Table of Contents

AN ALY SIS ittt et e e e e e e e e e e e e et r e e e e e e e e e aeaaens 1
RESEARCH: ...ttt e ettt e e e e e e st e e e e e e e e e s e nbb e e e e aaaeaeaanns 1
SELF-DISSCUSSION: ...etitiiiiiee ettt e e e e e e e s e e e e e e e e e s snnnrraeeeeeaens 3

TIMELINE: ...ttt e e e e e e e et r e e e e e e s s s nsbbbeeeeeeaeeeenanns 5
THE GAME ittt e e e e e e e st e e e e e e e s s s nnbbbeeeeeaaeeeesanns 6
THE Al oottt e e e e e e e e st r e e e e e e e e b reeaaeeeeaaan 9
REQUIREMENTS: ...eitiiiiiiiii ettt e e e e e e e e e e e e e e e e e nnssaaneeeeeeens 11
DESIGN: ittt e e e e e e e e e e e e e e rrrta e e e e s e na b arraaaeeenaans 12
CLASS DIAGRAME: ..ottt s e e e e e e e e s s b e e e eaeeaeannes 12
FILES, DATA STRUCTURES, METHODS OF ACCESS:cccvvveeeeeeeiciiiee, 13
PROCESSES: ... oottt e e e e e e e e e e e e e e e e e e e aaaenees 13
USER INTERFACE DESIGN:....oe e 15
PACKAGES AND FRAMEWORK e e eaae e 15
DESIGN OF TESTING: ..oui e e e e e e e e e e eaaeees 16
TECHNICAL SOLUTION: ... e e e e e e e e e et e e e e e eaaaeeenas 18
LI 05 I8 L 25
Game Functionality teStiNg:oooiii i 25
Al-Game commuNiCatioN tESTING:uuuuuiiiiiiiiiiiiiiiiiiie e 26
Tests to see if the Al is reading the dataset correctly.cccccovvvviiiiiiiiiiiinnnnnn. 26
Tests to see if the Al can outperform a human:ccccccvvviiiiiiiiiiiiiiiieeee, 27
EVALUATION: L.ttt ettt ettt e e e e e e e e st e e e e e e e e s s annbbreereeeeeeesaanns 28
APPENDICIES:oiiiiiiiie ettt ettt e e e e e ettt e e e e e e e s e s bt rereeaeeeeeaannnrenes 29
A: Higher lower standard gradient descent neural network.ccccceeeevvnnnnnnn. 29

B: datatrain.py — dataset Creation.ccocoeiuviiiiiiiiiii e 30

(O B = - 1] PP UPPPTTRRUPPPIN 34

D: Higher lower stochastic gradient descent neural network.ccceuuunn... 35

E: poker.py — The final SOIULION..............ooiiiiiiii e 37

F: TeStNG EVIAENCE. .ovuiiiiiiii et e e e e e s 45

Laurence Brown

ANALYSIS:

RESEARCH:

Godalming College

Article https://en.wikipedia. | 17/09/16 | Lots of formulas and probability calculations
org/wiki/Poker prob that can be used in the Al for making
ability (Texas hold decisions about what card to play next, how

%27em) much to bet, what cards other players have.
Web http://pokerpredicto | 17/09/16 | Reads your two inputted cards and
page r.com/headsup calculates various probabilities such as win
rates, and what it is strongest and weakest
against. Also has other Texas Hold ‘em
tools.

Article http://www.codeproj | 17/09/16 | An article discussing a program that will
ect.com/Articles/19 calculate and analyse certain aspects of the
091/More-Texas- game using several algorithms.
Holdem-Analysis-
in-C-Part

Article https://en.wikipedia. | 17/09/16 | A method of calculating probabilities using
org/wiki/Monte Carl randomness to solve problems. This
0_method method is used lots in poker to analyse and

determine probabilities. Also see the Monte
Carlo Algorithm. This algorithm is always
fast, probably correct.

Article https://en.wikipedia. | 17/09/16 | Another randomised algorithm that
org/wiki/Las Vegas calculate various probabilities within poker,

algorithm this algorithm is probably fast, always
correct.

Article http://www.codeproj | 18/09/16 | The second half of More Texas Hold ‘em
ect.com/Articles/19 Analysis in C# contains algorithms like the
092/More-Texas- Monte Carlo algorithm and the code and
Holdem-Analysis- analysis of them.
in-C-Part

Article http://pokercoder.bl | 18/09/16 | An explanation of a poker Al going in depth
ogspot.co.uk/2006/ with certain methods and such.
07/towards-
meaningful-
ordering-of-
hands.html

Rules https://en.wikipedia. | 18/09/16 | The rules for Texas Hold ‘em as

set org/wiki/Texas hold explanations for them.

%27em#Rules

Centre N°: 64395

Candidate N°; 4146

https://en.wikipedia.org/wiki/Poker_probability_(Texas_hold_%27em)
https://en.wikipedia.org/wiki/Poker_probability_(Texas_hold_%27em)
https://en.wikipedia.org/wiki/Poker_probability_(Texas_hold_%27em)
https://en.wikipedia.org/wiki/Poker_probability_(Texas_hold_%27em)
http://pokerpredictor.com/headsup
http://pokerpredictor.com/headsup
http://www.codeproject.com/Articles/19091/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19091/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19091/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19091/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19091/More-Texas-Holdem-Analysis-in-C-Part
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Las_Vegas_algorithm
https://en.wikipedia.org/wiki/Las_Vegas_algorithm
https://en.wikipedia.org/wiki/Las_Vegas_algorithm
http://www.codeproject.com/Articles/19092/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19092/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19092/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19092/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19092/More-Texas-Holdem-Analysis-in-C-Part
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
https://en.wikipedia.org/wiki/Texas_hold_%27em#Rules
https://en.wikipedia.org/wiki/Texas_hold_%27em#Rules
https://en.wikipedia.org/wiki/Texas_hold_%27em#Rules

Laurence Brown

Godalming College

ac.uk/~nd/surprise

Article https://www.partypo | 18/09/16 | A basic and comprehensive tutorial on how
ker.com/how-to- to play Texas Hold ‘em.
play/texas-
holdem.html
Article https://www.partypo | 18/09/16 | A list of the hands in any game of poker
ker.com/how-to- ordered by their ranks.
play/hand-
rankings.html
Glossary | https://www.partypo | 18/09/16 | A list of all poker terms and explanations of
ker.com/how-to- them.
play/school/basics/
glossary.html
Article https://en.wikipedia. | 18/09/16 | An algorithm that calculates the strength of
org/wiki/Poker Effe a poker hand compared to all other hands.
ctive Hand Strengt
h (EHS) algorithm
Existing | https://code.google. | 18/09/19 | An existing open source Texas Hold ‘em Al
Solution | com/archive/p/open that can be used to get ideas and
holdembot/ inspiration from.
Existing | http://poker.srv.ualb | 18/09/16 | Another Hold ‘em Al coded by students of
Solution | erta.ca/ the University of Alberta, there are several
programs on the webpage which shows the
Al's strategy. These will come in useful
when looking for strategies for my Al to see
which one is the best.
Existing | https://code.google. | 18/09/16 | A lightweight Hold ‘em hand evaluator Al.
Solution | com/archive/p/speci
alkpokereval/
Article https://en.wikipedia. | 18/09/16 | An article all about neural networks.
org/wiki/Artificial _ne
ural_network
Article http://www.codeproj | 18/09/16 | An article which talks about neural
ect.com/Articles/10 networks, how they work and how to
28339/Basis-of- implement them into visual basic.
Neural-Networks-
in-Visual-Basic-
NET
Book https://www.amazo | 18/09/16 | Chapters discuss the value of deception,
n.com/dp/18806850 bluffing, raising, the slow-play, the value of
00/?tag=stackoverfl position, psychology, heads-up play, game
08-20 theory, implied odds, the free card, and
semibluffing. These are all tactics that the Al
could employ.
Journal https://www.doc.ic. | 18/06/16 [Different types of neural networks are

explained, demonstrated and applications are

Centre N°: 64395

Candidate N°; 4146

https://www.partypoker.com/how-to-play/texas-holdem.html
https://www.partypoker.com/how-to-play/texas-holdem.html
https://www.partypoker.com/how-to-play/texas-holdem.html
https://www.partypoker.com/how-to-play/texas-holdem.html
https://www.partypoker.com/how-to-play/hand-rankings.html
https://www.partypoker.com/how-to-play/hand-rankings.html
https://www.partypoker.com/how-to-play/hand-rankings.html
https://www.partypoker.com/how-to-play/hand-rankings.html
https://www.partypoker.com/how-to-play/school/basics/glossary.html
https://www.partypoker.com/how-to-play/school/basics/glossary.html
https://www.partypoker.com/how-to-play/school/basics/glossary.html
https://www.partypoker.com/how-to-play/school/basics/glossary.html
https://en.wikipedia.org/wiki/Poker_Effective_Hand_Strength_(EHS)_algorithm
https://en.wikipedia.org/wiki/Poker_Effective_Hand_Strength_(EHS)_algorithm
https://en.wikipedia.org/wiki/Poker_Effective_Hand_Strength_(EHS)_algorithm
https://en.wikipedia.org/wiki/Poker_Effective_Hand_Strength_(EHS)_algorithm
https://code.google.com/archive/p/openholdembot/
https://code.google.com/archive/p/openholdembot/
https://code.google.com/archive/p/openholdembot/
http://poker.srv.ualberta.ca/
http://poker.srv.ualberta.ca/
https://code.google.com/archive/p/specialkpokereval/
https://code.google.com/archive/p/specialkpokereval/
https://code.google.com/archive/p/specialkpokereval/
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
https://www.amazon.com/dp/1880685000/?tag=stackoverfl08-20
https://www.amazon.com/dp/1880685000/?tag=stackoverfl08-20
https://www.amazon.com/dp/1880685000/?tag=stackoverfl08-20
https://www.amazon.com/dp/1880685000/?tag=stackoverfl08-20
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

Laurence Brown Godalming College

96/journal/vol4/csl given.
1/report.html

Video https://youtu.be/h3| | 18/06/16 | A short video explaining how to create a
4qz76JhQ simple neural network.

SELF-DISSCUSSION:

The aim of this project is to see if it possible to make an Al that will play Texas Hold ‘em and
beat a player. | will achieve this by first of all making the game itself, which is an easy task, |
will then implement an Al to play against a player.

Texas Hold ‘em is a variation of poker where all players are dealt two random cards, “Hole
Cards” by the “Dealer”. The two players to the left of the dealer are the “Small Blind” and the
“Big Blind” respectively. The “Small Blind” is required to bet a fixed starting bet and the “Big
Blind” is required to bet double the “Small Blind”. Then the player to the left of the “Big Blind”
will then start the first round of betting. The first player will assess their hand and if they think
it is good enough for them to win they will “Call”, which means they will match the previous
player's bet or they will “Raise”, which means they will bet more than the minimum bet to
raise the minimum bet for other players. The player can also choose to go “All In” if they are
certain they will win this round, which means they will bet all their money. If the player
decides their cards are not worth playing with and they will probably lose, they will “Fold”,
which means not betting and returning your cards to the dealer and skipping the round. Then
each player will repeat this until one round of betting is over (no one else “Raises” or goes
“All In” for a round). This is known as the “Pre-Flop”. Once all the betting has finished the
three shared cards are dealt so that everyone can see (face up). This is called the “Flop”.
Then another round of betting occurs and a fourth shared card, “The Turn”, is dealt. Another
round of betting occurs and then the fifth and final shared card, “The River”, is dealt. A final
round of betting then occurs. The hand can then end in one of two ways; the players turn
over their “Hole Cards” and whoever has the best hand wins or someone will bet enough
that all the other players fold and they win. The ultimate end goal is to turn a profit and to do
that you don’t necessarily need to win every hand.

