
JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

1 | P a g e

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

2 | P a g e

Contents
Introduction .. 4

Initial Research .. 7

Initial Development... 8

Creating Battleships .. 15

Further Research ... 19

Temporal Difference Learning .. 20

TD-Lambda .. 21

Overview ... 21

Q-learning ... 21

Overview ... 21

Learning automata .. 22

Overview ... 22

State-Action-Reward-State-Action (SARSA) .. 22

Overview ... 22

Conclusion ... 23

Neural Networks ... 25

Overview ... 26

Conclusion ... 27

Requirements .. 28

Explanation of requirements .. 28

Designing of the final program ... 33

Implementation of the final program ... 49

Testing and evaluating .. 56

Test of requirement: 2. To have a learning program that learns to play elements of battleships 56

Test of requirement: 2.1. To have the elements of the game to follow the standard rules of

battleships 57

Test of requirement: 2.1.1. Ships are placed on a board .. 57

Test of requirement: 2.1.2. The ships are then shot at ... 57

Test of requirement: 2.1.3. When a square on the board is shot, it is either a hit, when it hits a

ship, or a miss. 57

Test of requirement: 2.1.4. If all the cells that make up a shit get hit then the ship sinks 58

Test of requirement: 2.1.5. The player wins when all the opponent’s ships are sunk 58

Test of requirement: 2.2. For there to be one player controlled by the learning algorithm 60

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

3 | P a g e

Test of requirement: 2.2.1. Have it fire shots at the ships .. 60

Test of requirement: 2.2.2. Taking less turns to sink the ships as time goes on 61

Test of requirement: 2.2.3. There to be no deterministic code to control firing 66

Test of requirement: 2.3. To have randomly placed ships to represent the other player 66

Test of requirement: 2.4. To have it be robust and efficient... 68

Test of requirement: 2.4.1. Doesn’t crash after incorrect input .. 68

Test of requirement: 2.4.2. Can run thousands of times without crashing 69

Test of requirement: 2.4.3. Uses minimal amount of storage and memory 71

Test of requirement: 2.4.4. Can simulate thousands of games in a reasonable amount of time

 71

Test of requirement: 2.4.5. Doesn’t crash if file isn’t accessible ... 72

Test of requirement: 2.5. To have it be capable of storing learning data 72

Test of requirement: 2.5.1. Have it stored in a way that easy to read 73

Test of requirement: 2.5.2. Have it stored in a way that easy to write 73

Test of requirement: 2.5.3. Have it set up and reset the file .. 74

Test of requirement: 2.6. Must have a basic user interface .. 74

Test of requirement: 2.6.1. Allows the user to choose to retrain the learning program 75

Test of requirement: 2.6.2. Allows the user to choose how many games to loop through 75

Test of requirement: 2.6.3. Displays data that can prove that the program is learning 75

White box testing .. 75

Conclusion ... 77

Feedback ... 78

Bibliography .. 79

Appendix 1 – The Raw Code ... 80

Appendix 2 .. 94

Appendix 3 .. 101

Appendix 4 .. 101

Appendix 5 .. 102

Appendix 6 .. 107

Appendix 7 .. 108

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

4 | P a g e

Introduction
For my project, I wanted to investigate artificial intelligence (AI) and machine learning

algorithms. This topic fascinated me because of the recent media coverage of AI and

learning algorithms in the news. Ranging from self-driving cars, automated robots and

computers that play games against humans. Personally, I was very interested in the

competition between humans and computers, and how programs can be written that can

outsmart a human at certain games and only get smarter as they play. Computers beating

humans at games, using learning algorithms rather than a set of best moves, dates back to

May 1997, when Deep Blue beat the world chess champion at his own game in a very high

profile tournament. More recently, in April 2016, AlphaGo beat the world go champion, go

being a very strategic and complicated game (Johson, 2016). Both are regarded as massive

achievements. I am interested in the processes a computer goes through in order to play to

such a level it can predict and trap human players, no matter what strategy they think of

and implement.

I have been tasked by Mr M, a maths teacher who would like their identity to remain

anonymous, to look at what other games could potentially be played by a learning

algorithm. They want to be shown data from a computer program I have created, that

proves another game that it would be possible to develop a learning program to play. They

specified that the user interface should be simple, as they will be the only user, and the

results should be written up and explained to them. They would like to have basic control

over the program. This includes choosing the amount of training games and choosing

whether to reset and retrain the learn data.

I looked into different games that have been learnt and then at those yet to be learnt. After

some initial research, I decided on battleships being my game of choice. It has two distinct

players and has two quite basic elements to the game, placing your ships and shooting your

opponent’s ships. I felt this game be a nice structure to go off, show how I can optimise

these processes, as well as analyse and play so many games that it will come up with a near

optimal solution.

A solution widely regarded as the optimal was created by Nick Berry. My original idea was

to use more simple probability algorithms, the method he used, to find the optimal solution.

I decided to use machine learning, because I can then test the quality of my program against

his solution. His solution is clearly explained on a website he runs called Data Genetics and

it is competed with step-by-step examples and explanations, along with data backing up his

claims. He compared different targeting strategies. These are the following:

 Random firing – randomly selecting squares to shot, hopefully hitting ships in the

process

 Hunt/target – firing randomly until you hit a ship then firing at adjacent squares, to

land another hit, then continue firing on an axis until you miss or the ship is sunk.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

5 | P a g e

 Hunt/target with parity – also known as checker board, this means only firing at

adjacent spaces once a ship has been found. This is because the minimum ship size

is 2, so you theoretically only need to target half as many spaces.

 Probability density functions – to work out the probability of a ship being in a square

and fire at the most likely places. This is done like the parity technique but takes into

account the sizes of the ships left as well as places they can actually be placed.

(Berry, 2011)

 (Berry, 2011)

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

6 | P a g e

My end goal will be to create a program that can learn to play the game battle ships and to

have it improve its strategy and win more games over time. I will use a similar method to

test my end algorithm, games completed over shorts taken to win. I can then use the

results from my algorithm and compare them to the various methods that he tested to work

out how effective it is.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

7 | P a g e

Initial Research
The initial research covered what battleships is and how it plays. This will help design the

game as best I can, as well as give be a structure from which the learning algorithms can fit

into.

Battle ships is a relatively simple game to play, but probability calculations and strategic play

can be done to greatly increase your probability of winning. There have been other

variations of the game that use different sized grids, but I will be ignoring those for now.

The aim of the game is to sink all of your opponent’s battle ships. Each player has 5 ships,

an aircraft carrier (5 grid squares long), a battle ship (4 squares long), a frigate and a

submarine (both 3 squares) and lastly a patrol boat (2 squares long). Sometimes different

names are used but the sizes should stay the same. The ships get placed before the game,

and can be put horizontally or vertically in any place as long as they are sharing a grid or

have parts of the grid. Taking it in turns players then fire to try and hit the opposing ships,

which they will be hidden from them. If a ship is hit then the player must say the shot hit,

but not what ship was hit. Once a ship is sunk the player must declare a ship is sunk, but not

which ship it was. The player who sinks their opponent’s ships first wins.

In order for it to teach its self and play depending on play styles I have researched different

ways of doing this. Two key ways stood out to me: neural networks and Monte Carlo trees.

Neural networks are what the majority of modern leaning programs use. Monte Carlo trees

were a break though in how to process hundreds of potential paths in seconds. Monte

Carlo trees are what allowed Deep Blue to beat the world chess campion in 1997 and

AlphaGo to beat the world Go champion in 2016, a significantly more complex game than

chess. For battle ships however I don’t think my game of battleships is complex enough to

use Monte Carlo trees, because it does not require planning ahead and guessing what your

opponent will do next. I feel that further, in depth, research is needed in this field, so I will

conduct some after I have the frame work of the game in place.

The ultimate end goal will be for it to beat the vast majority of humans it plays against and

give reasonable completion against the probability density strategy. It will hopefully achieve

all of this by it teaching its self and learning from games, rather than me making the

mathematically best strategy and I think this can be achieved if I do further research at a

later date, going in depth into how I can implement a learning program.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

8 | P a g e

Initial Development
From analysing the research, I have come up with a specification for myself. I will then write

the code to match this specification. I started all my planning processes from a high level

then brought it closer to a low level, making it easier to work with, making sure I don’t miss

anything. At this stage in the process the focus is in creating the game of battle ships, from

there I can then explore the learning algorithm possibilities that will work with the game.

My personal specification is to create a system that satisfies all the following points:

o Runs a game of battleships

o Has a learning element to the code that:

 chooses a place to shoot

 chooses where to put the ship

 can improve on its first strategy to increase its win percentage

 Can teach itself to play my Battleships game by learning from playing

against opponents

o Can be replayed thousands of times without error

o Stores the intelligence that its learnt

o Could learn to beat a human player

If I meet all these criteria, then I will have been successful in my investigation. To make the

program user friendly I will take necessary precautions to prevent input errors and runtime

errors, making it very difficult to crash the code. As good programming practise, I will be

writing it as an object orientated program, which should make it easier to edit and change

things as the task progresses. The hierarchy charts below are how the classes and

subroutines will be set up, however there is a high chance this could change when I begin

implementing the code.

I plan to have to have the learning algorithm to not only learn how to shoot and sink ships,

but also to learn patterns in haw its opponent plays. This is one problem that cannot be

Battleships
Game

Game

take
turn

take
shot

validate

all ships
sunk

place
ships

validate
ship

Coordinates

getX getY

Ships

has sunk

Cells AI Board

get
board

display

Key

Classes

Subroutines

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

9 | P a g e

calculated from a fixed algorithm, but instead requires a learning algorithm to work out and

predict the likely places and patterns to where they like to place their ships. From my initial

research, I know that that neural networks can be used for this kind of problem, but I need

to research further into how they work.

If I am going to make a program that can play the game properly then it will need to place

ships as well. There are two main strategies when it comes to ship placement and there is

so far, no definite answer as to what is the best. They are placing them touching or not.

Arguments for touching is that they are less likely to hit any if they stick to one side of the

board also it can trick your opponent if they think they sunk a large ship, when they really

just sunk a smaller one and hit some others. Points against the touching strategy if that they

have found all your ships at once which can be catastrophic gameplay wise.

I will try and get the program to learn traits of play that leads to ships being placed in certain

areas and orientations more often than in others. This is something an algorithm can work

out, but can only be perfected through games with real people. It will be things like this that

could allow it to be more successful than the probability algorithm alone, because it can add

in preferred orientation and places to the probability mix.

To make the program I will need to firstly make a battleships game for the program to play.

This will need to be able to support computer vs computer, as well as computer vs human.

The computer vs computer should allow it to play millions of games to teach its self how to

win most games. Next it will move to playing people to get it to learn habits and play styles

so it can adjust its strategy accordingly.

I will need to have a file to store the learnt data so it doesn’t have to be retrained after each

run through. I will probably be storing the intelligence file as a comma-separated-values

(CSV) file, because the structure will be useful, but if other formats are better suited then I

will use them.

While most learning programs use C, Java and python, I will be writing the program in

Python because it is a language that I am familiar with and it has features well suited to

writing this sort of program. While python is very useful for writing learning programs, it is

not eh best for writing complex object orientated programs, due to the way the classes

work and are structured.

I have had a few ideas as to how to make the learning program work, so I have made a small

guideline. At this stage I have not fully research the learning part of the program but I plan

to build it to this structure:

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

10 | P a g e

This is a data flow diagram for the complete solution. This explains how the data will be

moved, passed and stored throughout the completed system. It is just there to act as a

rough representation as to how the data will be passed around the program. It is a model

and should not be taken literally as it is all in the same program. The “Battleships bot”

represents the learning side, the “Battleships game” represent the whole game, the “Learnt

data” is the external file and the “Opponent input” is to represent the function used to take

the commands from either a human or an automated algorithm.

I made a flow chart to show the basic running of the game of battleships, which will be the

part I will create first, before researching further. Once I have the game, with parts ready

for the implementation of the learning side, then I will do further research on the machine

learning approaches.

AI

Training

ship
placement

shots

Play

work out
shot

shoot
work out

ships
place ship

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

11 | P a g e

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

12 | P a g e

To prove the board has been created properly it will need to be displayed. However, I

would not want it to display on ever run if the program is running for thousands of games. I

have made the following pseudo code to show how I plan on displaying the board.

 i <= board_width - 1
 FOR x IN board_width:
 PRINT i,
 FOR y IN board_height:
 PRINT board_grid[y][i],
 i <= i - 1
 PRINT
 END FOR
 END FOR
 PRINT " " WITH NO RETURN
 FOR j IN board_height:
 PRINT j WITH NO RETURN
 END FOR

This displays function of the code prints the board to console in a way that is easy for the

user to understand, and it contains all the aspects that you would normally see on a board

for battleships. The use of the variable “i” means the numbers displayed downs the side of

the board will be the right way around to comply with the standard layout of battleships.

Once I have the base game completed then I will also have a structure to work off, so I know

what the tasks the learning algorithm will have to do, and I can start to work on the

protocols for that to work. I will treat the creation of the game and the implementation of

the machine learning algorithm as two separate sections of the project, to keep my mind

focused.

I have made IPSO charts for the AI and the game. This helps me to understand what input is

need, what outputs to expect and the processes and storage requirements needed to get

these. This chart is very useful when I come to designing the program, because it gives a

rough outline as top what is needed. This stops me from missing key features of the code

and gives me a base guideline as to how it will work.

IPSO chart for battle ships game:

INPUTS

 Who is playing(string)

 Ship placement locations [X and Y]
(integer)

 Shot coordinates [X and Y] (integer)

OUTPUTS

 Boards with details

 Text commands

PROCESS

 Menu options

 Make board

 Placing ships

 Firing

 Hit or miss?

STORAGE

 Data from the game

 Data learnt by the AI

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

13 | P a g e

 Has ship sunk?

 Has game ended?

 Turn swap

IPSO chart for machine learning section:

INPUTS

 Board(array)

 Game text commands(string)

OUTPUTS

 Ship placement locations [X and Y]
(integer)

 Shot coordinates [X and Y] (integer)

PROCESSES

 Adapt to inputs

 Decide on outputs

STORAGE

 Data learnt from game

I have made a list of requirements. I will try to write a program that meets all of these

requirements. If it does then it will be successful, if it meets the majority of the

requirements, then there a chance it will still complete the investigation, but will not be able

to do so reliably in a user-friendly manner.

These are the initial requirements:

1. To have a game of battleships

1.1. To have the game play to the standard rules of battle ships

1.2. To have players that can be human and computer controlled

1.2.1. To have player inputs

1.2.2. To have learning program controls

1.3. To have it be robust and efficient so it

1.3.1. Doesn’t crash after incorrect input

1.3.2. Can run thousands of times without crashing

1.3.3. Uses minimal amount of storage and memory

1.3.4. Can simulate thousands of games in a reasonable amount of time

1.4. To have it be capable of storing learning data

1.4.1. Have it stored in a way that easy to read

1.4.2. Have it stored in a way that easy to write

1.5. To have a learning program to play battleships

1.5.1. Be able to produce effective inputs in the game

1.5.2. Have it learn to:

1.5.2.1. Play the game

1.5.2.2. How to become better at the game by:

1.5.2.2.1. Increasing its hit percentage

1.5.2.2.2. Placing ships in more tactical places

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

14 | P a g e

These are the set of requirements that I started writing the game for, and later used for my

further research. These have been revised into my final requirements in my Further

Research.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

15 | P a g e

Creating Battleships
I began to implement some of my code for the battleships game. I was implementing the code while

researching in to learning algorithms to try and be time efficient. I go the frame work of the game

in place while researching into the feasibility the learning program. Very early on I realised that is

should focus on just one element for the learning program, or I would have to make two as the parts

to learn are so different. So, from near the start I made the game one player; with the learning

program being the shooter, randomly placing ships to represent the other character.

Appendix 2 is my code of the working game of battleships. I built the game first then, then went on

to decide what features needed to be changed. Some features got changed by removing them,

some had a few variables changes so they worked with different attempts at learning programs, and

others were simplified or removed.

The screen shots below show how the game plays, and how the board is set up.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

16 | P a g e

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

17 | P a g e

The screen shot to the left is from when

the code was edited so that none of the

cells stared off being hidden, which

allowed me to see that the ships had

been placed correctly.

It its self was created from two different

pieces of code I began writing, both got

too messy, so I cut them down and used

so of the useful parts in this, with the rest

of this being written from scratch to fill

the gaps.

A full play through pf the game can be

seen in the video of Appendix 4. There

you can see how the program complies

with every battleships rule, apart from

the only one player taking shots. The

displaying of the ship locations at the

start was to make it easier for me to error

check and so I could cheat. Cheating had

no effect on the program, it just made it

so I was faster to win. The input

validation can be seen at times 1:55 and

2:13 in the Appendix 4 video.

I created a feature, that allowed me to

quit a game once I it a ship. This was

mainly for testing so I don’t have to finish

the game each time I want to test a part,

as I have the option to leave after every

hit.

This game stood as the foundation for the

rest of my programming. To ensure it

could be easily adapted I started writing it

in an object orientated format, and made sure it was very efficient.

When I finished writing the game, I changed parts depending on what I thought was feasible or not.

I tried to leave as much of the original code in as I could so that the frame work for the program to

be expanded back into the full game was there. For example, I already had a means of placing ships

in every space on the board.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

18 | P a g e

I also began to experiment with centring the board so the AI

would only have to learn how to sink a ship from around the

centre point. This would make it so much easier, because

anything that is not a direct horizontal or vertical translation

from that centre point should have no change of containing

the rest of that ship.

The centering of the ship worked really well, but more wotrk

had to be done for it to be ready to use, and the idea was

still in concept.

I had plans to shrink the board to a smaller size for testing

purposes, so when I did shrink the board down I left all the

parts that would be needed if the program was to be

expanded back in to a full size game.

I used this code as the basis for most of my experimental

learning techniques. First I out copy this into a new file,

then I would start making changes.

After changing the code so that I could centre the ships, I left

this file, so the original working game could be used to

foundation all my other ideas. I then began to focus all my

work on further research of learning algorithms.

I used this code as the basis for most of my experimental

learning techniques. First I out copy this into a new file,

then I would start making changes.

This first program acted as the skeleton for my final

program, where I could then implement and expand the

learning part of the program on top

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

19 | P a g e

Further Research
I researched into learning programs and similar pieces of code, to let me compare

techniques and types. I analysed different pieces of code to extract the relevant parts to

teach me how to do certain parts. While having a lot of interest in AI and learning

algorithms I had no prior experience in programming one before this project.

I used various online tutorial to teach myself the theory of how they worked before I started

writing my own. At first I was surprised by the wide range of approaches to machine

learning. I came across “Supervised”, “Unsupervised”,” Semi-supervised”, “Reinforcement”

and “Deep” learning (Wikipedia, 2016). On the same website, some of these were then

broken down further into subcategories. In total, there were 62 methods listed. I realised

that I had to reduce the amount of information that I would have to read through.

After visiting other sources, I broke the types into three categories that are widely regarded

as the main types:

 Supervised

 Unsupervised

 Reinforcement

I then taught myself the basic concept of each types and what they often are used for, so I

could then make an informed decision on what path to look down further.

Supervised is when there are example inputs and desired outputs, the program then has to

link the inputs with the outputs. Unsupervised being when it is not given input labels and is

required to see how far towards an end goal it can get. Finally, Reinforcement learning

being when it has a changing environment, and isn’t told how close to the goal it got, just

whether it achieved it or not.

I saw that one example given of Reinforcement learning was “learning to play a game”

(Wikipedia, 2016), which indicated that it was the right type of learning program for my

investigation. Furthermore, a key difference between reinforcement and unsupervised

learning is that example answers are not given, and small problems in the learning are not

automatically corrected, rather it must work them out. Also in the game of battleships the

ship placement is changing every game, meaning that it is a changing environment,

something that is often overcome with reinforcement learning.

