
Table of Contents
ANALYSIS: ... 1

RESEARCH: ... 1

SELF-DISSCUSSION: .. 3

TIMELINE: ... 5

THE GAME: ... 6

THE AI: .. 9

REQUIREMENTS: .. 11

DESIGN: .. 12

CLASS DIAGRAM: .. 12

FILES, DATA STRUCTURES, METHODS OF ACCESS: 13

PROCESSES: ... 13

USER INTERFACE DESIGN: .. 15

PACKAGES AND FRAMEWORK: ... 15

DESIGN OF TESTING: ... 16

TECHNICAL SOLUTION: ... 18

TESTING: ... 25

Game Functionality testing: ... 25

AI-Game communication testing: ... 26

Tests to see if the AI is reading the dataset correctly. 26

Tests to see if the AI can outperform a human: ... 27

EVALUATION: ... 28

APPENDICIES: .. 29

A: Higher lower standard gradient descent neural network. 29

B: datatrain.py – dataset creation. ... 30

C: Dataset .. 34

D: Higher lower stochastic gradient descent neural network. 35

E: poker.py – The final solution.. 37

F: Testing evidence. .. 45

Laurence Brown Godalming College

1
Centre No: 64395 Candidate No: 4146

ANALYSIS:

RESEARCH:

Source Link Access
Date

Summary

Article https://en.wikipedia.
org/wiki/Poker_prob
ability_(Texas_hold
_%27em)

17/09/16 Lots of formulas and probability calculations
that can be used in the AI for making
decisions about what card to play next, how
much to bet, what cards other players have.

Web
page

http://pokerpredicto
r.com/headsup

17/09/16 Reads your two inputted cards and
calculates various probabilities such as win
rates, and what it is strongest and weakest
against. Also has other Texas Hold ‘em
tools.

Article http://www.codeproj
ect.com/Articles/19
091/More-Texas-
Holdem-Analysis-
in-C-Part

17/09/16 An article discussing a program that will
calculate and analyse certain aspects of the
game using several algorithms.

Article https://en.wikipedia.
org/wiki/Monte_Carl
o_method

17/09/16 A method of calculating probabilities using
randomness to solve problems. This
method is used lots in poker to analyse and
determine probabilities. Also see the Monte
Carlo Algorithm. This algorithm is always
fast, probably correct.

Article https://en.wikipedia.
org/wiki/Las_Vegas
_algorithm

17/09/16 Another randomised algorithm that
calculate various probabilities within poker,
this algorithm is probably fast, always
correct.

Article http://www.codeproj
ect.com/Articles/19
092/More-Texas-
Holdem-Analysis-
in-C-Part

18/09/16 The second half of More Texas Hold ‘em
Analysis in C# contains algorithms like the
Monte Carlo algorithm and the code and
analysis of them.

Article http://pokercoder.bl
ogspot.co.uk/2006/
07/towards-
meaningful-
ordering-of-
hands.html

18/09/16 An explanation of a poker AI going in depth
with certain methods and such.

Rules
set

https://en.wikipedia.
org/wiki/Texas_hold
_%27em#Rules

18/09/16 The rules for Texas Hold ‘em as
explanations for them.

https://en.wikipedia.org/wiki/Poker_probability_(Texas_hold_%27em)
https://en.wikipedia.org/wiki/Poker_probability_(Texas_hold_%27em)
https://en.wikipedia.org/wiki/Poker_probability_(Texas_hold_%27em)
https://en.wikipedia.org/wiki/Poker_probability_(Texas_hold_%27em)
http://pokerpredictor.com/headsup
http://pokerpredictor.com/headsup
http://www.codeproject.com/Articles/19091/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19091/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19091/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19091/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19091/More-Texas-Holdem-Analysis-in-C-Part
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Las_Vegas_algorithm
https://en.wikipedia.org/wiki/Las_Vegas_algorithm
https://en.wikipedia.org/wiki/Las_Vegas_algorithm
http://www.codeproject.com/Articles/19092/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19092/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19092/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19092/More-Texas-Holdem-Analysis-in-C-Part
http://www.codeproject.com/Articles/19092/More-Texas-Holdem-Analysis-in-C-Part
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
http://pokercoder.blogspot.co.uk/2006/07/towards-meaningful-ordering-of-hands.html
https://en.wikipedia.org/wiki/Texas_hold_%27em#Rules
https://en.wikipedia.org/wiki/Texas_hold_%27em#Rules
https://en.wikipedia.org/wiki/Texas_hold_%27em#Rules