There are several ways in which | can make the game of poker for the Al to play on. | can
use a GUI application or a console application. Since the program is not meant for an end
user but is for investigation purposes | can use either method, a console application will be
easier and less time consuming to develop yet the GUI application will be much easier to
use and test the Al on. As it is not that hard to switch between the two | can always choose
which one | want to use later down the road.

The game will be made in Python as | already have prior knowledge of the program and it
has several abilities that will be useful to making an Al as well as math libraries like NumPy
which will help me manage arrays in more powerful ways. Also if | do decide to make it into a
GUI application it is easy to do so, with libraries like tkinter, which make it easy to make a
GUI application. | will also use libraries like random which has several randomisation
options. | can use this to select a random card from an array. This ensures the game is
always fair.

There is also several ways in which | can get the Al to interact with the game. | could build

Centre N°: 64395 Candidate N°; 4146

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://youtu.be/h3l4qz76JhQ
https://youtu.be/h3l4qz76JhQ

Laurence Brown Godalming College

the Al directly into the game so they both operate in the same program but this could make it
harder to troubleshoot when the program is not working to see if it is the Al or the game itself
that is causing the program not to work. | could also make the game and the Al different
programs and get them to communicate via text file or database, this however would be very
time consuming and would not contribute much towards the investigation on the Al. If | were
to store information about the game in a database this is what it would look like:

This database can then be shared between the game and the Al allowing the Al to access its
cards and the shared cards as they are revealed.

There are two main methods that | could use for the Al:

e | could make a general algorithm which will calculate the odds of my hand winning
compared to all the other possible hands. This would be fast and efficient but
predictable, meaning that the human player could easily figure out the Al’s strategy
and easily combat it. It would also only win if it had been repeatedly dealt good hands
as if it is dealt a bad hand it would not be able to choose when or when not to bluff
(out bet the other players so they all fold and you win).

e | could make a neural network that would learn the best ways to play over trial and
error, each time becoming more and more effective at playing the game. A general
algorithm would then control the weighting of the neural network according to their
success. This method will not be as fast as | will have to run the Al with thousands of
Al players, who do not know how to play the game. | will then use the general
algorithm to determine which Al player was the best and then weight the ability of the
players. A new generation of players would be made with the determined weighting
and knowledge of the previous player that they were selected to be. This process
happens over and over again through lots of hands and generations until the best
individual Al players play really well. This process can be endless as there will always
be small improvements but there will be diminishing return up until the point where
the improvements are unnoticeable and don’t make a difference. Once trained the
best player is selected and put up against a human player. This method can be very
good at playing Texas Hold ‘em as there are no detectable patterns in the Als logic
and if trained correctly, with the right kind of dataset, it can bluff and win hands which
the first algorithm would just fold on to save money. However this methods bluffing
ability also has the chance to lose money if the bluff is unsuccessful.

The best method is clearly the neural network as it is the method used in most successful Al
created for Texas Hold ‘em. But if | need to change method later on, due to the complexity of
neural networks, it is possible to do so.

Finally to test if the Al is better than a human player | will play the Al myself for a number of
hands and judge who made a profit, NOT who won the most games as you can still lose the
majority of games but make lots of profit on a few, thus winning overall as you made money
and the other player(s) lost money (or gained less than you did). If the Al is

Centre N°: 64395 Candidate N°; 4146

Laurence Brown Godalming College

successful then | know that it is possible to create an Al that is better than a human if not
then | can try to improve the Al until it wins or cannot be improved anymore, in that case |
will know that it is not possible to create an Al with the resources | have that is better than a
human but know that other Als have been created that are far more successful than a
human player.

TIMELINE:

22/09/16
06/10/16
20/10/16
17/11/16

26/01/17

23/02/17

16/03/17
30/03/17

Centre N°: 64395 Candidate N°: 4146

Laurence Brown Godalming College

THE GAME:

I will make a poker game that will create two players (the human player and the Al) it will
then assign two random cards (card1 and card2) from a deck of cards to each player. It will
then also assign five more random cards from the deck to the table cards (flop1, flop2, flop3,
turn, and river). | could assign each player big blind and small blind but since this is only a
two player game of poker big blind and small blind are not relevant so | shall miss this out.
The game will then play through a game of poker, deducting betting money as it goes along
and displaying the visible table cards after every betting round when they are meant to be
shown. Once the game of poker is finished it will then determine the winner by first checking
if anyone has folded and if not it will use a card ranking algorithm to decide the winner. Once
the winner is decided the game will then distribute money to the correct player and start a
new game of poker, all the while keeping track of scores. To help me truly understand how
the game is going to work | created an IPSO, dataflow diagram and flowchart for the game.

The following is the IPSO diagram for the game:

Centre N°: 64395 Candidate N°: 4146

Laurence Brown Godalming College

Dataflow diagram for the game:

Al Wallet

0. Texas Holdem Al
Game

Y

Flayer Wallet
Player I Board and
Y hand card C:trodr:egk
storage g
A
h 4
5. Who won - P 1. Card shuffler
game? w Board B and distributor
.‘_
A A ry
> Player o
2. Round of :
> | betting isit | l€— 4'§mg::nb;'2d=
—> Al < » aver? oo
A T
" Player Wallet v
Hand
Pot * * rankings
Ll ‘_I—F 3. Hand over, algorithm
Al Wallet who won? -
7

Centre N°: 64395 Candidate N°; 4146

Laurence Brown

Flowchart for the game:

s any players
money 07

Terminate

Show cards,
player cards and
transfer pot
money to winner

Draw random,
unigue cards and
place in card
array

Y

Randomly pick
Small Blind, then

assign big blind
(IF NECESSARY)

Did player
two raise or
heck or folg

Godalming College

Did player
one raise or
.call or fold

Did player
two raise or

Did player

one raise or
heck or fol

heck or folg

Display turn

Centre N°: 64395

Display river Display Preflop
Y

Did player Did player

[Foid »<—Foig one raise or two raise or

call or fold call or fold
Did player Did player
one raise or two raise or
call or fold call or fold

Candidate N°: 4146

Laurence Brown Godalming College

This data dictionary that declares the classes and variables that could be used in the game:

From this analysis | have formed a good idea of how a Texas Hold ‘em game works and how
I can make one. Since the main focus of the project is on the Al there are no notable
changes or features of this game from the original other than the fact there is not big or small
blind.

THE Al:

| plan to create a neural network for the Al. The neural network will train itself off a pre-
existing database and then play the game, so that it has the highest chance of turning a
profit as my research suggests.

The following is the IPSO diagram for the Al:

Centre N°: 64395 Candidate N°: 4146

Laurence Brown Godalming College

Dataflow diagram for the Al:

Wallet j€—> 0.Al] Cards

Number of
players in
network

< CanroaRaEe— | ugomnm

FPlayers |%— Cards

iIJL
[

Game Algorithm
L A
- Wallet
2 Chance of "
3. Amount to bet Hand Winning | [
&

The data dictionary that declares the classes and variables that could be used in the Al:

Candidate N°: 4146

Centre N°: 64395

Laurence Brown Godalming College

REQUIREMENTS:

1. The game interface easily readable and useable.
1.1. The player should be able to easily read their cards and choose what action to
make.
1.2. The player must easily be able to see how much money is in the pot, their wallet and
the Al's wallet.
2. The game must be able to store the card deck.
2.1. The game program must be able to access it easily
2.2. The game will have to be able to draw random cards from it and ensure the same
ones are not drawn twice.
3. The game must be able to send and receive data with the Al.
3.1. The Al's hand and the shared cards must be given to the Al program.
3.2. The Al must be able to tell the game what action it wants to make.
3.3. The game must be able to send and receive money with the Al
4. The game must be able to correctly handle all money and distribute it.
4.1. The game must receive betting money and place it into a pot.
4.2. The game must give all winnings to the winner.
5. The game must be able to determine the winner.
5.1. It must be able to determine the winner by rating each player’s hands then
comparing them with each other.
6. The game must be able to determine whether a round of betting is over.
7. The Al must be able to receive various data inputs for processing.
7.1. The Al needs to be able to receive all data from the game that is required.
7.1.1. Al cards.
7.1.2. Shared cards.
7.2. The Al must be able to receive data from its wallet.
8. The Al must be able to use the data it has received and create a decision on what action
it should make.
8.1. The Al must be able to determine whether it should Fold, Call or Raise.
8.1.1. It will need a dataset to train itself on.
8.1.2. It will need to judge its move based on what the neural network returns when
the Al current cards are put in.
8.2. The Al must determine how much it wants to bet.

11
Centre N°: 64395 Candidate N°; 4146

Laurence Brown

DESIGN:

CLASS DIAGRAM:

Game

-gRound = int

-guit = bool

-reset = bool
-gMame = sir

-al = new Al

-human = new Player
-table = new Table

Godalming College

Player

Compare

7]

+setupGame

+Menu

+setupCards
+playGame
+checkMoney
+hettingRound
+hettingRoundAi
+hettingRoundHuman

Table

-flop1 = array
-flop2 = array
-flop3 = array

-turm = array

-river = array
-entryMoney = int
-pot =int

-winner = sir
-winningCards = sir
-nextPlayer = sir

-card1 = array
-card2 = array
-money = int
-gcore = int
-action = str
-raiseAmount = int
-name = sir

-Hcards = array
-Acards = array

+cardCompare
+group

+setCard
+getCard
+setMoney
+getMoney
+setScore
+getScore
+setAction
+etAction
+setRaiseAmount
+getRaiseAmount

CardPile

-deck = array
-usedCards = array

+getCard
+reset

+sethame

+getlName
AliPlayer)

+zefCards
+getCards
+getEntryMoney
+setPot

+getPot
+setWinner
+getWinner
+setWinningCards
+getWinningCards
+setMextPlayer
+getNextPlayer

Centre N°: 64395

=¥ = array
-y = array
-weights = decimal

+reset

+5igma
+sigmaDeriv
+predict
+epoch
+processCards

12

Candidate N°; 4146

Laurence Brown Godalming College

FILES, DATA STRUCTURES, METHODS OF ACCESS

What files | will need:

e A text file for moves to train the neural network against, in the format:
Card1Value,Card2Value,SameSuit

e A text file for correct outcomes of moves needed to train the network, in the format:
CorrectPrediction

Methods of access:
e | will use the dependency csv to manipulate my dataset.

PROCESSES:

The game:
There are multiple algorithms involved in the functioning of the game, below are some

pseudo code examples of them.

Card assignment algorithm:
class CardPile:
deck = (array of all card combinations)
usedCards =[]
def getCard():
while True:
randCard = deck[randint(0,51)]
if randCard not in usedCards:
usedCards.append(randCard)
return randCard
break

This algorithm seems to be the most efficient out of all the ways | found to do it. It would also
be possible to compare to the randomly drawn cards to the other cards assigned to the plays
and tables variables not a used cards variable. This way would be slower however and
mean that the program is less secure.

