

2016

Computer Science A
Level Project.

THE TRANSPORTATION PROBLEM

JAMES PEDLEY

Analysis

Introduction:

Transporting goods from one place to another has been essential for most of human existence and

in our modern world it has never been more important. Whether it is getting groceries delivered to

your front door or sending a parcel to someone in another country, we rely on many services to

carry out what have become these routine tasks. However, each individual delivery costs money,

albeit not much, but on the scale of a large company the pennies add up and can potentially

influence decisions. Companies need to find ways of reducing the cost of carrying goods from one

place to another.

For individual drivers ferrying goods from one place to another can be very time consuming,

especially if a longer route than needed is traversed. Since Journey time affects the final cost of

delivery through petrol costs, man hours, and productivity. There is a need to reduce the travelling

time. Distance travelled is a major factor that dictates the end cost and hence needs reducing in

order to save money.

Problem Context.

The system will be used by teachers in both the maths and computer science department at More

House school in Farnham. The school teaches GCSE and A-level qualifications but the system created

for this project will primarily be used by the students and staff doing A-level.

Identification of the problem.

1. Further Mathematics is a subject that is not very popular at More House, with between 1

and 5 students taking it each year. Due to this low number the teacher does not have as

many teaching resources used in lessons. In particular the further maths decision maths

modules don’t have many resources and the textbook is heavily relied upon for questions

and examples. From my experience I found that the transportation algorithms (from D2) and

Dijkstra’s algorithm (from D1) were two of the more difficult topics taking extra time to

understand. It would have been more interesting and useful to see the application of such

algorithms in the real world, for example in a business context. I think that it would be more

fun if current students taking the further maths course could see how powerful the two

methods are first hand when being run on a computer, rather than being told by a textbook.

Furthermore, the students could work through the algorithms for the problems they come

up with themselves and see if they get the same method as the computer program. Since

the system generates a report as it performs the computation students will be able to see

clearly where they have gone wrong and be able to understand how to continue with the

method to obtain the correct answer. In addition, visually displaying the network that the

user has inputted emphasises how adjacency matrices are used to represent graphs. Finally,

the further maths students can learn how the transportation algorithm handle different

supply and demand values, because previous network structures that have been entered

into the system (and saved) can be loaded for different supply and demand values to be

entered. This will be interesting as students can quickly see how the different values effect

the overall result without having to perform the algorithms by hand which is very time

consuming. My further maths teacher, Miss Hudson will be the end user or client for this

project. Lastly Miss Hudson would like the system to be as business oriented as possible to

show one of the many applications of these algorithms.

Example Problem (shortest route between nodes)

The following is an example demonstrating the shortest route between nodes. If goods need to be

transported from warehouses A, B and C to demand points 1, 2 and 3, the shortest path between

each warehouse needs to be computed. The network drawn below shows possible routes between

each warehouse and demand point, where a warehouse and demand point is a labelled node.

Let’s say the cost per unit length on the network is £0.50. Finding the shortest path between each

supply and demand point will reduce the transportation costs.

By inspection we can come up with an adjacency matrix:

By multiplying each distance by the cost per unit length we obtain our values for transporting one

unit of our item from one node to another. Costs are shown in the following matrix: -

 1 2 3

A 6 5 4

B 4 7 6

C 7 8 7

 1 2 3

A £3.00 £2.50 £2.00

B £2.00 £3.50 £3.00

C £3.50 £4.00 £3.50

A

B

C

1

2

3

2

3

3 4

7
1

4

For simplicity, no additional costs such as surcharges for weight or size, were considered in this

example.

It is easy to see how the cost of transportation can quickly grow as distance travelled and the

complexity of the network increase.

An additional factor that needs addressing to reduce overall cost is balancing the number of items

that need transporting from each supply point, to each demand point, for example warehouses to

shops. This cost will be influenced by the price per unit y distance that delivery people have to travel

(This assumes all the items are of the same type). For example, three warehouses which house 1, 2

and 4 units of stock respectively and are 5, 3 and 2 miles away from a supply point respectively

which requires 5 units of stock to be delivered. It will be most cost effective to transport 4 units from

the third warehouse and 1 unit from the second.

It is important therefore to develop a system that reduces the overall cost of transporting goods

from one place to another by considering the network on which the supply and demand points sit.

A History of Shortest Path Problems:

Edsger Wybe Dijkstra (11th May 1930 - 6th August 2002) was a Dutch computer scientist known for

his essays on programming. However, he is best known for his famous algorithm for finding the

shortest path between two nodes on a network. This algorithm was created in 1970 and forms the

basis of many applications that routes calls through phone networks and emails over the internet,

not to mention its massive implication in global positioning systems (GPS).

Disjkstra’s algorithm is a greedy algorithm which means it is a child of an algorithmic paradigm that

looks for simple solutions to complex, multi-step problems by deciding on the locally optimal choice

to make, in the hope it will lead to a global optimum. Such algorithms are called greedy as the

algorithm does not consider the problem as a whole and focuses on providing an immediate output.

In short, once a decision has been made, it is never reconsidered.

An advantage of this paradigm is that the solutions of small sections of a problem can be easy to

understand and candid. On the flip side it is possible that the most optimal short-term strategy may

lead to a bad long term outcome. Although this might be the case it is important to consider the

worst case scenario. In business this risk is an important consideration and should be taken as an

upper bound so a company knows the maximum they might have to spend.

Dijkstra’s algorithm is subject to some limitation which means it cannot be performed on all types of

graphs. These constraints are as follows:

 The edges on the graphs must have nonnegative weights and each network must be

connected.

 The algorithm can work on both digraphs and undirected graphs.

One of the reasons why Dijkstra’s algorithm is so popular is because it is simple to understand. I have

written pseudocode for this algorithm to show this.

Vertices = the set of all vertices

s = null set #S is the set of vertices that have been visited

distance[s] = 0

Repeat for all i is an element of Vertices – [s] # where [s] is the source vertex

 distance[i] = infinity

Q = Vertices #Q is the queue of the vertices to be considered

While Q does not equal null set

 u = minimum distance from current node to next node

 S = the union of S and u

 Repeat for all i is an element of neighbouring[u]

 If distance[i] > distance[u] + w(u,v)

 Then:

 distance[v] = distance[u] + w(u,v)

Return distance

The above algorithm is the old variation that only outputs the shortest path, not the path itself.

A history wouldn’t be complete without a discussion of why this algorithm actually works. Intuitively

it creates optimal substructures meaning the subpath of any shortest path is itself the shortest. One

can argue with confidence that this works in reverse and hence so that an optimal path can be

composed from all of the optimal subpaths between the points in between two vertices. If not

convinced one can look at triangle inequalities. For example, if 𝛿(𝑢, 𝑣) is the shortest length

between u and v, where u and v are two vertices on a graph or network. Let x be the third vertex

that forms the triangle. 𝛿(𝑢, 𝑣) ≤ 𝛿(𝑢, 𝑥) + 𝛿(𝑣, 𝑥).

Alternate Algorithms:

The A* algorithm is a popular algorithm when it comes to pathfinding that unlike Dijkstra’s

algorithm, is not greedy. It does not always optimise the next choice but looks at the whole problem

and chooses a route accordingly. This can come in useful when you want to navigate round obstacles

to a goal. The comparison can be seen in the two images below taken from

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html:

A* algorithm

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

Dijkstra’s algorithm

The A* algorithm is obviously the better choice when there are obstacles in the network being used.

However, Dijkstra’s algorithm uses much less computation and on relatively simple network with

little or no obstacles to navigate around, the A* is almost redundant because it uses far more

resources and computation time.

Transportation Algorithm

This project heavily relies on the collection of algorithms introduced in my Further Maths decision

maths course to produce the optimal number of items to transport from the stock nodes to the

demand nodes. After undertaking research I could not find any code implementing such algorithms. I

have therefore designed how to implement them myself.

The general method as described in the D2 textbook is as follows:

1. First find and initial solution that uses all the stock and meets all the demands

2. Calculate the total cost of this solution and see if it can be reduced by transporting some

goods along a route not currently in the solution. (If this is not possible then the solution is

optimal.)

3. If the cost can be reduced by using a new route, as many units as possible are allocated to

this new route to create a new solution.

4. The new solution is check in the same way as the initial solution to see if it is optimal. If not,

any new routes found are included.

5. When no further savings are possible, an optimal solution has been found

Finding an initial solution is relatively simple. All one has to do is to create a table with one row and

column for every destination. This represents the number of items to be transported from a source

or supply node to a demand node. The supply and demand values of each node (given to the

program by the user) line the rows and columns (supply values line the rows and demand values, the

columns).

Once this has been done the north-west corner method is performed.

This method starts by considering the top leftmost cell and looks at the demand value (below) and

the supply value (right). The smallest of these values is entered into the cell and subtracted from

both – leaving one with a value of 0. Then consider the cell to the right if the current cell’s

corresponding supply value is not 0. If it is 0 now, consider the cell below. Continue this method until

a path is achieved from the top left of the table to the bottom right. This is the initial solution to the

problem.

Example:

Given 3 supply points with values (3, 5, and4) and 3 demand points with values (4,6, and 2) find the

initial solution of a transportation problem:

Create our table.

 Demand node 1 Demand node 2 Demand node 3 Supply values

Supply node 1 3

Supply node 2 5

Supply node 3 4

Demand values 4 6 2

Perform the north-west corner method

 Demand node 1 Demand node 2 Demand node 3 Supply values

Supply node 1 3 0

Supply node 2 5

Supply node 3 4

Demand values 2 6 2

 Demand node 1 Demand node 2 Demand node 3 Supply values

Supply node 1 3 0

Supply node 2 1 4

Supply node 3 4

Demand values 0 6 2

 Demand node 1 Demand node 2 Demand node 3 Supply values

Supply node 1 3 0

Supply node 2 1 4 0

Supply node 3 4

Demand values 0 2 2

 Demand node 1 Demand node 2 Demand node 3 Supply values

Supply node 1 3 0

Supply node 2 1 4 0

Supply node 3 2 2

Demand values 0 0 2

 Demand node 1 Demand node 2 Demand node 3 Supply values

Supply node 1 3 0

Supply node 2 1 4 0

Supply node 3 2 2 0

Demand values 0 0 0

The last table is the initial solution.

Problems:

Unbalanced Problem.

A transportation problem is unbalanced if the total supply > total demand. The other inequality,

when total supply < total demand is not considered for obvious reasons because the software should

not be used if the supply is saturated in the first place. This creates a problem because the north-

west corner method as it will not leave all the supply and demand values with a 0 value, as in the

example above, meaning there are still items to be transported which will cause problems in the

next couple of algorithms.