Laurence Brown Godalming College

2
Centre No: 64395 Candidate No: 4146

Article https://www.partypo
ker.com/how-to-
play/texas-
holdem.html

18/09/16 A basic and comprehensive tutorial on how
to play Texas Hold ‘em.

Article https://www.partypo
ker.com/how-to-
play/hand-
rankings.html

18/09/16 A list of the hands in any game of poker
ordered by their ranks.

Glossary https://www.partypo
ker.com/how-to-
play/school/basics/
glossary.html

18/09/16 A list of all poker terms and explanations of
them.

Article https://en.wikipedia.
org/wiki/Poker_Effe
ctive_Hand_Strengt
h_(EHS)_algorithm

18/09/16 An algorithm that calculates the strength of
a poker hand compared to all other hands.

Existing
Solution

https://code.google.
com/archive/p/open
holdembot/

18/09/19 An existing open source Texas Hold ‘em AI
that can be used to get ideas and
inspiration from.

Existing
Solution

http://poker.srv.ualb
erta.ca/

18/09/16 Another Hold ‘em AI coded by students of
the University of Alberta, there are several
programs on the webpage which shows the
AI’s strategy. These will come in useful
when looking for strategies for my AI to see
which one is the best.

Existing
Solution

https://code.google.
com/archive/p/speci
alkpokereval/

18/09/16 A lightweight Hold ‘em hand evaluator AI.

Article https://en.wikipedia.
org/wiki/Artificial_ne
ural_network

18/09/16 An article all about neural networks.

Article http://www.codeproj
ect.com/Articles/10
28339/Basis-of-
Neural-Networks-
in-Visual-Basic-
NET

18/09/16 An article which talks about neural
networks, how they work and how to
implement them into visual basic.

Book https://www.amazo
n.com/dp/18806850
00/?tag=stackoverfl
08-20

18/09/16 Chapters discuss the value of deception,
bluffing, raising, the slow-play, the value of
position, psychology, heads-up play, game
theory, implied odds, the free card, and
semibluffing. These are all tactics that the AI
could employ.

Journal https://www.doc.ic.
ac.uk/~nd/surprise_

18/06/16 Different types of neural networks are
explained, demonstrated and applications are

https://www.partypoker.com/how-to-play/texas-holdem.html
https://www.partypoker.com/how-to-play/texas-holdem.html
https://www.partypoker.com/how-to-play/texas-holdem.html
https://www.partypoker.com/how-to-play/texas-holdem.html
https://www.partypoker.com/how-to-play/hand-rankings.html
https://www.partypoker.com/how-to-play/hand-rankings.html
https://www.partypoker.com/how-to-play/hand-rankings.html
https://www.partypoker.com/how-to-play/hand-rankings.html
https://www.partypoker.com/how-to-play/school/basics/glossary.html
https://www.partypoker.com/how-to-play/school/basics/glossary.html
https://www.partypoker.com/how-to-play/school/basics/glossary.html
https://www.partypoker.com/how-to-play/school/basics/glossary.html
https://en.wikipedia.org/wiki/Poker_Effective_Hand_Strength_(EHS)_algorithm
https://en.wikipedia.org/wiki/Poker_Effective_Hand_Strength_(EHS)_algorithm
https://en.wikipedia.org/wiki/Poker_Effective_Hand_Strength_(EHS)_algorithm
https://en.wikipedia.org/wiki/Poker_Effective_Hand_Strength_(EHS)_algorithm
https://code.google.com/archive/p/openholdembot/
https://code.google.com/archive/p/openholdembot/
https://code.google.com/archive/p/openholdembot/
http://poker.srv.ualberta.ca/
http://poker.srv.ualberta.ca/
https://code.google.com/archive/p/specialkpokereval/
https://code.google.com/archive/p/specialkpokereval/
https://code.google.com/archive/p/specialkpokereval/
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
http://www.codeproject.com/Articles/1028339/Basis-of-Neural-Networks-in-Visual-Basic-NET
https://www.amazon.com/dp/1880685000/?tag=stackoverfl08-20
https://www.amazon.com/dp/1880685000/?tag=stackoverfl08-20
https://www.amazon.com/dp/1880685000/?tag=stackoverfl08-20
https://www.amazon.com/dp/1880685000/?tag=stackoverfl08-20
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

