
AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in

England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

Teacher Standardisation
Spring 2018
A-level Computer Science (7517)

Booklet 3

Harry Clarkson 2 | P a g e

Contents
1 Analysis Section.. 4

1.1 Introduction ... 4

1.2 Research .. 4

1.2.1 Breadth First Search ... 4

1.2.2 Depth First Search .. 6

1.2.3 A* Search – More Complex Algorithm .. 8

1.3 Analysis Data Dictionary .. 9

1.4 Object Oriented Planning .. 10

1.4.1 Class Diagrams ... 10

1.4.2 TGridItem Class .. 11

1.4.3 TSearch Class .. 11

1.5 Users and User Needs ... 11

1.6 Objectives of New System ... 12

1.6.1 System Start up .. 12

1.6.2 Create the Grid ... 12

1.6.3 Saving the Grid Locations ... 13

1.6.4 Running a Search ... 13

1.6.5 Reset .. 14

1.7 Research Methods used .. 14

2 Design Section .. 15

2.1 Overall System Design ... 15

2.1.1 Hierarchy Diagram ... 15

2.2 User Interface Design .. 16

2.2.1 Stage 1 – Form Create .. 16

2.2.2 Stage 2 - Create Grid .. 16

2.2.3 Change state of Grid Items .. 16

2.2.4 Save Grid .. 17

2.2.5 Specify Algorithm ... 18

2.2.6 Search ... 18

2.2.7 Reset .. 18

2.2.8 Data Dictionary for Form Controls ... 19

2.3 Classes ... 20

2.3.1 TGridItem Class .. 20

2.3.2 TSearch Class .. 22

2.3.3 ShortestPath Unit ... 27

3 System Testing ... 37

3.1 Typical Data Testing .. 37

Harry Clarkson 3 | P a g e

3.2 Erroneous Data Testing ... 39

3.3 Extreme Data Testing .. 40

3.4 Boundary Testing .. 40

4 System Maintenance ... 41

4.1 Overview Guide ... 41

4.1.1 GridItemClass ... 41

4.1.2 SearchClass .. 41

4.1.3 Objects and User Interface .. 42

4.2 Commented Code ... 44

5 Evaluation .. 45

5.1 Original Objective Evaluation Based On Client Feedback ... 45

5.1.1 System Start up .. 45

5.1.2 Create the Grid ... 45

5.1.3 Saving the Grid Locations ... 46

5.1.4 Running a Search ... 46

5.1.5 Reset .. 47

5.2 Further Development .. 47

5.2.1 Current Problems ... 47

5.2.2 Improvements .. 47

6 Appendices ... 48

6.1 Appendix 1 – Initial Client Meeting ... 48

6.2 Appendix 2 - Further Meeting ... 49

6.3 Appendix 3 - Client Feedback .. 50

6.4 Appendix 4 - Commented Program Listings .. 51

Analysis Section

Harry Clarkson 4 | P a g e

1 Analysis Section
1.1 Introduction
Michael Bates is a PHD student at Sunderland University who also owns a business called All Programming
Limited. Michael aims to become a computer science university lecturer after he has completed his PHD.
He will also maintain his business. Michael would like a range of educational tools to use as part of his future
teaching and foresees teaching the topic of ‘shortest path’ as part of his duties. He wants his future students
to appreciate that there are many searching algorithms already in existence, some are dedicated shortest
path algorithms whilst others are not but can be tailored to show the shortest path. Michael would like a
program to demonstrate three of the existing searching algorithms including one that is a dedicated shortest
path algorithm. He would like the user to be able to specify a target, seeker and closed nodes and for the
program to then show the nodes that have been visited in each search. This will allow them to determine
which is the most efficient under particular circumstances by the amount of nodes visited to find the target.
An acceptable limitation will be actually showing the shortest path. I will need to research different
algorithms in order to select the three that the program will demonstrate.

I foresee the system using a grid, whereby the user can place targets and seekers in particular co-ordinates
and add closed sections where traversal cannot take place. The system will show all nodes visited in order
to arrive at the target. From this, the user can see which is the most efficient under those conditions. There
is no current system in place as in Michael does not have a program that does this. In terms of algorithms,
though there are many and three of these will be utilised in the new program. I will need to research these.

1.2 Research
As part of my A Level Computer Science course, I have already studied breadth-first and depth-first
algorithms. From research I have found another which is known A*. These are the three, which I have
decided to include. I did initially think of including Dijkstras but I think A* is a more efficient and interesting
algorithm. My client agreed with my choices. So therefore, the different algorithms I am going to use are A*
search, Breadth First Search and Depth First Search. I think these are the best algorithms for me to use
compared to others as it will give me the ability to program them and find the shortest path more fast and
efficiently and my client agrees with the use of them.

1.2.1 Breadth First Search
A Breadth first search1 works by starting at the Root node then moving from left to right whilst working down
the graph. A standard algorithm for this is:

FUNCTION bfs(graph, vertex)
BEGIN
 queue ← []
 visited ← []
 enqueue vertex
 WHILE queue NOT EMPTY DO
 dequeue item and put in currentNode
 set colour of currentNode to “dark blue”
 append currentNode to visited
 FOR each neighbour of currentNode DO
 IF colour of neighbour = “white” THEN
 enqueue neighbour
 set colour of neighbour to “pale blue”

Explanation

1. Set the Queue and Visited as empty.
2. Put the current vertex in the queue.
3. While the queue is not empty keep doing

this.
4. Take the Next vertex in line in the queue

and put it in the CurrentNode set the
current node to a certain colour.

5. Set current node as visited.
6. For each neighbour do if the neighbour

is white then put it on the queue and
change colour to pale blue

1 Gill Meek (Teacher) PowerPoint Slides

Analysis Section

Harry Clarkson 5 | P a g e

END IF
 END FOR

 END WHILE
 RETURN visited
END FUNCTION

7. End all statements and after end of while
statement return visited list.

I have made these diagrams to demonstrate the first level search. Yellow is used as the node visited.

Step 1 Step 2

Figure 1:1st Step

This would be the first step. Nothing has been
traversed as of yet but (A) is the root node.

Figure 2: Second Step

The root node has now been traversed.

Step 3 Step 4

Figure 3: 3rd Step

The next node in the left sub-tree is traversed

Figure 4: 4th Step

And then it moves to the next node in the
right sub-tree and so on.

Once the entire traversal has taken place the order in which they would have been visited is:
(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O).

On a grid, it would look like a diamond spreading out from the seeker, as it will work across from the left first
then up then bottom then right and repeat whilst moving in this order. I have created a spreadsheet to
demonstrate this:

Step 1 Step 2

In this step, it has checked left, right, up and down.
Giving the diamond pattern shape.

Notice how it has moved left and repeated the steps
of checking Left, Up, Down and Right. It will now
move back to the up one above the Seeker we
checked.

Analysis Section

Harry Clarkson 6 | P a g e

Step 3 Step 4

When it has gone to the block that has already been
checked it will then proceed to check again Left, Up,
Down and Right. It will continue to follow this suit
until it has found the Target.

You will
notice
that the
Diamond
shape is
not

absolutely perfect as it is missing a bit on the right.
This is because it has already Found the Target
before having to check there.

I think this search will be a good search to include in the program though the algorithm will need to be
tailored in order to be suitable for the program. My program will need to resemble the spreadsheet screen
prints I included as opposed to simply changing the colour of a vertex. Once the search is completed, the
nodes visited will be shown and the user will need to be determine which is the shortest path.

1.2.2 Depth First Search
A Depth First Search2 works by starting at the Root node working down first then moving left to right. A
standard algorithm for this is:

visitedList = []
FUNCTION dfs(graph, currentVertex, visited)
Begin
 FOR vertex IN graph[currentVertex] DO
 IF vertex NOT IN visited THEN
 dfs(graph, vertex, visited)
 END IF
 END FOR
 Return visited
END FUNCTION
Traversal = dfs(GRAPH, “A”, visitedList)
OUTPUT “Nodes visited in this order: “,traversal

Explanation

1. an empty list of visited nodes (vertices) is
created

2. the Function dfs is called with parameters
being passed of the graph, the current
vertex and the visited list

3. Each vertex in the graph is checked to see if
if it is in the visited list. If it is not the current
Vertex is appended to the list visited nodes
and the neighbours checked

4. The nodes visited are then displayed in
order.

This demonstrates part of the search. Yellow is used as the node visited.

Step 1 Step 2

This is the first node being traversed

2 Gillian Meek (Teacher) PowerPoint Slides

Analysis Section

Harry Clarkson 7 | P a g e

At step 2 it still looks like the same traversal as
depth-first in that the next node in the left sub-tree
is examined.

Step 3 Step 4

However, this is where it now differs; it continues
to traverse the left sub-trees.

This is the final left sub-tree it can traverse from D

Step 5 Step 6

So it now moves the right sub-tree from D

D has now been fully explored so it moves back to B.
The left sub-tree of B has now been fully explored so
it moves to the right sub-tree of B and so on.

So the order that these would be traversed and the output would be (A,B,D,H,I,E,J,K,C,F,L,M,G,N,O). I also
think this will be a good search to include in the program though, again, it will need customising in order to
fit the program. My client agreed that this would be a good search to include.