In order to avoid this problem a dummy column needs to be added. This dummy column will have

zero cost in the least cost matrix but have a demand value that equals the surplus stock value. Only

when this change has occurred should the north-west corner method be performed.

Degenerate Solution.

This arises if the number of cells used is less than n + m – 1 where n = column number and m = row

number. When a cell satisfies its corresponding demand and supply value. As they are both the same

size. The following algorithms require that n + m -1 cells are always in use. In order to get around

this, a zero needs to be placed in this cell and the next cell to be considered can be either right or

below the current one.

The next step is to see if the current solution is optimal. In order to do this, shadow costs, need to

be generated. This involves finding the shadow costs which will be used in generating improvement

indexes.

Shadow Costs

1. To do this all the cells in the current solution need to be replaced with their corresponding

value in the table of cost matrix.

2. Then set the cost linked to the first source node equal to zero.

3. Then move along the row to other non-empty cells and find any other destination costs in

the same way.

4. When all possible destination costs are in the current row, go to the start of the next row.

5. Move along this row to any other non-empty cells and using the destination costs found

earlier find the source cost of the row. Then find all other possible destination costs.

6. Repeat steps four and five until all shadow costs have been found.

Improvement Indexes.

To calculate the improvement index in sending an item or unit from source node P to demand node

Q is found IPQ = C(PQ) – S(P) – D(Q) where C(PQ) is the cost value. The improvement indexes are

produced for all cells that are currently not in the solution.

The solution is optimal if al improvement indexes are >= 0.

If the solution is not optimal the most negative improvement index and the cell that it was

generated for is considered the entering cell for the next algorithm.

The Stepping Stone Method.

Taking the current solution again, enter the value θ into the empty ‘entering’ cell found from the

improvement indexes. Create a cycle of changes using two basic rules.

1. In any row and column there can only be one increasing cell and decreasing cell

2. All adjustments (apart from the entering cell) must be made to non-empty cells.

Once the cycle of changes is determined, find the value of θ by finding the smallest number in the

decreasing adjustments. After this, adjust the solution to include θ and remove the value of the cell

from which you chose the value of θ from.

Possible Solutions:

It is possible to run all of the algorithms required to get a solution by hand but this will be very time

consuming and will require lots of resources, for example paper. To demonstrate this the algorithms

have been applied to a random network with random supply and demand values for the nodes by

hand (image below). The specifics of the image are not important at this stage; however, it is easy to

see that with more complex networks it would be inefficient to find a solution by hand, even if you

had many people working on the same problem.

Alternatively, a computer could be used to run all of the algorithms required to find an optimal

solution. This method can be done in a matter of seconds by a standard computer rather than the

lengthy time required by a human computer. This will not only demonstrate the importance of

computers using the algorithms talked about in my further maths course but will also demonstrate

significant time savings if used by a business.

Given the above choices, programming bespoke software or finding existing software that performs

the functionality seems the obvious approach in order to save time, money, and resources. In

addition, in the context of a classroom it is much easier to demonstrate how powerful the

transportation and Dijkstra’s algorithm is if it is run on a computer, if nothing other than to show

how quickly it obtains an answer. When students contrast this to the lengthy time it takes to run the

algorithms by hand they will truly understand the value of running algorithms on computers.

Description of Current System(s):

Existing school system:

There is no existing computerised teaching tool for the decision modules taught in Further Maths.

Existing Business systems:

‘ShortestPathFinder’, by safe software is a pathfinding program that works out the shortest path
between two nodes in a network, based on the length of the input or the cost (specified in an
attribute) of each of the edges. This piece of software is similar to the original idea except it only
works out the shortest path between a start node and a destination node. The concept proposed
aims to calculate the optimal number of items to transport from each individual supply node to a set

of demand nodes. Although there is already software that exists online to find the shortest route on
a network it does not perform the same task as this project.

https://www.safe.com/transformers/shortest-path-finder/

Caliper’s TransCAD software does a similar job to what I have targeted my project to do. It aims to
do the following:

“

 A powerful GIS engine with special extensions for transportation
 Mapping, visualization, and analysis tools designed for transportation applications
 Application modules for routing, travel demand forecasting, public transit, logistics, site

location, and territory management

 ”

Quoted from their website: http://www.caliper.com/tcovu.htm

 However, TransCAD is filled with lots of additional features which might overwhelm the user if they
only want to perform the simple talk of minimising the cost of transporting a number of items from
one warehouse to another. By creating a single purpose system, a user can quickly and efficiently
carry out the computations needed to find an answer on their network. The system that needs to be
designed should be lightweight, because it should not take up much memory space and can easily be
transferred from one computer to another. Furthermore, it is not designed for classroom use which
is the main aim for my project.

Identification of the End User

The end user could be any business or organisation that needs to know how many items of stock to

transport from a series of warehouses (supply points) to a set of shops (demand points)with the

specific requirement to find the number of items that need to be transported from a single

warehouse to each shop to minimise the overall cost. They should be interested in obtaining the

optimal solution of the program to minimise cost.

The project will also be used by the maths and computer science departments at my school to

demonstrate the powerful algorithms in their classes and to provide a template on how to layout A-

level computer science projects in the future. I will be working with the mathematics department in

particular to obtain feedback on the development of the overall system and on individual

prototypes.

Interview with End User.

What functionality would you like to see in the system in addition to the results of the
algorithms?

Ideally the system should be able to generate a visual representation. So a graph depicting the
routes and networks obtained would be helpful as it would make the results much easier to
interpret.

Do you think it will be useful for the results of each algorithm to be documented in a report?

Yes, as you’re producing this as a teaching resource it would be helpful if that sort of data can be
made available so that students can see the different results that are feeding into the final
outcome.

https://www.safe.com/transformers/shortest-path-finder/
http://www.caliper.com/tcovu.htm

Would it be beneficial to save the results of a computation to view at a later date?

Yes, for the same reason.

Do you think it would be useful to load previous network structures to make changes to?

Yes, either that or have some template networks available. Anything to make data entry faster is
always helpful and as this is being used to demonstrate how decision maths may be used in the
real world it’s helpful to be able to easily input fairly similar networks so that students can look
at how and why small changes to the input network alter the end result.

Identification of user needs.

1. The system should find the shortest paths between each individual supply node and each

demand node in the network using a matrix inputted by the user.

2. The system should find the optimal number of items to transport from every supply node to

every demand node to reduce the minimum cost. This should be done using the supply and

demand values and distance weighting inputted by the user, and the results obtained from

the above calculation.

3. The network inputted by the user should be displayed along with a report displaying the

mathematical method the computer went through to generate the optimal solution along

with said solution.

a. Report should be displayed in a text box so that the user can copy it into another

document if they are writing project documentation. Or equally likely a teacher or

student wants to make notes from the method.

b. Two graphs should be displayed. One based around a circle and another in a form

similar to a bipartite graph (except nodes within a set can be joined together).

4. User should be able to save the report and the corresponding images of their network to a

database.

5. Saved reports and the corresponding network graphs should be able to be loaded and

displayed from a menu.

6. Users should be able to load a particular network structure that has already been inputted

and saved into the system. This will make it quicker for users to make edits to current

problems (say, if the scenario changed a bit such as the number of items requested by a

particular demand node).

7. Users should be able to interact with the system without there being any discontinuities or

errors.

Acceptable Limitations

The only limiting factor that will initially be worked with is the maximum size of the networks being

entered. This is only due to the amount of computation time it will take and not because of the

algorithms cannot handle the input. In the case that a large network was to be inputted into the

system the user would be asked to simplify the network. Such a limit will be decided upon in the

design stage or during the actual implementation of the system.

This limitation has been agreed with the end user.

Observations on research

A number of observations were made when undertaking this project.

School perspective:

My research has shown that no similar system to this project is being used in schools. If there is such

a system, non is used within my school. Therefore, in order to enhance the teaching for the further

maths decision modules there is a prompt for a new system to be developed.

Business perspective:

Despite the idea being created before there appears to be no similar software that is purpose built

for this type of problem. None of the researched applications are ‘lightweight’ and the fully

functional pieces of software have a high cost. The proposed system to be developed should be

cheap to produce, purpose built and designed for a single purpose.

Identifying Requirements:

Based on observations from existing systems the software that will be developed should be

graphical. This will allow users to understand the process that they’re going through and make the

system more intuitive to use.

Data flow diagram for proposed system.

Student/Teacher

Perform Dijkstra’s

algorithm

Perform transportation

algorithms

Generate report

Construct images of

network

Display report and network

images

Load report and image of

existing network.

New network

Load existing network to

make changes to and allow

user to make changes.

Supply and

demand values

Request for

eExisting

network

Existing network

Shortest paths

Optimal solution

Report

Network

structure

Report, network

images

Network images

Report, network

imagesNetwork

structure store Report, network

imagesReport

store

Report, network

imagesReport

store

Report, network

imagesReport

store

List of Requirements.

1. Based on 1. And 2. From identification of user needs:

a. The user should be able to input their desired network into the program as an

adjacency matrix and all details about the nodes on the network through a series of

graphical forms.

i. Adjacency / distance matrix should be scrollable to allow user to input all

parts of the network.

ii. Title of the network should be displayed above the matrix (note: title of

network should not scroll with the matrix).

iii. This process should be simple as to the user does not need to know they are

inputting data into an adjacency matrix.

b. System should compute the shortest path from each supply node to every demand

node.

c. System should use the transportation algorithms to find the optimal number of

items to transport from each supply node to demand node.

i. System should perform the four steps of the transportation algorithm:

1. North-West corner method to obtain initial solution

2. Generate shadow costs

3. Obtain improvement indices

4. Perform the stepping stone method to obtain an improved solution.

ii. Algorithm should stop if an optimal solution cannot be found.

2. Based on 3 from identification of user needs:

a. System should generate a report that explains the computations that have been

carried out.

i. Report should contain the conclusions obtained from the computation

performed by the system.

b. System should graphically display the network the user has inputted alongside the

report generated in two forms:

i. Bipartite graph form

1. Bipartite graph should be scrollable when there are a large number

of nodes.

ii. Circular graph form

1. Circular graph should not display if the number of nodes in the

network is greater than or equal to twenty as it will get too

crowded.

3. Based on 4 and 5 from identification of user needs:

a. Allow user to save a report and network structure graphs.

b. Users should be able to load saved reports along with their network images.

4. Based on 6 from identification of user needs:

a. Allow users to load an existing network structure that has been saved and use it for

a new problem

i. Changes can be made to the supply and demand values of nodes in an

existing network.

ii. Changes can be made to the distances between nodes in an existing

network.