Laurence Brown Godalming College

3
Centre No: 64395 Candidate No: 4146

96/journal/vol4/cs1
1/report.html

given.

Video https://youtu.be/h3l
4qz76JhQ

18/06/16 A short video explaining how to create a
simple neural network.

SELF-DISSCUSSION:

The aim of this project is to see if it possible to make an AI that will play Texas Hold ‘em and

beat a player. I will achieve this by first of all making the game itself, which is an easy task, I

will then implement an AI to play against a player.

Texas Hold ‘em is a variation of poker where all players are dealt two random cards, “Hole

Cards” by the “Dealer”. The two players to the left of the dealer are the “Small Blind” and the

“Big Blind” respectively. The “Small Blind” is required to bet a fixed starting bet and the “Big

Blind” is required to bet double the “Small Blind”. Then the player to the left of the “Big Blind”

will then start the first round of betting. The first player will assess their hand and if they think

it is good enough for them to win they will “Call”, which means they will match the previous

player's bet or they will “Raise”, which means they will bet more than the minimum bet to

raise the minimum bet for other players. The player can also choose to go “All In” if they are

certain they will win this round, which means they will bet all their money. If the player

decides their cards are not worth playing with and they will probably lose, they will “Fold”,

which means not betting and returning your cards to the dealer and skipping the round. Then

each player will repeat this until one round of betting is over (no one else “Raises” or goes

“All In” for a round). This is known as the “Pre-Flop”. Once all the betting has finished the

three shared cards are dealt so that everyone can see (face up). This is called the “Flop”.

Then another round of betting occurs and a fourth shared card, “The Turn”, is dealt. Another

round of betting occurs and then the fifth and final shared card, “The River”, is dealt. A final

round of betting then occurs. The hand can then end in one of two ways; the players turn

over their “Hole Cards” and whoever has the best hand wins or someone will bet enough

that all the other players fold and they win. The ultimate end goal is to turn a profit and to do

that you don’t necessarily need to win every hand.

There are several ways in which I can make the game of poker for the AI to play on. I can
use a GUI application or a console application. Since the program is not meant for an end
user but is for investigation purposes I can use either method, a console application will be
easier and less time consuming to develop yet the GUI application will be much easier to
use and test the AI on. As it is not that hard to switch between the two I can always choose
which one I want to use later down the road.

The game will be made in Python as I already have prior knowledge of the program and it
has several abilities that will be useful to making an AI as well as math libraries like NumPy
which will help me manage arrays in more powerful ways. Also if I do decide to make it into a
GUI application it is easy to do so, with libraries like tkinter, which make it easy to make a
GUI application. I will also use libraries like random which has several randomisation
options. I can use this to select a random card from an array. This ensures the game is
always fair.

