolean;

 var

 LeftBound : integer;

 RightBound : integer;

 TopBound : integer;

 BottomBound : integer;

 x : integer;

 y : integer;

 Trapped : boolean;

 begin

 Trapped := false;

 LeftBound := Math.Max(0, FoxX - 2);

 RightBound := Math.Min(LandscapeSize - 1, FoxX + 2);

 TopBound := Math.Max(0, FoxY - 2);

 BottomBound := Math.Min(LandscapeSize - 1, FoxY +

2);

 for x := LeftBound to RightBound do

 for y := TopBound to BottomBound do

 if Landscape[x][y].Trap then Trapped := true;

 CheckIfTrapNearFox := Trapped;

 end;

JAVA
private boolean CheckIfTrapNearFox(int FoxX, int FoxY)

{

 int LeftBound = Math.max(0, FoxX - 2);

 int RightBound = Math.min(LandscapeSize - 1, FoxX +

2);

 int TopBound = Math.max(0, FoxY - 2);

 int BottomBound = Math.min(LandscapeSize - 1, FoxY +

2);

 for (int x=LeftBound;x<=RightBound;x++)

 {

 for (int y=TopBound;y<=BottomBound;y++)

 {

 if (Landscape[x][y].Trap) return true;

 }

 }

 return false;

}

This document is licensed to Godalming College - MB42610

Page 32

(ii) Marks are for AO3 (programming)
1 mark: The value of IsAlive can be changed from outside the

class
1 mark: Updating IsAlive is via a setter function (any reasonable

name acceptable)
MAX 1 if not fully working

2

VB.NET
Public Sub SetDead()

 IsAlive = False

End Sub

PYTHON 2
def SetDead(self):

 self._IsAlive = False

PYTHON 3
def SetDead(self):

 self._IsAlive = False

C#
public void SetDead()

{

 IsAlive = false;

}

PASCAL
procedure Animal.SetDead();

 begin

 IsAlive := false;

 end;

JAVA

public void SetDead()

{

 IsAlive = false;

}

This document is licensed to Godalming College - MB42610

Page 33

(iii) Marks are for AO3 (programming)
1 mark: CheckIfTrapNearFox subroutine is called for each fox on

the landscape
1 mark: If the subroutine returns true, the fox’s IsAlive property will

be set to false
MAX 1 if not fully working

2

VB.NET
For x = 0 To LandscapeSize - 1

 For y = 0 To LandscapeSize - 1

 If Not Landscape(x, y).Fox Is Nothing Then

 If ShowDetail Then

 Console.WriteLine("Fox at (" & x & "," & y & "): ")

 End If

 If CheckIfTrapNearFox(x, y) Then

 Landscape(x, y).Fox.SetDead()

 End If

 Landscape(x, y).Fox.AdvanceGeneration(ShowDetail)

 If Landscape(x, y).Fox.CheckIfDead() Then

 Landscape(x, y).Fox = Nothing

 FoxCount -= 1

 Else

 If Landscape(x, y).Fox.ReproduceThisPeriod() Then

 If ShowDetail Then

 Console.WriteLine(" Fox has reproduced. ")

 End If

 NewFoxCount += 1

 End If

 If ShowDetail Then

 Landscape(x, y).Fox.Inspect()

 End If

 Landscape(x, y).Fox.ResetFoodConsumed()

 End If

 End If

 Next

Next

PYTHON 2
for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Fox is None:

 if self.__ShowDetail:

 sys.stdout.write("Fox at (" + str(x) + "," +

str(y) + "): " + "\n")

 if self.__CheckIfTrapNearFox(x, y):

 self.__Landscape[x][y].Fox.SetDead()

 self.__Landscape[x][y].Fox.AdvanceGeneration

(self.__ShowDetail)

 if self.__Landscape[x][y].Fox.CheckIfDead():

 self.__Landscape[x][y].Fox = None

 self.__FoxCount -= 1

 else:

 if self.__Landscape[x][y].Fox.Reproduce

ThisPeriod():

 if self.__ShowDetail:

 print " Fox has reproduced. "

 NewFoxCount += 1

 if self.__ShowDetail:

 self.__Landscape[x][y].Fox.Inspect()

 self.__Landscape[x][y].Fox.ResetFoodConsumed()