5. Based on 7 from identification of user needs:

a. System works together as a whole.

i. Individual modules and parts of the system work coherently with no errors

or discontinuities.

ii. End user will try the system and give feedback.

iii. Outside user with no experience of the system should trial the piece of

software to see if it is intuitive and easy to use. They will then present

feedback in some form.

b. Provide a graphical interface that is intuitive to use and flows smoothly between

windows. It should be possible to access every part of the system through the GUI

without having to restart the program.

i. All buttons should perform the action that it is intended to do and labelled

appropriately (Eg. No buttons that are passive and don’t do anything.)

ii. Drop down menus should contain clickable items

iii. Treeview structures (filing system) should be clickable and interactive using

buttons.

iv. Allow users to use scrollbars.

c. System should not terminate, or in other words not crash.

i. All points of system contact with user should be validated so that the

algorithms that perform computation on the user data will not falter.

ii. All algorithms should not cause errors in the system.

Chosen Solution:

Dijkstra’s algorithm and the transportation algorithms could easily be implemented as a console
program as they don’t specifically require a graphical user interface (GUI). However, objective 5b
which was agreed with the end user would not be achieved if this method was carried out. A GUI
would be required in order to meet this objective. There are countless of languages with appropriate
libraries that could be used to create a well-designed GUI. The two languages I am the most familiar
with are Python and Visual Basic. Visual Basic would definitely be my first choice when it comes to
make a graphical system due to the simple drag and drop IDE of visual studio. Unfortunately the
maths department uses both Windows and Mac operating systems so this quickly nullifies the latter
option as it is not as portable as the former.

Python has a few graphical libraries such as EasyGUI, PyQt, and WxPython but I have chosen to
pursue further development of the project using the tkinter library. This decision was made based on
the fact that every instillation of python comes with the tkinter library built in. This will make the
system very portable. Furthermore, Python tkinter tutorials are abundant on the internet so any
problems were encountered then there was likely be a tutorial that will help with fixing the problem
I came across.

The only disadvantage of creating a GUI in python is that you would have to manually create all of
the GUI as there is no development tools as such to help like there is with Visual Basic or Java.
Although Java is an attractive option because it is more portable than python and has integrated
IDEs for developing GUIs the time that would be consumed learning how to program in the language
would be too much and it would leave little time for actual development. Taking this into
consideration with the time it would take to program the GUI manually it is almost intuitive that the
system should be used to tackle the problem.

Python, whilst mainly being a procedural language supports the use of objects. I think the problem I
am trying to solve is well suited to and object oriented style of programming. This is because each
window of the GUI can be created using an array of classes and objects and from my intensive

research whilst I was getting used to programming with tkinter I found OOP is the standard for
implementing GUIs using this library. In addition, abstract data types as easy to implement using this
approach as well as It making the code organised and easy to read. Lastly OOP allows for faster
development which will allow my end user to receive a finished product quicker as objects can be
reused throughout the program.

To summarise: Python will be used to develop the system as it supports OOP programming which
will be the programming paradigm used as it leads for solutions to be produced faster. Python as a
language is very portable unlike the alternative programming language I know, Visual Basic.

Table of analysis performed:

Date Action performed Notes

October Initial discussion with Miss
Hudson

Talked about ideas for a
solution and outlined how the
computer science project
worked.

October Meeting with Miss Hudson Showed her the specification
and outlined requirements for
the system

November Talk with Miss Hudson Continued speaking about
requirements and finalised
them.

November Progress update with Miss
Hudson

Presented my research and
gave a progress update.

Documented Design

What will the program actually do?

The chief aim of this project is to create a piece of software that, given inputs of a network and a list

specifying supply and demand nodes, is able to calculate the optimal number of items or stock to

transfer from each supply point to each demand point.

This software will utilise a database which will store networks previously inputted into the system

and display graphically each one so that the user can select the structure of the network before

inputting details on top. This will allow the user to avoid the task of inputting the network into the

system as an adjacency matrix. However, if the network does not exist inside the program, the user

will be able to input the network manually.

The system will be fully integrated with a graphical user interface, making use of the in-built tkinter

module in python. Dijkstra’s algorithm will be used to find the shortest path between each node on

the network. Each shortest distance will be entered into a table of least distance. Each value in this

table will be multiplied by a constant (set by the user) representing price per unit distance. Using a

set of transportation algorithms that are described below the program will calculate the optimal

number of items to be transported from the supply points (warehouses etc.) to demand points

(shops etc.) to reduce the overall cost.

Modular Decomposition of the Project.

To make the project easier to manage and control I have broken it down into different modules.

Each module is listed below:

 Planning/design

 Algorithms

 Graphical user interface

 Testing

Planning/Design:

In this stage of development every aspect of the project will be considered and discussed as to what

is the best way to implement a certain feature or if it is really necessary.

Table Showing Main Development steps

Step number Description

1 Create initial designs for the system’s graphical user interface.

2 Design plans for all the screens the user will interact with.

3 Create a prototype to test out network drawing in the python tkinter module.

4 Crate a prototype to generate an adjacency matrix.

6 Create a data flow diagram to show how data will flow through the system.

7 Write pseudocode for the final project

8 Write program code

9 List differences from original plan (if any exist)

10 Defend code that you have written.

11 Test program against original requirements

Modules should be

completed in this

order

12 Conclusion and evaluation.

Graphical User Interface (GUI) – What is the need?

The alternative to a graphical user interface is a text based interface. This type of interface will

negatively impact the user experience of the system and make it more difficult and time consuming

to input a network (which evidently could lead to a loss in money for companies and organisations)

to input a network. This problem is exaggerated for larger networks. On the other hand, a well-

designed GUI that is intuitive to use should reduce the time it takes for new people to learn how to

use it. Network input should be far more straightforward than possibly learning text commands for a

text based UI.

A feature of the program being developed is that the user should be able to see what their network

looks like graphically which simply wouldn’t be possible if the system was text based. Furthermore,

the speed at which a graphical application can be operated is much faster than a text based

application due to user interaction with devices such as the mouse. Ergo, producing a graphical

application only seems a natural way to develop the system.

Graphical UserIinterface – A Walk Through the Program:

The main menu is one of the most important parts of a graphical user interface. I think it is

imperative for it to be simple and intuitive to use and not too crowded. However, it mustn’t be so

simple that the user doesn’t know what to do. From my research (evident in the analysis section) I

have found that some of the most successful and intuitive main menus have an image corresponding

to the functionality of the program. From the main menu designed the user has a choice of four

buttons (one not included in the diagram below). These are the new network buttons, open network

button, about button and the quit button.

 The new network button will open a separate window (Diagram 1.2) asking if the user wants to

create their network based on a previously inputted network’s structure or manually create a new

network from scratch. Obviously if the network structure does not exist in the database they are

forced to manually create a new network. An addition button that should be added to this window

that was thought of after the initial design was created was a ‘main menu button’ necessary in case

the user has pressed the ‘new network’ button by accident.

Diagram 1.1

Diagram 1.2

The open network button in the main menu window will cause another window to open where the

user can select from results that have been calculated in the past. Once one is selected and

confirmed by clicking the ‘finished’ button the corresponding report will appear in a new window.

This is a useful feature and will save computation time as the report has already been generated and

is stored in a database.

If the user selects the ‘Yes’ button then the following window will appear, closing the new network

selection window. It is important that windows close when new ones open in order to give an

‘uncluttered’ feel to the application. For ease of use you wouldn’t want to manually close all the

open windows by yourself when you no longer feel the need for them.

 Diagram 1.3

This menu shows content taken directly from the attached database. The content is all of the

information about previously entered networks along with an image of the structure of the network.

This information will include the number of nodes in the network and the vacancy of each node (the

number of arcs leaving/joining the node) in the network. This window will include a scroll bar to

avoid the problem of trying to include all of the database information on one page. The ‘previous’

button will be used to return to the new network window. Each ‘frame’ in the window will have a

property which will allow it to be selected. Once and user has clicked on the ‘next’ button(labelled as

‘select network structure’ in the diagram 1.3) and a frame is selected, the window will close and a

network detail form will appear.

Some fields will be greyed out if the user has selected to choose an existing network structure

because they would have been filled in already. Fields such as ‘title’ and ‘number of supply nodes’

will still need to be filled. If the user has chosen to set up the network manually they will need to

enter data into all of the fields. Once ‘next’ has been selected and all relevant forms have been filled

in the second detail collection form will open (the current window closes).

Diagram 1.4

This window contains an adjacency matrix where the user fills in the distances between each node.

These will be implemented in Dijkstra’s algorithm. The matrix is autogenerated by the program using

the data collected in the previous forms. The data collection will be complete when the user clicks

‘Finished’. Intuatively, the ‘Previous’ button will take you back to the last form opened.

This is the final GUI window in the system and will contain the report and the results of all

caculations including the images of the network. It has been decided that two images of the network

will be displayed, one of the network drawn round a circle and one of a bipartite graph. Although not

displayed in the diagram a print button will be added.

Diagram 1.5

General Explanation

The program will be designed and developed using the Python programming language as it supports

object oriented programming. This will allow the code to be organised into classes and objects can

be created as instances of the classes – similar to a real world situation. Python is mainly a string

based language so all the in-built string handling functions will be readily available to utilise in

addition to the useful SQLite and tkinter modules that come with the language. The system will be

graphical and will be heavily based around the tkinter module. Furthermore, reports and networks

created by the user will be stored to edit and view at a later date. This will require a database to

store this data. Luckily – (and another reason why I chose to use python) is the fact that a module

called SQLite is built into the language.

System

Index

Select Report Select network structure

Network detail collection

Transportation

algorithms

Distance

collection

Get selected

report

Class diagrams are in other document (Object document.).

File Organisation, Record Structure and Processing.

The system will use a single database file whose structure and layout can be *paste database section

here.

Identification of validation required

Form Data Item Check type Check Details

Network detail
collection

Network title Length Must be less than 25
characters long

Network detail
collection

Total number of nodes Format Must be a decimal
number in order to be
handled by later code.

Network detail
collection

Total number of nodes Range Total number of nodes
must be less than 60
for the algorithm to
run efficiently (and for
the user to efficiently
input the data).

Network detail
collection

Number of supply
points

Format A number needs to be
entered by a user here.
Any other data type
will cause an error with
the algorithms it is
used by.

Network detail
collection

Number of supply
points

Range This number needs to
be greater than zero
and less than the total
number of nodes

Network detail
collection

Company name Length Must be less than 25
characters long

Network detail
collection

Creator first name Length Must be less than 25
characters long

Network detail
collection

Creator second name Length Must be less than 25
characters long

Distance collection All matrix fields (or
cells)

Format Number must be an
integer to be used by
dijkstra’s algorithm

Distance collection All matrix fields (or
cells)

Range Number must be less
than 999 as this is the
‘large’ number used by
the algorithm to
represent infinity. In
addition the number
must be greater than
or equal to zeror – a
zero represents no
connection between
two nodes.