While visiting Leeds University I talked to Dr Mehmet Dogar about what machine learning

approach I should use, supervised, unsupervised or reinforcement learning. He agreed that

Reinforcement learning was probably the best choice for my code but we had limited time

and couldn’t go into depth.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

20 | P a g e

I found four methods of reinforcement learning from the Wikipedia, List of machine learning

concepts, web page. These were:

 Temporal difference learning

 Q-learning

 Learning Automata

 State-Action-Reward-State-Action (SARSA)

Temporal Difference Learning

The Temporal Difference (TD) method involves looking at the reactions caused by its action

and weighing that action accordingly. If the action creates a positive reaction, then the

weight of the said action gets increased by a value. The weights of all the values are

increased by amounts that reflect on the action and the previous actions. It can be

formulated in the following way:

(Wikipedia, 2016)

I used skills that I learn in my maths classes to help me make sense of these equations,

coming to the conclusion that the reward value is the difference between the full values

from complete the task and the significance of that action to completing that task.

Eventually that the reward value is dependent on how important that action was in

completing the overall given task.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

21 | P a g e

TD-Lambda

Developed in the 1990s by Richard S. Sutton, the algorithm works by assigning the variable

lambda between the values of 0 and 1, where 0 is used of a completely wrong action and 1

being used to greatly reward key events. This means that more events can be covered, and

the reward system remains relative because all the values will remain between 0 and 1.

This algorithm’s most famous application is probably in the program TD-Gammon, a

program that learnt to play backgammon, and could beat the world’s greatest players.

Overview

This approach defiantly seems like a plausible method. It has been used to learn games in

the past and can be used to reward many different actions, which in a game of battle ships

there are many. It could allow me to reward the program as it plays each game, meaning it

will be “smarter” for the next game.

Q-learning

Q-learning is a method of learning that can be applied to many different programs and is

designed to find the optimal path through a Markov decision process (MDP). Q-learning

learns different actions then applies values to the actions, and builds larger actions from the

previously learnt actions, based on the values that these actions have. It is useful for

showing the effects of certain actions without the need for a model environment. Another

pro for Q-learning is that it learns and can work out a lot of things so once given a task often

it won’t require adaptations.

Markov decision processes are mathematical representations of decision making problems,

where the problems outcomes are partly random and partly controlled. They can be

represented in finite state machines or as recursive algorithms.

Overview

Q-learning would be the perfect option for my code, because the game can be put into a

MDP format. The placement of the ships and the shots are up to the program, but the

placement of the opponent’s shots and ships can be entirely random. After attempting to

put the game into this format I quickly realised that it was quite a struggle and there is only

a limited amount of information I can get from online articles and tutorials. I knew that this

topic was well beyond my ability.

Despite it being the perfect option on a theoretical level, I could not use it because I did not

fully understand all the equations and notations. It would have too hard to write an

attempt at this method and it would take too long for me to teach myself all the necessary

information to understand.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

22 | P a g e

Learning automata

A machine learning technique that’s been studied since the 1970s, this approach learns

from its environment. It uses a Markov chain (method of predicting future outcomes from a

collection of past outcomes) in an attempt to learn what its future outputs should be. Like

Q learning, it is another way to process Markov decision processes, but this time it doesn’t

learn in such a dynamic way, rather it performs lots of actions then works out what to do

next from that and tries again. It learns from the changes in its environment and can predict

with great accuracy what could happen next, then they can change a factor in this process.

Overview

From what I understand, this technique will be of much use on the shooting side of the

game because the inputs have to depend on a relatively unpredictable lay out and the data

learnt would not be able to be passed on, because the opponents ships will be changing

location each game. However, it could potentially be used in ship placement, as an attempt

to learn where the opponent usually shoots and therefore predict where they will not shoot

and place the ship there.

State-Action-Reward-State-Action (SARSA)

The name comes from the process of working out the Q value. The best explanation I found was:

“Q-value depends on the current state of the agent ‘S1’, the action the agent chooses ‘A1’,

the reward ‘R’ the agent gets for choosing this action, the state ‘S2’ that the agent will now

be in after taking that action, and finally the next action ‘A2’ the agent will choose in its new

state. Taking every letter in the quintuple (st, at, rt, st+1, at+1) yields the word SARSA”

(Wikipedia, 2016)

The algorithm below shows how the state-action value is updated on an error and gets

adjusted by the learning rate.

(Sutton, 2012)

Overview

SARSA is very similar to Q-learning, the main difference being that Q-learning is given an

algorithm that is set to learn and retrieve values, but SARSA has its base algorithm which it

learns to adapt. In the way they run, there are only a few difference between Q-learning

and SARSA, but I believe both are too complex for me to implement efficiently.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

23 | P a g e

Conclusion

I found that Q-learning and SARSA would be the most effective methods to use, but they are

far too complex for me to effectively implement. The other approaches too were rather

complex. I understood them to a base level but I struggled to understand the notation used

in the equations and therefore struggled to follow the algorithms. I tried teaching myself

some of the topics so that I would understand, but the task was too great and would have

consumed too much of my time.

However, I did learn the standard character notations for each of the elements from a paper

written by Richard S. Sutton. This not only helped me understand the algorithms I found,

but also showed me what the key parts of the learning program were, so I knew what

variables I would have to consider.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

24 | P a g e

(Sutton, 2012)

To effectively complete this project, I will either have to finds another method of creating

the learning program, whether that be through finding another approach or by creating my

own method.

I also decided that this task would be more difficult than I initially thought, so I shifted my

focus to one part of the program, the shooting, and decided to abstract that problem

further. I separated it out into potential ways to represent the problem, this then made me

more open to different techniques I could use. After breaking down the shooting part of the

program, I decided that getting a program to work out where to shoot next will be my main

priority.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

25 | P a g e

I broke the problem down as so:

Neural Networks

I researched neural networks because they are a common feature in many learning

programs. There are a wide range of online sources that cover this topic. The concept

seemed confusing at first, but with the right tutorials and videos I quickly understood the

concept.

They are often used for learning patterns and coming up with conclusions from a variety of

inputs, which would just be too much data and possibilities for a person to comprehend. I

felt this could be useful in my project because if I could get it to recognise the pattern of the

ships, then it could predict where to shoot next.

By neural networks I refer to artificial neural networks (ANN), as to natural neural networks,

which are a collection of interconnected brain cells. They have similar names because the

structure of an ANN is loosely based on the structure of the brain. (Woodford, 2017)

Neural networks are very useful in learning programs because they don’t have to be

programmed to specifically learn, they are just given the rules and learn by themselves. The

concept behind an ANN is that you make a single machine act as if it was millions of small

interconnected cells/units. The units are arranged in layers and a theoretical network can

have infinite layers, of infinite size. However in reality this is not necessary because just by

adding just one new layer can greatly increase the computing capability of the network,

because every unit in a layer connects to every unit in the next layer.

 (Butler, 2015)

There are input layers and output layers, all the layers in-between are considered as hidden

layers. The weights that connect each unit are what calculates and allows the network to

“learn”, and the quantity of cells and layers determine how many weights are added before

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

26 | P a g e

the final solution is come to. It passes the values from the input units through all the hidden

units, adding the weights as it goes, then once it reaches the output it can back track

through the network to find the best fitting route.

I attempted to create my own ANN, which I managed successfully. I followed an online

tutorial video: https://www.youtube.com/watch?v=h3l4qz76JhQ (Raval, 2016)

By creating my own, very basic, ANN I could then test to see if I could adapt it to work with

my battle ships game. I tried to make it so it would recognise the ship as a pattern.

This was the very basic neural

network I created and tried to

adapt, but it was never

successfully adapted to work

with the rest of my code. This

was the final state it was left

in, however there are unsaved

versions that were more

complete.

The problem with this is that the ship remains hidden, until shot. This was a great struggle

and while trying to adapt the network, I realised that it would probably not work. There

were many reasons that I realised it wouldn’t work.

The main reason was that neural networks need sample data to train from (Spencer-Harper,

2015), which it couldn’t have because of the hidden nature of all the cells. It means that I

would have to try to recognise several different variations of the ship depending on what

was showing and what was hit. This means either adding more layers or creating multiple

networks. Another issue which comes from trying to get away with no training data, is that

it will try to learn from a board that is constantly changing, meaning it will be very unlikely

for there to be any discoverable patterns.

Overview

After realistically looking at the problems to overcome, and trying to come up with and later

looking up ways to solve them, I concluded that I would not be able to use a neural network

in an efficient or effective manner. This is mostly because of the lack of training data and

the problems that I encounter from trying to overcome this, which come from the different

states it would have to recognise the ship in and the hidden and changing nature of the

cells.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

27 | P a g e

For the neural network to work it would have to have lots of changes made to the structure

and many elements would have to be custom made to the point where there is no point in

using a neural network. Even then this is theoretical and I decided it was not worth the

effort as there was an unlikely chance that I would get it to work.

Conclusion

After considering a variety of existing techniques, I have not found an existing approach that

will fit my requirements. I have found algorithms that would be perfect for my program, but

they have been too complex for me to understand and implement in the given time. I

reviewed other methods, but they too were either not suited in the way that they work, or

they are too complex for me to understand. From looking at the Q-learning, I started

getting into deep learning, which is well beyond my level of computational competence.

I started to research more basic approaches, and found a few videos that described very

basic learning programs. I was shown one source which dynamically works out if a shape is

a triangle. It had a set of variables; blue, red, 3_corners, 4_corners,

perimeter_greater_than_5, perimeter_less_than_5; to name a few. It then was given data

that represented shapes and had to work out whether they were triangles. It worked by

weighting each, which correlated to how much it considered that factor in its decision. After

it had started running it worked out that 3 sides and 3 corners are the most important

factors in deciding if a shape is a triangle. As a test the input data was changed to make all

triangles red and the other shapes blue. As expected I worked out the key factors in a

triangle are it having 3 sides, 3 corners and it being blue.

I felt like this sort of weighting and very basic structure would be best suited to my ability

and complexity of the task. I also having researched further I will update my requirements

to something more feasible and to my ability.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

28 | P a g e

Requirements
These are the final, revised requirements:

2. To have a learning program that learns to play elements of battleships

2.1. To have the elements of the game to follow the standard rules of battleships

2.1.1. Ships are placed on a board

2.1.2. The ships are then shot at

2.1.3. When a square on the board is shot, it is either a hit, when it hits a ship, or a

miss.

2.1.4. If all the cells that make up a shit get hit then the ship sinks

2.1.5. The player wins when all the opponent’s ships are sunk

2.2. For there to be one player controlled by the learning algorithm

2.2.1. Have it calculate and fire shots at the ships

2.2.2. Have it learn to become better at the game by, taking less turns to sink the

ships as time goes on

2.2.3. There to be no deterministic code to control firing

2.3. To have randomly placed ships to represent the other player

2.3.1. Full game places ships as per battleship rules

2.3.2. Test case will use a single ship

2.4. To have it be robust and efficient so it

2.4.1. Doesn’t crash after incorrect input

2.4.2. Can run thousands of times without crashing

2.4.3. Uses minimal amount of storage and memory

2.4.4. Can simulate thousands of games in a reasonable amount of time

2.4.4.1.

2.4.5. Doesn’t crash if file isn’t accessible

2.5. To have it be capable of storing learning data

2.5.1. Have it stored in a way that easy to read

2.5.2. Have it stored in a way that easy to write

2.5.3. Have it set up and reset the file

2.6. Must have a basic user interface that

2.6.1. Allows the user to choose to retrain the learning program

2.6.2. Allows the user to choose how many games to loop through

2.6.3. Displays data that can prove that the program is learning

Explanation of requirements

These are the requirements that I will write the rest of my program to. My end goal is to

have all these requirements met, which means I will have successfully completed my task.

I have set the requirements to what they are so that given more time the program can be

expanded to cover the complete game of battleships. I have set it do that it only shoots the

ships because it makes the game much simpler, because then I don’t have to worry about it

taking turns, and working out what the opponent shoots least to place the ships is a

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

29 | P a g e

relatively easy task, as it would just be board representation that increases each cells value

when that cell is targeted.

It could be made more complex by searching for the location where there will be the least

cumulative shots for the place of the whole ship, but this will just involve some for loops to

iterate through looking for that optimum point. I feel this would not add a lot to the game,

as the board placement is not the most important feature; it only happens at the start of the

game and would have minimal effect on the play of the overall game, especially against a

random firing bot which is what it would most likely be trained against.

The sinking of the ships is the key part of the game, because that is how you win; smart ship

placement could increase how long it takes to lose, but it is very much up to chance.

The overall goal was to create a program that learns to play certain aspects of the game

battleships. This way I’m still investigating what games can be learnt by a learning program,

just I’ll be exploring elements of the game rather than the whole game itself. I have chosen

to try and teach it the shooting part, because I would consider it the most skilful and useful

part of the game. It is also the most complex part of the game. This is because it not only

must find the ship on the hidden board, but once it has been hit the most effective way to

paly would be to shoot around the hit cell in the board. This can be quiet easily coded in,

but I imagine getting a program to learn that patterning would be more of a test. Also,

there is a chance that it could find patterns that mean it will be more effective than a

choosing a random place nearby to shoot.

To achieve this goal, I will have to meet sub criteria. These being the requirements 2.1 to

2.6.

Requirement 2.1 means that the parts of the game I do have must follow the standard rules

of the battleships game. For example, the current design would not let there be two players

taking on in turn to play because that is not being included, however the learning algorithm

will shoot at the opponent’s board, and it must work out where to shoot from what any

normal player would see, it cannot see through the hidden layer and shoot where the ships

are. Likewise, the ships that it must shoot will have to be the placed in a way that they

comply with the rules. If elements of the code have different rules to the actual game, then

I will not actually be testing whether the game is learnable by a machine, because it will be

playing to different rules. All the sub requirements just state the rules of the game that it

must abide by, to stay representative of the game battleships:

2.1.1. Ships are placed on a board

2.1.2. The ships are then shot

2.1.3. When a square on the board is shot, it is either a hit, when it hits a ship, or a

miss.

2.1.4. If all the cells that make up a shit get hit then the ship sinks

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

30 | P a g e

2.1.5. The player wins when all the opponent’s ships are sunk

2.2 is the learning algorithm being in my program. It has to be a learning algorithm and has

to learn, or at least have a reasonable attempt, at trying to learn the game. This part of the

program will be very complex and is required to do numerous tasks. I have made sub

requirements of this requirement; 2.2.1, 2.2.2 and 2.2.3; to make sure that the learning

algorithm does everything it is supposed to.

Requirement 2.2.1 is that the learning can work out where to shoot and shoot that location.

This is a critical aspect of the game battleships as it is a way in which a player wins. The

machine learning part of the program has to be making the decision on where to shoot or it

has ultimately failed in learning to play the given element of the game it was given. If it can

learn to take shots, then it will only progress further to play other parts of the game, like

identifying ships, placing ships and spotting patterns in where its opponent places ships.

2.2.2 is a key part of the learning process. For the program to truly learn then it should

improve at the game over time. There are two way to measure its ability to learn, the

accuracy of its shooting and the amount of moves it takes to win. These are very similar and

one will result in the other, but I feel that they will be two ways to measure and check the

same thing. I made this separate from the main requirement, because it could be possible

for the AI to learn to play, but not get any better than just firing. Theoretically the longer the

program runs for the smarter it gets, so there should be a significant different in the time it

takes to win from a game after 5000 training runs and a game after 100000 training runs,

however I do not yet know the efficient the learning algorithm will be, it may learn over a

shorter space of time, or it could take longer.

Requirement 2.2.3 means that no aspect of the learning program is designed in a way that

tells it where to shoot, without it having to learn. It should not have any elements of the

algorithms that tell it where to shoot, because then it is not entirely a learning algorithm,

and its performance can’t be relied on from the learning part alone.

Requirement 2.3 is to have ships placed randomly on a board to represent the other player.

This is a necessary requirement as battle ships is normally a two-player game, but because

the learning algorithm will only shoot, this will only place ships. This is critical to simulate a

real game like scenario for the AI to learn from.

Requirement 2.4 is for the program to be robust and efficient. There are many factors for

this to be asses, which I have put in their own sub requirements of this requirements, 2.4.1

to 2.4.5. For the code to be at a satisfactory level of efficiency and robustness, these

requirements must be met. The code should be efficient so it doesn’t take a long time to

iterate through the games, and to keep good programming technique. The program should

be robust so it doesn’t crash and so it is user friendly for ease of use.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

31 | P a g e

Requirement 2.4.1 is so the program does not bug or crash if an incorrect input was

entered. There should not be much user inputs, but it would be a pain if the program

crashed after an accidental input.

Requirement 2.4.2 means the code should run thousands of times without crashing, which it

needs to do for the program to learn. It needs to manage thousands of runs in a row

without crashing to give the AI an opportunity to learn.

2.4.3 is for the program to use a minimal amount of storage and memory while running.

There are a few reasons this is important. Firstly, after the memory could fill up if all the

data from thousands of iterations was stored in memory, especially as I will have to run the

program on a virtual machine, so it has very limited memory. The same goes for storage,

because reading and writing from storage can take time and the virtual machine has limited

storage.

Requirement 2.4.4 means the program can run through thousands of games in a reasonable

amount of time. This is so the user doesn’t have to wait a long time for their results. This is

good for time management and testing, because I don’t want to waste time and have to

wait a long time, just to find a bug and have to wait all over again.

2.4.5 means the program doesn’t crash if it cannot open the file. This is important because

it will be a waste of time and learnt data if the program crashed part way through a large

training session, because the file cannot be opened. It would be best for the user to get the

option to try again, to save the data, or at least a message to inform them of the error.

The requirement 2.5 is for the storage of the learnt data. This is important because saving

to a file means the data will stay there then the program finishes and it means the saved

data is non-volatile so it doesn’t have be retrained. This data will also have to be easy to

read and write. Easy meaning it can be accessed and read in a quick and efficient way. This

makes up the sub requirements 2.5.1 and 2.5.2. Also, the file will have to be created and

reset, as explained in 2.5.3

2.5.1 is for the learnt data to be stored in a way that is easy to read. This is important so the

program doesn’t have to decipher or search for the data, as the speed the program runs is

very important due to the amount of potential iterations. It must also be easy for the read

for the user, so they can analyse the data. The user will have to understand the data so they

can see if the AI is behaving as it should and to check that it is learning the correct values.

Requirement 2.5.2 is for the data to be stored in a way that easy to write. It is important for

the program to be able to write to the data file easily. It shouldn’t have to take time

because the program need to write lots of things to the file so it shouldn’t be a slow process

or it would take a long time to run thousands of games. Also, it should be a simple writing

process so noting can go wrong, because if it does lots of data can be lost.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

32 | P a g e

Requirement 2.5.3 is about the creation and resetting of the file. They are in the same

category because resetting the file is the same as making a new file with the same name.

The file must be created so that the file before learning is still ready to be read from, and

ready to receive the learn data when it comes. Resetting the file is important because the

learnt data may be incorrect and it must be tested multiple times.

The requirement 2.6 is for the user interface. This has to display a range of things to satisfy

the client. It was specified to be simple, so I will not add any more features than what they

ask for. The features that are needed are described in the sub requirements of requirement

2.6. they are import because without a working user interface the client will have no control

over the program.

2.6.1 states that there has to be an option for retraining the program. This is essentially an

option to set up the file again. This feature is important as it will save the client from having

to manually reset the file. The reason the user must have this feature are explained in 2.5.3.

2.6.1 means there must be a means of allowing the user to choose how many games to loop

through. This is important as this will allow the user to work out how long it takes for the

program to have learnt to a sufficient level. Also, it will allow for testing to be completed in

a faster time, as if one feature is needed to be tested then only one game is need not

thousands.

The requirement 2.6.3 means that the user interface displays data that can prove that the

program is learning. This is so that in the evaluation and analysis of the program, as well as

the testing, one can ensure the program is learning. Without this then there is no evidence

that the program is learning.

These are all the requirements that I will writing my program to meet and testing it against.

At the end of the project, I will evaluate the program against these requirements. If it meets

all the requirement s then it will satisfy the user.

It is key that I stick as best I can to these requirements and use them as a guideline, because

I don’t want to start writing code that is not needed, and missing out features that are

needed.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

33 | P a g e

Designing of the final program

A lot of design went into creating the final program. Some of the ideas that I come up with

were too complex to iterate through by hand, so many had to be implemented into a test

file, to see if they were actually feasible. Some of the ideas were much more suited than

others, however, I made sure I tried anything because machine learning was a topic I knew

very little about, so I didn’t want to miss a simple, but effective, idea.