Hand comparison algorithm:
class Compare:
Hcards = (list of human and table cards)
Acards = (list of Al and table cards)
def cardCompare(hc,ac,tblc):
if evaluateCard(Hcards) > evaluateCard(Acards):
return 'human'’
elif evaluateCard(Acards) > evaluateCard(Hcards):
return ‘ai'
else:
return "no-one"

def evaluateCard(hand):
groups = group(['--23456789TJQKA".index(r) for r, s in hand)])

13
Centre N°: 64395 Candidate N°; 4146

Laurence Brown Godalming College

counts, ranks = zip(*groups)
print groups
if ranks == (14, 5, 4, 3, 2):

ranks = (5, 4, 3, 2, 1)
straight = len(ranks) == 5 and max(ranks)-min(ranks) ==
flush = len(set([s for r, s in hand])) ==
return (

9if (5,) == counts else

8 if straight and flush else

7 if (4, 1) == counts else

6 if (3, 2) == counts else

5 if flush else

4 if straight else

3if (3, 1, 1) == counts else

2if (2, 2, 1) == counts else

1if(2, 1, 1, 1) == counts else

0), ranks

def group(self,items):
groups = [(items.count(x), X) for x in set(items)]
return sorted(groups, reverse = True)

Since there are few ways to make this algorithm and my investigation is on the Al | decided
to use the card sorting algorithm from Udacity’s “Design of Computer Programs” course.
This way | can focus my time on making the neural network work instead of using it to create

a card sorting algorithm.

Winner Calculator Algorithm:
def CalcWinner

If Showdown = True
Return CompareCards

If Al.LastTurn = Fold
Return Player

If Player.LastTurn = Fold
Return Al

If Al.Bank = 0 and Player.Bank > 0
Return Player

If Player.Bank = 0 and Al.Bank > 0
Return Al

This algorithm finds who won the current game by using a series of simple if statements.

14
Centre N°: 64395 Candidate N°; 4146

Laurence Brown Godalming College

The Al:

There are multiple algorithms involved in the functioning of the Al, below are some pseudo
code examples of them.

Neural Network:

X =handstrained.csv

y = correctpredtrained.csv

w = 2* random((3,1)) - 1

for tin xrange(100000):

10 =x
I1 = 1/(1+exponential(-dotproduct(l0, w)))
1 error=y-11

I1_change = I1_error* 11*(1-11)
w += dotproduct(l0.T,I1_change)

This method would allow the Al to be unpredictable as well as play more human like, given
the right dataset.

| could also make the Al by using simple probabilities found online. | could then use these
probabilities and combine them with the Als current cards to reach an outcome.

USER INTERFACE DESIGN:

Since this is an investigation on whether Al is able to beat a human at poker a Ul element is
not necessary. In order to use the program | shall use a command line interface and as the
program runs it will print out necessary information along the way.

PACKAGES AND FRAMEWORK:

I will plan on using a scientific computing package such as NumPy (http://www.numpy.org/)
to help with sigmoid function and matrices. | will also need to use the built in csv library in
order to import and manipulate the datasets to train the neural network with. On top of this |
will need the random (https://docs.python.org/2/library/random.html) dependency so | can
generate random numbers where necessary.

15
Centre N°: 64395 Candidate N°; 4146

http://www.numpy.org/
https://docs.python.org/2/library/random.html

Laurence Brown Godalming College

DESIGN OF TESTING:

| will test several aspects of my program:

1. | will test the basic functionality of the game, to make sure it correctly carried out betting
rounds and handles the end of the game correctly.
1.1. To do this | will use test data to test each section of the game. My project is not
focused on the game however so | will not test this in depth. The following is some
example test data:

N° [Purpose Test Data Expected result

Welcome to texas
hold’em, please
enter your name:

1 To see if the game launches
and prints the welcome
screen.

Run the program.

You are now on
round 1 of the game.

Enter a name in the “Please
enter your name” field.

2 To see if a new player object is
created when requested

3 To see if the game is able to Type “fold” in the “Please You folded, Al wins.
process a move given by the enter move” field. The score is Al - 1
player. Human - 0.

4 To see if the game is able to

correctly determine the winner
of the game using the card

Play the game until both you
and the Al check during the
final round of betting to

[someone] wins with
the cards [C1,C2]

enter the showdown.

comparison algorithm.

1.1. At the end of each test | will screenshot the outcome and assess if it passes or not.

2. 1 will test that the Al is able to correctly interface with the game.
2.1. To do this | will play through several games each time playing in different styles and
| will assess how the Al copes with this. Here is an example of some testing data:

N° | Purpose Test Data Expected result

1 To see if the Al can handle the
human player folding.

Human folds, Al
wins.

You are now on
round 2 of the game.
Al plays as normal.

Run the program and fold
on the first turn. Then see if
the Al functions next game.

2.2. 1 will screen shot the outcome of the test and assess if it passes or not.

3. 1 will test that the Al correctly reads and trains itself off the dataset.
3.1. To do this I will isolate the Al and see if it performs the correct move according to the
dataset | give it.
3.2. Here is some example testing data:

N° [Purpose Test Data Expected result

1 To see if the Al makes the Al raises.
correct move according to the

dataset given.

Give the Al cards that you
would expect it to bet on
e.g. AH and AC.

16

Centre N°: 64395 Candidate N°; 4146

Laurence Brown Godalming College

4. 1 will test that the ability of the Al and see if it is able to gain more money than a human
over a period of 10 games.
4.1. To do this | will play normally against the Al over 10 games with the aim for me to
win. This gives the Al the toughest environment possible.
4.2. | will keep a log of all turns | make, the outcome of each game and the cards each
player had, along with the table cards, and finally how much money each player has
at the end of each round.

17
Centre N°: 64395 Candidate N°; 4146

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
a47.
48.

Laurence Brown Godalming College

TECHNICAL SOLUTION:

| started off my technical solution by exploring the different types of neural networks and
decide what | would use to create my Al.

| first created a simple neural network that could play the game higher or lower by learning
off a small dataset (the complete code is found at appendix A):

#define datasets

X
y

#n
X

np.array(([[0],[12],[4]1.[7]1])., dtype=float)
np.array([[1],[0],[1].[e]11)

ormalise
x/12

#weights

wo
wl
w2
w3

#t
fo

2*np.random.random((1,4))-1
2*np.random.random((4,4))-1
2*np.random.random((4,4))-1
2*np.random.random((4,1))-1

rain
r t in xrange(100000):

#forward propagation

1o = x

11 = sigma(np.dot(le, we))
12 = sigma(np.dot(1l1, wl))
13 = sigma(np.dot(12, w2))
14 = sigma(np.dot(1l3, w3))

#error + change calc

14 _error =y - 14

14 _change = 14 _error*sigma_deriv(14)
13_error = 14 _change.dot(w3.T)
13_change = 13_error * sigma_deriv(13)
12_error = 13_change.dot(w2.T)
12_change = 12_error * sigma_deriv(12)
11_error= 12_change.dot(wl.T)
11_change = 11_error * sigma_deriv(11)

#update weights
w3 += np.dot(13.T, 14 _change)

w2 += np.dot(12.T, 13_change)
wl += np.dot(1l1.T, 12_change)
wo += np.dot(10.T, 11 change)

It used a neural network that used gradient descent to learn. Gradient descent is where each
weight in the network is assigned a random weight. The learning dataset (x) is then put
through the weights and the outcome is recorded. The difference between this and the
actual outcome store in dataset (y) is then calculated, this is the error. To find how much it
needs to adjust the weights by, the change, it multiplies the error by the gradient of the point
on the sigma function on which each layer lies. It then adjusts the weights by the dot product
of the layer and the layer change needed. This whole process is repeated 100,000 times to
achieve maximum accuracy. The user may then enter their own card, this then gets put
through the weights and returns whether the next card is likely to be higher or lower.

This method worked well but only for small datasets. The dataset | will be using will be
significantly bigger as it will store the move that should be made for each possible
combination of the players hand cards.

18
Centre N°: 64395 Candidate N°; 4146

8.

10.
11.
12.
13.
14.
15.
16.
17.
18.

36.
37.

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

Laurence Brown

Godalming College

| then found a neural network type that is able to handle large data sets. Using a method
called “Stochastic gradient descent” the neural network is able to be trained quickly on a

large dataset.

| then set about creating an Al that would learn what move to make in poker when given its
two hand cards. First | had to create a dataset for the Al to learn off. | did this by writing a
program that compared every possible hand combination with every possible hand
combination it could go up against multiple times, each time with different table cards. | then
assigned each card combination points based on how many times it won. From this | created
a dataset. There are two files that make up the dataset, correctpredtrained.csv and
handstrained.csv. The headers of each dataset look like the following:

correctpredtrained.csv:

| Card1 float value (rank/14) | Card2 float value (rank/14) | Suited (1= suited, 0 = not suited)

handstrained.csv:

| Correct prediction (1 = raise, 0 = fold)

The program took roughly eight hours to create the dataset which | am going to use for my
Al. The code for this program can be found in appendix B. The dataset can be found in
appendix C. After | had created this dataset | then moved on to create the Stochastic
Gradient Descent neural network that would play Al:

#define datasets

_ X np.genfromtxt('handstrained.csv'

delimiter=",")

_y = np.genfromtxt('correctpredtrained.csv', delimiter=",")[np.newaxis]

_y _y.T
#seed

np.random.seed(1)

#weights

__w0 = 2*np.random.random((3,4))-
__wl = 2*np.random.random((4,4))-
W2 = 2*np.random.random((4,4))-
__ W3 = 2*np.random.random((4,1))-

i xrange(10):
self.epoch()

epoch(self):

_7=0

#train
t xrange(len(self.__y)/4):
#forward propagation
10 = self. x[__z:(__z+5)]
_ 11 = self.sigma(np.dot(__10
_ 12 = self.sigma(np.dot(__11
_ 13 self.sigma(np.dot(__12
_ 14 = self.sigma(np.dot(__13
#error + change calc

self. wo))
self. wl))
self. w2))
self. w3))

_ 14 error = self.__y[_ z:(__z+5)] - _ 14

14 change = __14 error*self.sigmaDeriv(__14)
__13 error = __14 change.dot(self.__w3.T)

13 change = __13_error * self.sigmaDeriv(__13)
__12 error = __ 13 change.dot(self.__w2.T)

12 change = __12_error * self.sigmaDeriv(__12)
11 error= __12 change.dot(self.__wl.T)

Centre N°: 64395

19
Candidate N°; 4146

68.
69.
70.
71.
72.
73.
74.

uhwnNneR

)]

10.
11.

12.
13.

14.
15.

16.
17.

18.

19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

Laurence Brown Godalming College

_ 11 change = __11_error * self.sigmaDeriv(__11)
#update weights
self.__w3 += np.dot(__13.T, _ 14 change)
self. w2 += np.dot(__12.T, _ 13 change)
self. wl += np.dot(__11.T, _ 12 change)
self. wO += np.dot(__10.T, _ 11 change)
_z+=5
(The full code can be found in appendix B)
Unlike the standard gradient descent neural network this method trains itself off chunks of

the dataset at a time.

After | had solved the Al element | then needed to create a poker game for the Al to play
against someone on. The following are some of the major algorithms in the game.