Weight collection All Stock (supply) fields Format All stock must be an
integer number since

you can’t have 0.5 of
an item being
transportinged. In
addition, the value
cannot be a string.

Weight collection All Stock (supply) fields Range Realistically there
should be no cap on
the number entered
but the size is limited
to 9999.

Weight collection All Demand fields Format All demand values
must be an integer
number since you can’t
have 0.5 of an item
being transported. In
addition, the value
cannot be a string.

Weight collection All Demand fields Range Sum of all demand
values

Weight collection Cost of travel per unit
distance

Format Must be a float
(decimal)

Weight collection Cost of travel per unit
distance.

Range Must be greater than
zero.

Identification of Suitable Algorithms.

Dijkstra’s algorithm

Dijkstra’s algorithm is a greedy algorithm used to find the shortest path on a graph. It follows 5 main

steps. Each node in the network is assigned a working value that changes throughout the algorithm.

The working value is the cost of travelling from the source node (start node) to the current node.

1. Start by considering the source node which should be given a final value of 0.

2. For each node connected to the current arc being considered (eg. The source node if first

iteration of algorithm) calculate the new working value for the connected node from:

a. Working value = final value of current node (which is 0 for the source node) + weight

of connecting arc.

b. Replace the previous working value of the connected node if the newly calculated

value is less.

c. Else, discard this new working value.

3. Look at the working values at all nodes that have not been finalised into final labels. Choose

the smallest working value and finalise it into a final label. Consider this new arc in the next

iteration of the algorithm.

4. Repeat steps two and three until the working value of the destination vertex is given a

finalised label.

5. The shortest path to get from A to B is found by tracing back from the destination node to

the source node. Given that B already lies on the route, include arc AB whenever final label

of B-final label of A = weight of arc AB where A and B are arcs on the network.

I have decided to not to use point five as part of my algorithm because the shortest path will be

not be needed in the final display of the results.

Below is the object oriented pseudocode I plan to base my technical solution algorithm off.

FUNCTION dijkstra(self, start node, graph):

 track = False

 route = []

 current_node = start_node

 WHILE algorithm not complete

 FOR number of nodes connected to current arc being

considered

 IF final label of current arc + weight of arc to

connecting node < working value of connecting arc than is not

finalised THEN

Connected arc’s working value final label

of current arc + weight of arc to connecting

node

Connected arc’s current route Current arc’s

route + connecting arc

 END IF

 Compare weight = 999

 FOR all nodes in network

 IF all nodes weighting < compare weight AND all

nodes is NOT finalised:

 compare_weight = all nodes weighting

//weighting obtains the working value for node.

 END IF

 IF compare_weight is 999 THEN

 ESCAPE WHILE LOOP

 ELSE

 Current node node object which is found using the

Graph object

 if Current node != Start node:

 Finalise current node

 END IF

 Store results in start node object.

Transportation Algorithms

Initial Solution

This algorithm generates an initial solution to the transportation problem. It is important because

the rest of the methods used by the system to solve this problem are built on what is generated. The

computer first needs to consider if the total supply is greater than the total demand. If this is the

case the problem is said to be unbalanced and a column containing dummy values is added to the

matrix.

IF total_supply > total_demand THEN

 Add_dummy_column() // abstract function/method that adds a dummy

column

END IF

The dummy column in the cost matrix contains the value 0 in its cells and the demand value for this

column is equal to the difference between the total demand and the total supply values. This change

allows the algorithm to run as it can only work with a balance problem.

Once this check has been made the program should considered the cell in the top left hand corner of

the cost matrix (cost matrix will be generated using the values obtained about the network and

Dijkstra’s algorithm. In addition its main purpose was described in the analysis). The supply value

and demand value for the row and the column that contains the cell are looked at. The smaller value

of these two is then subtracted from the larger and the number obtained from this calculation is

placed in the cell. If the demand value is greater than the supply value then the next cell to be

considered is right from the current one. Otherwise, the cell directly below the current one should

be considered next. This comparison process repeats until the bottom right hand corner is reached.

WHILE the comparison process has not been made for the cell in the

bottom right hand corner

 IF current supply node > current demand node THEN

 Current cell value current supply value – current

demand value

 Consider cell below next.

 ELSE

 Current cell value current demand value - current

supply value

 END IF

A check should be made each time a cell is being considered to see if the supply value and the

demand value for the cell equal each other. If this happens the solution is said to be degenerate and

a cell from the one to the right and directly below the current cell should be chosen from randomly.

The following code should be added to the above pseudocode selection statement.

ELSE IF supply value == demand value AND current cell IS NOT bottom

most right THEN

 Current cell value 0

 Try

 Consider cell below next

 // error handling statement as the cell below might not

exist due to the size of the matrix

 CATCH

 Consider cell right next

ELSE IF current cell is bottom most right THEN

 Current cell value 0

The new matrix obtained from this algorithm is called the initial solution. This solution is used to

generate shadow costs which will be explained in more detail in the next section

Shadow Costs:

The next step in the transportation algorithm is to generate shadow costs. This is done by taking the

values in the cost matrix whose cells are also filled by values in the initial solution. The following is

an example of the calculation of shadow costs using a three by three cost matrix and shows the

corresponding initial solution

Cost matrix:

 Demand node 1 Demand node 2

Supply node 1 5 3

Supply node 2 2 5

Initial solution:

 Demand node 1 Demand node 2

Supply node 1 3 2

Supply node 2 3

The values in the cost matrix are placed into the initial solution matrix where there are values.

 Demand node 1 Demand node 2

Supply node 1 5 3

Supply node 2 *Cell not used* 5

Each supply and demand node has its own shadow cost. The system carries out the following steps

to generate the shadow costs.

1. Set the shadow cost for supply node 1 to zero.

2. Move to the right along the cells until reaching one containing a value (i.e. that is not

empty).

a. Subtract the showdown cost of the supply node of the row or the demand node of

the column, whichever one contains a value from the cost in the cell.

b. Enter the result of this calculation as the value for the shadow cost for the row or

the demand node of the column, whichever one is empty.

c. If both the shadow costs already have values keep moving along the row.

3. If you have reached the end of the row move down and repeat process 2.

4. Algorithm terminates when the shadow costs for each node has been filled in.

Obviously some sort of indefinite iteration should be used here as we want the algorithm to repeat

until a certain condition is met. In this case the algorithm should repeat until all shadow costs all

filled in. In most cases it is important to consider what will happen if the shadow costs are not filled

in because the program might continue in an infinite loop. However, this process will always

terminate if it is run on a balanced solution. As precautions have been made when generating the

initial solution this algorithm will always terminate.

The standard way of performing indefinite iteration is python is to use a while loop. Hence, this the

approach that will be taken in the technical solution.

Improvement Indices

Improvement indexes are generated to check whether the current solution obtained is optimal, i.e.

the number of items to transport from each supply node to each demand node reduces the overall

cost of transport to a minimum value. The algorithm to generate these is run every time a new

solution is obtained by the algorithm. There are two actions that can be performed based on the

results of the improvement indexes:

1. If at least one improvement index is a negative value then the new solution obtained is not

optimal and can be improved upon. This is done by using the stepping stone algorithm which

I will detail in the next section. The stepping stone algorithm requires an entering cell to be

chosen (the meaning of this term will be explained later). The chosen cell will be the cell

whose improvement index is the most negative.

2. If all improvement indices are positive numbers then the current solution is optimal and the

whole transportation algorithm can terminate.

Improvement indices are generated for all cells that are not currently in the optimal solution. Using

the cost of each cell not in the solution and the shadow costs for the supply node of the row and the

demand node of the column, the improvement index can be calculated.

Cell improvement index Cost of cell in cost matrix – (shadow cost

of supply node + shadow cost of demand node)

This is done for all cells not in the optimal solution and the following pseudocode shows how I am

planning to implement this in the technical solution.

FOR number of cells not in new solution

Cell improvement index of cell being considered Cost of cell

in cost matrix – (shadow cost of supply node + shadow cost of

demand node)

END FOR

Definite iteration is used in this case because the nested code only needs to be run a finite number

of times which can be determined before the loop begins. The number of times as explained above

is the number of cells that are not in the current solution.

The nested calculation generates an improvement index for each cell in the loop.

Stepping Stone Method

This method is a heuristic process which is relatively simple for a human to perform but it more

complicated for a computer to perform because humans wouldn’t use a set algorithm for using it.

Wikipedia states the definition of a heuristic algorithm as, “In computer science, artificial

intelligence, and mathematical optimization, a heuristic is a technique designed for solving a

problem more quickly when classic methods are too slow or for finding an approximate solution

when classic methods fail to find any exact solution”.

This method (example shown in analysis) enters a value theta into the ‘entering cell’ found by taking

the cell with the most negative improvement index if the solution can be improved at all. Then, in

order to keep the problem balanced theta must be subtracted and added in a sort of ring shape in

the solution matrix to make sure that the total supply equals the total demand because theta is

normally non-zero, if theta is equal to zero then the exiting cell is also zero. To find the value for

theta, once theta has been added and subtracted to the surrounding cells, the smallest value in the

matrix which theta is being subtracted from is taken to be its value. The cell which has its value

taken becomes the exiting cell. If more than one cell has the same value (and theta is being

subtracted from it) as theta then the exiting cell is chosen randomly from these values. The

remaining cell is given the value of zero and is not removed.

This can be summarised into a few steps:

1. Choose entering cell from most negative improvement index

2. Enter theta into this cell in current solution

3. ‘Step’ round the solution adding and subtracting theta.

a. There must only be two values of theta in every row and column.

b. Add theta to cell if it is in the same column or row as a cell where theta is being

subtracted from a value and complies with a.

c. Subtract theta from a cell if it is in the same column or row as a cell where theta is

being entered or added to the value and complies with a.

4. Find the value of theta by seeing which is the smallest value that theta is being subtracted

from. Theta now has this value.

a. Existing cell is also this cell

b. If two or more cells have the same value of theta and theta is being subtracted from

them a random cell is chosen to be subtracted from.

I have identified that a recursive algorithm is the best type to use for the main part of the stepping

stone algorithm – adding and subtracting values of theta in a ring to keep the problem balanced.

This is because multiple attempts can be tried for adding and subtracting theta and only when they

satisfy the conditions 3, a, b, and c is theta added to the solution. However, there is one main

disadvantage to this approach. With the increase in size of the matrix used the number of possible

solutions that will be explored increases at an alarming rate. For this reason there is a cap on the size

of the network that the user can input into the system.