One test that I mentioned in my further research was artificial neural networks (ANN). This

would have been a very useful resource had I got it to work, but the task was beyond me. I

found a resource source that was very helpful in my research.

Their ANN for a board that

is 5 by 1 with a ship of

length 3. They said the

process “can be a challenge,

and rewards function design

is therefore something of an

art form.” (Landy, Deep

reinforcement learning,

battleship, 2016) Which

proved to me the

complexity of my task.

Jonathan Landy, the author of the article, describes himself on his web page: “I worked for

eight years in theoretical physics, primarily statistical mechanics. This included two

postdocs, one at UC Berkeley and one at UC Santa Barbara. These days, I work as a data

scientist at Square in San Francisco.” (Landy, Jonathan Landy, 2015) I felt this showed the

difficulty of the task, and the sort of team that would be needed to solve it. It also shows

how the topic is far beyond A-level standard.

The source showed that it was possible to use an ANN to learn the game battle ships, but in

the article, it says how they encountered veracious problems with their program. The main

part of their article was centred around many complicated equations that I, nor my teacher

understood.

This was their final game function

(Landy, Deep reinforcement learning, battleship, 2016)

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

34 | P a g e

I could make sense of some parts but not enough to fully understand their equations and

what they tried to solve the issues they had. They also used lots of download packages:

jupyter, tensorflow, numpy, and matplotlib. I only used numpy because I didn’t not want to

rely on the packages, because it meant that the technical parts are done for you; little

programming is required.

My original idea was to simplify the problem was to convert the board into a one-

dimensional format, but still I could not get the program to run as it should, so I didn’t even

get to work on any form of training.

The following quote explains my issue with the aid of a formula. It explains how the neural

network requires a set of learning data, which cannot be provided. Therefore, the first runs

have to have approximated values, and the learning data becomes the output of from the

first runs.

“Here, the p(a) values are the action probability outputs of our network.

Unfortunately, we usually can’t evaluate the last line above. However, what we can do is

approximate it using a sampled value: We simply play a game with our current network,

then replace the expected value above by the reward actually captured on the i-th move”

(Landy, Deep reinforcement learning, battleship, 2016)

This proved to be a very difficult thing to do, and I never managed it. Most of the work I did
on the integration of ANNs into my program was done with my research, but some
examples of my work are in, however they are very jumbled as I did not get a working
version of the code before I mentally worked out it was not feasible. I stopped trying to use
ANNs then I realised that that continuing down this route would be too tricky.
From the knowledge, I gained through my research, I feel confident that I can create my

own algorithm using the concepts and ideas from the other ones I have looked at. My

concept is to have a board where all the cells are weighted, and the weight depends on

where the program finds ships. This is a similar concept to how all the other learning

algorithms would have worked, but I am choosing the values to weight it by and I am

choosing how the weights are added. It will not as effective or efficient, but it should work,

and it will be my only option as I cannot get any of the others to work.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

35 | P a g e

My focus from this point was to work out how to weight the cells in the board. I left the

cells in the classes so each individual cell can have a weighted value to go with its other

properties. My main problem now what that I realised that the board is dynamic, so the

values will have to be dynamic as well. To simplify the problem, I reduced the number of

ships to one of length three. This meant I would no longer have to worry of how it would

have to distinguish between two ships. This greatly reduced number of different board

combination there could be, because the other cells of the ship will only a change in one of

the axis. This meant I could use the centred board idea I had theorised about. Just so the

board was a reasonable size, I reduced it down to 5. All these changes I made are revisable

so if working they can then be scaled up to larger ships and larger board by only changing

one or two variables.

By simplify the problem I tried to go back to the neural network concept. I got a network

working on a one-dimensional version of the board, where it could find the pattern of a

ship, horizontal or vertical. The problem was that when the ship moved then it would have

to retrain. Before I could fix this, worked out if there was any point doing so. The

recognition if the pattern of the ship was only possible because all the cells were not

hidden. As soon as the cell become hidden then there is no pattern and the only knowledge

it would have learnt is where the last ship was. For the program to then learn where the

next ship it is and how to sink it would need learning data. It would need to learn every

state of the ship, when parts are hidden and when parts have been shot.

I felt that this was a major setback and there was no point in trying to proceed further with

the neural network approach. However, in light of this, I did learn that I would need a

separate set of weights for each scenario. I realised that I would need a set of storage

locations to hold the different combinations of the board. Originally, I thought of having

one class with all the different boards as properties of it. This would be a very good class

structure and similar to how iterative learning trees work, but I decided against the idea. If I

had gone for this idea then the data wouldn’t get saved when the program had finished; the

only way I could store the data would be through flat files, due to time constraints at this

stage. I realised that I could always use a CSV file like I originally intended. This would give

me structure to store each line individually in rows, with the weights of all the boards cells

stored in the same row.

This plan seemed feasible, but there would always be the issue of a having a very large

amount of data. The data could be sorted into a tree to make it easy to iterate, but there

would still be a lot of data. If the layers were being created dynamically as they were being

encountered then there would be significantly less data. The tree would be very useful to

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

36 | P a g e

store this as for each cell it could branch a different way, and the boards could be added in

to the right place as they were being created.

Even if the data was being created dynamically there would still be a lot. I decided to get

the numbers to see if it would be too many and as a first trial to see if the method worked. I

planned as if I were to create them all algorithmically at the start and not dynamically, then

come to creating it dynamically if it works. For each of the three symbols currently used to

represent a cell; -, ~, #, S (hidden, empty, off

the board, and ship); there would be the

number of symbols possibilities, to the

power of the total number of cells on the

board. That would be 4^(5*5) which is equal

to 1.26*10^15. Considering that each of

these rows would have 1(for the board) + 25

(for the values) items.

That would be a file of a total of

2.927*10^16 items, which is much too large.

I set out to reduce the number of

possibilities. Firstly, I worked out that all of these would not be possible, because the ship

would only occur in a line of 3 and the off the board marks only in rows and columns. I then

worked out that shooting off the board is as much of a negative penalty as shooting a cell

that’s already been shot, so the same marker can be

used for off the board and miss. This reduced the

number down further, but it would still be too many. I

decided to work out the possible combinations again.

The 25 different places for the ship on this board.

So, to the number of symbols; - and ~; to the power of

the number of cells, all multiplied by the number of

potential locations for the ship.

Rows of data) 25*(2)^(5*5) = 8.389*10^8

Items in file) (1+25)*25*(2)^(5*5) = 2.181*10^8

I decided to experiment with the board being 4 by 4.

Rows of data) 16*(2)^(4*4) = 1.049*10^6

Items in file) (1+16)*16*(2)^(4*4) = 1.782*10^7

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

37 | P a g e

 I decided the board being 4 by 4 was a good move

because the number of possible combinations (rows

of data) is 0.125% of that from the 5 by 5 board. This

was only now that I remembered the board could

still be centred so that would reduce the number of

possible ship places. I then ran the function again

with the centred total number of ship placements, of

course only the 5 by 5 board can be centred.

Rows of data) 6*(2)^(5*5) = 2.013*10^8

Items in file) (1+25)*6*(2)^(5*5) = 5.234*10^9

However, this still isn’t a large enough reduction. By reducing the length of the ship to 2,

you only create 2 less possibilities on the 5 by 5 and no less on the 4 by 4. It was here I

decided that actually reducing the ship to size two was the right this to do, then the board

could become size 3 by 3. Which would reduce the size to a reasonable amount.

Rows of data) 4*(2)^(3*3) = 2048

Items in file) (1+9)*4*(2)^(3*3) = 20480

My reasoning behind this was that if I can get it to work on the 3 by 2 scale then that can be

used anywhere on the ship. The centre piece will always be a hit, and the board changes

after the next hit. This meant that in what the boards look like, only the centre cell will be

hit, and that will already be hit to centre the board, and the other eight cells will either be

hidden or empty. Underneath a hidden cell there will be the ship, but that doesn’t change

how the board looks and that can be held in the cells properties.

As a representation, the values that are completely wrong are -1, moves to be discouraged,

like missing, and plus 0.1 is to encourage behaviour, like hitting a ship. So, if the cell is not

hidden then it gets -1, if the cell is a miss it gets -0.1, as this is not such a big penalty, and for

a hit it is 0.1 to balance out the penalty for a miss. These are the rewards, which would

normally be given by a machine learning algorithm, I had to create myself.

The weighting method of the

ANN solution, by EFAVDB, is

different, but this is because

these are the weights given

to them before they are put

through the ANN and relate to how they should be processed for the final best shot to be

found, where as I am keeping a record of all the values and just iteration g through manually

to find the best one. These values would normally be generated in the training part of the

machine learning process.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

38 | P a g e

1) 1 2 3 2) ~ - - 3) -1 0.1 -0.1 4) -1 -0.1 -0.1

 4 5 6 - S ~ -0.1 -1 -1 0.1 -1 -1

 7 8 9 ~ - ~ -1 -0.1 -1 -1 -0.1 -1

5) -1 -0.1 -0.1 6) -1 0.1 -0.1 7) ~ S - 8) -1 -1 -0.1

 -0.1 -1 -1 -0.1 -1 -1 - S ~ -0.1 -1 -1

 -1 0.1 -1 -1 0.1 -1 ~ - ~ -1 0.1 -1

1) Shows the cell labelling of all the squares

2) Show what the board will look like, it will be represented as ~---S~~-~ in the file

3) 4) & 5) all show the different length 2 ship possibilities that are possible with this

board.

6) Shows how a longer length ship could be place, for when the code is expanded

7) & 8) show how the board could then be after the ship on grid 6 gets shot at cell 2

What all this means is that you only need to have the two symbols, to the power of the cells

that are not the centred hit. Only what the board looks like has to be represented by the

storage file.

Rows of data) (2)^(3*3-1) = 256

Items in file) (1+9)*(2)^(3*3-1) = 2560

This eliminated all size of the data file aspect, and allows the code to be built on. Once this

works it could be built so it then iterates along the whole ship, with relative ease.

Realistically there will only be the 3 by 3 section of the board being looked at.

- / ~ - / ~ - / ~

- / ~ S - / ~

- / ~ - / ~ - / ~

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

39 | P a g e

- - - ~ - - - - - -
~ - ~ - - - - ~ - ~
- ~ - ~ - - - - - -
- ~ - - - ~ ~ - - -

- - - - - - - - ~ -

- - - ~ - - ~ - - -

- ~ S - - - - - - -

- ~ - ~ - - ~ - - -

- - - - ~ - - - ~ -

- - - - - - - - - -

1) - - ~ 2) ~ S - 3) ~ S - 4) ~ - -

 ~ S - ~ S ~ ~ S ~ - S -

 ~ - ~ - - - - ~ - - S ~

The down side to this is on its own it does not look like much, but it is a key step on working

out a solution. Also, it means that shooting the board before the first hit, to centre the

board, is a completely different task. For now, this task will be a firing rom randomly

generated coordinates, because even if it did learn, the learning how to shoot a blank board

will not be as crucial to winning the game as it sinking a ship is. This function will remain

random until the sinking the ship side of the code is complete.

To learn and work out what the weights were every cell would start with an even weight.

This weight would then get increased or decreased depending on where the shot was fired.

If the AI shot a cell that it had already shot, or one that was off the board then it would get a

punishment weight of -1 added to the total value of the cell. For a miss its -0.1 and a hit is

+0.1. This encourages shots on target, this is so on a board representation where there can

This is a representation on the

board and one ship. I am going to

use this to explain why only a 3 by

3 grid is needed. The ship is

shown by the shaded area, as its

potion is unknown to the program.

The initial hit is marked with the S

and the centred board is marked in

orange. From this board, it shoots

down hitting another, centring the

board to the yellow square, it

shoots down again, but misses. It

knows there are no more

reasonable shots, so moves up to

the orange, then shoots the to

where it gets centred in the green

board. It then shoots up from the

green board and sinks the ship.

This will work with all sizes and

once the message is displays

showing the ship to be sunk, it can

move back to normal firing.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

40 | P a g e

be multiple reasonable shots, there is an even chance that it is any of these, and not just the

first it comes to. The following diagram explains this.

1) 1 2 3 2) ~ - - 3) - - - 4) -1 0.1 -0.1

 4 5 6 - S ~ - S ~ -0.1 -1 -1

 7 8 9 ~ ~ ~ - ~ - -1 -1 -1

5) -1 -0.1 -0.1 6) -0.1 0.1 -0.1 7) -0.1 -0.1 -0.1 8) 0 50% 0

 0.1 -1 -1 -0.1 -1 -1 0.1 -1 -1 50% 0 0

 -1 -1 -1 -0.1 -1 -0.1 -0.1 -1 -0.1 0 0 0

1) Shows the cell labelling of all the squares

2) & 3) Show what the board will look like, in two different scenarios

4) & 5) all show the different possibilities for the ship placement and values of grid 2

6) & 7) all show the different possibilities for the ship placement and values of grid 3

8) Shows how the percentage chance of the cells being the ship is split between 2 and

is the same for both.

This shows how the total values for each cell in each board scenario, must be treated as

equal and must balance out. The way the program will work is it will choose the cell on the

board with the height weight to be the one it shoots, and the consequential value from that

shot will be the one added to the chosen cell. The values for all the cells will be talked out of

the file, and the consequential values for each shot will be created dynamically depending

on what that cell holds. The new weights of all the cells will then be put back into a list and

stored in the file.

If the tree structure does not work then another search, like binary could be used. However,

a temporary way could be to just remember the location of that instance of the board in the

file, so it could be move straight back into place when writing over the file. I think for now I

will create all the instances of the boards in the file at the start of the game, as there will

only be 256.

I experimented with having two separate programs that ran simultaneously, and only

communicated through a text file. This was an early prototype, which I ended up scraping,

but I did get it working at some stage. The idea behind it was that the text file would

represent the game, and the learning program would be getting all of its information form

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

41 | P a g e

the game, so it would be like it was actually playing the game. I realised that this idea was

highly impractical, because the games happened so quickly they could not be followed and

there was a high chance of error. Also, many of the pre-existing classes were designed to

work with the l learning program, so it being in separated in different files made little sense.

Examples from some of these files are in Appendix 6.

 While this learning algorithm will be very simple, it should learn and should be very

effective. It is also built so that it could later be developed into a full working algorithm that

plays battleships. This program will not directly meet all the requirements, but they were

set to a high standard before the full complexity of the task was discovered. Also, if it works

as intended, it would still partial complete the assigned task. It will be a working frame work

that shows that elements of battleships can be learnt by a learning algorithm, and the

structure will be there that it can be enhanced into making a program that does fully learn

to pay battleships.

I made a high-level plan for my design, to incorporate all the classes. This will be the

foundation that I will use for the rest of my program.

I feel like this will be a lot of work to implement all of the code, so I have decided to leave

out the additional features for now. These include the tree search and storage of the board

files.

I expanded on the previous diagrams and have produced the following class diagram for

how I plan on structuring my program. It includes all the properties and methods, so it is

easy to follow.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

42 | P a g e

These are the new designs I came up with after editing and changing the design laid out in

the initial phase, where I created the base game. The classes Shots_board and AI have

methods to access the file. In the Shots_board class the method is: find_layer_values(self,

Tip)

The learnt data will be stored in a CSV file. This is because the format of a CSV file will

provide it with the structure that it needs and this file type does not take up large amounts

of storage. They are being chosen because they are efficient to write to, read from and

don’t take up much storage. This means by using this file type I will keep to the

requirements. The way in which the data will be arranged in the file will be like the following

table.

CORRECTION

A typing error

has resulted in

all the

instances of

“Tuple” being

spelt as

“Tuplet”,

throughout

the diagram.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

43 | P a g e

Board
representation

Value
of cell
1

Value
of cell
2

Value
of cell
3

Value
of cell
4

Value
of cell
5

Value
of cell
6

Value
of cell
7

Value
of cell
8

Value
of cell
9

Before learning example

----S---- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-~-~S~--~ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
After learning example
----S---- -1 2.5 -1 2.5 -1 2.5 -1 2.5 -1

-~-~S~--~ -1 -1 -1 -1 -1 -1 -1 10 -1

I will write an algorithm to produce this file before the program starts learning. The

itertools module has a useful function, product(a, b), that can generate every possible

combination for the characters in a, for the number of items there are, b. The product

function is very similar to the following piece of code in how it works.

def product(*args, **kwds):

 # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy

 # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111

 pools = map(tuple, args) * kwds.get('repeat', 1)

 result = [[]]

 for pool in pools:

 result = [x+[y] for x in result for y in pool]

 for prod in result:

 yield tuple(prod)

(Python Software Foundation, No Date)

Once I have all the possible boards, I will just create the nine starting values needed. These

starting values are all, 0, as no weight has been assigned yet.

I have decided to hard code all the possible boards because they will not take up too much

storage and iterating directly through 256 items will not take too much time. This will allow

me to get a basic frame work in place so the code can be expanded further, to allow for the

boards and data entries to be created, and stored, in a data structure like a linked list or

tree.

I have written pseudo code to explain the algorithm I will use to generate the file:

 symbol_list <= ["-","~"]
 array <= itertools.product(self.symbol_list, repeat = 8)
 OPEN("layers.csv", "write")
 FOR i IN array:
 list <= LIST ITEMS OF i
 INSERT 'S' AS 4th ITEM OF list
 String <= ITEMS OF list AS ONE STRING
 WRITE ((s, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)) TO "layers.csv"
 END FOR
 CLOSE "layers.csv"

This code will be written in the training class, as the file creation Is part of the initial training

of the program. The training part of the code woul dnormally be where the training takes

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

44 | P a g e

place, but my program will always be learning dynamically so no separate training section is

needed. I have kept the name, because this part of the program will still be involved in the

training aspects. It will be where the file that stores all the learnt data gets created and

reset, both of which are important requirements of the program.

I plan on having a very basic user interface. Similar to how the first instance of the game

was displayed, but it needs to have the options to choose: whether to retrain the learning

algorithm, or to keep the current intelligence, which will be stored in the file; and the option

of how many games you would like it to loop through. Also, the at the end of the program

there need to be a display of some measurable numbers to prover it is learning. These all

are key features and are specified in the requirements, so must be implemented.

I have made a mock-up of how the user interface will look. I was given no indication as to

how the program should display, so I have kept it to a minimum. The mock up can be seen

pictured below.

As you can see it is a very basic format. It

displays what stage of the process it is

currently at, then asks to the number of games.

The instructions maybe considered vague, but

they do not require much explaining. The only

users will be me and the client, so they do not

have to be informative. I do like the idea of there being a message that displays if they a

wrong input is entered, but its not really needed, as it would probably be a miss type, rather

than the user not knowing what to do. Once a valid input has been given, then the program

will play games until it reaches the specified number.

I think that my safest option for displaying values that can be used to calculate the learn

rate, is to display the number of turns it takes to complete each game after the first shot

hits a ship, so on the centred board, as this is the board it is learning to play on. Displaying

each one individually will leave too much data to look through, so I will print how many

games took each number of turns. In the number of turns it takes can be a varying number,

so I will have to make a system that dynamically creates the list of how long each game took

to win. These values could then be written to a file, but I feel this is not necessary, and it

would use more storage.

The following picture is a visual representation of what the console output would look like:

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

45 | P a g e

This part of the program will not be in a class, but rather at the end of the document, where

the class gets called. It is here outside all the classes that the program will be called and the

results will be processed. It is also where most the important user interface will be.

The cells for the boards will be inherited from a parent cell, so they can share the methods

they need. The reason the parent cell has not properties is be the way python inheritance

works, I would have to either override the initial function, or would have to create another

method to inherit and call just to keep the three properties they share. Neither of these

seemed to be the sensible option, so I left them to declare the properties separately.