The playGame() function calls betting rounds in the right order, reveals table cards as they
are needed, calls on the card comparison to determine the winner and returns the winner
once run through.

def playGame(self):
self. human.setMoney(-self._ table.getEntryMoney())
self. ai.setMoney(-self._ table.getEntryMoney())
self.__table.setPot(2*self.__table.getEntryMoney())
self.__table.setNextPlayer('r")

This is the preflop betting round.
if self.bettingRound() False:
print "The table's cards are: " + str(self._table.getCards(0)+",
"+self. table.getCards(1l)+", "+self._ table.getCards(2))
self.__human.setAction('-")
self. ai.setAction('-")

This is the flop betting round.
if self.bettingRound() False:
print "The table's cards are: " + str(self.__table.getCards(0)+",
"+self._table.getCards(1)+", "+self.__table.getCards(2)+", "+self._ table.getCards(3))
self. human.setAction('-")
self. ai.setAction('-")

This is the turn betting round.
if self.bettingRound() False:
print "The table's cards are: " + str(self.__table.getCards(9)+",
"+self._ table.getCards(1)+", "+self.__table.getCards(2)+", "+self._ _table.getCards(3)+",
"+self._ table.getCards(4))
self.__human.setAction('-")
self. ai.setAction('-")
This is the river betting round.
if self.bettingRound() False:

If neither player folds nor runs out of money during any of the betting rounds then the card

comparison function is called to determine the winner.
self.__table.setWinner(Compare().cardCompare(self.__human.getCard()
self.__ai.getCard(),[self._ table.getCards(9),self._table.getCards(1l),self.__ table.getCards(
2),self.__table.getCards(3),self.__table.getCards(4)]))
if self._ table.getWinner() "Human' :
self.__human.setMoney(self.__table.getPot())
self.__table.setPot(9)
self.__human.setScore(1)
self.__table.setWinnersCards(str(self.__human.getCard()))
return str(self.__human.getName())
elif self._ table.getWinner() "AL':
self.__ai.setMoney(self.__table.getPot())
self. table.setPot(9)
self. ai.setScore(1l)
self.__table.setWinnersCards(str(self.__ai.getCard()))
return 'AT’

20
Centre N°: 64395 Candidate N°; 4146

32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.

52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

coNOuUVhwNRE

Laurence Brown Godalming College

else:
self.__human.setMoney(self.__table.getPot()/2)
self.__ai.setMoney(self.__table.getPot()/2)
self. table.setPot(9)
self._ table.setWinnersCards('")
return 'no-one’

If a player runs out of money or folds a winner will be chosen in this section.

else:
if self.__gameOver 'ai':
return str(self.__human.getName())
if self.__gameOver "human':
return 'AT'
elif self.__table.getWinner() "Human':

self. table.setWinnersCards(str(self.__human.getCard()))
return str(self.__human.getName())

elif self.__table.getWinner() "AL":
self. table.setWinnersCards(str(self._ ai.getCard()))
return 'AI’

else:
self. table.setWinnersCards('")
return 'no-one’

This function checks that both players still have money to play with else it will end the game.
def checkMoney(self,flag):

if int(self.__human.getMoney()) 0 and flag False:
self._ gameOver "human'
self. table.setWinner('AI")
self._ table.setWon('t")
self._ _ai.setScore(l)
return True

elif int(self.__ai.getMoney()) < © and flag False:
self.__gameOver ‘ai'
self.__table.setWinner('Human")
self. table.setWon('t")
self. human.setScore(1)
return True

elif flag True: return True

else: return False

This function is the base level of the betting rounds, it displays each players money, checks
that no one has folded and calls the checkMoney() algorithm as well as call each players

individual betting round in the correct order.
def bettingRound(self):
self.__table.setWon('f")
__flag = False
if self.__ table.getNextPlayer() 1:
while _ flag False:
_ flag = self.checkMoney(__flag)
print "Your money: " + str(self.__human.getMoney())
print "AI money: " + str(self.__ai.getMoney())
print "Pot: " + str(self.__table.getPot())
if _ flag False:
if self.bettingRoundHuman() True and __ flag False:
self.__table.setNextPlayer('a')

__flag = True
_ flag = self.checkMoney(__flag)
print "Your money: " + str(self.__human.getMoney())

print "AI money: + str(self.__ai.getMoney())
print "Pot: " + str(self.__table.getPot())
if _ flag False:
if self.bettingRoundAi() True and __flag False:
self.__table.setNextPlayer('h")
__flag = True
elif self._table.getNextPlayer() 2:

21
Centre N°: 64395 Candidate N°; 4146

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.

83.

Laurence Brown Godalming College

while _ flag False:
__flag = self.checkMoney(__flag)
print "Your money: " + str(self.__human.getMoney())
print "AI money: " + str(self.__ai.getMoney())
print "Pot: " + str(self.__table.getPot())
if _ flag False:
if self.bettingRoundAi() True and __ flag False:
self.__table.setNextPlayer('h')

__flag = True
__flag = self.checkMoney(__flag)
print "Your money: " + str(self.__human.getMoney())

print "AI money: + str(self.__ai.getMoney())
print "Pot: " + str(self.__table.getPot())
if _ flag False:
if self.bettingRoundHuman() True and __ flag False:
self.__table.setNextPlayer('a')
__flag = True
if self._ table.getWon() True:
return True
else:
return False

This is the Al betting round, it requests moves from the Al object and deals with the

movement of money between players.
def bettingRoundAi(self):
self. ai.setAction('x")
if self._ ai.getAction() e
print "AI folds with the cards: " + str(self.__ai.getCard())
self.__human.setMoney(self._ table.getPot())
self.__table.setPot(9)
self.__human.setScore(1)
self.__table.setWinner('Human')
self.__table.setWon('t")
return True
elif self._ai.getAction() 'r':
self. ai.setRaiseAmount()
self.__ai.setMoney(-self.__ai.getRaiseAmount())
self.__table.setPot(self.__ai.getRaiseAmount())
print "AI raises by " + str(self.__ai.getRaiseAmount())
if self._ human.getAction() "r':
self. ai.setMoney(-self.__human.getRaiseAmount())
self. table.setPot(self.__human.getRaiseAmount())
self.__table.setWon('f")
return False
elif self.__human.getAction() 'c':
self. table.setWon('f")
return False
else:
self. table.setWon('f")
return False

elif self._ ai.getAction() ‘c':
print "AI calls"
if self.__human.getAction() r':

self. ai.setMoney(-self.__human.getRaiseAmount())
self. table.setPot(self.__human.getRaiseAmount())
self. table.setWon('f")
return False

elif self.__human.getAction()
self. table.setWon('f")
return True

else:
self._ table.setWon('f")
return False

This is the human betting round, it requests moves from the user and deals with the

movement of money between players.
def bettingRoundHuman(self):

22

Centre N°: 64395 Candidate N°; 4146

84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.

N

11.
12.
13.
14.
15.
16.
17.
18.
19.

Laurence Brown Godalming College

print str(self.__human.getName())+", your cards are: " + str(self.__human.getCard())
self.__human.setAction(raw_input("What is your move? (r/c/f): "))
if self.__human.getAction() e

self._ _ai.setMoney(self.__table.getPot())
self.__table.setPot(9)
self. ai.setScore(1l)
self.__table.setWinner('AI")
self. table.setWon('t")
return True
elif self.__human.getAction() r':
self.__human.setRaiseAmount(input("Raise by: "))
self.__human.setMoney(-self.__human.getRaiseAmount())
self.__table.setPot(self.__human.getRaiseAmount())
if self.__ai.getAction() 'r':
self. human.setMoney(-self._ ai.getRaiseAmount())
self. table.setPot(self.__ai.getRaiseAmount())
self. table.setWon('f")
return False
elif self._ ai.getAction() c':
self. table.setWon('f")
return False
else:
self.__table.setWon('f")
return False
elif self.__human.getAction() c':
if self._ ai.getAction() c':
self. table.setWon('f")
return True
elif self. ai.getAction() 'r':
self. human.setMoney(-self. ai.getRaiseAmount())
self. table.setPot(self.__ai.getRaiseAmount())
self.__table.setWon('f")
return False
else:
self.__table.setWon('f")
return False

This is the card comparison function that decides which players hand was stronger.
class Compare:
__allHcards [1]
__allAcards [1]

First it creates two arrays; one for the humans and table cards and one for the Al and table

cards.
def cardCompare(self,hc,ac,tblc):
self. allHcards [hc[@], hc[1], tblc[@], tblc[1], tblc[2], tblc[3], tblc[4]]
self. allAcards [ac[@], ac[1], tblc[@], tblc[1], tblc[2], tblc[3], tblc[4]]
Here it decides which player had the highest rated hand by comparing tuples.
if self.evaluateCard(self.__allHcards) self.evaluateCard(self.__allAcards): return
"Human'
elif self.evaluateCard(self._ allAcards) self.evaluateCard(self. allHcards): retur
n 'AT’
else: return "no-one"

This function creates a tuple that represents the players hand strength.
def evaluateCard(self,hand):
__groups = self.group(['--23456789TJQKA"'.index(r) for r, s in hand])
__counts, __ranks = zip(*__groups)
if _ ranks (14, 5, 4, 3, 2):
__ranks (5, 4, 3, 2, 1)

__straight = len(__ranks) 5 and max(__ranks)-min(__ranks) 4
__flush = len(set([s for r, s in hand])) 1
return (
9 if (5,) __counts else
23

Centre N°: 64395 Candidate N°; 4146

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

coNOUVTh wWNRE

9

10.
11.
12.
13.

Laurence Brown Godalming College

8 if __straight and __ flush else
7 if (4, 1) __counts else

6 if (3, 2) __counts else

5 if _ flush else

4 if __straight else

3if (3, 1, 1) __counts else

2 if (2, 2, 1) __counts else

1 if (2, 1, 1, 1) __counts else
0), _ ranks

def group(self,items):
__groups [(items.count(x), x) for x in set(items)]
return sorted(__groups, reverse = True)

Since the card comparison algorithm is a difficult one to code and there are only a few
certain ways to perform it | made use of a card comparison algorithm found on Udacity’s
“Design of Computer Programs” course.

This is the card pile class that contains the deck array and distributes cards to players and
the table.

. class CardPile:

__deck [r+s for r in '23456789TJQKA' for s in 'SHDC']
__usedCards [1]
def getCard(self):
while True:
__randCard self. deck[randint(0,51)]
if _ _randCard not in self.__usedCards:
self. usedCards.append(__randCard)
return __randCard
break
def reset(self):
self.__usedCards [1]

14. game = Game('One')
15. game.menu()

After | had finished coding each separate algorithm | combined them all into one python file,
added linking pieces of code and converted it into OOP style programming. The final result
can be found in appendix E.

Here is an overview guide of the program:

correctpredtraine correctpredtraine correctpredtraine datatrain.py handstrained.csv poker.py
d.csv dfloat.csv dUM.csv

) NS T ! i

Temporary files when
creating the dataset.

Training dataset. Program to create Correct outcome Poker game

dataset. dataset. with Al
integrated in.

24
Centre N°: 64395 Candidate N°; 4146

Laurence Brown

Godalming College

| then moved onto the testing where | could verify that all the algorithms were working
correctly and where | could start to investigate if it is possible for a poker Al to beat a human
player. | started with testing the actual functionality of the game, to ensure that it was
correctly dealing with inputs and playing through the game of poker correctly.