The pseudocode roughly shows the structure that will be used in the technical solution for placing

theta within the current solution:

FUNCTION stepping_stone(path):

 IF not complete THEN //runs nested code if algorithm is not

finished

 # Checking if row or column contains another theta.

 Possible rows []

 Possible columns []

 t_count_row 0

 t_count_column 0

 Add possible cells in current row that could contain

theta to Possible rows

 IF number of theta occurrences in row THEN

 # Clearing possible_rows so that the algorithm

doesn't add any θs to it.

 Possible_rows []

 END IF

 Add possible cells in current column that could contain

theta to Possible columns

 IF number of theta occurrences in column > 1:

 // Clearing possible_columns so that the algorithm

doesn't add any θs to it.

 possible_columns = []

 END IF

 if number of theta occurrences in current row == 1 and

number of theta occurrences in current column == 1:

 // Checks if stepping stone method is complete.

 IF obeys conditions in 3.a,b,c.

 // Returns True so that no more is added to the

matrix.

 complete_step True

 complete_path path //complete new solution

 return True

 ELSE

 // Returns False so that more can be added to

the matrix.

 return False

 END IF

 ELSE IF there is no new possible cells for theta

 return False

 ELSE

 // Recursion attempts to add addition values of θ to

rows and columns to try and get a cycle of θ.

 IF number of cells that could contain a theta in

current row is not zero THEN

 FOR number of rows in current solution THEN

 save instance of cell that is going to be

modified //so that if the algorithm reaches a dead end with it,

original value can be retrieved.

 New cell being considered += New cell being

considered add or subtract theta according to rules described in 3.

 IF stepping_stone(path, position of current

cell in solution) returns FALSE THEN

 Restore original value of cell stored in

save.

 ELSE

 ESCAPE LOOP

 END IF

 END FOR

 END IF

 IF number of cells that could contain a theta in

current column is not zero THEN

 FOR number of columns in current solution THEN

 save instance of cell that is going to be

modified //so that if the algorithm reaches a dead end with it,

original value can be retrieved.

 New cell being considered += New cell being

considered add or subtract theta according to rules described in 3.

 IF stepping_stone(path, position of current

cell in solution) returns FALSE THEN

 Restore original value of cell stored in

save.

 ELSE

 ESCAPE LOOP

 END IF

 END FOR

 END IF

 ELSE:

 //If algorithm not complete return False.

 return FALSE

 END IF

END FUNCTION

 Function (will be a method in the technical solution) has a parameter called ‘path’ which is

the current solution that will be utilised and changed each layer of the recursion stack.

 In each layer of the recursion the following method is applied

o Possible cells where theta could be added are identified in both the row and the

column of the position in the solution that is currently being considered.

o If there are already two cells in the current row that have a value of theta these

possible cells are removed as there can only be two values of theta per row.

o If there are already two cells in the current column that have a value of theta these

possible cells are removed because there can only be two values of theta per

column.

o If there are no cells that theta can be added to in both the row or column of the

current cell, the solution is to check to see if it matches the correct criterial for a

balanced problem (seeing if the values of theta form a ‘ring’)

 If this is true than the layer of recursion returns a TRUE Boolean

 Else it returns a False Boolean.

 When a TRUE Boolean value is returned to an instance of the recursive function it then, in

turn returns a TRUE Boolean value. This signals that this part of the algorithm is complete.

Transportation Algorithms.

The above sections describe what happens in each part of the whole algorithm and explains how I

plan to tackle each part in the technical solution. Once the initial solution has been found, shadow

costs will be generated for it. Using these shadow costs the algorithm will calculate improvement

indices. If there are some negative improvement indices, the solution is not optimal and can be

improved. Using the stepping stone method a new improved solution is found. The process of

calculating shadow costs and improvement indexes are repeated again. If the new solution is not

optimal then the stepping stone method is performed again. This process is repeated until an

optimal solution is found.

FINAL EDIT

It was discovered that during the development of the technical solution there were some problems

that didn’t have an optimal solution. For these types of problems I decided that the initial solution

would be returned to the user. I decided that the cut-off point to decide whether a solution had an

optimal solution or not was after 10 iterations of the transportation algorithm. This is because all of

the solution I had previously tested they produced an optimal solution before 5 iterations. Allowing

for 10 to pass is a safety net just in case a problem that I haven’t tested takes a long time to produce

an optimal solution.

User Interface Design Rationale (Human Computer Interface)

The system will be graphical as already discussed above. This GUI will need to be consistent to avoid

confusion. This means there all windows will have the same colour scheme (grey background with

blue window boarders). All text will be black so that it stands out.

All windows must follow the same design. As shown in the walkthrough of the program (below),

each window will have a toolbar having a file option which will reveal a dropdown menu when it is

clicked on. From this menu users will be able to access different functionalities of the program such

as creating a new project or quit (i.e. return to main menu). The buttons contained in each window

will be displayed at the bottom in all but the main menu which will have the button options listed at

the left side. Lastly, any matrix or form that is too big to fit into the fixed size of the window (when

the network the user is entering is particularly large) will be scrollable. This will avoid the problem of

users having to resize the window if a matrix or form is too large to be contained onscreen.

The distance collection window will contain a n by n matrix where n is an integer specified indirectly

by the user in the network detail collection form. As specified above this matrix will be scrollable if it

is too large to fit inside the window. Adjacency matrices (often referred to as distance matrix in

mathematical graph theory) are symmetrical about the diagonal spanning from the top left hand

corner to the bottom right hand corner. In order to save users entering the same information twice

(and possibly risking making a mistake which will cause a runtime error in a future algorithm) the

opposite side of the matrix will update to contain the same value as the one just entered by the user

in real time. This will cut the time the user spends entering distances into the matrix by half.

Libraries and Modules Used.

Modules and packages in Python are similar to Libraries in languages such as Java and C. Throughout

this project I will use the Python’s tkinter module and SQLite. Tkinter is a graphical user interface

package which will provide the main backbone for the project because I will use it to structure each

individual module of my own code.

SQLite is a database package which is lightweight and already preinstalled with the most recent

installation of Python (version 3.6 at the time of writing). This package enables me to utilise all the

main features of MySQL without having to install it separately (making the program very portable).

These packages are discussed separately, and in more detail in the above sections.

Prototyping: Network Drawing

One of the features discussed during the Graphical User Interface walkthrough was the images of

the network structure listed along with its details. I decided that a circle would be the best way to

model any given number of nodes around, because it would be easy to connect any given node to

any other. To test this idea a prototype was developed.

This idea will be implemented in the python programming language with the additional in-buit

tkinter library. This module will let me develop a graphical user interface for which the network will

be drawn on.

The GUI window will consist of an Entry field and a button. Once the user has entered the number of

nodes they want to appear in a network and clicked the ‘draw’ button the program will generate the

graph on a canvas element (used for drawings in tkinter).

The maths required is faily simple as we are using a circle to model the network.

The angle subtened from the arc between two adjacent nodes will be calculated as shown below.

𝜃 =
2𝜋

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

This formula measures the angle in radians as this is the format required for sine and cosine

functions discussed later.

The nodes (represented by a box) will be equally spaced around the circumference of the circle

 The coardinates of the centre of each node will be

(𝑠𝑖𝑛(𝑛𝜃), 𝑐𝑜𝑠(𝑛𝜃))

 where 𝑛 is the number of the node currently being

considered.

Pseudo code:

 Function draw (number of nodes)

 Canvas.clear # clears canvas of current drawing

 Radius = 100px

 Angle = 2𝜋/𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

 n = 1

 Repeat for each node

 drawBox(coordinates(𝑠𝑖𝑛(𝑛𝜃), 𝑐𝑜𝑠(𝑛𝜃)))

 n = n + 1

 Repeat for each node

 Connect(node) #connects current node to every other node in the network

The draw function is called whenever the user has inputted a new value into the Entry field in the

GUI and will create a network on the canvas.

1
2

3

4

n-1

n

Program Code

Testing

Test Expected
outcome

Actual outcome Changes
made

Program
opens when
code is run.

Main
window
opens.

None

Program
draws
network for
small
networks
(that
contains
nodes 2- 10)

Program
draws
networks

None

Program
draws
network for
larger
networks
(that
contains
nodes 11- 19)

Program
draws
networks

None

Program
does not
crash and
shows an
error
message
when
erroneous
data is
inputted into
the entry
field.

An error
message is
displayed.

None

Program
does not
crash and
shows an
error
message
when
numbers
greater than
or less than
the accepted
range (2-19)
are inputted

An error
message is
displayed.

None

Program
closes when
the red ‘X’
button is
pressed

Program
closes

Program closes None

Feedback for Prototype.

Miss Hudson was impressed with this prototype and commented on how quickly she received

feedback on her suggestion. She agreed with my suggestion that there should be a limit on the

number of nodes for the circle network to be displayed because it can get crowded round a circle

with a fixed radius. In addition, Miss Hudson would like to see a graph with two columns, with one

column containing supply nodes and the other containing demand nodes – much like a bipartite

graph.

Prototype 2: Generating an adjacency matrix from user input.

When the user needs to create a new network from scratch because the current network structure

does not exist in the database connected to the program, it should be as simple and as easy as

possible to do in order to inconvenience them as much as possible. In order to cater for the user’s

needs and to make the initial process of creating a new network manually a form has been carefully

thought out (shown below).

Network title:

Number of nodes:

Number of supply nodes:

Number of demand nodes:

The naming of some fields could be changed in the future to cater for users who don’t know network

terminology. For example, the filed ‘Number of supply nodes’ could be changed to ‘Number of

warehouses’.

Once the necessary details have been input an adjacency matrix will be generated using those

details. An adjacency matrix is symmetrical about the diagonal from the top left corner and will be

will be created from cells in which the user can input the distance between each node. If the user

thinks that there is no connecting node between two nodes they will input a ‘-‘ to represent this.

When the user updates one cell (or field) in the matrix the corresponding cell across the diagonal will

automatically update.

A 4 x 4 adjacency matrix with 2 supply nodes and 2 demand nodes.

(The diagonal is greyed out so data cannot be entered into these cells.)

Below is the pseudocode to generate the matrix based on the input already entered by the user in

the form discussed above.

Supply node 1

Supply node 1

Supply node 2

Supply node 2 Demand node

1

Demand node

2

Demand node 1

Demand node 2

Code

Efficency Problem.

In the program a block of code can be observed that has been commented out. This is because after

it was written a more efficent way of finding the mapping was thought of.

The old code (the block in comments) had a time complexity of O(x-1) whereas the new code has a

complexity of O(1), linear time. This means it will always take the same length of time to generate

the position regardless of the input. Importantly this makes this part of the program more efficient.