The theory behind centring the board in the way that I do, is so that the program only has to

learn the smaller grid. On this grid is learnt then it can be used anywhere on the board to

sink any ship. It represents the feasible area for a well-educated shot. If while iterating

along a hit ship all the shots it can chose from have negative probabilities then the code can

be expanded to search the other end of the ship it had been hitting. This way the learning

algorithm is still only learning a small board, which leaves less room for error. A separate

learning program can be used to learn how to iterate along the ships. It can be taught

directly from the weights received by the grid searching algorithm and they will work in

together. This is a much better strategy as there is much less room for error, and is the AI

did learn to play on a large board then only shots it will take after hitting ship will be in the

immediate area, due do the nature of probability.

It is easy to see with these images. They represent a heat map of the likely hood of a cell

containing a ship in the play through battleships.

(Berry, 2011)

In the first image the ship was hit. The other two images show where the probabilitys now

lay for the other cells being hit. The strongest amost probable chances for a hit usually

occur in a one square raduis. When the shot fires to the most likely position and its not a

ship, image 3, this is when the program would, once expanded, move to the other end of

the ship to try there.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

46 | P a g e

When choosing a random location for the ship to be placed there are two things that must

be considered regarding the validity of the placement. Firstly all the parts of the ship must

be on the board, secondly will it be placed over any other ships. I have a function that

should work these out, depending of the ships orientation, length and desired coordinates it

should first work out if the ship is too long for the place, and secondly work out if there is

already a ship there. In doing them in that order it will prevent an error occurring if it tried

to check of a ship in a location outside of the board. The pseudo code for such a task is as

follows.

 IF orientation IS HORAZONTAL
 IF (ship_length + x_cooordinate) > WIDTH OF THE BOARD - 1
 return False
 ELSE
 FOR i IN LENTH OF SHIP
 IF THERE IS A BOARD IN THE CELL (x+i, y):
 RETURN False
 END IF
 END FOR
 END IF
 ELSE
 IF (ship_length + y_cooordinate) > HEIGHT OF THE BOARD - 1
 return False
 ELSE
 FOR i IN LENTH OF SHIP
 IF THERE IS A BOARD IN THE CELL (x, y+i)
 RETURN False
 END IF

END FOR
 END IF
 END IF
 RETURN True

The function that allow the AI to shoot on the board is shoot. It takes in the board. It then

flattens this board to a one-dimensional array. If two boards were passed in then it means

the board has been centred so the AI must take the shot, but if only one board was entered

then the board is the ships board and the shot should be taken by the random coordinate

generator.

Any inputs into the program must be validated to ensure the program is robust. This means

validate the users direct input with a TRY statement. While in a TRY statement if the code

were to crash, it instead would pull up an exception. It must be told what sort of error to

expect, in order to catch it. A ValueError is what I would expect from an invalid string being

converted to an integer, which will be useful for when the user enters the number of games

they would like the algorithm to play. An IOError can be expected when the program

attempts to read from a file that cannot be accessed. I will encase all instances of opening a

file in the program TRY statements, expecting an IOError; with the option to try again.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

47 | P a g e

get_numerical_array will be the function that returns a list of what all the consequence

weights for all of the tiles on the board. It will iterate through the board, building a list

consisting of float numbers. These will be -1, -0.1, 0.1; I have already explained why I have

chosen these numbers. The following pseudo code shows the process

temp <= []
 FOR cell IN board
 IF CELL IS HIDDEN OR CELL IS OFF THE BOARD:
 APPEND -1 TO TEMP
 ELSE IF CELL IS SHIP:
 APPEND 0.1 TO TEMP
 else:
 APPEND -0.1 TO TEMP
 END IF
 END FOR
 RETURN temp

The function that works out what cell to shoot, once the first hit has been had, is a very

simple function that iterates through the list of cells and finds the one with the greatest

value. This cell is then chosen as the cell to shoot. The location of this cell in the one -

dimensional array is then returned so its coordinates can be retrieved, for the shot to then

be taken. In a neural network instead of iterating through every item it would choose every

cell and weigh up the weights and continue to play until enough moves have been taken and

backtracked for the optimal rout to be taken.

I allowed the learning algorithms shots to land on cells it shouldn’t shoot, like the ones that

have already been shot. This was so that I could prove that I could learn not to shoot those

cells. I wanted the program to get as little help as possible when making it choices over

where to shoot.

I could have used sigma and logarithmic functions to get nicer numbers to work with, but

due to the simplicity of the learning algorithm I could just choose the largest value.

get_coordinates is a function that works out the coordinates of a cell on the ships_board

just from its location in the one-dimensional array. A counter is used to work out when the

loops have reached the coordinates of the cell. The counter gets passed through two for

loops, one for the x-axis, one for the y-axis. Once the counter reaches the values of the cells

one-dimensional location, then the current loops from the x and y loops will be equal to that

cells coordinates. The pseudo code explains.

i <= 0
 FOR y IN WIDTH OF THE BOARD
 FOR y IN HEIGHT OF THE BOARD
 IF i =1D LOCATION
 RETURN (x,y)

END FOR
END FOR

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

48 | P a g e

Sinking of the ships is relatively simple. I use the length of the ships as a durability metre to

work out how many hits they can take. I can do this because if a ship shoots a cell that has

already been hit then it counts as a miss and I do not have to worry about the same cell

being hit twice to sink the ship. This method is really efficient because no new variables

have to be made, and the ships length is not used for anything else after its initial placing

ion the board.

In the next section, you can see the final layout of the classes and subroutines in the final

program. These were all put into place before the rest of the code was implemented. They

are also labelled with a short description of what they do. For more detail on what the

classes contain and how they work, all the code has been annotated to a very high level.

The code can be found in Appendix 1. The comments on each part of the code explain the

running of each function and the purposes of most the lines.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

49 | P a g e

Implementation of the final program

Appendix 1 is my final program. Throughout the code there are hundreds of comments

explaining what each line, loop and conditional statement is doing. Also at the start of every

class and subroutine there are short sentences explain what they do. I will not go on to

explain some of the key elements of the code further, to ensure they are properly

understood.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

50 | P a g e

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

51 | P a g e

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

52 | P a g e

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

53 | P a g e

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

54 | P a g e

Further descriptions to every piece of my code can be found in Appendix 1, and footage of it

running can be found in Appendix 3.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

55 | P a g e

The learning algorithm does take shots at the board. However, the size of the board does

change and some of its shots are random. The reason that it is built like this is so that the

program is within a reasonable scope for me, but allows me room to expand the program in

the future. I have made it so that the shots taken on a board before the ship was

uncovered were random, this is because those initial shots are not too important because

there is a random element to it, as the player would not know where the ship were.

However, as soon a ship was hit, then it would have to shoot in the immediate area of that

ship. This is why the board gets shrunk to 3 by 3. Once the first hit has been made then the

only reasonable place for it to fire would be in the immediate area of that initial hit. I

focused on this part mainly because once is has leant to fire in the immediate area then I it

can sink any length ship. My next move would be to make it so that the algorithm learns

that if there is not ship in the only reasonable space, it should move to the other end of the

ship and start firing there. After this the next step would be for it to learn that is moving in

a straight line up and down a ship doesn’t sink it, then what it thought was a ship is actually

two ships placed together, and so it will have to learn how to deal with that.

I would expect that when changes were made to the code to display the game to the user, it

was clear that there is ship placement, turns, shooting, ships being hit and sunk as well as

boards. This shows that program does simulate elements from a game of battleships. The

major difference is that the players don’t take turns, but after changing my requirements I

was no longer trying to achieve this. However, I was trying to get the board and ships to

look like a game of battleships. Here I have failed because the board is only 4 by 4 rather

than 10 by 10, and also because there is only one 2 by 1 ship, rather than the full set of

ships, of lengths 5, 4, 3, 3 and 2. This is because I reduced the ship count to one ship of

length one, so that it is easier for the AI to learn. This is so that is didn’t have to worry about

breaking down the ship size and alternating between the centred board and the full board.

The full board was only made to 4 by 4, even though with very minor changes it can be any

size, was so that the random firing at the start does not take too long.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

56 | P a g e

Testing and evaluating

I tested the program as I was writing it, by here is the final testing of the program against my

requirements. These are the requirements that I am testing against:

2. To have a learning program that learns to play elements of battleships

2.1. To have the elements of the game to follow the standard rules of battleships

2.1.1. Ships are placed on a board

2.1.2. The ships are then shot at

2.1.3. When a square on the board is shot, it is either a hit, when it hits a ship, or a

miss.

2.1.4. If all the cells that make up a shit get hit then the ship sinks

2.1.5. The player wins when all the opponent’s ships are sunk

2.2. For there to be one player controlled by the learning algorithm

2.2.1. Have it calculate and fire shots at the ships

2.2.2. Have it learn to become better at the game by, taking less turns to sink the

ships as time goes on

2.2.3. There to be no deterministic code to control firing

2.3. To have randomly placed ships to represent the other player

2.4. To have it be robust and efficient so it

2.4.1. Doesn’t crash after incorrect input

2.4.2. Can run thousands of times without crashing

2.4.3. Uses minimal amount of storage and memory

2.4.4. Can simulate thousands of games in a reasonable amount of time

2.4.4.1.

2.4.5. Doesn’t crash if file isn’t accessible

2.5. To have it be capable of storing learning data

2.5.1. Have it stored in a way that easy to read

2.5.2. Have it stored in a way that easy to write

2.5.3. Have it set up and reset the file

2.6. Must have a basic user interface that

2.6.1. Allows the user to choose to retrain the learning program

2.6.2. Allows the user to choose how many games to loop through

2.6.3. Displays data that can prove that the program is learning

Test of requirement: 2. To have a learning program that learns to play elements of

battleships

If the rests of the tests are successful, then the task has been completed and the overall goal is

met. I set up each test to test each element for the requirements. I feel that separating the

testing like this ensures that all the key parts of the program work, and then the white box

testing ensured that key run as expected.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

57 | P a g e

Test of requirement: 2.1. To have the elements of the game to follow the standard rules

of battleships

I would expect that when changes were made to the code to display the game to the user, it was

clear that there is ship placement, turns, shooting, ships being hit and sunk as well as boards. This

shows that program does simulate elements from a game of battleships. The major difference is

that the players don’t take turns, but after changing my requirements I was no longer trying to

achieve this. However, I was trying to get the board and ships to look like a game of battleships.

Here I have failed because the board is only 4 by 4 rather than 10 by 10, and also because there is

only one 2 by 1 ship, rather than the full set of ships, of lengths 5, 4, 3, 3 and 2. This is because I

reduced the ship count to one ship of length one, so that it is easier for the AI to learn. This is so

that is didn’t have to worry about breaking down the ship size and alternating between the centred

board and the full board. The full board was only made to 4 by 4, even though with very minor

changes it can be any size, was so that the random firing at the start does not take too long.

Test of requirement: 2.1.1. Ships are placed on a board

One shit should get placed on the board, meaning requirement 2.1.1 has been partially

reached. While a ship is placed on the board, it is not “ships”, as stated in the requirements.

However, in the placing of this ship, it lays down the frame works to shrink any ship of any

size. The screen shots in the upcoming section, Test summary 2.1 requirements and sub

requirements, show a ship being placed at the start if the game, and be un hiding the ships,

by changing the value assigned at line 362 and removing the ‘#’ at line 39, you can see the

placement of the ship on the board, as seen below.

In the original game created before the learning

program, multiple ships could be placed on a board,

and the boards and ships could be any size. This can be

seen at time 0:00:00 in Appendix 2, with the creation of

the ships. Also by reading through the earlier section,

Creating Battleships, there are screen shots showing

and explaining the ship placement.

Test of requirement: 2.1.2. The ships are then shot at

Shots should be fired at the board every turn, and at a ship when its location becomes

known. The screen shots in the upcoming section, Test summary 2.1 requirements and sub

requirements, show shots are fired at the board throughput the running of the code. Once

the first hit connected the learning program took over the firing and sank the ship in one

shot. This is sufficient evidence that shots are fired at the ship and that it is tested to work

as expected.

Test of requirement: 2.1.3. When a square on the board is shot, it is either a hit, when it hits

a ship, or a miss.

On the game board; - represents a square that is yet to fire at, ~ represents a miss, and S, or

whatever the first letter in the name of the ship, represents a hit. The screen shots in

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

58 | P a g e

section, Test summary 2.1 requirements and sub requirements, show when the board was

shot the shots showed up as misses, ~, or as hits, marked as an ‘S’. This shows that the

requirement was reached and that it works as expected.

Test of requirement: 2.1.4. If all the cells that make up a shit get hit then the ship sinks

When all of the tiles of the ship are hit, the ship should sink. As seen in the screen shots in

section, Test summary 2.1 requirements and sub requirements, after the second hit is

announced the ship sunk message appears, showing that the ship has sunk. This proves that

this element of the program works as intended, and therefore that this requirement has

been met.

Test of requirement: 2.1.5. The player wins when all the opponent’s ships are sunk

When all the ships have been sunk, the player should win the game. As seen the screen

shots in the next section, this requirement has been met. When the ship was sunk, it

displays two instances of the board, before allowing the learning algorithm to win,

displaying that all ships were sunk and therefore the game has ended.

Test summary 2.1 requirements and sub requirements

These screen shots were produced when with the minor modification of removing the ‘#’ at

the start of lines; 15,24, 28, 31, 32, 33, 34, 35, 38, 41, 42, 43, 56, 57, 58, 68, 71, 74, 125, 139,

172, 173, 178, 252, 418, 440, 505 (which are all just related to how the game is displayed);

in the final program.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

59 | P a g e

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

60 | P a g e

Test of requirement: 2.2. For there to be one player controlled by the learning algorithm

The shooting player is controlled by a learning algorithm. While it only learns some aspects

of the game, it is still a learning algorithm that controls the shots.

Test of requirement: 2.2.1. Have it fire shots at the ships

The learning algorithm does take shots at the board. However, the size of the board does

change and some of its shots are random. The reason that it is built like this is so that the

program is within a reasonable scope for me, but allows me room to expand the program in

the future. I have made it so that the shots taken on a board before the ship was

uncovered were random, this is because those initial shots are not too important because

there is a random element to it, as the player would not know where the ship were.

However, as soon a ship was hit, then it would have to shoot in the immediate area of that

ship. Overall it does shoot at the ship, as seen in the screen shots of the console displayed

game. X being the x-coordinate of the shot and Y being the y-coordinate.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

61 | P a g e

Test of requirement: 2.2.2. Taking less turns to sink the ships as time goes on

Data collected from the output of the program shows that it gets much better at hitting

ships. It can be seen clearly as it learns. By taking the values printed in the console at the

end of the game, and graphing them with an application like Microsoft Excel creates clear

visual evidence. I used a numpy seed for my random numbers. This meant that it produced

the same random numbers each time, this made it easy to test, because I could compare

the program with the exact same inputs and number generations, meaning that there were

no other factors that could affect the program. By doing this only the programs ability to

learn is being tested and assessed.

This first graph shows how the program performed after being trained from nothing. It

compares data from when 5000 games were played, up to when 100000 games were

played. The problems with this is that the range in numbers is so great that you cannot see

in detail. However, from the table you can see how not all the values were increase even in

proportion to the total number of games played. If it wasn’t learning then I would expect

the values to double when the games played doubled, however it is clear that they don’t.

Turns
taken 5000 Games

10000
Games

25000
Games

50000
Games

100000
Games

1 3965 8104 20456 41049 82555

2 788 1593 4102 8306 16593

3 135 180 307 498 691

4 45 51 62 72 84

5 24 28 29 31 32

6 17 18 18 18 19

7 13 13 13 13 13

8 9 9 9 9 9

9 3 3 3 3 3

10 1 1 1 1 1

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

62 | P a g e

To represent the change in values better I decided to use the natural log of the games

played, as this should give me a straight line, so the gradient is easy to compare. The

steeper gradient the better it is at shooting. It also brought the scale down so they were

easier to compare in terms of the scale and range of values. From the graph, you can see

that after more games the overall line of best fit gets steeper, but it is still close, I decided

this was because the line plotted still included the earlier results.

Turns
taken

ln(Games) for 5000 games played
from no training

ln(Games) for 100000 games played
from no training

1 8.285261134 11.32122002

2 6.66949809 9.716736199

3 4.905274778 6.538139824

4 3.80666249 4.430816799

5 3.17805383 3.465735903

6 2.833213344 2.944438979

7 2.564949357 2.564949357

8 2.197224577 2.197224577

9 1.098612289 1.098612289

10 0 0

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10

G
m

ae
s

Turns taken to win after first hit

Games played from no training

5000 Games 10000 Games 25000 Games 50000 Games 100000 Games

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

63 | P a g e

The next graph here, shows how long it took to compete 5000 games for when the AI had

no training, and for after the AI had 100000 games of training. It is clear here how the

gradient of the trained AI is much steeper than the untrained AI. The correlations in the

data are clear. There is a distinct difference in the lines which shows the program has learnt

and has become better at shooting.

Turns
taken

5000 games
played from
no training

5000 games
after 100000
games of
training

ln(Games) ;5000
games played from
no training

ln(Games) ;5000
games after 100000
games of training

1 3965 4173 8.285261134 8.336390481

2 788 809 6.66949809 6.695798917

3 135 18 4.905274778 2.890371758

4 45 0 3.80666249 0

5 24 0 3.17805383 0

6 17 0 2.833213344 0

7 13 0 2.564949357 0

8 9 0 2.197224577 0

9 3 0 1.098612289 0

10 1 0 0 0

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

ln
(G

am
es

)

Turns taken to win after first hit

Games played from no training

5000 Games 100000 Games Line of best fit Line of best fit

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

64 | P a g e

It is clear here how the gradient of the trained AI is much steeper than the untrained AI. I

feel that this is sufficient evidence that the program is leaning, as it is clear that the amount

of turns it take to win the game. The untrained program has a gradient of -0.795, while the

trained program has a gradient of -2.882, both to three decimal places. That’s a very large

difference and is significant evidence that it learnt and improved at the game.

The screen shot above shows the changes I made to the code to render the AI redundant

and produces completely random coordinates. This is so I could then compare the gradients

from the learnt program and the randomly firing one.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

ln
(G

am
es

)

Turns taken to win after the first hit

Trained vs Untrained

5000 Games 5000 games after 100000 games of training

Line of best fit Line of best fit

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

65 | P a g e

 Turns taken

5000 games after

100000 games
of training

ln(games) ;5000
games after

100000 games of
training

5000 random
games

ln(games) ;5000
random games

1 4173 8.33639 1119 7.020191

2 809 6.695799 875 6.774224

3 18 2.890372 677 6.517671

4 0 0 500 6.214608

5 386 5.955837

6 318 5.762051

7 260 5.560682

8 191 5.252273

9 138 4.927254

10 110 4.70048

11 76 4.330733

12 81 4.394449

13 55 4.007333

14 45 3.806662

15 39 3.663562

16 26 3.258097

17 22 3.091042

18 20 2.995732

19 16 2.772589

20 9 2.197225

21 11 2.397895

22 12 2.484907

23 6 1.791759

24 1 0

25 1 0

26 2 0.693147

27 2 0.693147

28 1 0

29 1 0

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

66 | P a g e

The gradient of the trend line for the random games is approximately -0.255, the untrained

program has a gradient of -0.795, while the trained program has a gradient of -2.882, all to

three decimal places. This is clear evidence that the program is much better than a random

system, and the untrained system.

Test of requirement: 2.2.3. There to be no deterministic code to control firing

By looking at the algorithms used it is easy to see that no deterministic firing has been used

when the program is learning, however the learning algorithm does not control where the

shots go before the first hit. My reasons behind this are in the Design of the Final Program

section of this booklet. It can be argued the random nature of the firing does not affect the

programs ability to learn, but they are still shots that are out of control of the learning

algorithm. However, in creating the program in the is way it can be expanded in to learn to

sink a ship of any size, and can then be implemented with an algorithm to learn when

shooting in between the sinking of ships. This could learn things like where the ship is more

likely to be placed.

Test of requirement: 2.3. To have randomly placed ships to represent the other player

By adding a line of code to print the out puts of the ships placement to the console terminal,

it is clear to see that the “opponent” is placing the ship in a random location each time. I

only made changes to 5 lines; 38, 67, 70, 73, 176; and this was just removing the ‘#’ at the

start of the line, so it was no longer a comment, as seen below, which and be compared to

the raw code in Appendix 1.