There is also several ways in which I can get the AI to interact with the game. I could build

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://youtu.be/h3l4qz76JhQ
https://youtu.be/h3l4qz76JhQ

Laurence Brown Godalming College

4
Centre No: 64395 Candidate No: 4146

the AI directly into the game so they both operate in the same program but this could make it

harder to troubleshoot when the program is not working to see if it is the AI or the game itself

that is causing the program not to work. I could also make the game and the AI different

programs and get them to communicate via text file or database, this however would be very

time consuming and would not contribute much towards the investigation on the AI. If I were

to store information about the game in a database this is what it would look like:

Flop 1 Flop 2 Flop 3 The Turn The River AI 1 AI 2

JS KD 8S 8C 3H 7C 6D

This database can then be shared between the game and the AI allowing the AI to access its

cards and the shared cards as they are revealed.

There are two main methods that I could use for the AI:

● I could make a general algorithm which will calculate the odds of my hand winning

compared to all the other possible hands. This would be fast and efficient but

predictable, meaning that the human player could easily figure out the AI’s strategy

and easily combat it. It would also only win if it had been repeatedly dealt good hands

as if it is dealt a bad hand it would not be able to choose when or when not to bluff

(out bet the other players so they all fold and you win).

● I could make a neural network that would learn the best ways to play over trial and

error, each time becoming more and more effective at playing the game. A general

algorithm would then control the weighting of the neural network according to their

success. This method will not be as fast as I will have to run the AI with thousands of

AI players, who do not know how to play the game. I will then use the general

algorithm to determine which AI player was the best and then weight the ability of the

players. A new generation of players would be made with the determined weighting

and knowledge of the previous player that they were selected to be. This process

happens over and over again through lots of hands and generations until the best

individual AI players play really well. This process can be endless as there will always

be small improvements but there will be diminishing return up until the point where

the improvements are unnoticeable and don’t make a difference. Once trained the

best player is selected and put up against a human player. This method can be very

good at playing Texas Hold ‘em as there are no detectable patterns in the AIs logic

and if trained correctly, with the right kind of dataset, it can bluff and win hands which

the first algorithm would just fold on to save money. However this methods bluffing

ability also has the chance to lose money if the bluff is unsuccessful.

The best method is clearly the neural network as it is the method used in most successful AI

created for Texas Hold ‘em. But if I need to change method later on, due to the complexity of

neural networks, it is possible to do so.

Finally to test if the AI is better than a human player I will play the AI myself for a number of

hands and judge who made a profit, NOT who won the most games as you can still lose the

majority of games but make lots of profit on a few, thus winning overall as you made money

and the other player(s) lost money (or gained less than you did). If the AI is

Laurence Brown Godalming College

5
Centre No: 64395 Candidate No: 4146

successful then I know that it is possible to create an AI that is better than a human if not

then I can try to improve the AI until it wins or cannot be improved anymore, in that case I

will know that it is not possible to create an AI with the resources I have that is better than a

human but know that other AIs have been created that are far more successful than a

human player.

TIMELINE:

Activity Finish Date

Research 22/09/16

Analysis 06/10/16

Requirements 20/10/16

Design 17/11/16

Write Pseudocode for the Hold ‘em game

 Make Decision on whether it’s a console program or forms program.

Technical Solution 26/01/17

 Make the Hold ‘em game.

 Make a basic AI using a general algorithm to test the game.

 Plan the neural network and make a basic version of it.

 Test the basic neural network and make improvements.

 Make final neural network.

Testing 23/02/17

 Start the neural network playing so it can learn the game to an
advanced level.

 Make improvements to neural network and game where needs be.

Evaluation and Final Progress Check 16/03/17

Final Hand-in 30/03/17

Laurence Brown Godalming College

6
Centre No: 64395 Candidate No: 4146

THE GAME:

I will make a poker game that will create two players (the human player and the AI) it will

then assign two random cards (card1 and card2) from a deck of cards to each player. It will

then also assign five more random cards from the deck to the table cards (flop1, flop2, flop3,

turn, and river). I could assign each player big blind and small blind but since this is only a

two player game of poker big blind and small blind are not relevant so I shall miss this out.