This improvement was developed when it was noticed that the iteration was being used to calculate

the number of cells in the columns before it matched the triangle numbers in decreasing order, the

highest number being the number of rows in the far left column. The formula for the nth triangle

number is 𝑡𝑛 =
𝑛

2
(𝑛 + 1). This eliminates the need for iteration.

Improvements to be Implemented in Final Program.

Although there wasn’t any technical improvements that would need to be implemented in the final

program there are a few design changes that could be made. To start with, the form where the user

enters details needed to generate the matrix is small and fiddly. This could made it difficult for the

user to enter their details correctly. In the final program the form should be larger in order to make

the software more user friendly.

Furthermore, the window title should be changed to

something more appropriate such as ‘Network

details.’

Another observation is that every time the user

does not enter the correct details into the form a

messagebox is displayed. Closing this box could

become tiresome after repeated misentries. This

could be improved by having the error message display inside of the form window. In addition, the

error message itself could be tailored more towards the entry that went wrong instead of the

general message displayed in the prototype.

Testing.

Similar tests were carried out on this prototype as the previous one. All tests were passed and no

problems were encountered. This meant no adjustments needed to be made.

Feedback from Miss Hudson:

Miss Hudson liked the fact that she did not have to fill in both sides of the diagonal on the distance

matrix. She commented that it cuts the time the user spends entering data in half. Her final

comment on the prototype was that it would be helpful if the cells that had errors in on the matrix

were highlighted in some way.

After further discussion we agreed that a “Fix” string should appear in the cell where there was an

error.

Database Design.

In order to make the system user friendly it is important to include a database to efficiently store

network structures that have been used in the past so networks don’t have to be manually created

again. In addition users may want to see summary reports for old problems. By using a database to

store all data, everything is immediately accessible.

A database is normalised to reduce data redundancy and to try and maximise data integrity. These

goals should be obtained by putting the database attached to the system in third normal form of

normalisation.

Un-normalised Form:

Table1(networkTitle, numberOfNodes, numberOfSupplyNodes, creator, companyID, companyName,

dateCreated, networkCircleImage, networkBipartiteImage, report)

Primary keys are underlined and foreign keys are followed by an asterisk. For example companyID is

a primary key and creatorID* is a foreign key.

First Normal Form (1NF):

Company (campanyID, companyName, creatorID*)

Creator(creatorID, creatorFirstName, creatorSecondName, companyID*)

Network(networkID, creatorID*, networkCirlceImage, networkBipartiteImage, dateCreated,

numberOfNodes, numberOfSupplyNodes, networkTitle, report)

To put a database into first normal form it has to be ensured that all tables do not contain repeating

attributes (also known as repeating grounps) and all data is atomic – as in all fields are broken down

into their smallest components (for example, the field address can be broken down to address line 1,

address line 2, etc.).

Second Normal Form (2NF):

Company (campanyID, companyName, creatorID*)

Creator(creatorID, creatorFirstName, creatorSecondName, companyID*)

Network(networkID, creatorID*, networkCirlceImage, networkBipartiteImage, dateCreated,

numberOfNodes, numberOfSupplyNodes, networkTitle, report)

Second normal form is achieved by making sure the database is in first normal form and then

removing partial key attributes (attributes that depend on the primary key in the table but other

foreign keys as well.)

By putting this database into first normal form it passed the criterial for second normal form.

Third Normal Form (3NF):

Company (companyID, companyName, creatorID*)

Creator(creatorID, creatorFirstName, creatorSecondName, companyID*)

Network(networkID, creatorID*, networkCirlceImage, networkBipartiteImage, dateCreated,

numberOfNodes, numberOfSupplyNodes, networkTitle, report)

A database is put into third normal form by making sure all non-key attributes that depend on other

non-key attributes are removed and placed into other tables. This has already been achieved with

this database by putting it into first normal form.

Below is the entity relationship diagram for the database:

This shows that a single company has many creators which in turn can create many networks. The

reason why the company and creator tables exist is to make the reports generated by the program

appear more official and allow them to be ‘branded’ by company and creator. Therefore it is logical

to structure the database in this way after normalising it.

My SQL vs SQLite:

After normalising and considering the actual use of the system that is being created it was decided

that SQLight should be used instead of MySQL. This decision was made for the many reasons, listed

in the table below.

My SQL SQLite

Designed for systems with multiple users. eg.
Can be used on a network

Designed for systems with single users. Network
capabilities can be added.

Designed for systems that require a degree with
concurrency (eg. If multiple queries take place at
the same time.)

SQLite has these capabilities but they are not
nearly as extensive as My SQL.

Used when the database needs to scale with
large amounts of data (eg. Terabytes)

Made to work efficiently with the amount of
data stored on a typical home or work computer.

From this comparison My SQL is database with the most functionality. However, most of these

features are not needed when considering the current project. This system is designed to work on a

single computer and deal with the size of data stored on such a machine. Last is the fact that the

database structure is not very complex and because this does not require a database that is as

powerful as My SQL. Note that if the system needed to be improved for network implementation so

that multiple users could work and contribute to the database the move to My SQL might be wise as

it can handle concurrency issues much better than SQLite.

To summarise, SQLite is the best choice of database to use in this situation as it is suited to dealing

with relatively small amounts of data and little or no concurrency issues.

Database Set-up.

A database a database browser was downloaded for SQLite to visually manage the database. A

database browser is a universal table editor that allows users to access any database and modify it’s

tables and run SQL scripts. By using this browser, the initial set up of the database could be done

without the need for writing code. (The screenshot below shows the initial interface of the SQLite

database browser.)

Creator Company Network

The following SQL code was used to create the normalised database tables shown above.

Company table:

Creator table:

Network table:

The following SQL commands will be executed every time the user saves data to the database.

Although you cannot delete a database table from within the program, the code stops any possible

errors occurring if a table is accidently deleted manually.

CREATE TABLE IF NOT EXISTS `Company`(`companyID` INTEGER PRIMARY KEY AUTOINCREMENT,

`companyName` TEXT, `creatorID` INTEGER);

CREATE TABLE IF NOT EXISTS `Creator`(`creatorID` INTEGER PRIMARY KEY AUTOINCREMENT,

`creatorFirstName` TEXT, `creatorSecondName` TEXT, `companyID` INTEGER);

CREATE TABLE IF NOT EXISTS `Network`(`networkID` INTEGER PRIMARY KEY AUTOINCREMENT,

`creatorID` INTEGER, `allPaths` BLOB,`graph.rejected_nodes()` BLOB, `dateCreated` TEXT,

`numberOfNodes` INTEGER,`numberOfSupplyNodes` INTEGER, `networkTitle` TEXT, `report` Text,

`saveDistances` BLOB);

Test plan

Test Number Window Purpose Test data Expected outcome Test data type Result

1 Main menu Check program closes when quit
button is clicked

Quit button with
be clicked

Program closes Normal Pass

2.a Main menu Check file drop down menu
works when clicked

File option on
option bar clicked

Dropdown menu is
displayed

Normal Pass

2.b Main menu Check network detail collection
window opens when new
project button is selected from
the dropdown menu

Click new project
button from
dropdown menu

Main menu
window closes and
network detail
collection window
opens

Normal Pass

2.c Main menu Check select report window
displays when open report
button is clicked from the
dropdown menu

Click open report
button from
dropdown menu

Main menu
window closes and
select report
window is
displayed

Normal Pass

2.d Main menu Check quit button closes the
program when selected from
dropdown menu

Click quit button
from dropdown
menu

Main menu
window closes

Normal Pass

3.a Main menu Check submenu displays when
the new project button is
clicked

Click the new
project button
from the submenu

Sub menu is
displayed on top of
the main window
frame

Normal Pass

3.b Main menu Check new project submenu
disappears when the back
button is clicked

Check the back
button from the
submenu

Submenu
disappears when
button is clicked

Normal Pass

3.c Main menu Check network detail collection
window opens when manual
network button is clicked from
submenu

Click the manual
network button
from the submenu

Main menu
window closes and
the network detail
collection window
opens

Normal Pass

3.d Main menu Check network select network Click the select Main menu Normal Pass

structure window opens when
select report button is clicked
from submenu

report button from
the main menu

window closes and
the select network
structure window
opens when select
report.

5 Main menu Check select report window
opens when open report button
is clicked from the main menu.

Click open report
button from the
main menu

The select report
window will be
displayed and the
main menu
window will close

Normal Pass

4 Main menu Check program closes and
minimises when square buttons
are clicked at the top right hand
corner of the window.

Click array of
buttons in the top
left hand

Program closes
when the ‘X’
button is click,
minimises when
the ‘_’ button is
clicked, but does
not maximise when
the full screen
button is clicked.

Normal Pass

5.a Network detail
collection

Check file drop down menu
works when clicked

File option on
option bar clicked

Drop down menu
displays.

Normal Pass

5.b Network detail
collection

Check error message displays
when new project is selected
from dropdown menu as the
user is already creating a new
project.

Click new project
button from
dropdown menu

Error message is
displayed notifying
the user that they
are already on a
new project

Erroneous Pass

5.c Network detail
collection

Check select report window
displays when open report
button is clicked from the
dropdown menu

Click open report
button from
dropdown menu

Current window
closes and select
report window will
open.

Normal Pass

5.d Network detail
collection

Check quit button returns the
program to the main menu.

Click quit button
from dropdown
menu

Current window
closes and main
menu opens.

Normal Pass

6 Network detail
collection

Check program doesn’t display
next window when all fields are
not filled in.

Next button will be
clicked when no
fields are
completed in the
matrix

Error message will
be displayed.

Erroneous Pass

7 Network detail
collection

Check a valid network name can
be inputted into title field

“New network
one” will be
entered into the
title field.