0

2

4

6

8

10

0 5 10 15 20 25 30 35

ln
(g

am
es

)

Turns taken to win after first hit

Trained vs Random

5000 games after 100000 games of training 5000 random games

Line of best fit Line of best fit

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

67 | P a g e

 This is representative of another player, who would also place the ships randomly, or there

would be thought behind the process, but that is insignificant due to the wide range of

possibilities.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

68 | P a g e

As the outputs above show, there are many places the ship has been placed, and the places

that have been deemed invalid. The notation I used is: ‘x’ for the X-coordinate, ‘y’ for the Y-

coordinate, ‘or’ is the orientation of the ship (where 1 is vertical and 0 is horizontal) and

‘ship len’ is the length of the ship. If is set the cells to unhidden, by changing the value set at

line 363, from True to False, and removed the ‘#’ from the start of lines 32, 40.

By displaying the board can also be displayed, which shows its place on the board, as seen

below.

Test of requirement: 2.4. To have it be robust and efficient

For the program to be both robust and efficient, it must meet all to the requirements in this

section, which it dose. This means that the code has been tested to a sufficient amount of

testing against its robustness and efficiency, and has passed all the tests.

Test of requirement: 2.4.1. Doesn’t crash after incorrect input

To ensure the program doesn’t crash after an invalid input, all the user inputs are checked

before the program progresses. This validation makes sure the inputs are in the correct

character set and are a valid range of values. The input for if the user wants to train the

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

69 | P a g e

program from the start or retry opening a file, there is only on accepted character ‘y’. This

means all other inputs are accepted as not wanting to do what was offered. This is a very

simple way to combat incorrect inputs and isn’t the most user friendly, but as it is an

investigation then user input was not a high priority. For registering how many games are

wanted to be played is slightly harder to validate. This is because it can only accept integer

values, and those values must be positive. When tested with multiple incorrect inputs it

rejected them as expected, as seen below, or between 0:06:40 and 0:07:24 in Appendix 3

The input for whether to retrain was counted as not to, as expected, and only the correct

input, of ‘1’, was accepted. Inputs that are not integers are rejected, with an error message,

and integers that were lower than one, and therefore invalid, are rejected but not messages

are displayed, because I don’t believe it is necessary to have a message. This is because

there would be no reason for the user to put in a less than one value, however a non-

integer value could be entered from a miss reading of the prompt message.

Test of requirement: 2.4.2. Can run thousands of times without crashing

It is crucial that the game can run thousands of times without crashing. When I first started

testing I would only test for 5000 turns, but I started testing the code for more games when

the game was in a stable state. I can get the program to run for a million games, without

crashing. Pictured below is the console output from a 100000 game run through.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

70 | P a g e

From what I have seen the game can handle unlimited games, the way that it is

programmed means that by running the game thousands of times would not use up any

more memory that only playing through on game. This is mostly because the game is all a

class, meaning that no new instances of the game have to be made just the same function

being called over and over. The reason that I did not leave it to run longer is the time it took

to run. The one million run game took approximately 57 minutes to run Appendix 3

(0:08:58-1:06:14). A screen shot of the outcome is below.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

71 | P a g e

Test of requirement: 2.4.3. Uses minimal amount of storage and memory

Each game that is played is a function of a class that gets called. This reduces the memory

use of the program, because calling the game once will use no more memory than having

thousands of plays of the game. The data from each game gets stored in an external file,

meaning the data does not have to be stored in memory, but in storage. This means that

the learnt data can be stored permanently and is not depended on the program always

running. This can also mean that if it were to crash, it would still keep the memory that it

stored up to that point, considering that it did not crash with writing to the file.

The file is not compressed because it would be impractical to do so. This is because the file

only takes up between 12 to 20kilobytes, depending on how much data is being stored. This

means that the storage is of no concern because of the relatively small file size. This system

could be improved because as it can be seen it Appendix 7, there are some board

combinations that are not possible, and these could be removed. If the dynamic creation of

the storage gets implemented then this will not happen, and it will be more storage

efficient.

Test of requirement: 2.4.4. Can simulate thousands of games in a reasonable amount of

time

I was expecting the time for it to take to complete a game to be below 0.05 seconds. From

the video of Appendix 3, the timings of the program can be worked out. The running of one

million games took from 0:08:58 to 1:06:14, and of the 100000 games took from 0:00:39 to

0:05:51; taking approximately 57 minutes and 5 minutes 12 seconds respectively. That

means on average it games took (60*(57+5)+12)/110000 = 0.00339 (to 3 significant figures)]

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

72 | P a g e

seconds to complete, which I would consider a reasonable amount of time, considering all

the other factors, like memory speed, read/write speed of the hard drives and the clock rate

of the CPU.

Test of requirement: 2.4.5. Doesn’t crash if file isn’t accessible

As seen in the video of Appendix 3, the program handles the file not being accessible. When

I removed the file from the folder it showed the message and when prompted to search

again and the file was there, it carried on as it would if the file didn’t disappear. If the

program was going through a long run, and the file was removed, or became inaccessible

then it would pause mid run and wait for the users input before carrying on as normal. This

can be seen between times 0:07:50 and 0:08.16 in Appendix 3.

Test of requirement: 2.5. To have it be capable of storing learning data

I wrote the game data to a comma-separated-values (CSV) file. This made it easy to read

and write to, because it is all in rows and columns. I did not try to compress the file,

because I felt like it would not be as easy to read and write, and could lead to further issues

is the process fails. Also, there is no need to compress the file, because it doesn’t take up a

significant amount of storage, only averaging between 12 – 20 kilobytes.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

73 | P a g e

The screen shot below shows the file and Appendix 7 is the final game data after one million

games were played. Below is the stored data from 250000 runs, which shows how the data

is stored and how it can be viewed by the user.

Test of requirement: 2.5.1. Have it stored in a way that easy to read

The data being stored in CSV format made it easy to read, because I just had to iterate

through the lines until I found the one which was my relevant to current situation. Then I

just had to split the line into a list and set all the values. This a relatively simple task and

there is little chance it could go wrong, and through all the testing I have done, I am yet to

see it fail.

Test of requirement: 2.5.2. Have it stored in a way that easy to write

The CSV file makes it very easy to write back into the file, because the program keeps note

of the line number that the data originally came from so that line can be replaced, while the

other lines are being rewritten. This save the program from iterating through the list each

time, because it knows what line had to change. This works because the data in the file has

set rows and columns.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

74 | P a g e

Test of requirement: 2.5.3. Have it set up and reset the file

When ‘y’ is input when prompted if they would like to retrain the program, in the initial user

interface, the file should reset to how it started, from whatever state it was in before. This can be

seen in Appendix 1 at time 01:09:00 to 01:10:08. Having just finished an extensive amount of

training the program does a run of 5000 and receives very good results. When the same was done,

but after setting the file at the start the program got the same result as before when it was

untrained, as the random key remained constant. Also. by comparing the layers.csv file, after

training and after resetting you can see it has been completely reset to the original file; as seen in

the screen shots below.

After 5000 games After reset, before playing any games

Test of requirement: 2.6. Must have a basic user interface

The program should display a very basic user interface that allows the user to have basic

control over the program and for fills the requirement of 2.6.1 to 2.6.3. I added one

additional feature, the number of games completed gets printed and every 5000 games.

This is because for longer runs I could not tell if it had frozen or was just taking time. As

shown in the test of requirement 2.4.1, the user interface is robust to invalid inputs. The

screen shot bellow shows the full user interface after a

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

75 | P a g e

Test of requirement: 2.6.1. Allows the user to choose to retrain the learning program

The user interface has the option to retrain the program, by resetting all the learnt data. As

shown in 2.5.3 the data gets completely reset when the input of ‘y’ is entered on the ‘Train?’

prompt. I expected this to happen, and this evidence proves that the user has the ability to

retrain the program from the very basic interface.

Test of requirement: 2.6.2. Allows the user to choose how many games to loop through

When prompted by the console line ‘how many games?’ the user can input any positive

integer and that many games will be played. If they do not enter a positive integer, they will

be prompted again until a valid input is given. This can be seen in 2.4.1, and an example of

the code iterating through the games can be seen in Appendix 1, the same user interface is

used throughout. This is sufficient evidence that I have a working system for choosing the

amount of games.

Test of requirement: 2.6.3. Displays data that can prove that the program is learning

Once all the games have finished it is supposed to print a set of lines, like the ones shown in

the design, displaying the amount of games that took k turns to complete. In the screen

shot of requirement 2.6, and at the ends of all the test runs in Appendix 1 show this feature

working. This is how I met this requirement.

White box testing

This testing that when on during the implementation of the code. The video in Appendix 3

shows a small part of the testing that went on between 0:08:24 and 0:08:57. Throughout

the code there are many different lines that print values to the console. Some of these are

only for display of the program but most have been use in various tests. Toward the start of

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

76 | P a g e

the programming many of the test were to see if the techniques were working, as I still had

not worked out exactly how I was going to get the program to learn. A common way I

tested to see the states of variables at certain stages was as follows.

I printed the value out, along with a number. This is because the interface I was using did

not give me a way to follow variables, and with all the loops and return values, I found this

was the quickest and easiest way to test values. However, it did become more difficult

when trying to track a variable across multiple functions, but if used similar to a binary

search, in that you close the gap between the marks, you can isolate any problems quite

quickly.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

77 | P a g e

This example is from when I was trying to get the code to deal with the file being unable to

open. You can see the program running fine up until the error was induced, by removing

the file from the folder. After trying to access the file again, you can see the error happened.

Here I could tell the problem was that it was reaching the end of the function before

returning a value. This helped me identify how to fix it, which can be seen in Appendix 3 at

time 0:07.50 to 0:08.16, and in the code below.

This was the main way I solved bugs in my code that I could not immediately see. The

debugger that identified the line of code that caused the problem, and its trace back path

was very useful. It gave me the line that the error occurred, and the lines where it was

being called from, which came in use when tracking values across multiple functions.

Conclusion

To conclude my testing and evaluating, I think I have done a reasonable job at meeting all

the requirements. The majority of the requirements were met; however, I fell short of

some. The ones where I didn’t meet however, I feel I shill gave a good attempt at, as I at

least made some progress on all of them. For all the requirements that I had not met, I

have at least made progress in competing those goal in the long term. The plan which I laid

out in my design, if continued, I am confident will produce a learning algorithm that is

capable of playing, and excelling, at the game battle ships, while remaining within my

computational ability.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

78 | P a g e

Feedback

I took my code and analysis of my results to Mr M and he was very impressed. The paper

work I showed and explained to him was my further research, my design and my testing

proof that the program learnt. I felt this was sufficient evidence that it was possible to

create a learning program for battleships, which gave an answer to the task he gave me.

He was impressed that I got an algorithm that could learn and how I had a set plan to

further expand what I had. I showed him what I had in terms so far with a demonstration of

my program and the data analysis I did to prove that it was learning in my testing. He liked

my use of the natural logarithm to manipulate the data into a form that made it easy to read

and visualise the results, and then explain what these results meant in terms of leaning.

The process of breaking down and simplifying the problem that I documented in the design,

he also appreciated. The way that the I broke down the problem, by applying problem

solving skills, which ended up with a better solution, albeit a long one that would take too

long to complete. He said that the work I had produced and the the future plans I had

planned proved to him that the current method could have worked on the full game with

more time.

I went on to show him my research, and how I could have used neural networks, Q-learning

and even deep learning had I the skills. He understood that the original task was far too

complex for the level I am at, but I could also understand the research and could see how

some of these techniques could potentially be used.

Why looking at the program he said that all the components he had asked for had been

included, however he would have preferred the learning outputs top have gone to a file, but

understood that he did not also me to do so. He said the code looked very professional in

the way that it was written, and that had potential moving forward if I were to stay in this

subject area.

We both agreed the original requirements were too hard, and that the secondary updated

ones were more to my level, but were still optimistic. Next time we agreed that I should

break down subject area before accepting the task, and that I should make requirements

that were achievable.

Overall he was impressed at the work I had produced, the code I had written and said that I

did achieve the task he set, despite not all of it being put into code.

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

79 | P a g e

Bibliography
Berry, N. (2011, December 3). Battleship. Retrieved from Data Genetics:

http://www.datagenetics.com/blog/december32011/index.html

Butler. (2015, June 14). Neural network data mining explained. Retrieved from Butler Analytics:

http://www.butleranalytics.com/neural-network-data-mining-explained/

Johson, G. (2016, April 4). To Beat Go Champion, Google’s Program Needed a Human Army.

Retrieved from New York Times: https://www.nytimes.com/2016/04/05/science/google-

alphago-artificial-intelligence.html?_r=2

Landy, J. (2015, January 9). Jonathan Landy. Retrieved from Google sites:

https://www.sites.google.com/site/jslandy/

Landy, J. (2016, October 15). Deep reinforcement learning, battleship. Retrieved from EFAVDB:

http://efavdb.com/battleship/

Python Software Foundation. (No Date). 9.7. itertools — Functions creating iterators for efficient

looping. Retrieved from Python: https://docs.python.org/2/library/itertools.html

Raval, S. (2016, April 4). Build a Neural Net in 4 Minutes. Retrieved from YouTube:

https://www.youtube.com/watch?v=h3l4qz76JhQ

Spencer-Harper, M. (2015, July 21). How to build a simple neural network in 9 lines of Python code.

Retrieved from Medium: https://medium.com/technology-invention-and-more/how-to-

build-a-simple-neural-network-in-9-lines-of-python-code-cc8f23647ca1#.runof0n4w

Sutton, R. S. (2012). Reinforcement Learning: An Introduction. Retrieved from

people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf:

http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf

Wikipedia. (2016, August 17). List of machine learning concepts. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/List_of_machine_learning_concepts

Wikipedia. (2016, August 29). Machine learning. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Machine_learning

Wikipedia. (2016, September 05). State-Action-Reward-State-Action. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/State-Action-Reward-State-Action

Wikipedia. (2016, September 21). Temporal_difference_learning. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Temporal_difference_learning

Woodford, C. (2017, Febuary 24). Introduction to neural networks. Retrieved from Explain That Stuff:

http://www.explainthatstuff.com/introduction-to-neural-networks.html

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

80 | P a g e

Appendix 1 – The Raw Code
import csv

import sys

import itertools

import numpy as np

#np.random.seed(1)

class Game(object):
 """This class is where the majority of the game play takes place. It is

 all in the one class so that variables can be passed around easily """
 def __init__(self):
 """ Procedure that creates the games instance of the AI, and sets up

 the parts of the game that will remain constant """
 print "Creating AI"
 self.ai = AI() ### the ai

 self.turns = [] ### list of all the total ai turns taken
 self.turn = 0 ### the current amount of ai turns take for that game

 def start(self):
 """ Procedure that creates all the objects and variables that get
 replaced each game """

 self.turn = 0
 #print "Creating Boards"
 self.ships_board = Ships_board(4, 4) ### board which the ships will be placed on

 self.shots_board = Shots_board(3, 3) ### board which the ship gets centred too
 #print "Filling Boards"
 self.ships_board.get_board() ### fills the board with cells

 self.shots_board.get_board() ### fills the board with cells
 #print

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

81 | P a g e

 #self.ships_board.display()
 #self.shots_board.display()

 #print
 #print "Getting Ships"
 ships = self.get_ships() ### creates a list of all the ships

 for ship in ships: ### iterates through all the ships and places them on the board
 #print "Choosing place for", ship.name
 self.Choose_place_for_ship(ship)

 #self.ships_board.display()
 #print
 #print "Set up complete"

 #print
 self.old_x_coor = 0 ### sets up values that get used later on to centre the grid
 self.old_y_coor = 0

 self.has_won = False
 self.current_hit_ship = False
 self.RunGame(ships) ### starts running the game of battleships

 def RunGame(self, ships):
 """ This procedure contains a loop which runs through each turn of

 the game """
 while not self.has_won: ### keeps looping until the game is won
 if self.take_shot(ships): ### if taking the shot hits a ship

 self.current_hit_ship = True ### sets that there is currently a hit ship, so the board centres
 #self.ships_board.display()
 #print "It took", turn, "turns to sink all the ships."

 self.turns.append(self.turn) ### adds the amount ai turns it took to finish the game to the overall list

 def Choose_place_for_ship(self, ship):

 """ This procedure picks a random place for the ship then checks
 that it is valid, returns the newly made grid that contains the
 new ship """

 x_coor = np.random.randint(0, self.ships_board.height-1) ### picks a random value within the range of the
 y_coor = np.random.randint(0, self.ships_board.width-1) ### board to place the ship
 orentation = np.random.randint(0,1) # 1=Ver 0=Hoz

 #print ("x", x_coor, " y", y_coor, " or", orentation, "ship len", ship.length) ### for testing
 valid = self.ship_validate(orentation, x_coor, y_coor, ship) ### checks the position is valid
 if not(valid): ### if its not valid then it starts the process again

 #print "not valid" ### for testing
 self.Choose_place_for_ship(ship) ### recurs to start process again
 else: ### if the place is valid

 #print "vaild" ### for testing
 ship.place_ship(orentation, x_coor, y_coor, self.ships_board) ### places the ship and replaces the old grid with one with the ship on it

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

82 | P a g e

 def ship_validate(self, orentation, x, y, ship):

 """ This function works out if the desired placement of the ship is
 a valid place to put it. Returns True if it is valid, False if
 not """

 if (orentation == 0): ### if the ship is to be placed horizontal
 if (ship.length + x) > self.ships_board.width-1: ### if the end of the ship will go off the end of the grid
 return False ### returning false as soon as it is not valid so the rest doesn’t not have to be checked

 else:
 for i in range(0,ship.length): ### to check each space it will be, to see if there’s already a ship there
 if self.ships_board.check_cell_for_ship(x+i, y):

 return False
 else: ### if the ship is to be placed vertical
 if (ship.length + y) > self.ships_board.height: ### if the end of the ship will go off the end of the grid

 return False
 else:
 for i in range(0,ship.length): ### to check each space it will be, to see if there’s already a ship there

 if self.ships_board.check_cell_for_ship(x, y+i) == True:
 return False
 return True ### returns true if no faults in the placement have been found

 def get_ships(self):
 """ This function puts all the makes all the ships and puts them

 into a list and returns it """
 ships = [Ship(2, "Ship_1")]
 #Ship(5, "Aircraft carrier"),

 #Ship(4, "Battleship"),
 #Ship(3, "Submarine"),
 #Ship(3, "Cruiser"),

 #Ship(2, "Patrol boat")]
 ### the code only works with a ship of length 2, but can be built on to extend its use to any size ships
 return ships ### returns the list of ships

 def take_shot(self, ships):
 """ This function allows the ai to make a shot. It fetches the

 values of the coordinates then follows the actions of taking the
 shot. It returns True if it hit a ship and false if the if it
 was a miss. It also decides which board the shot should be

 taken on """
 x_coor = 0
 y_coor = 0

 coor = (x_coor,y_coor) ### puts the coordinates into a tuple so the values can be assigned by a single run of a function
 if self.current_hit_ship == True: ### if there is a ship that’s currently hit. This decides what board it need to fire the shot on

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

83 | P a g e

 coor = self.ai.shoot(self.shots_board, self.ships_board)
 else: ### if the broad isn’t centred then it must shoot the ships board

 coor = self.ai.shoot(self.ships_board)
 (x_coor,y_coor) = coor ### the tuple is unpacked into the coordinates again
 #if self.ships_board.check_cell_for_ship(x_coor, y_coor):

 if self.ships_board.grid[x_coor][y_coor].is_hidden and self.ships_board.check_cell_for_ship(x_coor, y_coor): ### checks to see if it was hidden and a hit
 self.ships_board.grid[x_coor][y_coor].set_cell(False) ### sets the cell to no longer hidden
 #print "Hit!"