Analysis Section

Harry Clarkson 8 | P a g e

1.2.3 A* Search – More Complex Algorithm
The A* algorithm was invented by Nils Nilsson in 1964. He invented an algorithm called A1, which increased
the speed of Dijkstra's algorithm. Following that, Bertram Raphael made improvements calling this search
A2. A man named Peter Hart argued and proved that A2 was better than A1 naming it A* to show that it
includes any search algorithm beginning with A no matter what number followed it3. This is an example4 of
an A* search being carried out.

Step 1 Step 2 Step 3

It works from the root node and
looks at the possible ways it could
go and decides to go the way that
ends up closer to the target.

It then hits the wall so back tracks
the nodes it has visited.

It keeps doing this until it can get
around the blockage.

Step 4 Step 5 Step 6

Once it has found a way around it
will then carry on as before.

It still recognises that there is a
blockage but still carry’s on rather
than backtracking because it is
still shortening the distance
between the two by carrying on.

Once it has got to the target it
then backtracks to the original
starting node using the nodes it
has already visited to mark the
shortest path.

This is the pseudocode5
1:
2:
3:
-
4:
5:
6:

// A*
initialize the open list
initialize the closed list
put the starting node on the open list (you can leave its f at zero)

while the open list is not empty
 find the node with the least f on the open list, call it "q"

3 http://stackoverflow.com/questions/29470253/astar-explanation-of-name
4 https://www.reddit.com/r/programming/comments/1cylmb/pathfinding_algorithm_visually_explained/
5 http://web.mit.edu/eranki/www/tutorials/search/

Analysis Section

Harry Clarkson 9 | P a g e

7:
8:
9:
10:
11:
12:
-
13:
-
14:
-
15:
16:
17:
18:

 pop q off the open list
 generate q's 8 successors and set their parents to q
 for each successor
 if successor is the goal, stop the search
 successor.g = q.g + distance between successor and q
 successor.h = distance from goal to successor
 successor.f = successor.g + successor.h

 if a node with the same position as successor is in the OPEN list \
 which has a lower f than successor, skip this successor
 if a node with the same position as successor is in the CLOSED list \
 which has a lower f than successor, skip this successor
 otherwise, add the node to the open list
 end
 push q on the closed list
end

The main differences seem to be that A* does not necessarily need to work on a graph. It does need to know
the distance away from the target at every node and the cost of going down that path. This is very different
to breadth and depth as it means a judgement can be made on which is the most efficient way to go. I think
a stack could possibly be used to represent the search with the cost of the path worked out as f=g + h. g =
the cost it took to get to the current node and h = the guess of the cost to get to the goal from the current
node. I think this algorithm will be a good one to include, as it is very different from the other two. My client
agreed that this would be a good search to include.

1.3 Analysis Data Dictionary
The only attributes that I picture being required in the main program will be discussed here. Properties of
classes will be discussed within the classes themselves.

Attribute Name Attribute Purpose Attribute
Type

Example Data Validation

X size To store the x axis
number input by
the user

Integer 5 Must between 4 and 10

Y size To store the y axis
number input by
the user

Integer 5 Must between 4 and 10

Seeker To make sure one
and only one seeker
has been selected

Boolean True Must be only one seeker

Target To make sure one
and only one target
has been selected

Boolean True Must be only one target

stopChange Stop the user from
changing the grid
items if the save has
already been
started

Boolean False n/a

ConnectionsFrom To hold the
connections from
other grid items to
the current grid
item

List of
string

0,1 n/a

Analysis Section

Harry Clarkson 10 | P a g e

ConnectionsTo To hold the
connections to
other grid items to
the current grid
item

List of
string

1,1 n/a

GridItemDictionary Dictionary to hold
connections and
the current state of
the grid item
(seeker, target,
open, closed or
visited). Also to
hold the position of
x and the position y
of the current grid
item. Will interact
with the
TGridItemClass

string Parent:0,1
Left:1,1
Right:1,2
Up:2,2
Down:1,3
Seeker
Open
Visited
Pos x
Pos y

n/a

1.4 Object Oriented Planning
1.4.1 Class Diagrams
Initially, I think there will be a need for two classes and they will need to relate to each other through
composition:

TGridItem will be a class that stores the data of each object and its connections. I will
explain this in more detail below.

TSearch will be a class that creates instances of TGridItem and to then access the
methods of that class in order to set and amend its properties. It will also include its
own methods in order to carry out each of the three searches.

TGridItem

TSearch

Analysis Section

Harry Clarkson 11 | P a g e

1.4.2 TGridItem Class

For each of my attributes there will be a
straightforward setter and getter and I am
not showing in order to save space. I have
shown the GetGridItem method as passing
the required attributes to store. Current
state will be needed to determine what
the current node is as in if it has been
visited or it may be a seeker, Target,
Closed or Open.

Posx will be needed to store how many
nodes are in the X axis and Posy is the
same except for the y axis instead.

The left, right, top and bottom
connections are used to store where the
nodes are connected and whether there is

a node there at all. The parent node is the node that will store where the move has came from. Visited is
needed to look upon when the algorithms check if it has already been visited or not which will then
determine if it should then move to that node or not.

1.4.3 TSearch Class
The Search Class will create instances of TGridItem using
composition. There will be no requirement for any
attributes but there will be a requirement for
parameters to be passed to each method to provide
each search with the data it needs to be able to run the
search.

1.5 Users and User Needs
Michael will use the program to demonstrate searching during his lectures. For example, he could set up the
grid and ask what traversal would be carried out by a particular algorithm. The responses could be checked
by running the program. The university students will be able to use the program outside of lessons. This
will be beneficial aiding the visualisation of search and shortest path algorithms which should help them
compete their assignments or exams.

Michael would like the program to

1. Allow the user to specify the size of the grid
2. Allow the user to specify the co-ordinate of the target
3. Allow the user to specify the co-ordinate of the seeker
4. Allow the user to specify closed blocks
5. Allow the user to specify the type of search to be carried out

a. Breadth-first
b. Depth-first
c. A*

6. Show the user the path taken to get from the target to the seeker

TGridItem
Private

CurrentState : string
 Posx:Integer
 Posy:Integer

 leftConnection : TGridItem
 rightConnection : TGridItem
 topConnection : TGridItem

 bottomConnection : TGridItem
 parentNode : TGridItem

 visited : Boolean
Public

GetGridItem(pCurrentState,pPosx,pPosy,
pleftConnection,prightConnection,ptopConnection,

pbottomConnection,pparentNode,pvisited)

TSearch
Private
Public

RunBreadthFirstSearch(RootNode :
TGridItem)

RunDepthFirstSearch(RootNode : TGridItem)
RunAStarSearch(rootNode, targetNode :

TGridItem)

Analysis Section

Harry Clarkson 12 | P a g e

Acceptable limitation

7. Show the user the shortest path

1.6 Objectives of New System
1.6.1 System Start up
On the system start-up, it will show all the buttons and labels etc. but will not allow the user to edit them
apart from the section for setting up the grid. These are the detailed start-up objectives:

1. The search form should load
2. There should be an empty panel on the form
3. There should be an edit box to enter the x axis of the grid.
4. There should be an edit box to enter the y axis of the grid.
5. There should be a create button
6. There should be a radio group with options of

a. Target – this will be used to specify whether the grid item is the target
b. Seeker – this will be used to specify whether the grid item is the seeker
c. Open – this will be used to specify that the grid item can be traversed and should be selected

by default
d. Closed – this will be used to specify that the grid item cannot be traversed
e. Instructions telling the user they can only select one target should be visible near the radio

group

1.6.2 Create the Grid
This will be the first task for the user as they will need to input what size they would like it I will need to put
validation into this task as the user may create a grid size too large or too small to not be used efficiently. It
will set all the blocks in the grid as open/empty meaning anything can pass through it. Once it has been set
up the user will then be able to select 1 of 4 options at a time between (Open, Target, Seeker and Closed).
This will allow the user to place 1 Target and 1 Seeker on the grid as the Seeker will be the root (Starting)
node and the Target being the end (Finish) node. There will be an option for and Open block as this means
if the user accidently places a different block in the wrong place the user can fix this error by replacing it with
an Open Block. The fourth option is the Closed block where users have the ability to block off a curtain path
so when the search algorithm is carried out it will not be able to use/cross over this section. This will give the
user the ability to test real life scenarios where there will be blockages in the way of a path and will have to
take a different route.

7. Validation should be carried out to ensure the x and y axis are numbers and that they are between 4
and 10

8. The grid should be created:
a. Individual grid item width = panel width/x axis number
b. Individual grid item height = panel height/y axis number
c. At run time repeatedly load an image for each grid item (up to x axis * y axis)
d. Ensure each image is relevant to the type of grid item

i. Open = white image
ii. Closed = white background with red cross

iii. Target = blue background with black T in the centre
iv. Seeker = green background with black S in the centre

Analysis Section

Harry Clarkson 13 | P a g e

1.6.3 Saving the Grid Locations
Once the user has set up the size of the grid and decided the layout i.e. where they want the target and
seeker to be and any closed blocks. There will be a validation in place to make sure both one Seeker and one
Target has been placed. Then the ability to click on a Save Locations button will become available. They will
then press the Save Locations button and this will disable the user’s ability to change the grid afterwards.
This will also establish the connection to each node and what the state of it is whether it is Open, Target,
Seeker etc. Once this is complete, it will give the user the ability to select which search algorithm they would
like to run whilst disabling the ability to press the Save Locations button again.