The game will then play through a game of poker, deducting betting money as it goes along

and displaying the visible table cards after every betting round when they are meant to be

shown. Once the game of poker is finished it will then determine the winner by first checking

if anyone has folded and if not it will use a card ranking algorithm to decide the winner. Once

the winner is decided the game will then distribute money to the correct player and start a

new game of poker, all the while keeping track of scores. To help me truly understand how

the game is going to work I created an IPSO, dataflow diagram and flowchart for the game.

The following is the IPSO diagram for the game:

IN PROCESS

Call
Raise
Bet amount (and All in)
Fold

Compare hand with rankings to determine who
wins.
Money processing and transactions.
Randomisation of cards.
Determine whether the round of betting is over
and whether the next card needs to be dealt.
Determine who won the game when one
player runs out of money.

STORE OUT

Pot
Players Money
AIs Money
Flop1
Flop2
Flop3
Turn
River
AIs Card 1
AIs Card 2
Players Card 1
Players Card 2
Big Blind
Small Blind
Hand Rankings
Round

A representation of the cards on the game
board.
The player’s current amount of money.
The users hand.
A representation of who won and with what
hand in the hand rankings.

Laurence Brown Godalming College

7
Centre No: 64395 Candidate No: 4146

Dataflow diagram for the game:

Laurence Brown Godalming College

8
Centre No: 64395 Candidate No: 4146

Flowchart for the game:

Laurence Brown Godalming College

9
Centre No: 64395 Candidate No: 4146

This data dictionary that declares the classes and variables that could be used in the game:

Data Dictionary

Name Data Type Regex

Pot Decimal (?:\d*\.)?\d+

Player

Money

Decimal (?:\d*\.)?\d+

AI Money Decimal (?:\d*\.)?\d+

Card Class :

String

[A+C+S+H]+([A+J+K+Q]|\d{1,10})

Betting

stage

Integer \d{0,3}

Turn String [A]+[i]|[P]+[l]

Winner String [A]+[i]|[P]+[l]

From this analysis I have formed a good idea of how a Texas Hold ‘em game works and how

I can make one. Since the main focus of the project is on the AI there are no notable

changes or features of this game from the original other than the fact there is not big or small

blind.

THE AI:

I plan to create a neural network for the AI. The neural network will train itself off a pre-

existing database and then play the game, so that it has the highest chance of turning a

profit as my research suggests.

The following is the IPSO diagram for the AI:

IN PROCESS

AI Card 1
AI Card 2
Flop 1
Flop 2
Flop 3
Turn
River

Money processing and transactions.
Train network on dataset and adjust weights
accordingly.
Run current cards through weights to
determine move.

STORE OUT

Weighting of neural network
Number of players in neural network
Move

Call
Raise
Bet amount (and All in)
Fold

Laurence Brown Godalming College

10
Centre No: 64395 Candidate No: 4146

Dataflow diagram for the AI:

The data dictionary that declares the classes and variables that could be used in the AI:

Data Dictionary

Name Data

Type

Regex

Pot Decimal (?:\d*\.)?\d+

AI Money Decimal (?:\d*\.)?\d+

Weightings Decimal \d[\d|\.]+%

Player in

network

Integer \d

Laurence Brown Godalming College

11
Centre No: 64395 Candidate No: 4146

REQUIREMENTS:

1. The game interface easily readable and useable.

1.1. The player should be able to easily read their cards and choose what action to

make.

1.2. The player must easily be able to see how much money is in the pot, their wallet and

the AI’s wallet.

2. The game must be able to store the card deck.

2.1. The game program must be able to access it easily

2.2. The game will have to be able to draw random cards from it and ensure the same

ones are not drawn twice.

3. The game must be able to send and receive data with the AI.

3.1. The AI’s hand and the shared cards must be given to the AI program.

3.2. The AI must be able to tell the game what action it wants to make.

3.3. The game must be able to send and receive money with the AI

4. The game must be able to correctly handle all money and distribute it.

4.1. The game must receive betting money and place it into a pot.

4.2. The game must give all winnings to the winner.

5. The game must be able to determine the winner.

5.1. It must be able to determine the winner by rating each player’s hands then

comparing them with each other.