 self.hit_ship(x_coor, y_coor, ships) ### goes through the process of hitting a ship
 self.has_won = self.check_won(ships) ### works out if all the ships are sunk
 if self.has_won: ### if the game is won then updates the file

 self.ai.update_file()
 return True ### returns the True to signafy a hit
 self.shots_board.centre_ship(self.ships_board, x_coor, y_coor) ### If the ship hasn’t been sunk then it centres the board around the hit cell

 self.old_y_coor = y_coor ### save the old coordinates so it can update the shots board next time if it misses
 self.old_x_coor = x_coor
 return True ### returns the True to signafy a hit

 else: ### if it wasnt a hit
 self.ships_board.grid[x_coor][y_coor].set_cell(False) ### sets the cell to no longer hidden
 if self.current_hit_ship == True: ### if there has been a hit it resets the centred board

 self.shots_board.centre_ship(self.ships_board, self.old_x_coor, self.old_y_coor)
 #print "Miss."
 return False ### returns the False to signify a miss

 def hit_ship(self, x, y, ships):
 """ This function finds the ship that was hit """

 for ship in ships: ### iterates through all the possible ships
 if self.ships_board.grid[x][y].symbol == ship.name[0]: ### the symbol matches that of the start of the ship's name, then that was the ship that was hit
 ship.sink_ship() ### registers the hit and sinks the ship if necessary

 return ### breaks out once the ship has been dealt with
 return

 def check_won(self, ships):
 """ This function checks to see if there are any ships yet to be
 sunk """

 for ship in ships: ### Checks all the ships
 if ship.sunk == False: ### if a ship is not sunk then the game is not over
 return False ### returns here to prevent further unnecessary checks

 return True ### if they are all sunk then the game is over

class Ship(object):

 """ This is the class for the ships """
 def __init__(self, length, name):

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

84 | P a g e

 """ This procedure sets the properties of the ships """
 self.length = length

 self.name = name
 self.sunk = False ### sunk is used in checking if the game is done, this could have just been done by checking the overall lengths, but this way it can be expanded and makes the code easier to
follow

 def sink_ship(self):
 """ This procedure takes a the hit cell off the length of the ship,

 and sets the ship to sunk """
 self.length -= 1 ### takes 1 off the length so the remaining length is the remaining amount of the ships cells still on the board
 if self.length == 0: ### if the length is 0 then all the cells must have been hit, so the ship gets sunk

 self.sunk = True
 #print "You sank my", self.name
 #print

 return

 def place_ship(self, orentation, x_coor, y_coor, ships_board):

 """ This function places the ship on the grid """
 #print "Placing", self.name
 if orentation == 0: ### if the ship needs to be placed horizontally

 for i in range(0,self.length): ### for each of the cells the ship will take up
 ships_board.grid[x_coor+i][y_coor].set_cell(True, self.name[0]) ### placing the ship increasing in the x axis
 else: ### if the ship needs to be placed vertically

 for i in range(0,self.length): ### for each of the cells the ship will take up
 ships_board.grid[x_coor][y_coor+i].set_cell(True, self.name[0]) ### placing the ship increasing in the y axis

class Board(object):
 """ This is the base class for all the boards. It has all the shared
 subroutines of all the boards for them to inherit """

 def __init__(self, width, height):
 """ This initial procedure creates the properties needed by all the
 object boards """

 self.grid = [] ### grid is the grid that hold the cells which makes up what the player can see as the board
 self.width = width ### these variables set the dimensions of the boards
 self.height = height

 def check_cell_for_ship(self, x, y):
 """ This funtion returns true is a the selected cell is a ships """

 if self.grid[x][y].is_ship == True: ### is the cell a ship
 return True ### returns true if it is
 else:

 return False ### false if it isn’t

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

85 | P a g e

 def display(self):
 """ This procedure displays the grids in a format similar to that of

 battleships """
 i = self.width - 1 ### i is being used so the list prints in the correct order
 for x in range(0, self.width):

 print i, ### prints out the y axis index number
 for y in range(0, self.height): ### these loops iterate through every cell and get values so they can be printed in the correct order
 print self.grid[y][i], ### prints the cell

 i -= 1 ### increments the i value by -1 so the cells print out in the correct order
 print
 print " ",

 for j in range(0, self.height): ### prints out the x axis index
 print j,
 print

 print

 def get_board(self):

 """ This procedure creates the grid for the boards """
 cell_no = 0
 for x in range(0, self.width): ### this loops through, creating a dimensional list for the width of the grid

 self.grid.append([]) ### this empty list makes the grid 2 dimensional, one dimension for the width and the other for the length
 for y in range(0, self.height): ### this loop then fills the dimensional board with a cell for the length fo the grid
 cell_no += 1 ### adding 1 to the cell_no so it gives each cell a new number

 self.grid[x].append(self.get_cell()) ### appends a cell to the current, get cell makes sure the correct type of cell is appended
 self.grid[x][y].number = cell_no ### so the cells have a unique number to help identify them

class Shots_board(Board):
 """ This class inherits all the methods from Board, and has additional
 methods that allow it to function differently from the other boards.

 It is for the larger version of the board, where the ships are place
 and shots are taken until a ship gets hit """
 def get_cell(self):

 """ this function is to return the type of cell that this class
 needs. The function that it returns to is inherited from
 Board """

 return Shots_cell()

 def centre_ship(self, ships_board, ships_x, ships_y):

 """ The purpose of this procedure is to centre the board around the
 current hit section of the ship """
 half_x = int(np.ceil(self.width/2)) ### works out the coordinates of the centre point

 half_y = int(np.ceil(self.height/2))
 alignment_x = 0-half_x ### so it starts at the lowest x coor of the new grid

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

86 | P a g e

 for shots_x in range(0, self.width): ### to make sure all the x axis cells are set
 alignment_y = 0-half_y ### so it starts at the lowest y coor of the new grid

 for shots_y in range(0, self.height): ### to make sure all the y axis cells are set
 self.set_cells(ships_board, shots_x, shots_y, ships_x+alignment_x, ships_y+alignment_y) ### to set the cell of the specific location with all the necessary data
 alignment_y += 1 ### to iterate through the y axis

 alignment_x += 1 ### to iterate through the x axis
 #self.display()
 self.set_values() ### function to set the values(weights) to each cell

 def set_values(self):
 """ This subroutine sets each cell in the board's value(weight) for

 the ai """
 values = []
 self.pos = 0

 (values, self.pos) = self.find_layer_values() ### retrieve the value for that cell
 i = 0 ### a counter to make the value in the list be the right value for the cell
 for x in range(0, self.width): ### these for loops iterate through every cell in the 2D array

 for y in range(0, self.height):
 self.grid[x][y].value = float(values[i]) ### sets the value of the cell to the retrieved value
 i += 1

 def find_layer_values(self, tup=None):
 """ This function retrieves the values and positions of all the

 cells they alingn to """
 #print "find_layer_values"
 temp = []

 board = ""
 for x in range(0, self.width): ### for every item in the board
 for y in range(0, self.height):

 board += str(self.grid[x][y]) ### adds the cells string symbol to a string representing the board
 try:
 file = open("layers.csv", "rb")

 except IOError: ### in case the file cant be opened, so it doesnt crash
 print "cannot open 'layers.csv'" ### error message to inform the user of the error
 try_again = raw_input("try again? ")

 if try_again == "y": ### gives the option to try again, so it doesn’t end up constantly recurring
 tup = self.find_layer_values() ### calls its self to repeat the function
 return tup

 else: ### if the file does successfully open
 i = 0
 reader = csv.reader(file, delimiter="\t")

 for line in reader: ### or each line in the file
 line_list = str(line[0]).split(",") ### splits the row from the file in to a list of the columns

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

87 | P a g e

 if line_list[0] == str(board): ### compares the string representation of the current board to the board representation on the row in the file
 #print line_list

 temp = line_list[1:10] ### makes temp a list of the 9 cell values in the row
 file.close()
 tup = (temp,i)

 return tup ### returns the list of values and the position of the row corresponding to the current board in the file
 i += 1
 file.close() ### so that if it can't find it then it closes the file before it crashes

 def set_cells(self, board, shots_x, shots_y, ships_x, ships_y):
 """ The role of this procedure is to set the necessary properties

 of the desired cells in the ships board to the cells in the
 shots board and to identify if the shots cell will appear off
 the ships ships_board """

 if ships_x >= 0 and ships_x < self.width and ships_y >= 0 and ships_y < self.height: ### if the cell is in a valid place(on the board)
 self.grid[shots_x][shots_y].is_hidden = board.grid[ships_x][ships_y].is_hidden ### sets all the required values
 self.grid[shots_x][shots_y].is_ship = board.grid[ships_x][ships_y].is_ship

 self.grid[shots_x][shots_y].symbol = board.grid[ships_x][ships_y].symbol
 self.grid[shots_x][shots_y].number = board.grid[ships_x][ships_y].number
 else: ### if the cell is not in a valid place then it is off the board

 self.grid[shots_x][shots_y].off_the_board() ### dets the cell to the values it has when its off the board

class Ships_board(Board):

 """ This class inherits all the methods from Board, and has additional
 methods that allow it to function differently from the other boards.
 It is for the centred version of the board, which the ai uses learns

 from """
 def get_cell(self):
 """ This function is to return the type of cell that this class

 needs. The function that it returns to is inherited from Boards"""
 return Ships_cell()

class Training_board():
 """ This class is a very basic class that holds the properties of a
 grid, the length of its self, and the position of the board

 and its values in the storage file. """
 def __init__(self, length):
 """ creates the grid, the length of its self, and the position of

 the board and its values in the storage file. """
 self.grid = []
 self.length = length

 self.pos = 0

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

88 | P a g e

class Cell(object):
 """ This is the base object class for all the cells. It has all the

 shared subroutines of all the Cells for them to inherit """
 def __repr__(self):
 """ This fuction means that the cell its self can appear to have a

 value. For example, if the cell was printed it would run this
 function and print the returned value. It works the same way
 for any other instance where the cell is directly referenced as

 the value. In this case, the value will always be a string
 character either representing the cell as hidden, empty or a
 ship. """

 if self.is_hidden: ### if the cell is hidden, it returns the character used to show a hidden cell
 return '-'
 return self.get_symbol() ### so if its not hidden then it works out what symbol should be given

 def get_symbol(self):
 """ This fuction works out what symbol should be used to represent

 the cell. if it is a ship then it returns the symbol that it
 gets assigned """
 if self.is_ship:

 return self.symbol
 else:
 return '~'

class Ships_cell(Cell):
 """ This class inherits from the parent class Cell. It is for the cells

 that will populate the ships board. It has the values needed for
 the basic functioning of a battleships game """
 def __init__(self):

 """ This initial procedure creates the properties of this cell """
 self.is_ship = False ### whether the it is a ship
 self.is_hidden = True ### whether the it is hidden

 self.symbol = "X" ### The cells base symbol, symbol will be the character that represents the cell when its not hidden

 def set_cell(self, value, set_to=None):

 """ This method sets the cell, it sets its property hidden and it
 can set it to be a ship, depending on the input parameters """
 if set_to == None: ### if the set to value is None, then the hidden value needs to change

 self.is_hidden = value
 else: ### if there is a set to value then ship becomes the value, and symbol becomes the set to value
 self.is_ship = value ### I made the function work in this way to deduce the abound of code, the same function can perform different tasks depending on the parameters.

 self.symbol = set_to ### this saves me from writing two different subroutines for similar tasks that only need one

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

89 | P a g e

class Shots_cell(Cell):
 """ This class inherits from the parent class Cell. It is for the cells

 that will populate the centred shots board. It has the values
 needed for the functioning of the centred shots board, which the ai
 can work and learn from """

 def __init__(self):
 """ This initial procedure creates the properties of this cell """
 self.is_ship = False ### whether the it is a ship

 self.is_hidden = True ### whether the it is hidden
 self.symbol = "X" ### the cells base symbol, symbol will be the character that represents the cell when its not hidden
 self.off_board = False ### whether the cell would be off the sips board, if it was put on that board, relative to its neighbouring cells

 self.value = 0 ### the numerical value or weight of the certain cell, so the ai knows where to shoot

 def off_the_board(self):

 """ If a cell is off the board then it has to be given the values
 that let it be treated accordingly. it makes it appear like a
 miss, but makes it immediately unhidden, so the ai will learn

 not to shoot it """
 self.is_hidden = False ### sets it to unhidden because it is not on the board, therefore cant be shot and so cant be made un hidden
 self.off_board = True ### sets the cell to off the board, the symbol doesn’t change because in terms of the gameplay whether the cell is off the board or hit, it still shouldn’t be a target so the

ai will quickly learn not to shoot there.
 ### It being the same symbol means that there are a lot less possible board combinations

class AI():
 """this class is the learning part of the program. It is
 responsible for taking shots and learns from the consequences

 of that shot, with a system that weights each cell and chooses the
 one with the largest weight. If the move is good then it will
 increase the weight of the cell, if it isn't then the weight will

 decrease. It is also where the file gets updated with then learned
 values. The cells with have different values depending on the
 the current contents of the board. All the possible board states are

 stored in the external file, 'layers.csv'. """
 def __init__(self):
 """ This initial function runs when the class is first assigned to

 an object. It creates lists needed to function and it gives the
 player the option to retrain the program from the beginning. """
 self.training_board = Training_board(0) ### creating the training board, which acts as a list

 self.flat_board = Training_board(0) ### the one dimensional representation of the centred, shots, board
 if raw_input("Train? ") == "y": ### if, when prompted, the user shows they want to retrain the program
 self.train = Training() ### creates an object for training

 self.train.initial_start() ### starts up the training phase
 #print "Start up complete"

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

90 | P a g e

 def shoot(self, board, ships_board=None):

 """ This function returns the coordinates it want to shoot. If the
 the board has already centred then it works out where to shoot,
 if not then it just shoots random coordinates untill it hits a

 ship """
 self.flat_board.grid = [] ### sets the 1 dimentonal boards grid to nothing
 for x in range(0, board.width): ### these for loops iterate through every item in the board got from the parameters

 for y in range(0, board.height):
 self.flat_board.grid.append(board.grid[x][y]) ### it appends each cell in the board to the flat_board's grid.
 ### the board is converted to a one

dimentional array so that it is easy to understand what is happening
 if ships_board != None: ### if the board has been centred
 self.training_board.grid = self.get_numerical_array() ### the training board becomes a list of all the set cell values, to then be added to the overall weight where appropriate

 #print self.training_board.grid
 self.flat_board.pos = board.pos ### so the new list has the position of the data it needs to change in the layers.csv file
 loc = self.get_shot_coordinates() ### gets the coordinates where the weight is highest

 self.update_file() ### updates the file with the new values
 return self.get_coordinates(loc, ships_board) ### returns the coordinates of this location
 else: ### if the board hasnt been centred

 #print "X: ", x," Y: ", y
 x = np.random.randint(0, board.width) ### pics random value for x
 y = np.random.randint(0, board.height) ### pics random value for y

 return (x,y) ### returns the random coordinates

 def get_shot_coordinates(self):

 """ This function calculates where it thinks the best place to fire.
 It works out then returns that cells cell number """
 flat_loc = 0 ### this varible will hold the location in the list of the cell that it thinks is the best place to fire

 k = 0 ### k is a counter variable that will be used to find the location of the cell currently being checked
 chosen_cell = self.flat_board.grid[0] ### sets the first chosen cell to the first cell in the list
 for i in self.flat_board.grid: ### iterates through all the items in the 1 dimensional version of the grid. Its 1 dimensional so its easier to follow and understand

 if i.value > chosen_cell.value: ### if the current value is the largest so far
 flat_loc = k ### the location of the largest cell becomes the location of this one
 chosen_cell = i ### and the cell chossen to shot becomes this cell

 k += 1 ### increase by one each loop to count the loops
 #print chosen_cell.value
 #print "num= ",chosen_cell.number-1

 #print "loc= ", flat_loc
 chosen_cell.value += self.training_board.grid[flat_loc] ### the consequence weight is then added to the value of the cell, greatly decreasing it, if it is not hidden, slightly decreasing it, if it is a
miss and slightly increasing it, if it is a hit

 #print chosen_cell.value
 BattleshipsGame.turn += 1 ### increasing the turn count by one, signifying the end of the turn where it calculates the cell, random guesses are not counted

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

91 | P a g e

 #print turn
 return (chosen_cell.number-1) ### returns the cell number of the chosen cell, so it can be found in the ships board so the correct coordinates can be found

 def update_file(self):
 """ This subroutine updates the file, 'layers.csv'. It reads the

 whole copies the whole file, make the the change then writes
 back to the file """
 data_list = [] ### empty list that will hold the the data from the file

 try: ### so if the file fails to open the program doesnt not crash
 file = open("layers.csv", "rb") ### opens the file 'layers.csv' to read
 except IOError: ### the error of the file not opening will be an IO Error

 print "cannot open 'layers.csv'" ### error message to inform the user of the error
 try_again = raw_input("try again? ") ### gives the option to try again, so it doesn’t end up constantly recurring
 if try_again == "y":

 self.update_file() ### calls its self to repeat the process
 else: ### if the file does successfully open
 data = csv.reader(file) ### assigns the file contents to a variable

 data_list.extend(data)### puts the contents of the variable into a list format
 file.close() ### closes the file
 as_string = ''.join(str(item) for item in self.flat_board.grid) ### puts the 1 dimentional grid into a string of characters

 as_list = [as_string] ### creates a list containing the sting representation of the grid
 #print as_string
 for j in self.flat_board.grid: ###for each cell in the 1 dimentional list

 as_list.append(j.value) ### it appends the value of that cell
 line_to_override = {self.flat_board.pos:as_list} ### sets the line which will get over written
 try: ### so if the file fails to open the program doesnt not crash

 file = open("layers.csv", "wb") ### opens the file 'layers.csv' to write
 except IOError: ### the error of the file not opening will be an IO Error
 print "cannot open 'layers.csv'" ### error message to inform the user of the error

 try_again = raw_input("try again? ") ### gives the option to try again, so it doesn’t end up constantly recurring
 if try_again == "y":
 self.update_file() ### calls its self to repeat the process

 else: ### if the file does successefully open
 writer = csv.writer(file) ### sets the writer to the file
 for line, row in enumerate(data_list): ### for each line in the file, line number(number) and

 write_data = line_to_override.get(line, row) ### separates the it into line(the position of the board's line in the file) and row(the string representation of the board and
the values of the cells) and puts them as a single variable
 writer.writerow(write_data) ### writes the variable to the file as a row

 file.close() ### closes the file

 def get_coordinates(self, loc, ships_board):

 """ The purpose of this function it to work out what the coordinates
 of a cell are from its cell number """

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

92 | P a g e

 i = 0 ### a counter used to work out when the loops have reached the coordinates of the cell
 for x in range(0, ships_board.width): ### this is a for loop that iterates through the size of the ships_board

 for y in range(0, ships_board.height):
 if i == loc: ### when it reaches the same amount of iterations as it would tack to reach the cell
 #print "X: ", x," Y: ", y

 return (x,y) ### it returns the values of x and y as a coordinate, because this is the coordinates of the cell
 i += 1

 def get_numerical_array(self):
 """ This function creates a list containing the reward values for if
 the ai targets that cell. The reward values depend on the

 contents of the cell """
 temp = [] ### empty list that will contain all the reward values
 for cell in self.flat_board.grid: ### for each item in this grid

 if cell.is_hidden == False or cell.off_board == True: ### if the is not hidden or is off the board
 temp.append(-1) ### a large negative weight is added to deter the ai from shooting there again
 elif cell.is_ship == True: ### if the cell contains a ship

 temp.append(0.1) ### a smaller positive weight is added to reward it
 else: ### so if it is a miss
 temp.append(-0.1) ### a smaller minus value is added. This is too counter the value given by the ship, so if there are multiple places the ship could be in a certain

board scenario, then it learns there is an even chance of it being in either
 return temp

class Training():
 """ This class is for the training of the ai. It creates the blank file,
 which has 256 lines, one for each possible combination of the centred

 board. """
 def initial_start(self):
 """ This procedure makes a list of all the possible combinations of

 the the string representation of ther board, then gives the
 values of all the cells in order. It then writes each board
 representation and cell values into the file, row by row. """

 self.symbol_list = ["-","~"] ### a list of the symbols that need to be used in the product function.
 arr = itertools.product(self.symbol_list, repeat = 8) ### creates an itertools array of all the combinations of the two characters in symbol_list when there are 8 characters. this could also be
done by hand in a recursive fuction, but itertools makes it easier

 try: ### so if the file fails to open the program doesnt not crash
 file = open("layers.csv", "wb") ### opens the file 'layers.csv' to write
 except IOError: ### the error of the file not opening will be an IO Error

 print "cannot open 'layers.csv'" ### error message to inform the user of the error
 try_again = raw_input("try again? ") ### gives the option to try again, so it doesnt end up constantly recuring
 if try_again == "y":

 self.initial_start() ### calls its self to repeat the process
 else: ### if the file does successefully open