This document is licensed to Godalming College - MB42610

Page 34

PYTHON 3
for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Fox is None:

 if self.__ShowDetail:

 print("Fox at (", x, ",", y, "): ", sep = "")

 if self.__CheckIfTrapNearFox(x, y):

 self.__Landscape[x][y].Fox.SetDead()

 self.__Landscape[x][y].Fox.AdvanceGeneration

(self.__ShowDetail)

 if self.__Landscape[x][y].Fox.CheckIfDead():

 self.__Landscape[x][y].Fox = None

 self.__FoxCount -= 1

 else:

 if self.__Landscape[x][y].Fox.Reproduce

ThisPeriod():

 if self.__ShowDetail:

 print(" Fox has reproduced. ")

 NewFoxCount += 1

 if self.__ShowDetail:

 self.__Landscape[x][y].Fox.Inspect()

 self.__Landscape[x][y].Fox.ResetFoodConsumed()

C#
for (int x = 0; x < LandscapeSize; x++)

{

 for (int y = 0; y < LandscapeSize; y++)

 {

 if (Landscape[x, y].Fox != null)

 {

 if (ShowDetail)

 {

 Console.WriteLine("Fox at (" + x + "," + y + "): ");

 }

 if (CheckIfTrapNearFox(x,y))

 {

 Landscape[x, y].Fox.SetDead();

 }

 Landscape[x, y].Fox.AdvanceGeneration(ShowDetail);

 if (Landscape[x, y].Fox.CheckIfDead())

 {

 Landscape[x, y].Fox = null;

 FoxCount--;

 }

 else

 {

 if (Landscape[x, y].Fox.ReproduceThisPeriod())

 {

 if (ShowDetail) { Console.WriteLine(" Fox has

reproduced. "); }

 NewFoxCount++;

 }

 if (ShowDetail) { Landscape[x, y].Fox.Inspect(); }

 Landscape[x, y].Fox.ResetFoodConsumed();

 }

 }

 }

}

This document is licensed to Godalming College - MB42610

Page 35

PASCAL
for x:= 0 to LandscapeSize - 1 do

 for y:= 0 to LandscapeSize - 1 do

 if not(Landscape[x][y].Fox = nil) then

 begin

 if ShowDetail then

 writeln('Fox at (', x, ',', y, '): ');

 if CheckIfTrapNearFox(x,y) then

 Landscape[x][y].Fox.SetDead();

Landscape[x][y].Fox.AdvanceGeneration(ShowDetail);

 if Landscape[x][y].Fox.CheckIfDead() then

 begin

 Landscape[x][y].Fox := nil;

 dec(FoxCount);

 end

 else

 begin

 if Landscape[x][y].Fox.ReproduceThisPeriod()

then

 begin

 if ShowDetail then

 writeln(' Fox has reproduced. ');

 inc(NewFoxCount);

 end;

 if ShowDetail then

 Landscape[x][y].Fox.Inspect();

 Landscape[x][y].Fox.ResetFoodConsumed();

 end;

 end;

This document is licensed to Godalming College - MB42610

Page 36

JAVA
for (int x = 0; x < LandscapeSize; x++)

{

 for (int y = 0; y < LandscapeSize; y++)

 {

 if (Landscape[x][y].Fox != null)

 {

 if (ShowDetail)

 {

 Console.println("Fox at (" + x + "," + y + "):

");

 }

 if (CheckIfTrapNearFox(x,y))

 {

 Landscape[x][y].Fox.SetDead();

 }

 Landscape[x][y].Fox.AdvanceGeneration(ShowDetail);

 if (Landscape[x][y].Fox.CheckIfDead())

 {

 Landscape[x][y].Fox = null;

 FoxCount -= 1;

 }

 else

 {

 if (Landscape[x][y].Fox.ReproduceThisPeriod())

 {

 if (ShowDetail)

 {

 Console.println(" Fox has reproduced. ");

 }

 NewFoxCount += 1;

 }

 if (ShowDetail)

 {

 Landscape[x][y].Fox.Inspect();

 }

 Landscape[x][y].Fox.ResetFoodConsumed();

 }

 }

 }

}

This document is licensed to Godalming College - MB42610

Page 37

(iv) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (d)(i) to (d)(iii). Code for these parts must
be sensible

1 mark: Screen capture(s) show that the foxes at (2,10) and (11,13)
have died.

1

[34 marks]

This document is licensed to Godalming College - MB42610