9. Ensure target grid has been specified and that the user cannot specify more than one target
10. Ensure seeker grid has been specified and that the user cannot specify more than one seeker
11. Determine the neighbours for each open grid item

a. Start at 0,0
b. If there is a neighbour above and it is open, add a connection between the two grid items
c. If there is a neighbour to the left and it is open, add a connection between the two grid items
d. If there is a neighbour to the right and it is open, add a connection between the two grid items
e. If there is a neighbour below and it is open, add a connection between the two grid items
f. Move to 0,1 etc. until all grid items have been explored and connection stored

1.6.4 Running a Search
The user will select which algorithm they would like to run by using a radio group. Whether they have actually
selected an algorithm will be validated. By default, the first radio group option will be selected. Once the
user has selected which search they want to run they will then have to click on the Search button. This will
run a Procedure to save all the connections in between the nodes. Once the connections have been saved it
will check to see which algorithm the user has selected and will continue to run it.

12. If the user has selected the breadth-first or depth-first search
a. Get the seeker grid item and use this as the root node
b. Define graph based on where the seeker can move based using the stored connections
c. Run the breadth-first or depth-first search accordingly using the graph created

i. For every grid item visited during the search change the current image to an orange
image to show it has been visited

ii. Stop the search when the target has been reached
13. If the user has selected the A* search

a. Get the seeker grid item and use this as the root node
b. Move through each grid item and calculate the distance to target from the current grid item

using Pythagoras c2=a2+b2
c. Define graph based on where the seeker can move based using the stored connections
d. Run the A* search using the graph created

i. Use the calculation Next move = distance to target + 1 (cost of making the move) for
each connected grid item

ii. Determine the lowest value calculated for next move and make the current grid item
image change to an orange image to show it has been visited

iii. Stop the search when the target has been reached

Analysis Section

Harry Clarkson 14 | P a g e

1.6.5 Reset
This will be the ability for the user to completely restart the program if they have either made a mistake
when they pressed the Save Locations button and want to undo the changes or have run a search and want
to change to another.

14. Destroy all grid items
15. Reset all form defaults

1.7 Research Methods used
I have interviewed my client in order to determine what the project was to be based on. I have informally
communicated with my client using email and arranging short meetings with him where we could discuss
the program and whether I understand his needs fully (these are included in the appendix section). I have
also used lots of research methods in order to decide which three algorithms to base my project on such as
looking at how each one works online and its efficiency. I used my teacher’s workbooks to learn how to use
forms and program using object orientated techniques. I have used her PowerPoint slides to refresh my
memory about breadth-first, depth-first and Dijkstra’s algorithms. I used websites and spoke with my Maths
teacher to find out more information on how Dijkstra’s works and weighed up the pros and cons of each. I
researched the stress on memory of each search in order to help with my selection. I have referenced where
I needed to in the analysis section to show where they were useful in my project. I have included references
as footnotes etc. in my work.

Design Section

Harry Clarkson 15 | P a g e

2 Design Section
2.1 Overall System Design
The system will first run with the main form created along with the variables and dictionary. The user will
create the size of the grid. They will then have the opportunity to change the states of each grid nodes to
either: Open, Closed, Target or Seeker.

x Open means the node is open and traversable.
x Close means the node is an obstacle and is not traversable
x Target is the node where the user wants to get
x Seeker is the node that will find the target

Once the user has completed these options, they will click a button to save the state of the nodes, which will
trigger a process that build the connections for each node in the grid and saves it into the connections list.
The user will not be able to change the grid after this point. From here, they will select which algorithm they
want to run from the options given:

x A*
x Depth first
x Breadth first

Once selected they will click a search button which will trigger the demonstration of the algorithm. This will
involve changing the nodes visited to orange.

If the user would like to change the grid after they have selected the save button there will be able to through
the click of a reset button. This will reset the program so the user can start again.

2.1.1 Hierarchy Diagram
This diagram shows the main stages that will be required in the program.

Figure 5: Hierarchy Diagram

Design Section

Harry Clarkson 16 | P a g e

2.2 User Interface Design
This is the user interface design in the stages in the order they would occur.

2.2.1 Stage 1 – Form Create

This is the first stage and it will
occur as the form is created. It
will hold a panel where the
grid will be drawn and all of the
controls the user needs in
order to specify the grid they
would like, the types of node,
which algorithm they would
like to run and a reset option.
The only controls enabled at
this point will be the panel
where the grid will be drawn,
the grid size edit boxes and the
create button.

2.2.2 Stage 2 - Create Grid

This is the stage where the
user will specify the size of
the grid. When create is
clicked validation will be
present to ensure both edit
boxes have values between 1
and 10 as the maximum grid
size is 10 x 10. If the size is
valid, the gird will be created
and the grid item type radio
group and save button will
become enabled.

2.2.3 Change state of Grid Items
Once the grid has been drawn the user will then specify special nodes.

In this example, a closed
grid item will be specified.
The user will click closed
and the grid item selected
will change to a red cross
to show that is it closed
and not traversable. This
can be seen below:

User enters the
size of the grid
then presses the
Create button.

Design Section

Harry Clarkson 17 | P a g e

The user will specify a
target and seeker too.
These will be shown as a
T and S, blue and green
respectively as shown.

2.2.4 Save Grid

Once the Target and
Seeker have been placed
the user will click on the
save button. Validation
will be applied to ensure
a target and seeker have
been specified.

The user will not see
anything happen at this
point as all processing will
be background pro-
cessing. All of the node
connections will be

determined and stored and from this point, changing the grid will be prevented. The algorithm type
radio group, search and reset button will become enabled at this point.

Design Section

Harry Clarkson 18 | P a g e

2.2.5 Specify Algorithm

The user can then select
which search algorithm
they wish to run. In this
example the A* algorithm
has been selected.

2.2.6 Search

The user can then select the
save button. Validation will
ensure an algorithm has
been specified. The
traversal will then be carried
out and shown by changing
the grid items visited to
orange as in this example.

2.2.7 Reset

If the user would like to
change the grid e.g. the
size of the grid or the
setup of each grid items,
then they will have the
ability to click on the reset
button which will
completely reset the
program back to how it
was in the beginning..

Design Section

Harry Clarkson 19 | P a g e

2.2.8 Data Dictionary for Form Controls
These are the controls that I think will be required for the form

Control Name Control Type Description
frmShortestPath Form This will be the form itself.
pnlGrid Panel This will hold the grid. This will be enabled.
edtWidth Edit box This will be used to get the width of the grid, it will be used

to determine how many columns are required. This will be
enabled.

edtHeight Edit box This will be used to get the height of the grid. It will be used
to determine how many rows are required. This will be
enabled.

lblGridSize Label This will be used to explain the width and height edit boxes
so the user knows what they need to input.

btnGrid Button This will be enabled. When the user has specified the gird
size they will click this and this will enable other controls as
specified below.

rgrpObject Radio group This will be enabled after the user has clicked btnGrid.
Options will be ‘Open, ‘Closed’, ‘Target’, ‘Seeker’. Only one
option at a time will be able to be selected and it will be
used to specify what each grid item will be. There can only
be one target and one seeker.

lblValidation Label This will be used to let the user know that only 1 Seeker
and 1 Target can be placed.

btnSave Button This will be for the user to press once they have setup the
grid i.e placed the target and seeker and whatever closed
items they want to place. The button saves the Grid by
building the connections between the different Grid items.
It will also disable the ability to change the grid.

rgrpSearch Radio Group This will be for the user to decide which search algorithm
they want to run. The options will be ‘Breadth First Search’,
‘Depth First Search’ and ‘A* Search’. There will be one Item
already selected so it does not cause any issues further on.

btnSearch Button This will be to carry out the search algorithm the user has
selected in the previous radio group. It will then update the
grid by changing the states of the different grid item and
the visual of each node.

BtnReset Button This will completely reset the program to its original state
when it was booted up. This could occur for example if the
user set up the grid, clicked on the save button and would
like to backtrack and change the grid.

Design Section

Harry Clarkson 20 | P a g e

2.3 Classes
There will be two classes:

2.3.1 TGridItem Class

This class is needed to manage the grid
Class Name TGridItem class of TImage

Private Name Data Type Comments
CurrentState string This will be used to store whether the Grid

Item is either: ‘Open’, ‘Closed’, ‘Visited’,
‘Target’ and ‘Seeker’.

Posx integer This will be used to store which column the
Grid Item is.

Posy r Integer This will be used to store which row the
Grid Item is.

distance Integer This will be used in connection to the A*
Search Algorithm as it will store the
distance that the Grid Item will be once
visited.

leftConnection TGridItem This will be to store what is left to the
current grid item.

rightConnection TGridItem This will be to store what is right to the
current grid item.

TopConnection TGridItem This will be to store what is top to the
current grid item.

bottomConnection TGridItem This will be to store what is bottom to the
current grid item.

parentNode TGridItem This will be to show which node it had
previously been at to get to the current
Grid Item.

visited Boolean This will be for the depth first search
algorithm where the current Grid item will
be classed as either True for visited or False
for not visited.

Public Method Comments
Function getCurrentState : String This will be for when the program needs to

find out what the state of the current Grid
Item.

Function getPosx :Integer This will be used to work out the position of
the current Grid Item.

Function getPosy :Integer This will be used to work out the position of
the current Grid Item.