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

93 | P a g e

 writer = csv.writer(file) ### sets the writer to the file
 for i in arr: ### for each element in the array

 l = list(i) ### creates a list of the element
 l.insert(4, 'S') ### inputs the character 'S' to the centre of the string. this represents the ship in the 3 by 3 centred grid
 s = ''.join(str(item) for item in l) ### this sets the list back into a sting so it is ready to be put into the file

 #print s
 writer.writerow((s, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)) ### writes row(string board, followed by the values) to the file
 file.close() ### closes the file

BattleshipsGame = Game() ### creates the instance of the game

valid = False ### used to make sure that the value for the number of games is an integer
while not valid:
 try: ### incase of an invalid input

 how_many_games = int(raw_input("how many games? ")) ### creates an integer from the input
 except ValueError:
 print "Incorrect input, try again" ### error message to inform the user of their incorrect input

 print
 else:
 if how_many_games > 0: ### if it is a valid number of games

 valid = True ### if not error is detected then it must be a valid interger
for i in xrange(1, how_many_games+1): ### repeates for the amount of specified games, starts at one,
 ### hence the plus one on the limiting parameter

 BattleshipsGame.start() ### starts the game
 if (i) % 5000 == 0: ### for every 5000
 print "games completed:",i ### it prints the number of games so far, so that for longer runs

 ### you know it isnt stuck in a loop
print "total games completed:", i### prints the total number of games completed
j = 0 ### counter for what the game number is

list_of_values = [0]
for num in BattleshipsGame.turns: ### for the number of ai turns it took in every game completed
 j += 1 ### games completed goes up

 if len(list_of_values) > num: ### so the index is not out of the lists range
 list_of_values[num] += 1 ### 1 more game too this many turns to complete
 else: ### if it would bve out of range then its is the first game to take this long

 while len(list_of_values) < num:
 list_of_values.append(0)
 list_of_values.append(1) ### only one game has taken this many turns

for k in range(0, len(list_of_values)): ### prints out the list of how many games took what amount
 ### of turns to complete
 print "games that took",k," turns to complete after the first shot hit",list_of_values[k]

 ### so its easy to read and understand the results

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

94 | P a g e

Appendix 2
import random

import numpy as np

class Game():

 def start(self):
 turns = 0
 temp = []

 print "Creating Board"
 ships_board = Ships_board()
 shots_board = Shots_board()

 print "Filling Board"
 ships_board.get_board()
 print

 shots_board.get_board()
 print
 ships_board.display()

 #shots_board.display()
 print "Getting Ships"
 ships = self.get_ships()

 for ship in ships:
 print "Choosing place for", ship.name
 ships_board.grid = self.Choose_place_for_ship(ships_board, ship)

 #ships_board.display() ### for testing
 print
 print "Set up complete"

 print
 self.RunGame(ships_board, shots_board, ships, turns)

 def RunGame(self, ships_board, shots_board, ships, turns):
 has_won = False
 while not has_won:

 #for ship in ships:
 # print ship.length #testing only
 ships_board.display()

 #ships_board.write_board()
 turns += 1
 if self.take_shot(ships_board, ships, shots_board):

 has_won = self.check_won(ships)
 ships_board.display()
 print "It took", turns, "turns to sink all the ships."

 """ put game data into a list as it iterates out of the procedures """

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

95 | P a g e

 def Choose_place_for_ship(self, ships_board, ship):
 x_coor = random.randint(0, ships_board.height-1)

 y_coor = random.randint(0, ships_board.width-1)
 orentation = random.randint(0,1) # 1=Ver 0=Hoz
 print ("x", x_coor, " y", y_coor, " or", orentation, "ship len", ship.length) ### for testing

 valid = self.ship_validate(orentation, x_coor, y_coor, ship, ships_board)
 if not(valid):
 #print "not vaild" ### for testing

 self.Choose_place_for_ship(ships_board, ship)
 #if valid == True:
 else:

 #print "vaild" ### for testing
 ships_board.grid = self.place_ship(orentation, x_coor, y_coor, ship, ships_board)
 return ships_board.grid

 def place_ship(self, orentation, x_coor, y_coor, ship, board):
 print "Placing", ship.name

 if orentation == 0:
 for i in range(0,ship.length):
 board.grid[x_coor+i][y_coor].set_cell(True, ship.name[0])

 else:
 for i in range(0,ship.length):
 board.grid[x_coor][y_coor+i].set_cell(True, ship.name[0])

 return board.grid

 def ship_validate(self, orentation, x, y, ship, board):

 if (orentation == 0):
 if (ship.length + x) > board.width-1:
 return False

 else:
 for i in range(0,ship.length):
 if board.check_cell_for_ship(x+i, y):

 return False
 else:
 if (ship.length + y) > board.height:

 return False
 else:
 for i in range(0,ship.length):

 if board.check_cell_for_ship(x, y+i) == True:
 return False
 return True

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

96 | P a g e

 def get_ships(self):
 ships = [Ship(5, "Aircraft carrier"),

 Ship(4, "Battleship"),
 Ship(3, "Submarine"),
 Ship(3, "Cruiser"),

 Ship(2, "Patrol boat")]

 return ships

 def take_shot(self, ships_board, ships, shots_board):
 for i in xrange(5000):

 x_coor = self.get_coor(ships_board, "Input X axis of the target grid: ", True)
 y_coor = self.get_coor(ships_board, "Input Y axis of the target grid: ", False)
 if ships_board.grid[x_coor][y_coor].is_hidden == True:

 print "x =", x_coor, "y =", y_coor
 break
 if i == 5000:

 print "over flow in take_shot"
 self.hit_ship(x_coor, y_coor, ships_board, ships)
 ships_board.grid[x_coor][y_coor].set_cell(False, None)

 if ships_board.check_cell_for_ship(x_coor, y_coor):
 if raw_input("'end' to end ") == "end":
 for ship in ships:

 ship.sunk = True
 print "Hit!"
 #self.hit_ship(x_coor, y_coor, ships_board, ships)

 shots_board.center_ship(ships_board, x_coor, y_coor)
 return True
 else:

 print "Miss."
 return False

 def get_coor(self, board, text, x_axis_coor):
 valid = False
 i = 0

 while valid == False and i < 5000:
 i += 1
 try:

 if x_axis_coor:
 coor = raw_input("enter x coor: ")
 else:

 coor = raw_input("enter y coor: ")
 coor = int(coor)

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

97 | P a g e

 except Exception as e:
 print "Please enter a valid number"

 else:
 if (coor >= 0) and (coor < board.width) and x_axis_coor == True:
 valid = True

 elif (coor >= 0) and (coor < board.height) and x_axis_coor == False:
 valid = True
 else:

 print "Please enter a valid number"
 if i> 5000:
 print "over flow in get_coor"

 return coor

 def hit_ship(self, x, y, board, ships):

 for ship in ships:
 if board.grid[x][y].symbol == ship.name[0]:
 ship.sink_ship()

 return

 def check_won(self, ships):

 for ship in ships:
 if ship.sunk == False:
 return False

 return True

class Ship(object):

 def __init__(self, length, name):
 self.length = length
 self.name = name

 self.sunk = False

 def sink_ship(self):

 self.length -= 1
 if self.length == 0:
 self.sunk = True

 print "You sank my", self.name
 print
 return

class Board(object):

 def __init__(self):
 self.grid = []

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

98 | P a g e

 self.width = 10
 self.height = 10

 def check_cell_for_ship(self, x, y):
 # returns true if cell is not empty or hidden

 if self.grid[x][y].is_ship == False:
 return False
 else:

 return True

 def display(self):

 i = self.width - 1
 for x in range(0, self.width):
 print i,

 for y in range(0, self.height):
 print self.grid[y][i],
 i -= 1

 print
 print " ",
 for j in range(0, self.height):

 print j,
 print

 def get_board(self):
 cell_no = 0
 for x in range(0, self.width):

 self.grid.append([])
 for y in range(0, self.height):
 cell_no += 1

 self.grid[x].append(self.get_cell())
 self.grid[x][y].number = cell_no

class Shots_board(Board):
 def get_cell(self):
 return Shots_cell()

 def center_ship(self, ships_board, ships_x, ships_y):
 half_x = int(np.ceil(self.width/2))

 half_y = int(np.ceil(self.height/2))
 alignment_x = 0-half_x
 for shots_x in range(0, self.width):

 alignment_y = 0-half_y
 for shots_y in range(0, self.height):

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

99 | P a g e

 self.set_cells(ships_board, shots_x, shots_y, ships_x+alignment_x, ships_y+alignment_y)
 alignment_y += 1

 alignment_x += 1
 #self.display()

 def set_cells(self, board, shots_x, shots_y, ships_x, ships_y):
 if ships_x >= 0 and ships_x < self.width and ships_y >= 0 and ships_y < self.height:
 self.grid[shots_x][shots_y].is_hidden = board.grid[ships_x][ships_y].is_hidden

 self.grid[shots_x][shots_y].is_ship = board.grid[ships_x][ships_y].is_ship
 self.grid[shots_x][shots_y].symbol = board.grid[ships_x][ships_y].symbol
 self.grid[shots_x][shots_y].number = board.grid[ships_x][ships_y].number

 else:
 self.grid[shots_x][shots_y].off_the_board()

class Ships_board(Board):
 def get_cell(self):
 return Ships_cell()

class Cell(object):
 def __init__(self):

 self.is_ship = False
 self.is_hidden = True
 self.symbol = "X"

 self.number = 0

 def __str__(self):

 if self.is_hidden:
 return '-'
 return self.get_symbol()

 def get_symbol(self):
 if self.is_ship:

 return self.symbol
 else:
 return '~'

class Ships_cell(Cell):
 def set_cell(self, value, secondary):

 if secondary == None:
 self.is_hidden = value
 else:

 self.is_ship = value
 self.symbol = secondary ### while testing

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

100 | P a g e

class Shots_cell(Cell):

 def off_the_board(self):
 self.is_hidden = False
 off_board = True

 self.symbol = "#"

 def get_symbol(self):

 if self.is_ship or self.symbol == "#":
 return self.symbol
 else:

 return '~'

class AI():

 def __init__():
 return

BattleshipsGame = Game()
BattleshipsGame.start()

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

101 | P a g e

Appendix 3
https://youtu.be/AP4lqbiNXk0

Appendix 4
https://youtu.be/qKCeBHJTjXE

https://youtu.be/AP4lqbiNXk0
https://youtu.be/qKCeBHJTjXE

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

102 | P a g e

Appendix 5
"""class AI():

 def __init__(self):
 self.x = []
 self.y = []

 def update(self,shots_board, turns):
 numbers = []

 self.one_dim_board = self.get_data(shots_board)
 for cell in self.one_dim_board:
 # print cell,

 numbers.append(cell.number)
 #print
 self.y = np.array([self.get_weighted_array()])

 self.x = np.array([self.get_numerical_array()])

 self.list_display(numbers)

 self.list_display(self.one_dim_board)
 self.list_display(self.x)
 self.list_display(self.y)

 probs = self.procedure(turns)

 self.list_display(probs)

 def sigmoid(self,x):

 return 1/(1+np.exp(-x))

 def get_data(self, board):

 one_dim_board = []
 for column in range(0, shots_board.width):
 for row in range(0, shots_board.height):

 one_dim_board.append(shots_board.grid[column][row])
 return one_dim_board

 #def get_numerical_array(self):
 # temp = []

 # for cell in self.one_dim_board:
 # if cell.is_hidden == True:
 # temp.append(0)

 # elif cell == "~":
 # temp.append(0)

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

103 | P a g e

 # elif cell.symbol == "#":
 # temp.append(-1)

 # else:
 # temp.append(1)
 return temp

 def get_weighted_array(self):

 temp = []
 for cell in self.one_dim_board:
 if cell.is_hidden == False:

 temp.append(-1)
 elif cell.off_board == True:
 temp.append(-1)

 elif cell.is_ship:
 temp.append(1)
 else:

 temp.append(0)
 return temp

 #input

 #output

 def procedure(self):
 #synapse
 #syn0 = 2*np.random.random((25,25)) - 1

 #syn1 = 2*np.random.random((25,1)) - 1
 # syn0 = 2*np.random.random((25,1)) - 1
 # syn1 = 2*np.random.random((1,25)) - 1

 #training
 # for i in xrange(1000000):
 # l0 = self.x

 # l1 = self.sigmoid(np.dot(l0, syn0))
 # l2 = self.sigmoid(np.dot(l1, syn1))
 # l2_error = self.y - l2

 # if i % 10000:
 # print "error: " + str(np.mean(np.abs(l2_error)))
 # l2_delta = l2_error*self.sigmoid(l2)#, deriv=True)

 # l1_error = l2_delta.dot(syn1.T)
 # l1_delta = l1_error*self.sigmoid(l1)#, deriv=True)
 # #update weight

 # syn1+= l1.T.dot(l2_delta)
 # syn0+= l0.T.dot(l1_delta)

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

104 | P a g e

 #
 # return l2

 def procedure(self, turns):

 biggest_val = self.one_dim_board.value[0]
 for j in len(self.one_dim_board):
 if self.one_dim_board[j].value > biggest_val:

 biggest_val = self.one_dim_board[j].value
 loc = j
 self.shot(loc, turns)

 def shot(self, location, turns):
 self.x[loc] = sigmoid(self.y[loc] + self.x[loc])#/self.turns

 def get_numerical_array(self):

 j=[]
 try:
 comms = open("memory_table.txt", "r")

 except IOError:
 print "Failed to open"
 return None

 j = comms.readlines()
 j = [line[:-1] for line in j]
 j = j,dtype = float

 comms.close()
 return j

 def list_display(self, list25):
 i=0
 for cell in list25:

 i += 1
 print cell,
 if i == 5:

 print
 i=0
 print

 #print l2"""

“””import numpy as np

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

105 | P a g e

class Neural_Network(object):
 def __init__(self, Lambda=0):

 #Define Hyperparameters
 self.inputLayerSize = 2
 self.outputLayerSize = 1

 self.hiddenLayerSize = 3

 #Weights (parameters)

 self.W1 = np.random.randn(self.inputLayerSize,self.hiddenLayerSize)
 self.W2 = np.random.randn(self.hiddenLayerSize,self.outputLayerSize)

 #Regularization Parameter:
 self.Lambda = Lambda

 def forward(self, X):
 #Propogate inputs though network
 self.z2 = np.dot(X, self.W1)

 self.a2 = self.sigmoid(self.z2)
 self.z3 = np.dot(self.a2, self.W2)
 yHat = self.sigmoid(self.z3)

 return yHat

 def sigmoid(self, z):

 #Apply sigmoid activation function to scalar, vector, or matrix
 return 1/(1+np.exp(-z))

 def sigmoidPrime(self,z):
 #Gradient of sigmoid
 return np.exp(-z)/((1+np.exp(-z))**2)

 def costFunction(self, X, y):
 #Compute cost for given X,y, use weights already stored in class.

 self.yHat = self.forward(X)
 J = 0.5*sum((y-self.yHat)**2)/X.shape[0] + (self.Lambda/2)*(np.sum(self.W1**2)+np.sum(self.W2**2))
 return J

 def costFunctionPrime(self, X, y):
 #Compute derivative with respect to W and W2 for a given X and y:

 self.yHat = self.forward(X)

 delta3 = np.multiply(-(y-self.yHat), self.sigmoidPrime(self.z3))

 #Add gradient of regularization term:
 dJdW2 = np.dot(self.a2.T, delta3)/X.shape[0] + self.Lambda*self.W2

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

106 | P a g e

 delta2 = np.dot(delta3, self.W2.T)*self.sigmoidPrime(self.z2)

 #Add gradient of regularization term:
 dJdW1 = np.dot(X.T, delta2)/X.shape[0] + self.Lambda*self.W1

 return dJdW1, dJdW2

 #Helper functions for interacting with other methods/classes

 def getParams(self):
 #Get W1 and W2 Rolled into vector:
 params = np.concatenate((self.W1.ravel(), self.W2.ravel()))

 return params

 def setParams(self, params):

 #Set W1 and W2 using single parameter vector:
 W1_start = 0
 W1_end = self.hiddenLayerSize*self.inputLayerSize

 self.W1 = np.reshape(params[W1_start:W1_end], \
 (self.inputLayerSize, self.hiddenLayerSize))
 W2_end = W1_end + self.hiddenLayerSize*self.outputLayerSize

 self.W2 = np.reshape(params[W1_end:W2_end], \
 (self.hiddenLayerSize, self.outputLayerSize))

 def computeGradients(self, X, y):
 dJdW1, dJdW2 = self.costFunctionPrime(X, y)
 return np.concatenate((dJdW1.ravel(), dJdW2.ravel()))”””

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

107 | P a g e

Appendix 6
ai_write.py ###

import random
class ai(object):
def clear_file(file):

 file.seek(0)
 file.truncate()
x_coor = 1

y_coor = 1
ready = False

while True:
 x_coor = random.randint(0,4)
 y_coor = random.randint(0,4)

 ready = False
 while not ready:
 try:

 comms = open("communication.txt", "r")
 except IOError:
 print "Failed to open"

 ready = False
 else:
 if comms.read(5) == "Ready":

 print "ready"
 ready = True
 comms.close()

 comms = open("communication.txt", "w")
 clear_file(comms)

 comms.write("Done")
 comms.write("\n")
 comms.write(str(x_coor))

 comms.write("\n")
 comms.write(str(y_coor))
 comms.write("\n")

 comms.close()
 comms = open("communication.txt", "r")

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

108 | P a g e

Appendix 7
----S---- -10.7 11.3 -10.7 -10.7 -11 -10.7 -10.7 -10.7 -10.7
----S---~ -0.1 6 0 0 0 0 0 0 0
----S--~- -0.1 440.8 0 0 0 0 0 0 0
----S--~~ -0.1 63.7 0 0 0 0 0 0 0
----S-~-- -2.6 7.9 -2.5 -2.5 -3 -2.5 -3 -2.5 -2.5
----S-~-~ -1.6 2.7 -1.5 -1.5 -2 -1.5 -2 -1.5 -2
----S-~~- -0.1 77.9 0 0 0 0 0 0 0
----S-~~~ -0.1 2822.6 0 0 0 0 0 0 0
----S~--- -1.1 -1 -1.1 -1.1 -1 -1 -1.1 5.8 -1
----S~--~ -1 -1 -1 -1 -1 -1 -1 3.8 -1
----S~-~- -0.1 257.2 0 0 0 0 0 0 0
----S~-~~ -0.1 91 0 0 0 0 0 0 0
----S~~-- -2.2 -2.2 -2.2 -2.2 -3 -3 -3 4.8 -2.1
----S~~-~ -2 -2 -2 -2 -2 -2 -2 -2.7 -2
----S~~~- -0.1 92 0 0 0 0 0 0 0
----S~~~~ -0.1 614.5 0 0 0 0 0 0 0
---~S---- -2 10.7 -2 -2 -2 -2 -2 -2 -2
---~S---~ -1.7 -1.4 -1.7 -2 -2 -1.7 -1.7 -1.7 -2
---~S--~- -0.1 78.9 0 0 0 0 0 0 0
---~S--~~ -0.1 58.6 0 0 0 0 0 0 0
---~S-~-- -1.7 -1.5 -1.6 -2 -2 -1.6 -2 -1.6 -1.6
---~S-~-~ -2 -2 -2 -2 -2 -2 -2 -1.8 -2
---~S-~~- -0.1 47.9 0 0 0 0 0 0 0
---~S-~~~ -0.1 584.3 0 0 0 0 0 0 0
---~S~--- -1.5 -1.5 -1.5 -2 -2 -2 -1.5 -0.7 -1.5
---~S~--~ -1.6 -1.6 -1.6 -2 -2 -2 -1.6 -1.3 -2
---~S~-~- -0.1 96.5 0 0 0 0 0 0 0
---~S~-~~ -0.1 51.3 0 0 0 0 0 0 0
---~S~~-- -0.1 -0.1 -0.1 -1 -1 -1 -1 0.5 0
---~S~~-~ -1.5 0.6 -1.4 -2 -2 -2 -2 -1.4 -2
---~S~~~- -0.1 61.1 0 0 0 0 0 0 0
---~S~~~~ -0.1 316.2 0 0 0 0 0 0 0
--~-S---- -1.8 -1.8 -2 -1.8 -2 -1.8 -1.8 1.6 -1.8
--~-S---~ -2.3 -1.4 -3 -2.2 -3 -2.2 -2.2 -2.2 -3
--~-S--~- -0.1 217.4 0 0 0 0 0 0 0
--~-S--~~ -0.1 58.4 0 0 0 0 0 0 0
--~-S-~-- -2.3 -0.1 -3 -2.2 -3 -2.2 -3 -2.2 -2.2
--~-S-~-~ -0.2 2 -1 -0.1 -1 -0.1 -1 -0.1 -1
--~-S-~~- -0.1 72.1 0 0 0 0 0 0 0
--~-S-~~~ -0.1 576.2 0 0 0 0 0 0 0
--~-S~--- -0.1 -0.1 -1 -0.1 -1 -1 -0.1 4.9 0
--~-S~--~ -15 -14.9 -15 -15 -15 -15 -15 6.9 -15