6. The game must be able to determine whether a round of betting is over.

7. The AI must be able to receive various data inputs for processing.

7.1. The AI needs to be able to receive all data from the game that is required.

7.1.1. AI cards.

7.1.2. Shared cards.

7.2. The AI must be able to receive data from its wallet.

8. The AI must be able to use the data it has received and create a decision on what action

it should make.

8.1. The AI must be able to determine whether it should Fold, Call or Raise.

8.1.1. It will need a dataset to train itself on.

8.1.2. It will need to judge its move based on what the neural network returns when

the AI current cards are put in.

8.2. The AI must determine how much it wants to bet.

Laurence Brown Godalming College

12
Centre No: 64395 Candidate No: 4146

DESIGN:

CLASS DIAGRAM:

Laurence Brown Godalming College

13
Centre No: 64395 Candidate No: 4146

FILES, DATA STRUCTURES, METHODS OF ACCESS:

What files I will need:

● A text file for moves to train the neural network against, in the format:

Card1Value,Card2Value,SameSuit

● A text file for correct outcomes of moves needed to train the network, in the format:

CorrectPrediction

Methods of access:

● I will use the dependency csv to manipulate my dataset.

PROCESSES:

The game:

There are multiple algorithms involved in the functioning of the game, below are some

pseudo code examples of them.

Card assignment algorithm:

 class CardPile:

 deck = (array of all card combinations)

 usedCards = []

 def getCard():

 while True:

 randCard = deck[randint(0,51)]

 if randCard not in usedCards:

 usedCards.append(randCard)

 return randCard

 break

This algorithm seems to be the most efficient out of all the ways I found to do it. It would also

be possible to compare to the randomly drawn cards to the other cards assigned to the plays

and tables variables not a used cards variable. This way would be slower however and

mean that the program is less secure.

Hand comparison algorithm:

class Compare:

 Hcards = (list of human and table cards)

 Acards = (list of AI and table cards)

 def cardCompare(hc,ac,tblc):

if evaluateCard(Hcards) > evaluateCard(Acards):

return 'human'

elif evaluateCard(Acards) > evaluateCard(Hcards):

return 'ai'

 else:

return "no-one"

 def evaluateCard(hand):

 groups = group(['--23456789TJQKA'.index(r) for r, s in hand])

Laurence Brown Godalming College

14
Centre No: 64395 Candidate No: 4146

 counts, ranks = zip(*groups)

 print groups

 if ranks == (14, 5, 4, 3, 2):

 ranks = (5, 4, 3, 2, 1)

 straight = len(ranks) == 5 and max(ranks)-min(ranks) == 4

 flush = len(set([s for r, s in hand])) == 1

 return (

 9 if (5,) == counts else

 8 if straight and flush else

 7 if (4, 1) == counts else

 6 if (3, 2) == counts else

 5 if flush else

 4 if straight else

 3 if (3, 1, 1) == counts else

 2 if (2, 2, 1) == counts else

 1 if (2, 1, 1, 1) == counts else

 0), ranks

 def group(self,items):

 groups = [(items.count(x), x) for x in set(items)]

 return sorted(groups, reverse = True)

Since there are few ways to make this algorithm and my investigation is on the AI I decided

to use the card sorting algorithm from Udacity’s “Design of Computer Programs” course.

This way I can focus my time on making the neural network work instead of using it to create

a card sorting algorithm.

Winner Calculator Algorithm:

 def CalcWinner

 If Showdown = True

 Return CompareCards

 If AI.LastTurn = Fold

 Return Player

 If Player.LastTurn = Fold

 Return AI

 If AI.Bank = 0 and Player.Bank > 0

 Return Player

 If Player.Bank = 0 and AI.Bank > 0

 Return AI

This algorithm finds who won the current game by using a series of simple if statements.