Game Functionality testing:

N° Purpose Test Data Expected result Actual
Result
(evidence
appendix F)

1.1 The game launches without | N/A. Games launches and prints Pass.
errors. welcome text. (1.12)

1.2 The game successfully Enter “Player Game starts the first round of Pass.
creates a new player object. | name” in the betting. (1.2)

name field.

1.3a | The game is able to Enter: a. Game recognises you wanted a. Pass.

1.3b | interpret a player's move. “f to fold and ends the round, (1.3a)

1.3c “r’ declaring the Al as the winner. b. Pass.
“c” b. Game asks how much you want (1.3b)
In the move to raise by. c. Pass.
field. c. Game proceeds with the betting (1.3¢c)
round

1.4 | To see if the game correctly | Enter “1000” in | The game deducts 1000 from the Pass.
handles money. the raise field. player's wallet when raising. (1.4

1.5 | To see if the card Play until the The player who had the better set Pass, the
comparison algorithm works | end of a round. | of cards wins. human won
correctly. with two

pairs.
(1.5)

1.6 To see if the game is able to | Enter “y” inthe | The game resets each player’s Pass.
reset itself. reset field. money, score and game round. (1.6)

1.7 To see if the game quits Enter “y” inthe | The game exits. Pass.
successfully. quit field. a.7)

1.8 To see if the game displays | N/A a. It displays information about the | a. Pass.
relevant information about money. (1.8a)
the game. b. It displays information about the | b. Pass.

game score and round. (1.8b)
c. The game displays information | c. Pass.
about player’s cards and the (1.8¢c)
table cards. d. Pass.
d. The game shows information (1.8d)

about the winner.

Centre N°: 64395

25

Candidate N°;

4146

Laurence Brown

Godalming College

1.9 The game is able to Play normally The game displays relevant Pass.
correctly carry out an entire | until the end of a | information and doesn’t run into (2.9
betting round betting round. any errors as | play.

Then | moved on to test the integration of the Al within the poker game to ensure that both
algorithms were able to communicate successfully and effectively.
Al-Game communication testing:
N° Purpose Test Data Expected result Actual Result
(evidence
appendix F)
2.1 | Toseeif the Al can make a | N/A Al calls / folds / raises. Pass.
move within the game. (2.1)
2.2 To see if the Al can handle | Run the Human folds, Al wins. Pass.
the human player folding. program and You are now on round 2 of the | (2.2)
fold on the first | game.
turn. Then see if | Al plays as normal.
the Al functions
next game.
2.3 To see if the Al is able to Fold several Al plays as normal. Pass.
play after multiple resets. times over and (2.3)
reset the game
multiple times.
Afterwards | then tested that the dataset was being read correctly by the Al and to see if the
Al was learning off of it.
Tests to see if the Al is reading the dataset correctly.
N° Purpose Test Data Expected result Actual Result
(evidence
appendix F)
3.1a | To see if the Al makes the Give the Al a. Al raises. a. Pass.
3.1b | correct move according to cards that you b. Al folds. (3.1a)
the dataset given. would expect it b. Pass.
to bet on: (3.1b)
a. 8D, QH
b. 3H,2H

Centre N°: 64395

26

Candidate N°; 4146

Laurence Brown

Godalming College

Finally | tested whether it is possible for a poker Al to beat a human player in order to get a

conclusion for my investigation.

Tests to see if the Al can outperform a human:

Round | Cards Method of Players money Game results
N° winning (evidence
appendix F)
1 Al: QH, 2D Fold. Al: 1,000,100 Al wins.
Human: 2H, 2C Human: 999,900 (4.1)
Table: ?
2 Al: JD, 5D Showdown. Al: 995,168 Human wins.
Human: JS, TS Human: 994,958 (4.2)
Table: KH, 2S, KD, 5H, 5C
3 Al: 8S, KC Showdown. Al: 1,000,131 Al wins.
Human: 9S, JH Human: 999,869 (4.3)
Table: 6H, 3C, TH, QC, 4D
4 Al: JC, QD Showdown. Al: 1,050,523 Al wins.
Human: QS, 8D Human: 944,807 (4.4)
Table: 4S, 9C, TC, 7C, 8C
5 Al: 9D, 6D Showdown. Al: 1,058,863 Al wins.
Human: 3S, KS Human: 940,037 (4.5)
Table: TD, 9H, 7D, 6S, 7H
6 Al: JS, 2D Showdown. Al: 1,039,868 Human wins.
Human: KH, 7C Human: 953,821 (4.6)
Table: 4C, 4H, 3D, QH, 3S
7 Al: 4C, 7H Showdown. Al: 1,055,066 Al wins.
Human: 9H, 8S Human: 938,623 4.7)
Table: 6H, AD, QC, 5S, 8H
8 Al: 2S, JH Fold. Al: 1,055,166 Al wins.
Human: 3D, 7D Human: 938,523 (4.8)
Table: ?
9 Al: 9S, 6S Showdown. Al: 1,054,066 Human wins.
Human: KS, JC Human: 939,623 (4.9)
Table: 2C, TS, QS, 7C, TD
10 Al: 5H, 6C Showdown. Al: 1,048,775 Human wins.
Human: 7S, 5D Human: 951,225 (4.10)
Table: KH, KC, 5C, AC, 2D
27

Centre N°: 64395

Candidate N°; 4146

Laurence Brown Godalming College

To evaluate and assess how well | carried out this investigation | must see if my solution
meets the requirements.

| feel that my solution meets most, if not all, requirements | set out to complete. The testing
shows that the following requirements were met.

Requirement | Met? | Explanation

1 v As evidenced in the screenshot the user was clearly able to see
their cards and the table cards as well as input there desired
action.

2 v The program was successfully able to deal cards to all positions
and not draw duplicates.

3 v The second stage of testing showed that the Al was successfully
able to communicate with the game.

4 v As it was demonstrated all throughout my testing that the game

was able to constantly transfer money between the players and the
pot, rewarding the winner with all the money acquired in the pot at
the end of a game.

5 N4 The game was successfully able to determine a winner, as shown
in the final stage of testing, if a player folded, if a player's money
ran out or if it came to the showdown, a winner was picked.

6 v It was shown that in the last stage of testing as the game was
clearly able to determine when a round of betting was over.

7 v The testing in stage 2 and 4 shows that the Al could make moves
within the game and receive its cards and money.

8 v In the 3 stage of testing where | tested if the Al was able to

access a dataset and make a correct move when asked.

Since all of my requirements were met this provides a fair platform to put my investigation to
test. However if | were to revisit this investigation | would have introduced more validation
into the poker game to insure no foul input could be made. | would also create my own hand
evaluation algorithm that would be more tailored to my game of poker. In addition to this |
would have created a better dataset that does not just work off probabilities. Finally if | had
extra time | would make the Al self-learning, so that after each game it played it would
update the dataset appropriately according to what happened during that previous game.

| also received feedback from Mr. M, a poker player at Godalming College. He liked the
game and was impressed that it was more successful than an average human player. He
also gave me suggestions of creating my own dataset and have the Al update itself as it
plays so the Al becomes more self-improving over time. He also suggest | look into using
more complex neural network models like deep learning algorithms.

To conclude, my investigation was to find out if it is possible to produce an Al that will earn
more money from playing Texas hold’em than a human in 10 games. To test this | played my
best against the Al for the duration of 10 games of poker and measured the amount of
money each player had at the end of it. The final testing stage showed that Al is capable of
playing poker better than an average human poker player as it beat me by making a profit of
48,775 over the duration of 10 games.

28
Centre N°: 64395 Candidate N°; 4146

oNoOUVh wNnBRE

-y

Laurence Brown

APPENDICIES:

Godalming College

A: Higher lower standard gradient descent neural network.

import numpy as np

#mak
def

#sig
def

. #nor
.X =

. #wei
. We =
.wl =
w2
. w3

. #tra
. for

. prin
. prin

. #use
. C =
. C

. #nor
. C =

e sigma
sigma(x):
return 1/(1+np.exp(-x))

ma gradient
sigma_deriv(x):
return x*(1-x)

. #define datasets
X =

np.array(([[@],[12],[4].[7]]), dtype=float)

np.array([[1],[e].[1].[@]])

malise
x/12

ghts
2*np.random.random((1,4))-1
2*np.random.random((4,4))-1
2*np.random.random((4,4))-1
2*np.random.random((4,1))-1
in

t in xrange(100000):

#forward propagation

1o = x

11 = sigma(np.dot(le, we))
12 = sigma(np.dot(1l1, wl))
13 = sigma(np.dot(1l2, w2))
14 = sigma(np.dot(13, w3))

#error + change calc

14 error =y - 14

14 _change = 14_error*sigma_deriv(14)
13_error = 14_change.dot(w3.T)
13_change = 13_error * sigma_deriv(13)
12_error = 13_change.dot(w2.T)
12_change = 12_error * sigma_deriv(12)
11_error= 12_change.dot(wl.T)
11_change = 11_error * sigma_deriv(11)

#update weights

w3 += np.dot(13.T, 14_change)
w2 += np.dot(12.T, 13_change)
wl += np.dot(1l1.T, 12_change)
wo += np.dot(10.T, 11_change)

t "Output after training”
t 14

r entry
raw_input("Card: ")
np.array(([[c]]), dtype=float)

malise
Cc/12

Centre N°: 64395

29

. print sigma(np.dot(sigma(np.dot(sigma(np.dot(sigma(np.dot(C, wo)), wl)), w2)), w3))

Candidate N°: 4146

oONOOUVTh WN R

28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.

Laurence Brown Godalming College

B: datatrain.py — dataset creation.

import itertools, random, sys, math, time, csv
from random import randint

from time import sleep

import numpy as np

def main():
setup()
train()
DataSet().csvList()

. def setup():

CardPile().reset()
CardPile().setList()

. def train():

for x in xrange(0,52):
for y in xrange(0,52):
if xl=y:
tp = TrainPlayer((x,y))
tp.setCards((CardPile().getSpecCard(tp.getCardNo()[@]),CardPile().getSpecCard
(tp.getCardNo()[1])))
for i in xrange(90,52):
for j in xrange(0,52):
if i!=j and il=x and i!=y and j!=x and j!=y and x!=y:
op = OppPlayer((i,3))
op.setCards((CardPile().getSpecCard(op.getCardNo()[0]),CardPile()
.getSpecCard(op.getCardNo()[1])))
for epoch in xrange(©,100):
tbl = Table([CardPile().getRandCard(),CardPile().getRandCard(
),CardPile().getRandCard(),CardPile().getRandCard(),CardPile().getRandCard()])
tp.setPoints(int(Compare().cardCompare(tp.getCards(),op.getCa
rds(),tbl.getCards())))
CardPile().reset()
CardPile().usedCardAdd(tp.getCards()[@])
CardPile().usedCardAdd(tp.getCards()[1])
CardPile().usedCardAdd(op.getCards()[@])
CardPile().usedCardAdd(op.getCards()[1])
del op
DataSet().setPoint(tp.getCards()[9].tp.getCards()[1],tp.getPoints())
print tp.getCards()
del tp

class Compare:
__allTcards [1]
__allecards [1]
def cardCompare(self,tpc,opc,tblc):
self. allTcards [tpc[@], tpc[1l], tblc[0], tblc[1], tblc[2], tblc[3], tblc[4]]
self. allOcards [opc[@], opc[1], tblc[0], tblc[1], tblc[2], tblc[3], tblc[4]]
if self.evaluateCard(self.__allTcards) self.evaluateCard(self.__allOcards):
return 1
elif self.evaluateCard(self.__allOcards) self.evaluateCard(self.__allTcards):
return 0
else:
return 0

def evaluateCard(self,hand):
groups = self.group(['--23456789TJQKA"'.index(r) for r, s in hand])
counts, ranks zip(*groups)

30
Centre N°: 64395 Candidate N°; 4146

Laurence Brown Godalming College

56. if ranks == (14, 5, 4, 3, 2):

57. ranks = (5, 4, 3, 2, 1)

58. straight = len(ranks) == 5 and max(ranks)-min(ranks) ==
59. flush = len(set([s for r, s in hand])) ==
60. return (

61. 9 if (5,) == counts else

62. 8 if straight and flush else

63. 7 if (4, 1) == counts else

64. 6 if (3, 2) == counts else

65. 5 if flush else

66. 4 if straight else

67. 3 if (3, 1, 1) == counts else

68. 2 if (2, 2, 1) == counts else

69. 1 if (2, 1, 1, 1) == counts else
70. 9), ranks

71.