Function getLeftConnection : TGridItem This will be for when the algorithm is
wanting to move to the node to the left of
the current grid item or just to check if
there is a node there.

Function getRightConnection : TGrid This will be for when the algorithm is
wanting to move to the node to the right of
the current grid item or just to check if
there is a node there.

Design Section

Harry Clarkson 21 | P a g e

Function getTopConnection : TGri This will be for when the algorithm is
wanting to move to the node to the top of
the current grid item or just to check if
there is a node there.

Function getBottomConnection : TGridItem This will be for when the algorithm is
wanting to move to the node to the bottom
of the current grid item or just to check if
there is a node there.

Function getParentNode : This will be for when the algorithm needs
to work out where the node has came from
in order.

Function getVisited : boolean This will be for when the algorithms need
to check if it has already been visited or not.

Function getDistance:integer This will be specifically for the A* Search
algorithm to check the distance so far from
that current Grid Item.

Procedure setCurrentState(pCurrentState :
st

This will be used to set the current state of
the Grid Item.

Procedure setPosx (pPosx :Integer) This will be used to set the column in which
the Grid Item is positioned.

Procedure setPosy (pPosy :Integer) This will be used to set the row in which the
Grid Item is positioned.

Procedure setDistance(pDistance:Integer) This will be for when the A* algorithm s3ets
the distance so far to the Grid Item.

Procedure
setLeftConnection(pLeftConnection :
TGridItem)

This will be used to set what node is to the
left of the current Grid Item.

Procedure
setRightConnection(pRightConnection :
TGridItem)

This will be used to set what node is to the
right of the current Grid Item.

Procedure
setTopConnection(pTopConnection :
TGridItem)

This will be used to set what node is to the
top of the current Grid Item.

Procedure
setBottomConnection(pBottomConnection
: TGridItem)

This will be used to set what node is to the
bottom of the current Grid Item.

Procedure setParentNode(pParentNode :
TGridItem)

This will be to set where the current Grid
Item has came from.

Procedure setVisited(pVisited : boolean) This will be specifically for the depth first
search to set the current Grid Item as
visited or not.

No algorithms are provided for the methods as they are purely setters and getters.

Design Section

Harry Clarkson 22 | P a g e

2.3.2 TSearch Class
This will use composition aggregation with TGridItem Class. TGridItem objects will be instantiated in
this class.

Class Name TSearch class of TGridItem
Public Method Comments

Procedure
runBreadthFirstSearch(rootNode:
TGridItem)

This will be when ‘Breadth First Search’ algorithm
is to be run and will also mark on the grid the
visited nodes.

procedure
runDepthFirstSearch(rootNode :
TGridItem)

This will be when ‘Depth First Search’ algorithm is
to be run and will also mark on the grid the visited
nodes.

procedure
runAStarSearch(rootNode,
targetNode : TGridItem)

This will be when ‘A* Search’ algorithm is to be run
and will also mark on the grid the visited nodes.

2.3.2.1 Procedure runBreadthFirstSearch(rootNode:TGridItem)
This will be used to run a breadth first search if the user has selected this option.

Local variables required:
queue: TQueue<TGridItem> This will be used as the data structure for the search
itemFound : Boolean This will be used to signify when the target has been found
currentNode : TGridItem This will be used to hold the node being examined

It will run like this:

x The queue will be created
x The seeker will be enqueued
x ItemFound will be set to false as this will be used to signify when the target has been found
x While there are still items on the queue and the target has not been found an item from the

queue will be dequeued and stored in currentNode. A call to the class method
getCurrentState will be used to check whether this is the target. If it is itemFound will be
set to true and the while loop will be exited.

x If it is not the target then it will make sure that it is not a closed, seeker or empty grid item
then mark it as visited whilst also changing the image on the grid to mark as visited.

x It will then repeat this by then looking at right, top and bottom connection next.
x The Procedure will end once the Target has been found.

Pseuodocode
BEGIN

queue.create
 Enqueue the root node
 Set itemFound to false
 WHILE queue size > 0 and itemFound=False DO
 currentNode = dequeued node
 IF currentNode.getCurrentState = Target THEN
 ItemFound=True
 ELSE
 IF (currentNode.getLeftConnection <> nil) And
(currentNode.getCurrentState <> Closed) THEN
 queue.Enqueue(currentNode.getLeftConnection)
 currentNode.setLeftConnection(Nil)

Design Section

Harry Clarkson 23 | P a g e

 IF currentNode.getCurrentState <> Seeker THEN
 currentNode.setCurrentState(Visited)
 currentNode.Picture = visited picture
 END IF
 END IF

IF (currentNode.getRightConnection <> nil) And
(currentNode.getCurrentState <> Closed) THEN

 queue.Enqueue(currentNode.getRightConnection)
 currentNode.setRightConnection(Nil)
 IF currentNode.getCurrentState <> Seeker THEN
 currentNode.setCurrentState(Visited)
 currentNode.Picture = visited picture
 END IF
 END IF

 IF (currentNode.getTopConnection <> nil) And
(currentNode.getCurrentState <> Closed) THEN
 queue.Enqueue(currentNode.getTopConnection)

 currentNode.setTopConnection(Nil)
 IF currentNode.getCurrentState <> Seeker THEN

 currentNode.setCurrentState(Visited)
 currentNode.Picture = visited picture

 END IF
 END IF

 IF (currentNode.getBottomConnection <> nil) And
(currentNode.getCurrentState <> Closed) THEN
 queue.Enqueue(currentNode.getBottomConnection)
 currentNode.setBottomConnection(Nil)
 IF currentNode.getCurrentState <> Seeker THEN

 currentNode.setCurrentState(Visited)
 currentNode.Picture = visited picture

 END IF
 END IF

 END IF
 END WHILE
 END PROCEDURE

2.3.2.2 Procedure runDepthFirstSearch(rootNode : TGridItem)
This will be used to run a depth first search if the user has selected this option.

Local variables required:
stack : TStack <TGridItem> This will be used for the data structure of the search.
itemFound : boolean This will be used to state if the Target has been found or
 not.
currentNode : TGridItem This will be used as the current node that the algorithm
 is currently using.
rightConnection: TGridItem This will be used to store whatever is to the right of the
 current node.
leftConnection : TGridItem This will be used to store whatever is to the left of the
 current node.
topConnection : TGridItem This will be used to store whatever is to the top of the
 current node.

Design Section

Harry Clarkson 24 | P a g e

bottomConnection : TGridItem This will be used to store whatever is to the bottom of
 the current node.

It will run like this:

x The stack will be created.
x The Root node will be added onto the stack.
x Whilst there is still something still in the stack and the item found hasn’t been found, do:

o Current Node becomes the grid item popped off the stack.
o If the current node hasn’t been visited and it is not classed as a ‘closed’ node then.
o The current node becomes visited.
o If current node isn’t the seeker and not the target then.
o Set the current nodes image to a visited image.
o If the current node is the target then set item found as true.
o Set top bottom left and right connections to the connections in the current node.
o If each connection is not visited and exists then add it to the stack.

x End Procedure.

 Pseuodocode
 BEGIN
 Stack.Create
 Stack + RootNode

WHILE stack.count > 0 and itemfound = false DO
 BEGIN

currentNode = popped node in stack
IF currentNode.getVisited = false and CurrentNode.getCurrentState <> Closed THEN

 BEGIN
currentNode.setVisited(true)
IF CurrentNode.getCurrentState <> Seeker and CurrentNode.getCurrentState

<> Target THEN
 CurrentNode.Picture.Visited.jpg
 IF currentNode.getCurrentState = 'Target' THEN

ItemFound = true
 ELSE
 BEGIN
 rightConnection = currentNode.getRightConnection
 leftConnection = currentNode.getLeftConnection
 topConnection = currentNode.getTopConnection
 bottomConnection = currentNode.getBottomConnection
 IF rightConnection <> nil and rightConnection.getVisited = false THEN
 Stack + currentNode.getRightConnection
 IF leftConnection <> nil and leftConnection.getVisited = false THEN
 Stack + currentNode.getLeftConnection
 IF topConnection <> nil and topConnection.getVisited = false THEN
 Stack + currentNode.getTopConnection
 IF bottomConnection <> nil and bottomConnection.getVisited = false THEN
 Stack + currentNode.getBottomConnection
 END ELSE
 END IF
 END WHILE

END PROCEDURE

Design Section

Harry Clarkson 25 | P a g e

2.3.2.3 Procedure TSearch.runAStarSearch(rootNode, targetNode:TGridItem)
This will be used to run an A* search if the user has selected this option.

Local variables required:
Found : boolean This will be used to store if the Target has been found or
 not.
movementOptions : TList<TGridItem> This will be used as a list to store different data at the
 same time.
I : integer This will be used as a counter.
a,b,c : integer This will be used to calculate the distance whilst storing
 different parts of the algorithm.

It will run like this:

x The movement options list will be created.
x The root node will be added to the list.
x Repeat…

o If the first item in the lists left connection is not nil, not closed and not visited then
add the first item in the lifts left connection to the list.

o Do this for top bottom and right connection too.
o If the first item in the lists state is the target then set found as true.
o Else if it is not the seeker then set current image and set state to visited.
o Delete the first item in the list and trim excess so everything moves down by 1.
o For I = 0 to the number of items in the list -1 do.
o A = pos x of the target node – pos x of the I position in the list.
o B = pos y of the target node – pos y of the I position in the list.
o A = A * A
o B = B * B
o C = Rounding the result of the square root of A + B.
o Set distance of I position in the list as C.
o Sort the Items in the list in order of their distance.