Value accepted. Normal Pass

8 Network detail
collection

Check mixed (numbers and
letters) can be inputted into
title field

“123NewProject”
will be entered into
the title field

Title will be
accepted

Boundary Pass

9 Network detail
collection

Check valid total number of
nodes can be entered

The integer ‘4’ will
be entered into the
total number of
nodes field

Value will be
accepted

Normal Pass

10 Network detail
collection

Check error message displays if
a string is inputted instead of a
number as the total number of
nodes

The string “asdf”
will be entered in
the total number of
nodes field

Error message is
displayed (value
rejected)

Erroneous Pass

11 Network detail
collection

Check error message displays if
a negative number is inputted
(invalid data) in inputted as the
total number of nodes

 The integer ‘-5’ will
be entered into the
total number of
nodes field

Error message is
displayed (value
rejected)

Boundary Pass

12 Network detail
collection

Check valid number of supply
nodes can be inputted by the
user (0< input < Number of
supply nodes)

The integer ‘15’ will
be entered into the
total number of
supply nodes field

Value will be
accepted

Normal Pass

13 Network detail
collection

Check error message displays if
a string is inputted as the total
number of supply nodes

The string “error”
will be entered as
the total number of
supply nodes

Error message is
displayed (value
rejected)

Erroneous Pass

14 Network detail Check Error message displays if The number ‘-4’ Error message is Boundary Pass

collection a negative number of inputted
as the total number of supply
nodes

will be entered as
the total number of
supply nodes

displayed (value
rejected)

15 Network detail
collection

Check a valid company name
can be inputted into company
name field

The name “New
company ” will be
entered

Name is accepted Normal Pass

16 Network detail
collection

Check mixed (numbers and
letters) can be inputted into
company name field

The name
“C0mpany1” will
be entered

Name is accepted Boundary Pass

17 Network detail
collection

Check a valid network name can
be inputted into creator first
name field

The name “Alan”
will be entered into
the creator first
name field

Name is accepted Normal Pass

18 Network detail
collection

Check mixed (numbers and
letters) cannot be inputted into
creator first name field

The name “A1an”
will be entered into
the creator first
name field

Error message is
displayed (value
rejected)

Boundary Pass

19 Network detail
collection

Check a valid network name can
be inputted into creator second
name field

The name “Turing”
will be entered into
the creator second
name field

Name is accepted Normal Pass

20 Network detail
collection

Check mixed (numbers and
letters) can be accepted into
creator second name field

The name “Tur1ng”
will be entered into
the creator second
name field

Error message is
displayed (value
rejected)

Boundary Pass

21 Distance
collection

A small distance matrix is
generated from the data
inputted by the user in the
Network detail collection form

The value ‘4’ will be
entered as the
value for the total
number of nodes.

A 4x4 distance
matrix will be
generated.

Normal Pass

22 Distance
collection

A large, scrollable distance
matrix is generated from the
data inputted by the user in the
Network detail collection form

The value ‘20’ will
be entered as the
value for the total
number of nodes.

A 20x20 scrollable
distance matrix will
be generated.

Normal Pass

23 Distance
collection

Matrix fields update in real time
to show symmetry when a value
is entered in one side of the
matrix.

The number ‘32’
will be entered into
a field in the matrix

The corresponding
field will also
update with the
value 32.

Normal Pass

24 Distance
collection

Program identifies where the
user needs to amend the
mistake in the input.

The string “asdf”
will be entered into
a field in the matrix

“Fix” should be
displayed next to
the string.

Normal Pass

25 Distance
collection

Check that system does not
allow user to continue if they
haven’t filled in the matrix.

Next button will be
clicked when no
field have been
filled in.

An error message
will be displayed.

Erroneous Pass

26 Distance
collection

Check that system allows valid
input for all matrix fields.

The number ‘1’ will
be entered into all
fields in the matrix

Input will be
accepted.

Normal Pass

27 Distance
collection

Check that system does not
allow strings to be entered into
matrix fields.

The string “asdf”
will be entered into
a matrix field

Error message will
be displayed and a
‘Fix’ will appear in
the field with the
string.

Erroneous Pass

28 Distance
collection

Check that system rejects floats
when they are entered as
distances between points on
the matrix.

The float ‘4.3’ is
entered as one of
the field in the
matrix

Error message will
be displayed and a
‘Fix’ will appear in
the field with the
string.

Normal Pass

29 Distance
collection

Check that system allows 0 to
be entered to represent there is
no arc between two nodes.

‘0’ will be entered
in random fields in
the matrix

Program will accept
these values.

Normal Pass

30 Distance
collection

Check that only one ‘Fix’ is
displayed in each field
containing a user mistake when
next button is clicked multiple
times.

“No” will be
entered in one field
and then the next
button will be
clicked 4 times

Only one ‘Fix’ will
be displayed in the
field with the error.

Normal Pass

31 Report display Check to see Dijkstra’s Algorithm will be I will get the same Normal Pass

window algorithm works with a
connected graph and is
displayed in report

run by hand and
check with the
answers given by
the system in the
end report

answer by running
the algorithm by
hand as the
computer

32 Report display
window

Check to see Dijkstra’s
algorithm works with a graph
with minimal connections
between nodes and is displayed
in report

Algorithm will be
run by hand with a
network subject to
these conditions
and compared with
the computer
running the
algorithm on the
same network

I will get the same
answer by running
the algorithm by
hand as the
computer

Normal Pass

33 Report display
window

Check to see Transportation
algorithm works with a
connected graph network when
the problem entered is
balanced.

Algorithm will be
run by hand with a
network subject to
these conditions
and compared with
the computer
running the
algorithm on the
same network

I will get the same
answer by running
the algorithm by
hand as the
computer

Normal Pass

34 Report display
window

Check to see Transportation
algorithm works with a
connected graph network when
the problem entered is not
balanced. I.e. the total supply
value > total demand value

Algorithm will be
run by hand with a
network subject to
these conditions
and compared with
the computer
running the
algorithm on the
same network

I will get the same
answer by running
the algorithm by
hand as the
computer

Boundary Pass

35 Report display Check to see Transportation Algorithm will be I will get the same Boundary Pass

window algorithm works with a
connected graph network with
the supply and demand values
set up so that a degenerate
solution is produced

run by hand with a
network subject to
these conditions
and compared with
the computer
running the
algorithm on the
same network

answer by running
the algorithm by
hand as the
computer

36 Report display
window

Check to see Transportation
algorithm works with a minimal
connected network when a
balanced problem is entered

Algorithm will be
run by hand with a
network subject to
these conditions
and compared with
the computer
running the
algorithm on the
same network

I will get the same
answer by running
the algorithm by
hand as the
computer

Normal Pass

37 Report display
window

Check to see Transportation
algorithm works with a minimal
connected network when an
unbalanced problem is entered.

Algorithm will be
run by hand with a
network subject to
these conditions
and compared with
the computer
running the
algorithm on the
same network

I will get the same
answer by running
the algorithm by
hand as the
computer

Boundary Pass

38 Report display
window

Check to see Transportation
algorithm works with a minimal
connected network with a
problem that causes a
degenerate solution

Algorithm will be
run by hand with a
network subject to
these conditions
and compared with
the computer
running the

I will get the same
answer by running
the algorithm by
hand as the
computer

Boundary Pass

algorithm on the
same network

39 Report display
window

Check to see if you can quit and
return to main menu from the
report display window

Quit button is
clicked

System should
return to main
menu.

Normal Pass

40 Report display
window

Check that the save and quit
button performs it’s function

The save and quit
button will be
clicked.

Program returns to
main menu and the
appropriate
network details are
stored in the
multiple database
tables.

Normal Pass

41 Report display
window

Check to see if circular network
does not display when the total
number of nodes in the network
is greater than or equal to 20

A 20x20 matrix will
be filled in.

Circular network is
not displayed.

Normal Pass

42 Report display
window

Check to see if ‘bipartite’
network image is scrollable
when the number of supply or
demand nodes in the network is
greater than 9

A 20x20 matrix will
be filled in with 5
supply nodes and
15 demand nodes

Graph will contain
the information on
the network but
will also be
scrollable.

Normal Pass

43 Select report
window

Check that you can return to
the main menu from window
using the back button.

Back button will be
clicked

System returns to
the main menu.

Normal Pass

44 Select report
window

Check that report can be
highlighted when clicked on in
the treeview menu

A report into the
treeview will be
clicked

Report should be
highlighted.

Normal Pass

45 Select report
window

Check that you can delete
selected record in treeview but
clicking the delete button

A report will be
selected and the
detelete selected
report button will
be clicked on.

Report should be
deleted.

Normal Pass

46 Select report Check that you can view A report will be The report, along Normal Pass

window selected report by clicking the
display selected report button

selected and the
display selected
report button
clicked.

with the graphs
should be
displayed to the
user.

47 Select report
window

Check system alerts user with
an error message if the user
tries to view a report but has
not selected anything in
treeview.

The display
selected report
button is clicked
when no report is
selected

An error message is
displayed to the
user.

Erroneous Pass

48 Select report
window

Check an error message is
displayed when user tries to
delete a report but there are no
reports left.

The delete selected
report button is
clicked when all
reports have been
deleted (leaving no
reports left to be
deleted)

An error message is
displayed to the
user.

Boundary Pass

49 Select network
structure
window

Check that you can return to
the main menu from window
using the back button.

Click the back
button

System returns to
the main menu

Normal Pass

50 Select network
structure
window

Check that records can be
highlighted when clicked on in
the treeview menu

Click on a network
structure in
treeview

Structure is
highlighted

Normal Pass

51 Select network
structure
window

Check that you can delete
selected record in treeview by
clicking the delete button

The delete selected
structure button is
clicked

Report is deleted Normal Pass

52 Select network
structure
window

Check system alerts user with
an error message if the user
tries to continue with a report
but has not selected anything in
treeview.

Click use selected
structure button
when there is no
network structure
selected

Error message is
displayed

Erroneous Pass

53 Select network
structure
window

Check an error message is
displayed when user tries to
delete a report but there are no

Delete selected
structure button is
click when there

Error message is
displayed

Boundary Pass

network structures left. are no network
structures left

54 Select network
structure
window

Check network structure is
loaded into Network detail
collection window

Existing network
structure is
selected and use
selected structure
button is clicked

Selected network
structure is loaded
into network detail
collection window

Normal Pass

55 Select network
structure
window

Check network structure is
loaded in Distance collection
window.

Same as in test 55
except structure of
network is loaded
into adjacency
matrix

Saved data is
loaded into
adjacency matrix

Normal Pass

Testing documentation: (see written test document).

Appraisal

Requirement Number:

1a. The user should be able to input their desired network into the program as an adjacency matrix

and all details about the nodes on the network through a series of graphical forms.

i. Adjacency / distance matrix should be scrollable to allow the user to input all parts of the network.

This requirement has been met. The user can scroll any matrix (as long as it isn’t too large) using the

vertical and horizontal scrollbars.

ii. Title of the network should be displayed above the matrix (note: title should not scroll with the

matrix.)

This requirement has been met. Any valid title that the user enters in the previous form is displayed

above the matrix. In addition this title does not scroll with the matrix.

iii. This process should be simple as the user does not need to know they are inputting data into an

adjacency matrix.

This objective has been met. Miss Hudson commented on the ease of inputting data into the matrix

due to the symmetry of the table ensuring the user only has to fill in half. She also expressed how

difficult it would be to simplify this process any further.

b. System should compute the shortest path from each supply node to every demand node.