72. def group(self,items):

73. groups = [(items.count(x), x) for x in set(items)]
74. return sorted(groups, reverse = True)
75.

76. class Table:

77. _ flopl = []

78. _ flop2 = []

79. _ flop3 = []

80. __turn = []

81. __river = []

82. def __init_ (self,cards):

83. self. flopl = cards[9@]

84. self. flop2 = cards[1]

85. self. flop3 = cards[2]

86. self. turn = cards[3]

87. self. river = cards[4]

88. def getCards(self):

89. return [self._flopl, self._flop2, self.__flop3, self.__turn, self._river]
90.

91. class Player:

92. __cardNo = []

93. __cards = []

94. def __init__ (self, cardNo):

95. self._ cardNo = cardNo

96. def getCardNo(self):

97. return self._cardNo

98. def setCards(self,cards):

99. self.__cards = cards

100. def getCards(self):

101. return self.__ cards

102.

103. class TrainPlayer(Player):

104. __points = ©

105. def __init_ (self, cardNo):

106. Player.__init_ (self, cardNo)
107. def getCardNo(self):

108. return Player.getCardNo(self)
109. def setCards(self,cards):

110. Player.setCards(self,cards)
111. def getCards(self):

112. return Player.getCards(self)
113. def setPoints(self, points):

114. self. points += points

115. def getPoints(self):

116. return self._points

117.

118. class OppPlayer(Player):

119. def __init__ (self, cardNo):

120. Player.__init_ (self, cardNo)
121. def getCardNo(self):

31
Centre N°: 64395 Candidate N°: 4146

Laurence Brown

Godalming College

122. return Player.getCardNo(self)

123. def setCards(self,cards):

124. Player.setCards(self, cards)

125. def getCards(self):

126. return Player.getCards(self)

127.

128. class CardPile:

129. __deck = [r+s for r in '23456789TJQKA"' for s in 'SHDC']

130. __usedCards = []

131. _list = []

132. def getSpecCard(self,cardneeded):

133. __specCard = self.__deck[cardneeded]

134. self.__usedCards.append(__specCard)

135. return __specCard

136. def getRandCard(self):

137. while True:

138. __randCard = self.__deck[randint(0,51)]

139. if __randCard not in self.__usedCards:

140. self. usedCards.append(__randCard)

141. return __randCard

142. break

143. def setList(self):

144. for x in xrange(©,52):

145. for y in xrange(90,52):

146. ify = x:

147. self. list.append((x,y))

148. def getList(self):

149. return self._ 1list

150. def reset(self):

151. del self. usedCards[:]

152. def usedCardAdd(self, card):

153. self.__usedCards.append(card)

154.

155. class DataSet:

156. __cardList = []

157. __pointList = []

158. __floatList = []

159. __predList = []

160. def setPoint(self,cardl,card2,point):

161. self. cardList.append(self.processCards(cardl,card2))

162. self. pointList.append([point])

163. def getPoint(self,pos):

164. return (self.__cardList[pos], self.__pointList[pos])

165. def processCards(self,cardl,card2):

166. if cardl[:1] == 'T': c1 = 10

167. elif cardl[:1] == 'J': c1 = 11

168. elif cardl[:1] == 'Q': c1 = 12

169. elif cardl[:1] == 'K': c1 = 13

170. elif cardl[:1] == 'A': c1 = 14

171. else: c1 = int(cardl[:1])

172. if card2[:1] == 'T': c2 = 10

173. elif card2[:1] == 'J': c2 = 11

174. elif card2[:1] == 'Q"': c2 = 12

175. elif card2[:1] == 'K': c2 = 13

176. elif card2[:1] == 'A': c2 = 14

177. else: c2 = int(card2[:1])

178. if cardl[-1:]==card2[-1:]: s = 1

179. else: s = 0

180. cl = float(cl)/14

181. c2 = float(c2)/14

182. return [cl,c2,s]

183. def pointFloat(self):

184. maxPoint = max(self._ pointList)[9]

185. self._ floatList = [[float(j)/maxPoint for j in i] for i in self.__ pointlLis
t]

186. def makePred(self, x):

Centre N°: 64395

32

Candidate N°: 4146

187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.

Laurence Brown

return(

1 if x >= 0.6 else
)

def makePredList(self):
self._ predlList = [[self.makePred(x) for x in z] for z in self.__floatlList]
def csvList(self):
with open('handstrained.csv', 'wb') as myfile:

wr = csv.writer(myfile, delimiter="',")
for z in xrange(0,len(self.__cardList)):
wr.writerow(self.__cardList[z])

with open('correctpredtrainedUN.csv', 'wb') as myfile:

wr = csv.writer(myfile, delimiter="',")
for z in xrange(0,len(self.__pointList)):
wr.writerow(self.__pointList[z])

self.pointFloat()
self.makePredList()

with open('correctpredtrainedfloat.csv’,

wr = csv.writer(myfile, delimiter=",")
for z in xrange(©,len(self._ floatList)):
wr.writerow(self. floatList[z])

with open('correctpredtrained.csv', 'wb') as myfile:

main()

Centre N°: 64395

wr = csv.writer(myfile, delimiter=",")
for z in xrange(0,len(self.__predList)):
wr.writerow(self.__ predList[z])

33

Godalming College

'wb') as myfile:

Candidate N°: 4146

Laurence Brown

C: Dataset

correctpredtrained.csv:

Godalming College

Card1 float value (rank/14)

Card2 float value (rank/14)

Suited (1= suited, 0 = not suited)

0.1428571429

0.1428571429

0.1428571429

0.1428571429

0.1428571429

0.1428571429

0.1428571429

0.2142857143

0.1428571429

0.2142857143

0.1428571429

0.2142857143

OO0 |O|O|0O

(Continued)

handstrained.csv:

Correct prediction (1 = raise, 0 = fold)

0

0
0
0
0
0
C

(Continued)

Centre N°: 64395

34

Candidate N°; 4146

oNOUVTh WNBRE

44,
45.
46.
a47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

Laurence Brown

Godalming College

D: Higher lower stochastic gradient descent neural network.

import numpy as np
import csv, random, itertools
from random import randint

class sdg _nn:
__action = "'
#define datasets
x = np.genfromtxt('handstrained.csv', delimiter="',")

_y = np.genfromtxt('correctpredtrained.csv', delimiter=",")[np.newaxis]

_y=_y.T

#seed

np.random.seed(1)

#weights

__ W@ = 2*np.random.random((3,4
__wl = 2*np.random.random((4,4
__ W2 = 2*np.random.random((4,4
__ w3 = 2*np.random.random((4,1
#raise check

__allReadyRaise = False

))-1
))-1
))-1
))-1

__move = 0

def setAction(self,cardl,card2):

self. action = self.predict(cardl,card2)
def getAction(self):

return self._ action

def sigma(self,x):
return 1/(1+np.exp(-x))
#sigma gradient
def sigmaDeriv(self,x):
return x*(1-x)
def predict(self,c01,c02):
__carray = self.processCards(c01,c02)
for i in xrange(10):
self.epoch()

#predict

¢l = _carray[0]
_c2 = _ _carray[1]
__ s = __carray[2]

__C =np.array([[__cl,_c2,_s]D

self. move = self.sigma(np.dot(self.sigma(np.dot(self.sigma(np.dot(self.sigma(np.dot

(_C, self.__we)), self._ wl)), self. w2)),self.__w3))

if self.__move >= 0.7 and self.__allReadyRaise == False:

self.__allReadyRaise = True
return 'r

elif self._move >=0.5: return

else: return 'f'

def epoch(self):

__z=0

#train

for t in xrange(len(self.__y)/4):
#forward propagation
_ 1o = self._ x[__z:(__z+5)]
_ 11 = self.sigma(np.dot(__10, self._w@))
_ 12 = self.sigma(np.dot(__11, self._wl))
_ 13 = self.sigma(np.dot(__12, self._w2))
_ 14 = self.sigma(np.dot(__13, self._w3))
#error + change calc

C

__ 14 error = self.__y[__z:(_z+5)] - __14
14 _change = __14 error*self.sigmaDeriv(__14)
__13 error = __14 change.dot(self.__w3.T)

35

Centre N°: 64395

Candidate N°: 4146

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.

Laurence Brown

_ 13 _change = __13_error * self.sigmaDeriv(__13)
_12 error = __13_change.dot(self.__w2.T)
_ 12 change = __12_error * self.sigmaDeriv(__12)
__11 error= __12 change.dot(self.__wl.T)
11 change = __11 error * self.sigmaDeriv(__11)

#update weights

self._ w3 += np.dot(__13.T,
self. w2 += np.dot(__12.T,
self. _wl += np.dot(__11.T,
self. w0 += np.dot(__10.T,

10
= 11
= 12
= 13
= 14

= 11
= 12
= 13
=14

z += 5

def processCards(self,cardol,cardo2):
if cardol[:1] == 'T': __cl =
elif cardol[:1] == 'J': _c1
elif cardol[:1] == 'Q"': __c1
elif cardol[:1] == 'K': _ c1
elif cardol[:1] == 'A': _c1
else: _ ¢l = int(cardol[:1])
if cardo2[:1] == 'T': _c2 =
elif cardo2[:1] == '"J': _ c2
elif card02[:1] == 'Q"': _ c2
elif card02[:1] == 'K': _ c2
elif card@2[:1] == 'A"': _ c2
else: _ c2 = int(cardo2[:1])
if card@l[-1:]==card@2[-1:]: __s
else: s =20
_ ¢l = float(__c1)/14
€2 = float(__c2)/14
return [__cl, c2, s]

cardl =
card2 =

raw_input("Card 1: ")
raw_input("Card 2: ")
sdg_nn().setAction(cardl, card2)
print str(sdg_nn().getAction())

Centre N°: 64395

14 change)
__13 change)
12 change)
__11_change)

36

Godalming College

Candidate N°: 4146

oONOUVTh WNBRE

36.

37.
38.

39.
40.

41.
42.
43.
44,

45.
46.

47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.

Laurence Brown

E: poker.py — The final solution.