Pseuodocode
BEGIN

 MovementOptions = TList.create
movementOptions + rootNode
REPEAT

IF movementOptions[0].getLeftConnection <> nil and
movementOptions[0].getLeftConnection.getCurrentState <> Closed and
movementOptions[0].getLeftConnection.getCurrentState <> Visited THEN

 MovementOptions + movementOptions[0].getLeftConnection
IF movementOptions[0].getRightConnection <> nil and
movementOptions[0].getRightConnection.getCurrentState <> Closed and
movementOptions[0].getRightConnection.getCurrentState <> Visited THEN

 movementOptions + movementOptions[0].getRightConnection
IF movementOptions[0].getTopConnection <> nil and
movementOptions[0].getTopConnection.getCurrentState <> Closed and
movementOptions[0].getTopConnection.getCurrentState <> Visited THEN

 movementOptions + movementOptions[0].getTopConnection

Design Section

Harry Clarkson 26 | P a g e

IF movementOptions[0].getBottomConnection <> nil and
movementOptions[0].getBottomConnection.getCurrentState <> Closed and
movementOptions[0].getBottomConnection.getCurrentState <> Visited THEN

 movementOptions + movementOptions[0].getBottomConnection

IF movementOptions[0].getCurrentState = Target THEN
 Found = True
 ELSE
 BEGIN

 IF movementOptions[0].getCurrentState <> Seeker THEN
 BEGIN
 movementOptions[0].Picture.Visited.jpg
 movementOptions[0].setCurrentState(Visited)
 END IF

movementOptions.Delete(0)
movementOptions Trim Excess
FOR i = 0 to movementOptions.Count -1 DO

 BEGIN
a= targetNode.getPosx-movementOptions[i].getPosx

 b= targetNode.getPosy-movementOptions[i].getPosy
 a=a*a
 b=b*b
 c=round(SquareRoot(a+b))
 movementOptions[i].setDistance(c)
 END IF

sortList(movementOptions)
 END ELSE
UNTIL found = true

END PROCEDURE

Design Section

Harry Clarkson 27 | P a g e

2.3.3 ShortestPath Unit

Form Name TfrmShortestPath class of TForm
Private Name Data Type Comments

Item TGridItem This will be used to store the data of a grid.
onClickEvent TNotifyEvent This will be for when an Grid Item has been

clicked it will be used to store what happens
to it.

GridItem TGridItem This will be used to store the data of a second
GridItem.

gridItemDictionary TDictionary<string,
TGridItem>

This will be a dictionary to store the
connections and link them together.

connectionsFrom TList<string> This will be for building the connections as to
where the connection has come from.

connectionsTo TList<string> This will be for building the connections as to
where the connection is going.

XSize Integer The Position of the grid item on the X axis.
YSize Integer The Position of the grid item on the Y axis.
Seeker Boolean This will be to set if the Seeker has been

placed or not.
Target Boolean This will be to set if the Target has been

placed or not.
 Stop Change Boolean This is will be to disable the user from

changing the grid afterwards by setting it to
true.

Public Method Comments
Procedure FindAllConnections(var
connections:array of string;Key:String)

This will be to find the connections and put
them into an appropriate array.

function findSeeker() : TGridItem; This will be to check if the Seeker has already
been placed or not.

function findTarget() : TGridItem; This will be to check if the Target has already
been placed or not.

2.3.3.1 Procedure TfrmShortestPath.btnResetClick (Sender : TObject)
This will be use to reset the form to its original state before the grid was initially created.

It will run like this:

x Destroy the current Grid.
x Create the lists and dictionaries.
x Disable all objects and validations on the form that should not be accessible to the user until

the appropriate time has come.
x Enable the ability for the user to create a new grid.

Pseuodocode
BEGIN
 pnlGrid.Destroy
 gridItemDictionary = TDictionary<string, TGridItem>.Create
 connectionsFrom = TList<string>.Create
 connectionsTo = TList<string>.Create

Design Section

Harry Clarkson 28 | P a g e

 edtwidth.Enabled=False
 edtHeight.Enabled=False
 btnGrid.Enabled=False
 rgrpObject.Enabled=False
 btnSaveLocations.Enabled=False
 rgrpSearchType.Enabled=False
 btnSearch.Enabled=False
 StopChange= False
 lblValidation.Enabled=False
 Seeker=False
 Target=False

 edtwidth.Enabled=True
 edtheight.Enabled=True
 btnGrid.Enabled=True

END PROCEDURE

2.3.3.2 Procedure TfrmShortestPath.FindAllConnections(var connections:array of string;Key:String)
This will be to store all the connections from and to each GridItem.

Local variables required:
I : Integer This will be used as a counter
Count : Integer This will be used to find a position in an array.

It will run like this:

x Count will become equal to “0”.
x For each connections from it will then do the opposite and place it into the connections to.

Pseuodocode
BEGIN

count = 0
 FOR I = 0 to connectionsFrom.Count -1 do
 BEGIN

IF connectionsFrom.Items[I] = Key THEN
 BEGIN

connections[count] = connectionsTo.Items[I]
 count = count +1
 END
 END
END PROCEDURE

Design Section

Harry Clarkson 29 | P a g e

2.3.3.3 Procedure TfrmShortestPath.btnSaveLocationsClick(Sender : TObject)
This will be to build up the connections and allow the user to then run the search.

It will run like this:

x If the seeker or target hasn’t been placed then remind the user that at least 1 target and 1
seeker must be placed.

x Else: Disable the previous objects on the form so the user can’t edit it and enable the ability
to run the searches.

x Run the Procedure to build all connections between the grid items.

Pseuodocode
BEGIN

IF (Seeker <> True) or (Target <> True) THEN
 ShowMessage('You need to place at least 1 Target and 1 Seeker')
 ELSE
 BEGIN
 rgrpObject.Enabled = False
 btnSaveLocations.Enabled = False
 rgrpSearchType.Enabled = True
 btnSearch.Enabled = True

StopChange = True
 EstablishConnections
 END

2.3.3.4 Procedure TfrmShortestPath.EstablishConnections
This will be to work out the connections between which grid items are connected.

Local variables required:
I : Integer This will be used as a count.
J : Integer This will be used as a count.
currentItem : TGridItem This will be used to determine which node it is currently
using.
neighbourItem : TGridItem This will be used to store what the Item next to the
Current Item is.
connectionsTemp : array [0..3] of string This will be a temporary array for the connections.

It will run like this:

x For every Item in the Grid dictionary see if the CurrentItem is equal to dictionary position.
x See if it has a neighbour
x See if the neighbour is closed.
x If its not closed then add the connectionsFrom the connectionsTo the parentNode and the

RightConnection
x Repeat for LeftConnections, TopConnections and BottomConnections.
x If the Current item is not in the dictionary then there is a serious error and the program

should be restarted.

Design Section

Harry Clarkson 30 | P a g e

Pseuodocode
BEGIN
 FOR J = 0 to YSize -1 DO
 FOR I = 0 to XSize -1 DO
 BEGIN

IF gridItemDictionary.TryGetValue(inttostr(i)+inttostr(j), currentItem) THEN
 BEGIN

IF gridItemDictionary.TryGetValue(inttostr(i + 1)+inttostr(j),
neighbourItem) THEN

 BEGIN
IF neighbourItem.getCurrentState <> Closed THEN

 BEGIN
connectionsFrom.Add(inttostr(i)+inttostr(j))

 connectionsTo.Add(inttostr(i + 1)+inttostr(j))
 neighbourItem.setParentNode(currentItem)
 currentItem.setRightConnection(neighbourItem)
 END
 END

IF gridItemDictionary.TryGetValue(inttostr(i - 1) + inttostr(j),
neighbourItem) THEN

 BEGIN
IF neighbourItem.getCurrentState <> Closed THEN
BEGIN

connectionsFrom.Add(inttostr(i)+inttostr(j))
 connectionsTo.Add(inttostr(i-1)+inttostr(j))
 neighbourItem.setParentNode(currentItem)
 currentItem.setLeftConnection(neighbourItem)
 END
 END

IF gridItemDictionary.TryGetValue(inttostr(i)+inttostr(j + 1),
neighbourItem) THEN

 BEGIN
IF neighbourItem.getCurrentState <> Closed THEN

 BEGIN
 connectionsFrom.Add(inttostr(i)+inttostr(j))
 connectionsTo.Add(inttostr(i)+inttostr(j+1))
 neighbourItem.setParentNode(currentItem)
 currentItem.setBottomConnection(neighbourItem)
 END
 END

IF gridItemDictionary.TryGetValue(inttostr(i)+inttostr(j - 1),
neighbourItem) THEN

 BEGIN
 IF neighbourItem.getCurrentState <> Closed THEN
 BEGIN
 connectionsFrom.Add(inttostr(i)+inttostr(j));
 connectionsTo.Add(inttostr(i)+inttostr(j-1))
 neighbourItem.setParentNode(currentItem)
 currentItem.setTopConnection(neighbourItem)
 END

Design Section

Harry Clarkson 31 | P a g e

 END
 END
 ELSE
 ShowMessage(Grid Item Does not exist)

END
END PROCEDURE

2.3.3.5 Function TfrmShortestPath.findSeeker() : TGridItem
This will be to find where on the grid the seeker has been placed.