Requirement has been met. The system calculates the shortest path using Dijkstra’s shortest path

algorithm. In addition the shortest paths are displayed in the final report. This process uses the data

the user enters into the adjacency matrix.

c. System should generate a report that explains the computations that have been carried out.

i. System should perform the four steps of the transportation algorithm

All requirements have been met (1, 2, 3, and 4). The system uses the weight of the shortest paths

calculated by Dijkstra’s algorithm in conjunction with the details collected from the user about the

number of supply nodes and number of demand nodes, in addition to the cost per unit distance

collected in the four parts of the algorithm. Each step in the process is recorded in the report and

displayed to the user after the computation has been performed. If the solution generated by the

North-West corner method is optimal then the stepping stone method (point 4) will not be

performed. This has been tested against checks made using manually calculated algorithms.

ii. Algorithm should stop if an optimal solution cannot be found.

Requirement has been met. If the transportation algorithm loops more than ten times then the

algorithm will stop and the initial solution will be return to the user. This is done so that the program

does not continue in an infinite loop.

2a. System should generate a report that explains the computation that has been carried out.

Requirement has been met. An extensive report is generated by the system that explains all parts of

the computation carried out by the computer. The report steps through each algorithm explaining

the important choices that have been made – much like the workings a human would do when

performing the same algorithm.

i. Report should contain the conclusions obtained from the computation performed by the system.

Requirement has been met. The conclusions obtained from each algorithm are displayed in the

report. This includes the number of items to transport from supply node to each demand node

which is displayed right at the very top of the report (If the user does not want to read through all

the workings) and at the end of the report.

b. System should graphically display the network the user has inputted alongside the report

generated in two forms.

i. Bipartite graph form.

Requirement has been met. A graph containing two sets of nodes – one set containing all of the

supply nodes and the other containing the demand nodes, side by side, is displayed by to the user.

This graph is generated from the data the user inputs into the distance matrix.

1. Bipartite graph should be scrollable when there are a large number of nodes.

Requirement has been met. If the number of supply nodes or number of demand nodes (or both) is

greater than nine then the scrollbar at the side of the graph becomes active and allows the user to

scroll the canvas widget to view the entire graph.

ii. Circular graph form.

Requirement has been met. For any network with fewer than twenty nodes a circular network is

displayed alongside the report showing the relationship between each node. (Graph is colour coded.

Red for supply node, blue for demand node.)

1. Circular graph should not display if the number of nodes in the network is greater than twenty

because the graphic will get too crowded

Requirement has been met.

3a. Allow user to save a report and network structure graphs.

Requirement has been met. Once all computations have been carried out on the data collected from

the user and the report has been displayed, the user is allowed to save the report. By saving the

report the network structure is also saved allowing it to be reused at a later date.

b. User should be able to load saved reports along with their network images.

Requirement has been met. User is allowed to select and existing network report and view its

content. The graph(s) that were generated when the algorithms were initially run will also be

displayed.

4a. Allow users to load an existing network structure that has been saved and use it for a new

program.

i and iii.

Requirement has been met. When a network is saved by the user, it can be accessed at another time

(even after the application has been closed and reopened) and all properties apart from the size of

the network and the number of supply and demand nodes there are can be fully edited. This means

changes to the supply and demand values can be adjusted as can the distances between each node

on the network. The details for the distances remain filled in as to save the user time if they only

want to change the supply and demand values for a large network.

5a. System works together as a whole

i. Individual modules and part of the system work coherently with no errors or discontinuities.

Requirement has been met. This will be discussed in more details below in the user feedback.

ii. End user will try the system and give feedback.

Requirement has been met. This will be discussed in more detail below in the user feedback.

iii. Outside user with no experience of the system should trial the piece of software to see if it is

intuitive and easy to use. They will then present feedback.

Requirement has been met. This will be discussed in more detail below in the user feedback.

b. Provide a graphical interface that is intuitive to use and flows smoothly between windows. It

should be possible to access every part of the system through the GUI without having to restart the

program.

i. All buttons should perform the action that it is intended to do and labelled appropriately.

Requirement has been met. This has been rigorously tested in the previous section and the people

who have tried the system have not commented about any faults concerning the functionality or

naming of the buttons.

ii. Drop down menus should contain clickable items.

Requirement has been met. As mentions in (i) this has been tested extensively and no users have

commented about it not working.

iii. Treeview structures should be clickable and interactive using buttons.

Requirement has been met. This feature has been tested in the testing section. Users can click on

single items in the treeview and perform actions based on what has been selected.

iv. Allow users to use scrollbars.

Requirement has been met.

c. System should not terminate, or in other words not crash.

i. All points of system contact with the user should be validated so that the algorithms that perform

computation on the user data will not falter.

Requirement has been met. System has never crashed due to invalid inputs either by me (during the

testing process) or the users that have trialed the system.

ii. All algorithms should not cause errors in the system.

Requirement has been met.

User Feedback.

I have obtained feedback from the end user, Miss Hudson.

Miss Hudson was impressed to see that I had met all of the objectives and incorporated all of the

points we made during our discussions. She commented specifically on how intuitive the system was

to use and how data was very easy to enter into the system. She also liked how the matrix that the

user entered the distances between nodes on the network was symmetrical. This allows the

“student” to quickly find the results of their calculation.

Miss Hudson was pleased to see that previously created networks could be loaded back into the

system and modified. For example, if the conditions of the problem have changed such as the

number of items demanded by a shop has increased. She commented that this was an important

feature as it allowed students to experiment with how the supply/demand values impacted the

result of the algorithms. The fact that the reports generated in the past could be loaded and viewed

again was noted and Miss Hudson liked the idea that students could copy the report into a word

processing file and send it to the printer. She said it would make it easier to compare their work with

the correct solution produced by the system.

The graphs that were identified by Miss Hudson in the initial stages of the project were commented

on saying that it was useful that the user could see how the network could be laid out. She said it

allowed students to show how distance matrices are a powerful way of representing a network

which is a key learning point in the D1 module.

Furthermore, Miss Hudson was taken with the system validated user input especially with the

adjacency matrix. She said it was very useful when making sure you have entered the correct data

into every cell in the matrix. She said this feature would be very important when the matrix is very

large.

Another prominent point made by Miss Hudson, was about the detail of the report in documenting

every aspect of how the problem was handled by the computer, including points about degenerate

solutions and unbalanced problems. She said it would be a really useful resource for students next

year as the algorithms followed by the system are the same as the ones in the textbook. She liked

how the system “shows how complex maths is used in the real world.”

Overall Miss Hudson commented “The system ran well, without any crashes perceived or any error

messages generated. Popup windows for entering data worked well and data entry seemed

intuitive.” She said further that the system was consistently hitting all of the objectives laid out in

the earlier part of the report and that the project had successfully been completed.

Analysis of Feedback and Constructive Criticism

When Miss Hudson was asked to give some constructive criticism she said the following. “As the
requirements of the system were quite strictly written vis-à-vis the display of networks the system
has met the requirements, however the extent to which the network images produced would be
useful to the end user is limited as the images generated may not match given images of the
network and there did not appear to be any way for the user to identify which node was which or
move the nodes so that the generated picture matched a given image.” This is true because the
image of the network is isomorphic to that of what the user might have had in mind when entering
the network into the program. In addition, the nodes were not labelled in order not to make the
image too congested however, if the program should be developed further then the user should be
able to explore the graphs in more detail.

Miss Hudson was obviously happy with the work I had done in developing the project from start to
finish and was especially impressed with how easy it was to enter the details of the problem into the
system. No negative comments were presented about the main functionality of the system and I was
told that the report read well and provided enough information about each step of the algorithms.
Miss Hudson did mention how the working values could have been written about in the report to
help students learn more about the “nitty gritty” of the algorithms but she also understood that the
project is a simulation of a business solution.

She was also happy with the interface of the whole system and said it was much better than a
program solely based on a command line.

From the discussion I picked up some ideas that could be explored further and they are discussed in
the next section.

Possible extensions

From a teaching perspective it would be helpful if the user could see the network graphically with all

of its working values and indexes. It would also be useful to be able to progress through each step of

the algorithm with a slider or arrow buttons to see in what order steps happen. This would enable

students to quickly grasp the concept as they can repeat steps that they do not understand. This

would equally be possible for the transportation algorithms.

Although the final report is structurally sound, would be more visually appealing with the addition of

tables instead of the ones created using the ‘|’ symbol. The entry widget makes it very difficult to

format objects such as text tables and sometimes they can become misleading or confusing to the

reader. It would be good to have tables that could easily copy into other documents along with the

text from the rest of the report.

A further function of the report window is the ability to print from the inside of the application. At

the moment potential users have to copy the report into a word processing document and print it

from there. This is addition hassle for the user and could be avoided with the addition of a print

button. If this feature was to be implemented the graphs displayed in the report window would have

to be converted into images as they are currently displayed in a canvas. This design choice was made

solely because of the portability of the project. In order for the system to run on a wide range of

platforms it must not contain as little external modules as possible. This is because most installations

of Python will not have the ones required for image handling. These modules tend to be quite large

because image handling can become complex.

I would like to introduce some sort of ‘collaboration mode’ using the TCP/IP as this would enable

multiple users to send projects to each other and possibly work on the same problem together. I

think this would increase the rate of productivity in a business setting (which is what this project is

designed to emulate).

From the school perspective

Miss Hudson suggested that clearing identifications of saved networked when choosing them from

the treeview widget should be used both when selecting a report to load and choosing a network

structure to build the rest of your project upon. I agree with this because if you have multiple

projects with similar titles all made by the same person it can get confusing if the company has not

written down when their project was made. However, the date created that is displayed alongside

each network, is a key way of determining between networks. If the date when the project is created

is not identified by the company or individual who made it. This process could be made easier by

allowing the users to see the graph of the network alongside it’s key details or by making the

treeview cascading to display even more information about the network.

Furthermore, the graphs displayed alongside the report in the report display window could be

labelled with the node numbers along with the cost for travelling between each arc. This should be

done only on graphs that are small otherwise it would become too crowded.

Finally, a student who tested the application pointed out that there was no ‘About’ or information

window that you find in most high end programs. Although this is a good observation and is

definitely something that should be done as an extension for the project, it is not imperative, as a

teaching tool. Only in a few cases would it be useful, for example, in the scenario when a new

teacher starts using the program.

Conclusion.

Analysing the feedback from Miss Hudson and the two students in lower sixth it is apparent that this

system will be a useful teaching resource because it demonstrates how the algorithm works and in

what environment it can be implemented. This positive feedback is proof that I have achieved what I

set out to achieve.

There are some small modifications that could be made to the program in the future to improve the

human-computer interface. Although there are some developments that could be made to increase

the functionality, they are not necessary and the minor improvements will not take long to

implement.

Overall I think this project has been a success.

Technical solution (In project code document.)