#Import dependancies
import sys

from random import randint
import numpy as np

class Game:
__gRound = 1 #game round
__quit = False
__reset = False

__gName = '' #game name
_ai = None

__human = None
__gameOver = "'

__table = None

def __init__ (self, gName):

self. gName = gName

print "Welcome to texas holdem!"
def setupGame(self):

Godalming College

self.__human = Player(raw_input("Please enter your name: "))

self.__ai = AI()

self.__table = Table()

self.__human.setMoney(1000000)

self. ai.setMoney(1000000)
def menu(self):

while self. quit == False:

if self._gRound == 1 or self._reset == True:

self.setupGame()

self.__gRound = 1
print "You are on round:
CardPile().reset()
self.setupCards()
print "Congratulations

+ str(self.playGame()) +

+ str(self.__gRound)

, you won!"

print "The AI's cards were: " + str(self.__ai.getCard())

print str(self.__human.getName()) +

" + str(self.__human.getCard())
print "The score is: AI:
+ str(self.__human.getScore()) + " :"

", your cards were:

+ str(self.__ai.getScore()) + " |
+ str(self.__human.getName()).upper()

if self._ _gameOver == 'ai' or self.__gameOver == 'human':

print "Since " + str(self.__gameOver) +

The game will now be reset.”
self.__reset = True

ran out of money the game is over.

if raw_input("Would you like to quit the game?

(y/n):") == 'y': self.__quit = True
else: self._ quit = False
else:

self._ gRound = self._ gRound + 1

if raw_input("Would you like to reset the game?

(y/n):") == 'y': self.__reset = True
else: self._ reset = False

if raw_input("Would you like to quit the game?

(y/n):") == 'y': self.__quit = True
else: self._ quit = False
sys.exit()

def setupCards(self):
self. table.setCards()
self.__human.setCard()
self. ai.setCard()
self. _ai.reset()

def playGame(self):

self.__human.setMoney(-self._table.getEntryMoney())
self. ai.setMoney(-self.__table.getEntryMoney())
self. table.setPot(2*self.__table.getEntryMoney())

self._ table.setNextPlayer('r')

Centre N°: 64395

37

Candidate N°: 4146

59.
60.

61.
62.
63.
64.

65.
66.
67.
68.

69.
70.
71.
72.

73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
le1.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.

Laurence Brown Godalming College

if self.bettingRound() False:
print "The table's cards are: " + str(self.__table.getCards(0)+",
"t+self._ table.getCards(1)+", "+self.__table.getCards(2))
self.__human.setAction('-")
self. _ai.setAction('-")
if self.bettingRound() False:
print "The table's cards are: " + str(self.__table.getCards(0)+",
"+self._ table.getCards(1)+", "+self._table.getCards(2)+", "+self._ table.getCards(3))
self._human.setAction('-")
self. ai.setAction('-")
if self.bettingRound() False:
print "The table's cards are: " + str(self.__table.getCards(9)+",
"+self._table.getCards(1)+", "+self.__table.getCards(2)+", "+self.__table.getCards(3)+",
"+self._table.getCards(4))
self.__human.setAction('-")
self. ai.setAction('-")
if self.bettingRound() False:
self. table.setWinner(Compare().cardCompare(self.__human.getCard()
self. ai.getCard(),[self._table.getCards(9),self. table.getCards(l),self._ table.getCards(
2),self. table.getCards(3),self._ _table.getCards(4)]))
if self._ table.getWinner() "Human':
self.__human.setMoney(self.__table.getPot())
self.__table.setPot(9)
self.__human.setScore(1)
self.__table.setWinnersCards(str(self.__human.getCard()))
return str(self.__human.getName())
elif self._ table.getWinner() 'AL':
self. ai.setMoney(self._ table.getPot())
self. table.setPot(9)
self. ai.setScore(1l)
self. table.setWinnersCards(str(self._ _ai.getCard()))
return 'AT’
else:
self.__human.setMoney(self.__table.getPot()/2)
self.__ai.setMoney(self.__table.getPot()/2)
self.__table.setPot(9)
self. table.setWinnersCards('")
return 'no-one’

else:
if self.__gameOver 'ai':
return str(self.__human.getName())
if self.__gameOver "human':
return 'AT’
elif self._ table.getWinner() "Human':

self.__table.setWinnersCards(str(self.__human.getCard()))
return str(self.__human.getName())
elif self.__ table.getWinner() "AI':
self.__table.setWinnersCards(str(self.__ai.getCard()))
return 'AI'
else:
self. table.setWinnersCards('")
return 'no-one’
def checkMoney(self,flag):
if int(self.__human.getMoney()) < © and flag False:
self.__gameOver "human'
self._ table.setWinner('AI")
self. table.setWon('t")
self.__ai.setScore(1)
return True
elif int(self.__ai.getMoney()) 0 and flag False:
self.__gameOver 'ai
self. table.setWinner('Human')
self. table.setWon('t")
self.__human.setScore(1)
return True
elif flag True: return True

v

38
Centre N°: 64395 Candidate N°; 4146

119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.

Laurence Brown Godalming College

else: return False
def bettingRound(self):
self.__table.setWon('f")
__flag = False
if self._table.getNextPlayer() 1:
while _ flag False:
__flag = self.checkMoney(__flag)
print "Your money: " + str(self.__human.getMoney())
print "AI money: " + str(self.__ai.getMoney())
print "Pot: " + str(self.__table.getPot())
if _ flag False:
if self.bettingRoundHuman()== True and __ flag False:
self.__table.setNextPlayer('a")

__flag = True
__flag = self.checkMoney(__flag)
print "Your money: " + str(self.__human.getMoney())

print "AI money: + str(self.__ai.getMoney())
print "Pot: " + str(self.__table.getPot())
if _ flag False:
if self.bettingRoundAi() True and __ flag False:
self.__table.setNextPlayer('h")
_ flag = True
elif self.__table.getNextPlayer() 2:
while _ flag False:
__flag = self.checkMoney(__flag)
print "Your money: " + str(self.__human.getMoney())
print "AI money: " + str(self.__ai.getMoney())
print "Pot: " + str(self.__table.getPot())
if _ flag False:
if self.bettingRoundAi() True and __ flag False:
self. table.setNextPlayer('h')

__flag = True
_ flag = self.checkMoney(__flag)
print "Your money: " + str(self.__human.getMoney())

print "AI money: + str(self.__ai.getMoney())
print "Pot: " + str(self.__table.getPot())
if _ flag False:
if self.bettingRoundHuman() True and __ flag False:
self. table.setNextPlayer('a')
_ flag = True
if self._ table.getWon() True:
return True
else:
return False
def bettingRoundAi(self):
self.__ai.setAction('x")
if self.__ai.getAction() £
print "AI folds with the cards: " + str(self.__ai.getCard())
self.__human.setMoney(self.__table.getPot())
self. table.setPot(9)
self. human.setScore(1)
self. table.setWinner('Human')
self. table.setWon('t")
return True
elif self.__ai.getAction() 'r':
self. ai.setRaiseAmount()
self. ai.setMoney(-self._ _ai.getRaiseAmount())
self. table.setPot(self.__ai.getRaiseAmount())
print "AI raises by " + str(self.__ai.getRaiseAmount())
if self.__human.getAction() 'r':
self.__ai.setMoney(-self.__human.getRaiseAmount())
self._table.setPot(self.__human.getRaiseAmount())
self. table.setWon('f")
return False
elif self.__human.getAction() C
self._ table.setWon('f")

39
Centre N°: 64395 Candidate N°; 4146

185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.

204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244
245.
246.
247.
248.
249.

Laurence Brown

return False

else:
self.__table.setWon('f")
return False

elif self._ _ai.getAction() c':

print "AI calls"
if self.__human.getAction()

self. ai.setMoney(-self._
self._ table.setPot(self._ |

self.__table.setWon('f")
return False

elif self.__human.getAction()
self.__table.setWon('f")
return True

else:
self._ table.setWon('f")
return False

def bettingRoundHuman(self):

Godalming College

r':
human.getRaiseAmount())
human.getRaiseAmount())

print str(self.__human.getName())+", your cards are:

" + str(self.__human.getCard())

self.__human.setAction(raw_input("What is your move? (r/c/f): "))

if self.__human.getAction()

e

self. ai.setMoney(self.__table.getPot())

self._ table.setPot(9)
self. ai.setScore(1)
self. table.setWinner('AI")
self. table.setWon('t")
return True

elif self.__human.getAction()

self. human.setRaiseAmount(input(“Raise by: "))
self.__human.setMoney(-self.__human.getRaiseAmount())
self. table.setPot(self.__human.getRaiseAmount())

if self._ai.getAction()

self.__human.setMoney(-self. ai.getRaiseAmount())
self._ table.setPot(self.__ai.getRaiseAmount())

self.__table.setWon('f")
return False

elif self.__ai.getAction()
self. table.setWon('f")
return False

else:
self. table.setWon('f")
return False

elif self.__human.getAction()

if self._ ai.getAction()
self.__table.setWon('f")
return True

elif self._ _ai.getAction()

re:

self.__human.setMoney(-self._ ai.getRaiseAmount())
self._ table.setPot(self.__ai.getRaiseAmount())

self. table.setWon('f")
return False
else:
self._ table.setWon('f")
return False
class Table:

__flop1l = []
__flop2 = []
__flop3 = []

__turn [1

__river [1]
__entryMoney 100
__pot 0

__won None
__winner v
__nextPlayer = None

40
Centre N°: 64395

Candidate N°; 4146

Laurence Brown

250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
1[amount]
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.

__winnersCards =

def

def

def

def

def

def

def

def

def

def

def

def

def

[

setCards(self):

self.__flopl = CardPile().getCard()
self.__flop2 = CardPile().getCard()
self.__flop3 = CardPile().getCard()
self.__turn = CardPile().getCard()
self.__river = CardPile().getCard()
getCards(self, amount):

Godalming College

return [self._ flopl, self._ flop2, self._flop3, self.__turn, self.__river

getEntryMoney(self):
return self.__entryMoney
setPot(self, amount):

if amount == 0: self.__pot = amount
else: self._pot += amount
getPot(self):

return self._pot
setWinner(self,winner):
self. winner = str(winner)
getWinner(self):
return self.__winner
setWon(self,tf):
if tf == 't': self.__won = True
elif tf == 'f': self.__won = False
getWon(self):
return self.__won
setNextPlayer(self, x):
if x == "r':

if randint(o,100) >= 50:

self. nextPlayer =1

else:
self._ _nextPlayer = 2
elif x == 'h':
self.__nextPlayer = 1
else:
self. nextPlayer = 2
getNextPlayer(self):

return self.__nextPlayer
setWinnersCards(self,x):
self. winnersCards = str(x)
getWinnersCards(self):
return self.__winnersCards

class Player:

__cardl
__card2 =
__money
__score
__action =

1 I
O O
—_——

__raiseAmount = @

__name =

def

def

def

def

def

def

__init_ (self, name):

self.__name = name

setCard(self):

self.__cardl = CardPile().getCard()
self.__card2 = CardPile().getCard()
getCard(self):

return [self._ cardl, self._ card2]
setMoney(self, amount):
self.__money += amount
getMoney(self):

return self.__money

setScore(self, amount):
self.__score += amount

41

Centre N°: 64395

Candidate N°: 4146

315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.

366.
367.
368.
369.

370.
371.
372.
373.
374.
375.
376.
377.
378.