Local variables required:
I : Integer This will be used as a count
J : Integer This will be used as a count
currentNode : TGridItem This will be used to store the current node it is at.

It will run like this:

x it will go through all the columns then the rows to look at each item.
x If the state is a seeker then
x Set findSeeker equal to the current node it is at so then it knows where the seeker.

Pseuodocode
BEGIN

FOR J = 0 to YSize -1 DO
 FOR I = 0 to XSize -1 DO
 BEGIN
 gridItemDictionary.TryGetValue(inttostr(i)+inttostr(j), currentNode)
 IF currentNode.getCurrentState = Seeker THEN
 findSeeker = currentNode
 END
END

2.3.3.6 Function TfrmShortestPath.findTarget() : TGridItem
This will be to find where on the grid the Target has been placed.

Local variables required:
I : Integer This will be used as a count
J : Integer This will be used as a count
currentNode : TGridItem This will be used to store the current node it is at.

It will run like this:

x it will go through all the columns then the rows to look at each item.
x If the state is a target then
x Set findTarget equal to the current node it is at so then it knows where the Target.

Pseuodocode
BEGIN

FOR J = 0 to YSize -1 DO
 FOR I = 0 to XSize -1 DO
 BEGIN
 gridItemDictionary.TryGetValue(inttostr(i)+inttostr(j), currentNode)
 IF currentNode.getCurrentState = Target THEN

Design Section

Harry Clarkson 32 | P a g e

 findTarget = currentNode
 END
END

2.3.3.7 Procedure TfrmShortestPath.btnSearchClick(Sender : TObject)
This is for when the user wants to run the search algorithm and will be linked to the Search radio
group to work out which search they want to run.

Local variables required:
searcher : TSearch This will be the search class.
 rootNode : TGridItem This will be where the seeker is.
 targetNode : TGridItem This will be where the target node is.
 I : Integer This will be used as a count.
 J : Integer This will be used as a count.
 currentNode : TGridItem This will be used to look at the current node.

It will run like this:

x It will go through every node and if it has been classed as visited then
x Set it to ‘Open’.
x RootNode becomes equal to findSeeker
x TargetNode becomes equal to findTarget
x Create the Searcher class.
x Depending on which item has been selected on the radio group it will then run the search

in a separate class.

Pseuodocode
begin

EstablishConnections
FOR J := 0 to YSize -1 DO

 FOR I := 0 to XSize -1 DO
 BEGIN
 gridItemDictionary.TryGetValue(inttostr(i)+inttostr(j), currentNode)
 currentNode.setVisited(false)
 IF currentNode.getCurrentState = Visited THEN
 BEGIN
 CurrentNode.Picture.LoadFromFile(Open.jpg)
 CurrentNode.setCurrentState(Open)
 END
 END
 rootNode = findSeeker

targetNode = findTarget
 searcher = TSearch.Create
 CASE rgrpSearchType.ItemIndex OF
 0: searcher.runBreadthFirstSearch(rootNode)
 1: searcher.runDepthFirstSearch(rootNode)
 2: searcher.runAStarSearch(rootNode, targetNode)
 END
END

Design Section

Harry Clarkson 33 | P a g e

2.3.3.8 procedure TfrmShortestPath.FormCreate(Sender : TObject)
This will be for when the form is initially created and will disable most objects so the user cannot
use them until needed.

It will run like this:

x Create GridItemDictionary.
x Create both ConnectionsFrom and ConnectionsTo Lists.
x Set Seeker, Target, StopChange and lblValidation to False.

Pseuodocode
BEGIN
 gridItemDictionary = TDictionary<string, TGridItem>.Create
 connectionsFrom = TList<string>.Create
 connectionsTo = TList<string>.Create
 Seeker=False
 Target=False
 StopChange=False
 lblValidation.Enabled=False
END

2.3.3.9 Procedure TfrmShortestPath.ObjectChanger(sender : TObject)
This will be for when the user clicks on the grid to change a grid item.

It will run like this:

x If stopChange is true then the user will get an error message stating they will have to press
reset to change the grid.

x Depending on the item picked on the radio group for the target and seeker it will check if
one has already been placed and if so an error message will pop up stating that only 1 Target
and 1 Seeker can be placed.

x For open it will see if it is a target or seeker and if so it will then set the appropriate Booleans
to false to state that there is no longer a target or seeker on the grid.

x For closed it will do the same as the open except it will change its state to closed.

Pseuodocode
BEGIN
 IF StopChange = True THEN
 ShowMessage(Please press Reset if you are wanting to change the grid)
 ELSE
 BEGIN
 CASE rgrpObject.ItemIndex OF
 0:BEGIN
 IF (sender as TGridItem).getCurrentState = Target THEN
 Target= False
 IF (sender as TGridItem).getCurrentState = Seeker THEN
 Seeker= False
 (sender as TGridItem).picture.LoadFromFile(Open.jpg)
 (sender as TGridItem).setCurrentState(Open)
 END
 1:BEGIN
 IF Target <> True THEN

Design Section

Harry Clarkson 34 | P a g e

 BEGIN
 (sender as TGridItem).picture.LoadFromFile(Target.jpg)
 (sender as TGridItem).setCurrentState(Target)
 IF (Seeker = True) THEN
 BEGIN
 btnSaveLocations.Enabled=True
 lblValidation.Enabled=False
 END
 END
 ELSE
 ShowMessage(Only 1 Seeker and 1 Target can be placed)
 END
 2:BEGIN
 IF Seeker <> True THEN
 BEGIN
 (sender as TGridItem).picture.LoadFromFile(Seeker.jpg)
 (sender as TGridItem).setCurrentState(Seeker)
 Seeker=True
 IF (Target = True) THEN
 BEGIN
 btnSaveLocations.Enabled=True
 lblValidation.Enabled=False
 END
 END
 ELSE
 ShowMessage(Only 1 Seeker and 1 Target can be placed)
 END
 3:BEGIN
 IF (sender as TGridItem).getCurrentState = Target THEN
 Target= False
 IF (sender as TGridItem).getCurrentState = Seeker THEN
 Seeker= False
 (sender as TGridItem).picture.LoadFromFile(Closed.jpg)
 (sender as TGridItem).setCurrentState(Closed)
 END
 END
 END
END PROCEDURE

2.3.3.10 Procedure TfrmShortestPath.btnGridClick(Sender : TObject)
This will be used to set up the grid when the user click on create.

Local variables required:
Count1,Count2:Integer This will be used as a count.
PanelWidth,PanelHeight:Integer This will be used to store the size of the panel.

It will run like this:
x It will validate that the text entered is less than 10 if not then it will show a message saying that

it hast to be less than 11.
x It will then check if it is less than 0 and if it is then a message will pop up letting the user know

that it has to be more than 0.

Design Section

Harry Clarkson 35 | P a g e

x X and Y size will become equal to the two values entered in the width and height text boxes.
x The Panel width and height will both be set to 670
x It will then check to see if X and Y size are the same and if not then make Ysize equal to Xsize
x For each Grid Item it will be created on the grid as an open grid item and placed accordingly

and size to the amount of grid items the user wants.
x It will then be added to a dictionary.

Pseuodocode
BEGIN
 IF (StrToInt(edtwidth.Text) > 10) Or (StrToInt(edtHeight.Text) > 10) THEN
 ShowMessage(Grid size must be less than 11)
 ELSE IF (edtwidth.Text) < 1 Or (edtHeight.Text) < 1 THEN
 ShowMessage(Grid size must be more than 0)
 ELSE
 BEGIN
 XSize= edtwidth.Text
 YSize= edtheight.Text
 PanelWidth=670
 PanelHeight=670
 IF XSize > YSize THEN
 Xsize=YSize
 ELSE
 YSize=Xsize
 FOR Count1 = 0 to XSize -1 DO
 BEGIN
 for Count2 = 0 to YSize -1 DO
 BEGIN
 item = TGridItem.Create(pnlGrid)
 item.setPosx(count2)
 item.setPosy(count1)
 item.setCurrentState(Open)
 WITH item DO
 BEGIN
 height=(PanelHeight Div YSize)
 width=(PanelWidth Div XSize)
 top=Count1*height
 left=Count2*Width
 parent = pnlGrid
 picture.LoadFromFile(Open.jpg)
 Stretch=True
 onClickEvent = ObjectChanger
 onClick = onClickEvent
 END
 gridItemDictionary.Add(inttostr(count2) + inttostr(count1), item)
 END
 END
 edtwidth.Enabled=False
 edtHeight.Enabled=False
 btnGrid.Enabled=False
 lblValidation.Enabled=True

Design Section

Harry Clarkson 36 | P a g e

 rgrpObject.Enabled=True
 END

END PROCEDURE

System Testing

Harry Clarkson 37 | P a g e

3 System Testing
3.1 Typical Data Testing

Test
No.

Reason Input Expected Result Actual Result

1 Creating
the Grid

(7x7)
Pressing
Create
Button.

The grid should be created with 7
Grid items on the x axis and 7 on
the y axis.

Time: 00:10

2 Placing the
Target,
Seeker and
Target
Gird Item

Target
radio
group
option
selected

The graph to change with the
Target Seeker and closed items to
be in place where I clicked on the
graph.