Laurence Brown Godalming College

15
Centre No: 64395 Candidate No: 4146

The AI:

There are multiple algorithms involved in the functioning of the AI, below are some pseudo

code examples of them.

Neural Network:

x =handstrained.csv

y = correctpredtrained.csv

w = 2* random((3,1)) - 1

for t in xrange(100000):

 l0 = x

 l1 = 1/(1+exponential(-dotproduct(l0, w)))

 l1_error = y - l1

 l1_change = l1_error* l1*(1-l1)

 w += dotproduct(l0.T,l1_change)

This method would allow the AI to be unpredictable as well as play more human like, given

the right dataset.

I could also make the AI by using simple probabilities found online. I could then use these

probabilities and combine them with the AIs current cards to reach an outcome.

USER INTERFACE DESIGN:

Since this is an investigation on whether AI is able to beat a human at poker a UI element is

not necessary. In order to use the program I shall use a command line interface and as the

program runs it will print out necessary information along the way.

PACKAGES AND FRAMEWORK:

I will plan on using a scientific computing package such as NumPy (http://www.numpy.org/)

to help with sigmoid function and matrices. I will also need to use the built in csv library in

order to import and manipulate the datasets to train the neural network with. On top of this I

will need the random (https://docs.python.org/2/library/random.html) dependency so I can

generate random numbers where necessary.

http://www.numpy.org/
https://docs.python.org/2/library/random.html

Laurence Brown Godalming College

16
Centre No: 64395 Candidate No: 4146

DESIGN OF TESTING:

I will test several aspects of my program:

1. I will test the basic functionality of the game, to make sure it correctly carried out betting

rounds and handles the end of the game correctly.

1.1. To do this I will use test data to test each section of the game. My project is not

focused on the game however so I will not test this in depth. The following is some

example test data:

No Purpose Test Data Expected result

1 To see if the game launches
and prints the welcome
screen.

Run the program. Welcome to texas
hold’em, please
enter your name:

2 To see if a new player object is
created when requested

Enter a name in the “Please
enter your name” field.

You are now on
round 1 of the game.

3 To see if the game is able to
process a move given by the
player.

Type “fold” in the “Please
enter move” field.

You folded, AI wins.
The score is AI - 1
Human - 0.

4 To see if the game is able to
correctly determine the winner
of the game using the card
comparison algorithm.

Play the game until both you
and the AI check during the
final round of betting to
enter the showdown.

[someone] wins with
the cards [C1,C2]

1.1. At the end of each test I will screenshot the outcome and assess if it passes or not.

2. I will test that the AI is able to correctly interface with the game.

2.1. To do this I will play through several games each time playing in different styles and

I will assess how the AI copes with this. Here is an example of some testing data:

No Purpose Test Data Expected result

1 To see if the AI can handle the
human player folding.

Run the program and fold
on the first turn. Then see if
the AI functions next game.

Human folds, AI
wins.
You are now on
round 2 of the game.
AI plays as normal.

2.2. I will screen shot the outcome of the test and assess if it passes or not.

3. I will test that the AI correctly reads and trains itself off the dataset.

3.1. To do this I will isolate the AI and see if it performs the correct move according to the

dataset I give it.

3.2. Here is some example testing data:

No Purpose Test Data Expected result

1 To see if the AI makes the
correct move according to the
dataset given.

Give the AI cards that you
would expect it to bet on
e.g. AH and AC.

AI raises.

Laurence Brown Godalming College

17
Centre No: 64395 Candidate No: 4146

4. I will test that the ability of the AI and see if it is able to gain more money than a human

over a period of 10 games.

4.1. To do this I will play normally against the AI over 10 games with the aim for me to

win. This gives the AI the toughest environment possible.

4.2. I will keep a log of all turns I make, the outcome of each game and the cards each

player had, along with the table cards, and finally how much money each player has

at the end of each round.