Laurence Brown

def getScore(self):
return self._ score
def setAction(self, action):
self. _action = action
def getAction(self):
return self._ _action
def setRaiseAmount(self, amount):
self.__raiseAmount = amount
def getRaiseAmount(self):
return self.__raiseAmount
def setName(self, name):
self.__name = name
def getName(self):
return self.__name

class AI(Player):
#define datasets
_ x = np.genfromtxt('handstrained.csv', delimiter=",")

_y = np.genfromtxt('correctpredtrained.csv', delimiter="'

_y=_y.T

#seed

np.random.seed(1)

#weights

__we = 2*np.random.random((3,4))-1
_wl = 2*np.random.random((4,4))-1
__ w2 = 2*np.random.random((4,4))-1
__ w3 = 2*np.random.random((4,1))-1
#raise check

__allReadyRaise = False

__move = 0

def __init_ (self):
Player.__init_ (self, 'AI")
def setCard(self):
Player.setCard(self)
def getCard(self):
return Player.getCard(self)
def setMoney(self, amount):
Player.setMoney(self, amount)
def getMoney(self):
return Player.getMoney(self)
def setScore(self, amount):
Player.setScore(self, amount)
def getScore(self):
return Player.getScore(self)
def setActlon(self X):
if x == '-"'
Player setActlon(self, X)
else:

Godalming College

, ")Y[np.newaxis]

Player.setAction(self, self.predict(Player.getCard(self)[0],Player.getC

ard(self)[1]))
def getAction(self):
return Player.getAction(self)
def setRaiseAmount(self):

Player.setRaiseAmount(self, int(*(self.__move)*(Player.getMoney(self)/2

))/100)
def getRaiseAmount(self):
return Player.getRaiseAmount(self)
def reset(self):
self.__allReadyRaise = False
#make sigma
def sigma(self,x):
return 1/(1+np.exp(-x))
#sigma gradient
def sigmaDeriv(self,x):

42
Centre N°: 64395

Candidate N°: 4146

379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.

Laurence Brown

retu
def pred

rn x*(1-x)
ict(self,cardl, card2):

__carray = self.processCards(cardl,card2)

for

#pre
_c
_c2
_s
_C
self

if self.__move >= 0.7 and self.__allReadyRaise

elif self._ move >=0.5: return 'c

else
def epoc
_Z:
#tra

i in xrange(10):
self.epoch()
dict

= __carray[9]

= __carray[1]
= __carray[2]

= np.array([[__cl, c2, s1])

.__move =

self.__allReadyRaise = T

return 'r
: return 'f'
h(self):

0

in

False:

rue

v

for t in xrange(len(self.__y)/4):

#forward propagation
_le =

_11 = self.sigma(np.dot
_ 12 = self.sigma(np.dot
_ 13 = self.sigma(np.dot
_ 14 = self.sigma(np.dot
#error + change calc

14 error = self._ y[__

14 change = __14 error
_13_error = __14_change
13 change = __13 error
_12_error = __13_change
12 change = __12 error
_11_error=

_ 11 change = __11_error
#update weights
self. w3 += np.dot(__13

self. x[__z:(__z+5)]

(__lo, self.__we))
(11, self. wl))
(__ 12, self._ w2))
(__13, self._ w3))
z:(_z+5)] - 14

*self.sigmaDeriv(__14)
.dot(self.__w3.T)

* self.sigmaDeriv(__13)
.dot(self.__w2.T)

* self.sigmaDeriv(__12)

12 change.dot(self.__wl1.T)

* self.sigmaDeriv(__11)
.T, __14 change)
.T, __13 change)
.T, __12 change)
.T, __11 change)

10

=11
=12
=13
=14

=11
= 12
=13
= 14

self. w2 += np.dot(__12
self. wl += np.dot(__11
self. w@ += np.dot(__1le
_z+=5
def processCards(self,cardl,card2):
if cardl[:1] == 'T"': __cl1 =
elif cardl[:1] == 'J': _ c1
elif cardl[:1] == 'Q': _c1
elif cardl[:1] == 'K': _c1
elif cardl[:1] == 'A': _ c1
else: _ cl = int(cardl[:1])
if card2[:1] == 'T': __c2 =
elif card2[:1] == 'J': _ c2
elif card2[:1] == 'Q"': __ c2
elif card2[:1] == 'K': __c2
elif card2[:1] == '"A': __c2
else: _ c2 = int(card2[:1])
if cardl[-1:]==card2[-1:]: _s =1
else: _s =20
_ ¢l = float(__c1)/14
_c2 = float(__c2)/14
return [__cl,_ c2, s]
class Compare:
__allHcards = []
__allAcards = []

def cardCompare(self,hc,ac,tblc):

Centre N°: 64395

43

Godalming College

self.sigma(np.dot(self.sigma(np.dot(self.sigma(np.dot(self.si

gma(np.dot(__C, self._we)), self._wl)), self.__w2)),self._ w3))
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424,
425.
426.
427.
428.
429.
430.
431.
432.
433,
434,
435,
436.
437.
438.
439,
440.
441.
442.
443,

Candidate N°: 4146

Laurence Brown Godalming College

444, self.__allHcards = [hc[@], hc[1], tblc[@], tblc[1], tblc[2], tblc[3], tblc[
41]

445, self.__allAcards = [ac[@], ac[1], tblc[@], tblc[1], tblc[2], tblc[3], tblc[
411

446. if self.evaluateCard(self.__allHcards) > self.evaluateCard(self.__allAcards
): return 'Human'

447. elif self.evaluateCard(self.__allAcards) > self.evaluateCard(self.__allHcar
ds): return 'AI'

4438. else: return "no-one"

449,

450. def evaluateCard(self,hand):

451. __groups = self.group(['--23456789TJQKA".index(r) for r, s in hand])

452, __counts, _ ranks = zip(*__groups)

453, if __ranks == (14, 5, 4, 3, 2):

454, __ranks = (5, 4, 3, 2, 1)

455, __straight = len(__ranks) == 5 and max(__ranks)-min(__ranks) == 4

456. __flush = len(set([s for r, s in hand])) ==

457. return (

458. 9 if (5,) == __counts else

459, 8 if _ straight and _ flush else

460. 7 if (4, 1) == __counts else

461. 6 if (3, 2) == __counts else

462. 5 if _ flush else

463. 4 if __straight else

464. 3 if (3, 1, 1) == _ _counts else

465. 2 if (2, 2, 1) == __counts else

466. 1 if (2, 1, 1, 1) == __counts else

467. 09), _ ranks

468.

469. def group(self,items):

470. __groups = [(items.count(x), x) for x in set(items)]

471. return sorted(__groups, reverse = True)

472.

473. class CardPile:

474. __deck = [r+s for r in '23456789TJQKA" for s in 'SHDC']

475. __usedCards = []

476. def getCard(self):

477. while True:

478. __randCard = self.__deck[randint(0,51)]

479. if _ _randCard not in self.__usedCards:

480. self. usedCards.append(__randCard)

481. return __randCard

482. break

483. def reset(self):

484. self.__usedCards = []

485.

486. game = Game('One")

487. game.menu()

Centre

44
N°: 64395 Candidate N°: 4146

Laurence Brown Godalming College

F: Testing evidence.

N° Purpose Screenshot

1.1 | The game Laurence@GNOME
launches '
without errors.

holdem!
(ELEH |

1.2 The game
successfully
creates a new
player object.

1.3a | The game is laurence
able to el
interpret a

player's move.

1.3b The game is laurence@GNOME:
We ;

able to

interpret a

player's move.

1.3c | The game is
able to
interpret a
player's move.

45
Centre N°: 64395 Candidate N°; 4146

Laurence Brown

Godalming College

1.4

To see if the
game correctly
handles
money.

Laurence@GNOME :
Welc

Player name

['3H",

['3H',

'2H']

'2H']

15

To see if the
card
comparison
algorithm
works
correctly.

1.6

To see if the
game is able to
reset itself.

What 1is

['QH",

'6D"]

1.7

To see if the
game quits
successfully.

Would
Would

1.8a

To see if the
game displays
relevant
information
about the
game.

Centre N°: 64395

46

Candidate N°; 4146

Laurence Brown Godalming College

1.8b |Tosee !f the :;.:::-Eluz_j‘c . Ke I o reset the gam
game displays d i o quit the game?
relevant 2

information
about the

game.

1.8c | To see if the
game displays
relevant
information
about the
game.

1.8d | To see if the
game displays
relevant
information
about the
game.

47
Centre N°: 64395 Candidate N°; 4146

Laurence Brown

The game is
able to
correctly carry
out an entire
betting round

To see if the Al
can make a
move within
the game.

Centre N°: 64395

laurence@GNOME : S python pokerQOP.py
Welcome to texas holdem!
Please enter your name: Player name
You are on round: 1
Your money: 49900
AI money: 49900
Pot: 200
AI raises by 24467
Your money: 49900
AL money: 25433
Pot: 24667
Player name, your cards are: ['25', '"9H']
What i1s your move? (rfc/f): c
Your money: 25433
AL money: 25433
Pot: 49134
AT calls
Your money: 25433
AL money: 25433
Pot: 49134
The table's cards are: 1D, 2D, 7D
Your money: 25433
AL money: 25433
Pot: 49134
Player name, your cards are:
What i1s your move? (rfc/f): c
Your money: 25433
AI money: 25433
49134

s cards are: 1D, 2D, 7D, 9C
Your money: 25433
AI money: 25433
Pot: 49134
Player name, your cards are:
What i1s your move? (rfc/f): c
Your money: 25433
AL money: 25433
Pot: 49134
AL calls
The table's cards are: 1D, 2D, 7D, 9C, QS
Your money: 25433
AI money: 25433
Pot: 49134
Player name, your cards are: ['25', '9H']
What is your move? (rfc/f): c
Your money: 25433
AL money: 25433
Pot: 49134
AI calls
Congratulations AI, you won!
The AI's cards were: ['TD', "5C']
Player name, your cards were: ['25', '9H']
The score is: AI: 1 | ® :PLAYER NAME
Would you like to reset the game? (y/n):

Please enter your name: Player name
You are on round: 1

Your money: 49900

ALl money: 49900

Pot: 200

Al raises by 24898

Godalming College

Candidate N°; 4146

Laurence Brown

Godalming College

2.2

To see if the Al
can handle the
human player
folding.

Pot: 1920
Player name,

[I'i-":- 1 ,
NAME

Centre N°: 64395

49

Candidate N°; 4146

Laurence Brown

Godalming College

2.3

To see if the Al
is able to play
after multiple
resets.

laurence@GNOME :

Centre N°: 64395

50

Candidate N°; 4146

Laurence Brown Godalming College

3.1a | To see if the Al | [T rencew!.'.HOI"lE
makes the
correct move
according to
the dataset
given.

3.1b [To see if the Al
makes the
correct move
according to
the dataset
given.

4.1 Game v Al

4.2 Game v Al

g|dtulatimn5 Laurence, you won!
cards were: ['ID', '5D']

your cards were: ['J5', 'TS']
1 | 1 :LAURENCE

51
Centre N°: 64395 Candidate N°; 4146

Laurence Brown

Godalming College

4.3 Game v Al
4.4 Game v Al
45 Game v Al
What is
Your mc
C '.-':tl.jlati
4.6 Game v Al

Centre N°: 64395

52

Candidate N°; 4146

Laurence Brown

Godalming College

4.7 Game v Al

4.8 Game v Al

4.9 Game v Al The table's cards
Your money: 937423

1854066

What is
Congratulati
The AI's ca
Laurence,

4.10 | Game v Al

Centre N°: 64395

53

Candidate N°; 4146