Time: 00:22

3 Pressing
Save
locations
Button

Clicking
on the
Button.

Nothing to appear to the user. Save
locations to be saved

Time: 01:00

4 Running
Breadth
First
search
Algorithm.

Selecting
Breadth
First
Search
on the
radio
group
then
clicking
on the
search
button

For the grid to show where the
visited nodes the algorithm has
visited.

Time: 01:15

5 Running

Depth First
Search
algorithm.

Selecting
Depth
First
Search
on the
radio
group
then
pressing
the
search
button.

The Grid should change from the
previous algorithm to show the
paths the depth first search
algorithm has ran.

Time: 01:18

6 Going back

to run an
algorithm
after one

Selecting
Breadth
First
search

The grid should then change to as if
the breadth first search had been
ran for the first time so no changes
should be made apart from the

Time: 01:21

System Testing

Harry Clarkson 38 | P a g e

has
previously
been ran.

again on
the radio
group
then
clicking
on the
search
button.

previous algorithm that had been
ran being removed.

7 Running

A*
Algorithm.

Selecting
A*
Search
on the
radio
group
then
clicking
on the
search
button.

The Grid should change to see what
where the A* Algorithm has visited.

Time: 01:25

8 Pressing

Reset
Button.

Click
reset
button

The Grid Should be deleted and the
search algorithms should be
disabled and enable the ability to
create the grid again.

Time: 01:28

System Testing

Harry Clarkson 39 | P a g e

3.2 Erroneous Data Testing
Test No. Reason Valid Input Actual Input Expected Result Actual Result
9 Validating that

only 1 Target
and 1 Seeker
can be placed.

With a target
and seeker
already on the
graph selecting
the Target or
Seeker from
the radio group
then clicking
somewhere on
the graph to
try and place
another Target
or seeker.

Selecting target
radio group
option and
clicking on grid
square

An error
message should
come up to
warn the user
that only 1
Target and 1
Seeker can be
placed.

Time: 00:36

10 Validating that
once the save
locations
button has
been clicked
then the grid
can no longer
be edited.

Trying to click
on the grid to
change the
Grid Item and
trying to
change the grid
size or creating
a duplicate
copy of the
grid.

Trying to click
on the grid to
change the
Grid Item and
trying to
change the grid
size or creating
a duplicate
copy of the
grid.

An error
Message should
come up to say
to the user that
that the grid
can no longer
be changed and
if they would
like to do so
then they must
press the reset
button.

Time: 01:00

11 Testing to
make sure that
when Objects
have been
disabled that
they do not
work as
intended.

When the grid
has been
created but the
locations
haven’t been
saved yet then
clicking on
trying to run a
search.

When the grid
has been
created but the
locations
haven’t been
saved yet then
clicking on
trying to run a
search.

Nothing should
happen as the
objects should
be disabled.

Time: 02:20

12 Testing to
make sure that
the grid size
can’t be
changed and a
duplicate of
the original
graph cannot
be created.

The grid must
have been
created first
and then try to
change the
values in the x
and y axis
boxes and
trying to click
create.

The grid must
have been
created first
and then try to
change the
values in the x
and y axis
boxes and
trying to click
create.

Nothing Should
happen as they
will have to
press reset as it
could make the
program faulty
if there was a
possible two
graphs
simultaneously.

Time: 02:31

System Testing

Harry Clarkson 40 | P a g e

3.3 Extreme Data Testing
Test No. Reason Input Expected Result Actual Result
13 Validating that

the grid size
must be
between 0 and
11.

Entering 0 as
the x and y axis
and pressing
create.

An error
message to pop
up and warn
the user than it
must be more
than 0.

Time: 01:36

14 Validating that
the grid size
must be
between 0 and
11.

Entering 11 as
the x and y axis
and pressing
create.

An error
message to pop
up and warn
the user than it
must be less
than 11.

Time: 01:47

3.4 Boundary Testing

Test No. Reason Input Expected Result Actual Result
15 Testing that

the Lowest grid
size works
(1x1)

Entering 1 as
the x and y axis
and pressing
the create
button

The grid should
be created
appropriately
with 1 on the x
axis and 1 on
the y axis.

Time: 01:56

(Once I ran this test I realised
that this was not an appropriate
size for a user to create so I have
edited the code to make sure it
is more than 4.)

16 Testing that
the highest
grid size works.
(10x10)

Entering 10 as
the x and y axis
and pressing
the create
button

The grid should
then be created
appropriately
with 10 Grid
items on the x
axis and 10 on
the y axis.

Time: 02:04

When I was Programming and debugging the program to run the breadth first search it would take a rather
long time for anything on the program to happen and the user would possibly think it had crashed. I fixed
this issue by making my code more efficient because the problem was once it had visited a node it would
still class it as one to look at so it would create an infinite loop where it would just keep visiting the same
node backwards and forwards. I changed that so it no longer visited once it had been there once.

I also realised during my testing that my validation of the grid was not sensible. It would allow a grid of only
1 to be created which did not make sense as there had to be at least one Target and one Seeker. This would
be impossible with just 1 node. I then also had to make its minimum four because anything lower would not
be appropriate to run a search as the grid would be simply too small.

System Maintenance

Harry Clarkson 41 | P a g e

4 System Maintenance
4.1 Overview Guide

Variable Why they are used
Item : TGridItem This is used to store a copy of a grid ites attributes

without overriding the “GridItem” variable.
onClickEvent : TNotifyEvent This is used to notify the Object Changer procedure

that the user is wanting to change a specific grid
item.

GridItem:TGridItem This is used to store the attributes of the
appropriate Grid Item.

gridItemDictionary : TDictionary<string, TGridItem> This is to store all the grid items and their
positions.

connectionsFrom, connectionsTo : TList<string> This is too store the connections to and from each
neighbouring grid item.

XSize,YSize : integer This is too store the height and width sizes the user
has entered to create the grid to determine the
size of each grid item and their position.

Seeker:Boolean This is used to validate that a seeker has been
placed and if true then no more seekers can be
placed.

Target : Boolean This is used to validate that a target has been
placed and if true then no more targets can be
placed.

StopChange : Boolean This is used to validate that the user has already
pressed saved locations button so it will prevent
the user from changing the Grid afterwards.

4.1.1 GridItemClass
Appropriate Setters and Getters provided in commented code file.

4.1.2 SearchClass

Procedure: TSearch.runBreadthFirstSearch Why they are used
queue: TQueue<TGridItem>

This is used as the data structure for the search.

itemFound : Boolean This is used to signify when the target has been
found.

currentNode : TGridItem This is used to hold the node being examined.
Procedure: TSearch.runDepthFirstSearch Why they are used
stack : TStack <TGridItem> This will be used for the data structure of the

search.
itemFound : boolean This will be used to state if the Target has been

found or not.
currentNode : TGridItem This will be used as the current node that the

algorithm is currently using.
rightConnection: TGridItem This will be used to store whatever is to the right of

the current node.
leftConnection : TGridItem This will be used to store whatever is to the left of

the current node.

System Maintenance

Harry Clarkson 42 | P a g e

topConnection : TGridItem This will be used to store whatever is to the top of
the current node.

bottomConnection : TGridItem This will be used to store whatever is to the bottom
of the current node.

Procedure: TSearch.sortList Why they are used
I : integer This will be used as a count for the items in the list.
Swapped : boolean This will be used to make sure the loop continues

until there are no more items left in the list.
Temp : TGridItem This is used as a temporary storing space to for an

appropriate Grid Item in the list.
Procedure: TSearch.runAStarSearch Why they are used
Found : boolean This will be used to store if the Target has been

found or not.
movementOptions : TList<TGridItem> This will be used as a list to store different data at

the same time.
I : integer This will be used as a counter.
a,b,c : integer This will be used to calculate the distance whilst

storing different parts of the algorithm.

4.1.3 Objects and User Interface

x These are the objects that can be found on
the initial form.

x The code can be found in the appendix
section

x The design can be found on pages 16-19.

x GridItemClass.pas is the class for GridItem
x SearchClass.pas is the class for SearchClass
x The code for the classes can be found in the

appendix section
x The design can be found on pages 20-26.
x Properties for each class and the form are

discussed above.

System Maintenance

Harry Clarkson 43 | P a g e

This shows the form in design view. The objects on the form are shown in the table on the previous page.
This is the initial form the user is presented with when the program initially runs

The interface has been built in this way as it is simple for the user to use as the panel on the left hand side is
where the grid will be created and all the options on the right is what the user can interact with. It is in a
simple layout as the user can start from the top and work their way down.

System Maintenance

Harry Clarkson 44 | P a g e

It has been designed so that the buttons and objects that are not yet enabled for the user to click on are
slightly faded out and so the user can understand that the option is there but they have to do something
first to then unlock this ability.

The full design can be found in the design section and the full code can be found in the appendix section.