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

109 | P a g e

--~-S~-~- -0.1 95 0 0 0 0 0 0 0
--~-S~-~~ -0.1 2919.6 0 0 0 0 0 0 0
--~-S~~-- -1.8 -1.8 -2 -1.8 -2 -2 -2 -1.6 -1.7
--~-S~~-~ -5.3 -5.2 -6 -5.3 -6 -6 -6 2.3 -6
--~-S~~~- -0.1 55.4 0 0 0 0 0 0 0
--~-S~~~~ -0.1 5004.1 0 0 0 0 0 0 0
--~~S---- -2.1 -2.1 -3 -3 -3 -2.1 -2.1 5 -2
--~~S---~ -1.3 -1.3 -2 -2 -2 -1.3 -1.3 0.4 -2
--~~S--~- -0.1 87.1 0 0 0 0 0 0 0
--~~S--~~ -0.1 50.3 0 0 0 0 0 0 0
--~~S-~-- -0.1 0.5 0 0 0 0 0 0 0
--~~S-~-~ -1.3 -1.3 -2 -2 -2 -1.3 -2 -1.2 -2
--~~S-~~- -0.1 28.5 0 0 0 0 0 0 0
--~~S-~~~ -0.1 342.5 0 0 0 0 0 0 0
--~~S~--- -0.7 3 -1 -1 -1 -1 -0.6 -0.6 -0.6
--~~S~--~ -3.8 -3.8 -4 -4 -4 -4 -3.8 -3.4 -4
--~~S~-~- -0.1 28.3 0 0 0 0 0 0 0
--~~S~-~~ -0.1 820.5 0 0 0 0 0 0 0
--~~S~~-- -0.8 -0.8 -1 -1 -1 -1 -1 -0.5 -0.7
--~~S~~-~ -5.2 -5.2 -6 -6 -6 -6 -6 -2 -6
--~~S~~~- -0.1 36.3 0 0 0 0 0 0 0
--~~S~~~~ -0.1 2157.3 0 0 0 0 0 0 0
-~--S---- -0.1 -1 -0.1 -0.1 -1 -0.1 -0.1 1853.1 0
-~--S---~ -0.1 -1 -0.1 -0.1 -1 -0.1 -0.1 292.6 0
-~--S--~- 0 0 0 0 0 0 0 0 0
-~--S--~~ 0 0 0 0 0 0 0 0 0
-~--S-~-- -0.1 -1 -0.1 -0.1 -1 -0.1 -1 276.2 0
-~--S-~-~ -0.1 -1 -0.1 -0.1 -1 -0.1 -1 88.9 0
-~--S-~~- 0 0 0 0 0 0 0 0 0
-~--S-~~~ 0 0 0 0 0 0 0 0 0
-~--S~--- -0.1 -1 -0.1 -0.1 -1 -1 -0.1 110.3 0
-~--S~--~ -0.1 -1 -0.1 -0.1 -1 -1 -0.1 36.8 0
-~--S~-~- 0 0 0 0 0 0 0 0 0
-~--S~-~~ 0 0 0 0 0 0 0 0 0
-~--S~~-- -0.1 -1 -0.1 -0.1 -1 -1 -1 40.8 0
-~--S~~-~ -0.1 -1 -0.1 -0.1 -1 -1 -1 39.1 0
-~--S~~~- 0 0 0 0 0 0 0 0 0
-~--S~~~~ 0 0 0 0 0 0 0 0 0
-~-~S---- -0.1 -1 -0.1 -1 -1 -0.1 -0.1 277.4 0
-~-~S---~ -0.1 -1 -0.1 -1 -1 -0.1 -0.1 71.1 0
-~-~S--~- 0 0 0 0 0 0 0 0 0
-~-~S--~~ 0 0 0 0 0 0 0 0 0
-~-~S-~-- -0.1 -1 -0.1 -1 -1 -0.1 -1 78.3 0

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

110 | P a g e

-~-~S-~-~ -0.1 -1 -0.1 -1 -1 -0.1 -1 54.4 0
-~-~S-~~- 0 0 0 0 0 0 0 0 0
-~-~S-~~~ 0 0 0 0 0 0 0 0 0
-~-~S~--- -0.1 -1 -0.1 -1 -1 -1 -0.1 36.1 0
-~-~S~--~ -0.1 -1 -0.1 -1 -1 -1 -0.1 35.2 0
-~-~S~-~- 0 0 0 0 0 0 0 0 0
-~-~S~-~~ 0 0 0 0 0 0 0 0 0
-~-~S~~-- -0.1 -1 -0.1 -1 -1 -1 -1 26.4 0
-~-~S~~-~ -0.1 -1 -0.1 -1 -1 -1 -1 50.8 0
-~-~S~~~- 0 0 0 0 0 0 0 0 0
-~-~S~~~~ 0 0 0 0 0 0 0 0 0
-~~-S---- -0.1 -1 -1 -0.1 -1 -0.1 -0.1 146.6 0
-~~-S---~ -0.1 -1 -1 -0.1 -1 -0.1 -0.1 70.4 0
-~~-S--~- 0 0 0 0 0 0 0 0 0
-~~-S--~~ 0 0 0 0 0 0 0 0 0
-~~-S-~-- -0.1 -1 -1 -0.1 -1 -0.1 -1 61.1 0
-~~-S-~-~ -0.1 -1 -1 -0.1 -1 -0.1 -1 61.6 0
-~~-S-~~- 0 0 0 0 0 0 0 0 0
-~~-S-~~~ 0 0 0 0 0 0 0 0 0
-~~-S~--- -0.1 -1 -1 -0.1 -1 -1 -0.1 34.3 0
-~~-S~--~ -0.1 -1 -1 -0.1 -1 -1 -0.1 1033.5 0
-~~-S~-~- 0 0 0 0 0 0 0 0 0
-~~-S~-~~ 0 0 0 0 0 0 0 0 0
-~~-S~~-- -0.1 -1 -1 -0.1 -1 -1 -1 36.3 0
-~~-S~~-~ -0.1 -1 -1 -0.1 -1 -1 -1 633.8 0
-~~-S~~~- 0 0 0 0 0 0 0 0 0
-~~-S~~~~ 0 0 0 0 0 0 0 0 0
-~~~S---- -0.1 -1 -1 -1 -1 -0.1 -0.1 40.8 0
-~~~S---~ -0.1 -1 -1 -1 -1 -0.1 -0.1 37 0
-~~~S--~- 0 0 0 0 0 0 0 0 0
-~~~S--~~ 0 0 0 0 0 0 0 0 0
-~~~S-~-- -0.1 -1 -1 -1 -1 -0.1 -1 65.7 0
-~~~S-~-~ -0.1 -1 -1 -1 -1 -0.1 -1 44.1 0
-~~~S-~~- 0 0 0 0 0 0 0 0 0
-~~~S-~~~ 0 0 0 0 0 0 0 0 0
-~~~S~--- -0.1 -1 -1 -1 -1 -1 -0.1 56.9 0
-~~~S~--~ -0.1 -1 -1 -1 -1 -1 -0.1 387.1 0
-~~~S~-~- 0 0 0 0 0 0 0 0 0
-~~~S~-~~ 0 0 0 0 0 0 0 0 0
-~~~S~~-- -0.1 -1 -1 -1 -1 -1 -1 56.2 0
-~~~S~~-~ -0.1 -1 -1 -1 -1 -1 -1 546.6 0
-~~~S~~~- 0 0 0 0 0 0 0 0 0
-~~~S~~~~ 0 0 0 0 0 0 0 0 0

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

111 | P a g e

~---S---- -1 3 -0.8 -0.8 -1 -0.8 -0.8 -0.8 -0.8
~---S---~ -1 8.5 -0.4 -0.4 -1 -0.4 -0.4 -0.4 -1
~---S--~- -1 83.4 0 0 0 0 0 0 0
~---S--~~ -1 33.2 0 0 0 0 0 0 0
~---S-~-- -1 -0.2 -0.2 -0.2 -1 -0.2 -1 7 -0.1
~---S-~-~ -4 -3.7 -3.7 -3.7 -4 -3.7 -4 -3.3 -4
~---S-~~- -1 99.8 0 0 0 0 0 0 0
~---S-~~~ -1 597.7 0 0 0 0 0 0 0
~---S~--- -2 -1.6 -1.6 -1.6 -2 -2 -1.6 2.2 -1.5
~---S~--~ -1 -0.4 -0.3 -0.3 -1 -1 -0.3 4.7 -1
~---S~-~- -1 83 0 0 0 0 0 0 0
~---S~-~~ -1 56.2 0 0 0 0 0 0 0
~---S~~-- -1 0.1 -0.7 -0.7 -1 -1 -1 -0.7 -0.7
~---S~~-~ -1 0.3 -1 -1 -1 -1 -1 -1 -1
~---S~~~- -1 28 0 0 0 0 0 0 0
~---S~~~~ -1 323.1 0 0 0 0 0 0 0
~--~S---- -3 0.9 -2.4 -3 -3 -2.4 -2.4 -2.4 -2.4
~--~S---~ -1 -0.3 -1 -1 -1 -1 -1 -1 -1
~--~S--~- -1 55.9 0 0 0 0 0 0 0
~--~S--~~ -1 31.1 0 0 0 0 0 0 0
~--~S-~-- -7 -3.4 -6.9 -7 -7 -6.9 -7 -6.9 -6.9
~--~S-~-~ -2 8.2 -1.7 -2 -2 -1.7 -2 -1.7 -2
~--~S-~~- -1 1535.4 0 0 0 0 0 0 0
~--~S-~~~ -1 4779.5 0 0 0 0 0 0 0
~--~S~--- -1 3.3 -0.9 -1 -1 -1 -0.9 -0.9 -0.9
~--~S~--~ -3 -1.2 -2.1 -3 -3 -3 -2.1 -2.1 -3
~--~S~-~- -1 34.8 0 0 0 0 0 0 0
~--~S~-~~ -1 52.2 0 0 0 0 0 0 0
~--~S~~-- -5 -4.9 -4.9 -5 -5 -5 -5 -4.3 -4.9
~--~S~~-~ -1 4.9 -0.7 -1 -1 -1 -1 -0.7 -1
~--~S~~~- -1 455.4 0 0 0 0 0 0 0
~--~S~~~~ -1 2011.3 0 0 0 0 0 0 0
~-~-S---- -2 -0.7 -2 -1.5 -2 -1.5 -1.5 -1.5 -1.5
~-~-S---~ -1 4.7 -1 -0.6 -1 -0.6 -0.6 -0.6 -1
~-~-S--~- -1 71.6 0 0 0 0 0 0 0
~-~-S--~~ -1 37.3 0 0 0 0 0 0 0
~-~-S-~-- -3 -0.8 -3 -2.2 -3 -2.2 -3 -2.2 -2.2
~-~-S-~-~ -1 -1 -1 -1 -1 -1 -1 1.6 -1
~-~-S-~~- -1 33.1 0 0 0 0 0 0 0
~-~-S-~~~ -1 333.7 0 0 0 0 0 0 0
~-~-S~--- -1 -1 -1 -1 -1 -1 -1 3 -0.9
~-~-S~--~ -9 -8.9 -9 -8.9 -9 -9 -8.9 -7.5 -9
~-~-S~-~- -1 52.9 0 0 0 0 0 0 0

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

112 | P a g e

~-~-S~-~~ -1 635.1 0 0 0 0 0 0 0
~-~-S~~-- -1 3 -1 -0.5 -1 -1 -1 -0.5 -0.5
~-~-S~~-~ -1 -0.4 -1 -0.4 -1 -1 -1 7.9 -1
~-~-S~~~- -1 38.7 0 0 0 0 0 0 0
~-~-S~~~~ -1 2348.9 0 0 0 0 0 0 0
~-~~S---- -1 -1 -1 -1 -1 -1 -1 1.2 -0.9
~-~~S---~ -1 -0.8 -1 -1 -1 -0.8 -0.8 -0.1 -1
~-~~S--~- -1 47.5 0 0 0 0 0 0 0
~-~~S--~~ -1 53.9 0 0 0 0 0 0 0
~-~~S-~-- -6 -1 -6 -6 -6 -5.4 -6 -5.3 -5.4
~-~~S-~-~ -2 5.7 -2 -2 -2 -1.7 -2 -1.7 -2
~-~~S-~~- -1 399.8 0 0 0 0 0 0 0
~-~~S-~~~ -1 2028.4 0 0 0 0 0 0 0
~-~~S~--- -1 -0.2 -1 -1 -1 -1 -0.4 -0.4 -0.4
~-~~S~--~ -5 -5 -5 -5 -5 -5 -5 1.1 -5
~-~~S~-~- -1 57 0 0 0 0 0 0 0
~-~~S~-~~ -1 620.3 0 0 0 0 0 0 0
~-~~S~~-- -7 -0.8 -7 -7 -7 -7 -7 -6.3 -6.3
~-~~S~~-~ -1 -0.3 -1 -1 -1 -1 -1 20.9 -1
~-~~S~~~- -1 410.2 0 0 0 0 0 0 0
~-~~S~~~~ -1 5291.3 0 0 0 0 0 0 0
~~--S---- -1 -1 -0.1 -0.1 -1 -0.1 -0.1 284.4 0
~~--S---~ -1 -1 -0.1 -0.1 -1 -0.1 -0.1 89.9 0
~~--S--~- 0 0 0 0 0 0 0 0 0
~~--S--~~ 0 0 0 0 0 0 0 0 0
~~--S-~-- -1 -1 -0.1 -0.1 -1 -0.1 -1 32.3 0
~~--S-~-~ -1 -1 -0.1 -0.1 -1 -0.1 -1 37.6 0
~~--S-~~- 0 0 0 0 0 0 0 0 0
~~--S-~~~ 0 0 0 0 0 0 0 0 0
~~--S~--- -1 -1 -0.1 -0.1 -1 -1 -0.1 47.7 0
~~--S~--~ -1 -1 -0.1 -0.1 -1 -1 -0.1 26.7 0
~~--S~-~- 0 0 0 0 0 0 0 0 0
~~--S~-~~ 0 0 0 0 0 0 0 0 0
~~--S~~-- -1 -1 -0.1 -0.1 -1 -1 -1 59.5 0
~~--S~~-~ -1 -1 -0.1 -0.1 -1 -1 -1 57 0
~~--S~~~- 0 0 0 0 0 0 0 0 0
~~--S~~~~ 0 0 0 0 0 0 0 0 0
~~-~S---- -1 -1 -0.1 -1 -1 -0.1 -0.1 75.7 0
~~-~S---~ -1 -1 -0.1 -1 -1 -0.1 -0.1 56.3 0
~~-~S--~- 0 0 0 0 0 0 0 0 0
~~-~S--~~ 0 0 0 0 0 0 0 0 0
~~-~S-~-- -1 -1 -0.1 -1 -1 -0.1 -1 2426.3 0
~~-~S-~-~ -1 -1 -0.1 -1 -1 -0.1 -1 870.8 0

JAMES HEARSUM
3/30/17

COMPUTING PRACTICAL PROJECT (7517/C)

113 | P a g e

~~-~S-~~- 0 0 0 0 0 0 0 0 0
~~-~S-~~~ 0 0 0 0 0 0 0 0 0
~~-~S~--- -1 -1 -0.1 -1 -1 -1 -0.1 58.4 0
~~-~S~--~ -1 -1 -0.1 -1 -1 -1 -0.1 43.2 0
~~-~S~-~- 0 0 0 0 0 0 0 0 0
~~-~S~-~~ 0 0 0 0 0 0 0 0 0
~~-~S~~-- -1 -1 -0.1 -1 -1 -1 -1 750 0
~~-~S~~-~ -1 -1 -0.1 -1 -1 -1 -1 643 0
~~-~S~~~- 0 0 0 0 0 0 0 0 0
~~-~S~~~~ 0 0 0 0 0 0 0 0 0
~~~-S---- -1 -1 -1 -0.1 -1 -0.1 -0.1 2836.5 0 
~~~-S---~ -1 -1 -1 -0.1 -1 -0.1 -0.1 599.2 0 
~~~-S--~- 0 0 0 0 0 0 0 0 0 
~~~-S--~~ 0 0 0 0 0 0 0 0 0 
~~~-S-~-- -1 -1 -1 -0.1 -1 -0.1 -1 617 0 
~~~-S-~-~ -1 -1 -1 -0.1 -1 -0.1 -1 313.6 0 
~~~-S-~~- 0 0 0 0 0 0 0 0 0 
~~~-S-~~~ 0 0 0 0 0 0 0 0 0 
~~~-S~--- -1 -1 -1 -0.1 -1 -1 -0.1 579.9 0 
~~~-S~--~ -1 -1 -1 -0.1 -1 -1 -0.1 4989.9 0 
~~~-S~-~- 0 0 0 0 0 0 0 0 0 
~~~-S~-~~ 0 0 0 0 0 0 0 0 0 
~~~-S~~-- -1 -1 -1 -0.1 -1 -1 -1 337.7 0 
~~~-S~~-~ -1 -1 -1 -0.1 -1 -1 -1 2035.3 0 
~~~-S~~~- 0 0 0 0 0 0 0 0 0 
~~~-S~~~~ 0 0 0 0 0 0 0 0 0 
~~~~S---- -1 -1 -1 -1 -1 -0.1 -0.1 587.8 0 
~~~~S---~ -1 -1 -1 -1 -1 -0.1 -0.1 325.6 0 
~~~~S--~- 0 0 0 0 0 0 0 0 0 
~~~~S--~~ 0 0 0 0 0 0 0 0 0 
~~~~S-~-- -1 -1 -1 -1 -1 -0.1 -1 5248.3 0 
~~~~S-~-~ -1 -1 -1 -1 -1 -0.1 -1 2311.8 0 
~~~~S-~~- 0 0 0 0 0 0 0 0 0 
~~~~S-~~~ 0 0 0 0 0 0 0 0 0 
~~~~S~--- -1 -1 -1 -1 -1 -1 -0.1 325.6 0 
~~~~S~--~ -1 -1 -1 -1 -1 -1 -0.1 2065.7 0 
~~~~S~-~- 0 0 0 0 0 0 0 0 0 
~~~~S~-~~ 0 0 0 0 0 0 0 0 0 
~~~~S~~-- -1 -1 -1 -1 -1 -1 -1 2266.5 0 
~~~~S~~-~ -1 -1 -1 -1 -1 -1 -1 4636.5 0 
~~~~S~~~- 0 0 0 0 0 0 0 0 0 
~~~~S~~~~ 0 0 0 0 0 0 0 0 0 