4.2 Commented Code
Please find the code in the appendix section.

Evaluation

Harry Clarkson 45 | P a g e

5 Evaluation
5.1 Original Objective Evaluation Based On Client Feedback
5.1.1 System Start up
These were the original objectives:

1. The search form should load
2. There should be an empty panel on the form
3. There should be an edit box to enter the x axis of the grid.
4. There should be an edit box to enter the y axis of the grid.
5. There should be a create button
6. There should be a radio group with options of

a. Target – this will be used to specify whether the grid item is the target
b. Seeker – this will be used to specify whether the grid item is the seeker
c. Open – this will be used to specify that the grid item can be traversed and should be selected

by default
d. Closed – this will be used to specify that the grid item cannot be traversed
e. Instructions telling the user they can only select one target should be visible near the radio

group

In my opinion the objectives for this section are all fully implemented and work accordingly. I could perhaps
only have one text box for the user to enter the size of the grid they want which would mean that it is always
going to be a square grid. I could also possibly implement more grid types such as one way roads etc. My
client also agreed that these objectives had been met. He liked the fact that you could “specify different
sized grids and that you could customise the location of the seeker and target”. He thought the interface
was “very intuitive”. He did think that there was potential scope to be able to randomise the size of the grid
and the positions of the target etc. I do think that this would have been a good addition. It was not in the
objectives but I would certainly include it if I were to extend the program.

5.1.2 Create the Grid
These were the objectives:

7. Validation should be carried out to ensure the x and y axis are numbers and that they are between
4 and 10

8. The grid should be created:
a. Individual grid item width = panel width/x axis number
b. Individual grid item height = panel height/y axis number
c. At run time repeatedly load an image for each grid item (up to x axis * y axis)
d. Ensure each image is relevant to the type of grid item

i. Open = white image
ii. Closed = white background with red cross

iii. Target = blue background with black T in the centre
iv. Seeker = green background with black S in the centre

In my opinion, the objectives for this section are fully functional in the program however when the image is
being loaded in it can take a significant amount of time depending on the size of the grid inputted by the
user. This is a processing problem and can only be fixed by the user’s hardware they use. I do think though
that I should have been referring back to my objectives more often as I did get a problem during testing
whereby a grid size of 1 could be specified. I did rectify the problem but should have noticed earlier that this
was actually one of the objectives to include validation on the size of the grid. My client agreed the objectives
were met. He was “happy with the display of the grid, even sized squares, positioning” etc. He liked the fact
that the “images used for the target and seeker were very easy to distinguish”. He thought the “red cross

Evaluation

Harry Clarkson 46 | P a g e

was very relevant to illustrate a closed node”. He did say that he thought it “would have been better if the
grid appeared rather than watching each square being placed one by one”. I am happy with the comments
and would try to change the drawing of the grid. However, I think that it would be very difficult to do without
the user wondering whether the program had crashed if it took a long time.

5.1.3 Saving the Grid Locations
These were the original objectives:

1. Ensure target grid has been specified and that the user cannot specify more than one target
2. Ensure seeker grid has been specified and that the user cannot specify more than one seeker
3. Determine the neighbours for each open grid item

a. Start at 0,0
b. If there is a neighbour above and it is open, add a connection between the two grid items
c. If there is a neighbour to the left and it is open, add a connection between the two grid

items
d. If there is a neighbour to the right and it is open, add a connection between the two grid

items
e. If there is a neighbour below and it is open, add a connection between the two grid items
f. Move to 0,1 etc. until all grid items have been explored and connection stored

In my opinion, the objectives in this section work completely fine and there are no issues at all. It successfully
validates the target and seeker and also then goes on to determine the connections between the Grid Items
as it should do with no errors as I have tested this with many different variables put into account. My client
was happy that the system ”automatically did this without user input to physically check that everything is
there that needs to be e.g. one target, one seeker”. He thought the objectives were fully met.

5.1.4 Running a Search
These were the objectives:

1. If the user has selected the breadth-first or depth-first search
a. Get the seeker grid item and use this as the root node
b. Define graph based on where the seeker can move based using the stored connections
c. Run the breadth-first or depth-first search accordingly using the graph created

i. For every grid item visited during the search change the current image to an
orange image to show it has been visited

ii. Stop the search when the target has been reached
2. If the user has selected the A* search

a. Get the seeker grid item and use this as the root node
b. Move through each grid item and calculate the distance to target from the current grid

item using Pythagoras c2=a2+b2
c. Define graph based on where the seeker can move based using the stored connections
d. Run the A* search using the graph created

i. Use the calculation Next move = distance to target + 1 (cost of making the move)
for each connected grid item

ii. Determine the lowest value calculated for next move and make the current grid
item image change to an orange image to show it has been visited

iii. Stop the search when the target has been reached

In my opinion the objectives in this section have been met. It is very simple to choose which search you
would like to run and there is no chance making a mistake and trying to run more than one at the same time.
The system then correctly identifies the target and seeker and runs the correct search between the two
points. My testing has proven that the code I wrote does carry out the search with 100% accuracy and this

Evaluation

Harry Clarkson 47 | P a g e

is very nicely visually displayed I think. My client agrees that the objectives have been met saying that “the
process has been done well and that he is happy that all of the searches can be correctly executed and
displayed”. However, he did point out that there could be a potential future addition of being “able to place
multiple targets and seekers and being able to run the search between each”. I think this would be a very
good addition to the program and would certainly incorporate it if I were extending the program. I think that
this could be incorporated by allowing multiple grid items to be added using the current methods. However,
rather than simply storing one of them, you could use a list to store multiple. The program could then loop
through the list and run the search for each target and each seeker, this would then complete the future
requirement.

5.1.5 Reset
These were the original objectives

3. Destroy all grid items
4. Reset all form defaults

In my opinion both objectives are met. The grid instantly disappears and the form is reset. My client agreed
that “both objectives were met and that no changes were required”.

5.2 Further Development
5.2.1 Current Problems
The current problems with the program is that the time it can take to load the grid on the program once the
Create button has been clicked. I did notice this myself and it was pointed out by my client. As I said I would
try to incorporate this but do think it would be very hard to do for the reasons already given.

5.2.2 Improvements
This program could be improved by possibly introducing an algorithm that would then look at the visited
nodes and calculate the shortest path it would have created rather than just showing all the visited nodes it
had been to. I think this would be a good feature to include. This was an acceptable limitation.

Also an option for a larger grid could be implemented for the user to have more ability to experiment with
the search algorithms so that a full diamond etc. could be seen. At the moment the pattern can be slightly
difficult to detect.

Another feature could be for the user to be able to change the grid even after the connections and states of
the nodes had been saved so that the user didn’t have to click on reset every time they wanted to change
the grid after a search algorithm had been ran.

Finally, it would be very useful if a snapshot of all three searches could be saved and displayed so that the
user could see all three algorithms at the same time once they have run. A screenshot could be grabbed,
saved and displayed side by side or each search could use the same grid but use different colours so that all
three could be shown at once. If all three searches used the same node(s) then all three colours would show
on the node.

Appendices

Harry Clarkson 48 | P a g e

6 Appendices
6.1 Appendix 1 – Initial Client Meeting
Meeting
Date: 25th September 2016
Time: 12:15
Venue: Hartlepool Sixth Form College (Room F86)

In Attendance
Michael Bates (MB)
Harry Clarkson (HC)

Client Background
HC: Can you please provide me with information regarding your background which may be applicable to this
project?
MB: I am currently a PhD Student at the University of Sunderland in the department of Computer Science.
My career goal is to become a lecturer/professor of Artificial Intelligence. To aid me with teaching various
topics in the subject I am looking for visual educational tools to be developed showing the workings of
different topics.

HC: What are the topics you would be teaching so I can have an idea of what I could program for you?
MB: I would be looking at possibly encryption algorithms and Search algorithms.

HC: How about I could program for an application to work out the steps an algorithm takes to find a shortest
distance between two points?
MB: Yes that would be great, however I would need for there to be more than one search algorithm during
the run so that I could compare and show how different algorithms run compared to others that may take
more steps to find point B from point A.

The Project
HC: So if I created a grid with the ability for you to change where the seeker and target is and possibly some
closed blocks where the search algorithm can’t visit would this meet your requirements.
MB: Yes however I would like it if the user could enter in the size of the grid they want themselves so it could
be more unique every time it is run.
HC: Yes no bother.

The Search Algorithms
HC: Is there a specific search algorithm you would like me to include in the program?
MB: Not any particular ones but the ones I have in mind are Dijkstras, Breadth First search and Depth First
Search.
HC: Thank you that’s great. I will go away and do some research on different types of search algorithms and
which ones are more efficient.

Appendices

Harry Clarkson 49 | P a g e

6.2 Appendix 2 - Further Meeting

Meeting
Date: 28th September 2016
Time: 13:00
Venue: Hartlepool Sixth Form College (Room F86)

In Attendance
Michael Bates (MB)
Harry Clarkson (HC)

Search Algorithms
HC: Thank you for coming today, I wanted to discuss the algorithms I have researched for the shortest path
project.
MB: Yes.

HC: I have looked at five in total and deemed three the most sensible to program into this application.

MB: What are these five algorithms?
HC: I have looked at Dijkstras, Hill Climb, Breadth First Search, Depth First Search and A* Search. I believe
however that Breadth First and Depth First would be appropriate to include as they are similar and can
compare the two in the steps they take on the application. I have also found that A* Search is a little more
reliable and efficient at finding the target where as Dijkstras and hill climbing are not as accurate.

MB: Yes I completely agree and it would be great to have that in my program to be able to compare the
amount of steps each algorithm has taken.

Appendices

Harry Clarkson 50 | P a g e

6.3 Appendix 3 - Client Feedback

Appendices

Harry Clarkson 51 | P a g e

6.4 Appendix 4 - Commented Program Listings