Laurence Brown Godalming College

18
Centre No: 64395 Candidate No: 4146

TECHNICAL SOLUTION:

I started off my technical solution by exploring the different types of neural networks and

decide what I would use to create my AI.

I first created a simple neural network that could play the game higher or lower by learning

off a small dataset (the complete code is found at appendix A):
11. #define datasets
12. x = np.array(([[0],[12],[4],[7]]), dtype=float)
13. y = np.array([[1],[0],[1],[0]])
14.
15. #normalise
16. x = x/12
17.
18. #weights
19. w0 = 2*np.random.random((1,4))-1
20. w1 = 2*np.random.random((4,4))-1
21. w2 = 2*np.random.random((4,4))-1
22. w3 = 2*np.random.random((4,1))-1
23.
24. #train
25. for t in xrange(100000):
26.
27. #forward propagation
28. l0 = x
29. l1 = sigma(np.dot(l0, w0))
30. l2 = sigma(np.dot(l1, w1))
31. l3 = sigma(np.dot(l2, w2))
32. l4 = sigma(np.dot(l3, w3))
33.
34. #error + change calc
35. l4_error = y - l4
36. l4_change = l4_error*sigma_deriv(l4)
37. l3_error = l4_change.dot(w3.T)
38. l3_change = l3_error * sigma_deriv(l3)
39. l2_error = l3_change.dot(w2.T)
40. l2_change = l2_error * sigma_deriv(l2)
41. l1_error= l2_change.dot(w1.T)
42. l1_change = l1_error * sigma_deriv(l1)
43.
44. #update weights
45. w3 += np.dot(l3.T, l4_change)
46. w2 += np.dot(l2.T, l3_change)
47. w1 += np.dot(l1.T, l2_change)
48. w0 += np.dot(l0.T, l1_change)

It used a neural network that used gradient descent to learn. Gradient descent is where each

weight in the network is assigned a random weight. The learning dataset (x) is then put

through the weights and the outcome is recorded. The difference between this and the

actual outcome store in dataset (y) is then calculated, this is the error. To find how much it

needs to adjust the weights by, the change, it multiplies the error by the gradient of the point

on the sigma function on which each layer lies. It then adjusts the weights by the dot product

of the layer and the layer change needed. This whole process is repeated 100,000 times to

achieve maximum accuracy. The user may then enter their own card, this then gets put

through the weights and returns whether the next card is likely to be higher or lower.

This method worked well but only for small datasets. The dataset I will be using will be

significantly bigger as it will store the move that should be made for each possible

combination of the players hand cards.

Laurence Brown Godalming College

19
Centre No: 64395 Candidate No: 4146

I then found a neural network type that is able to handle large data sets. Using a method

called “Stochastic gradient descent” the neural network is able to be trained quickly on a

large dataset.

I then set about creating an AI that would learn what move to make in poker when given its

two hand cards. First I had to create a dataset for the AI to learn off. I did this by writing a

program that compared every possible hand combination with every possible hand

combination it could go up against multiple times, each time with different table cards. I then

assigned each card combination points based on how many times it won. From this I created

a dataset. There are two files that make up the dataset, correctpredtrained.csv and

handstrained.csv. The headers of each dataset look like the following:

correctpredtrained.csv:

Card1 float value (rank/14) Card2 float value (rank/14) Suited (1= suited, 0 = not suited)

 handstrained.csv:

Correct prediction (1 = raise, 0 = fold)

The program took roughly eight hours to create the dataset which I am going to use for my

AI. The code for this program can be found in appendix B. The dataset can be found in

appendix C. After I had created this dataset I then moved on to create the Stochastic

Gradient Descent neural network that would play AI:

8. #define datasets
9. __x = np.genfromtxt('handstrained.csv', delimiter=',')
10. __y = np.genfromtxt('correctpredtrained.csv', delimiter=',')[np.newaxis]
11. __y = __y.T
12. #seed
13. np.random.seed(1)
14. #weights
15. __w0 = 2*np.random.random((3,4))-1
16. __w1 = 2*np.random.random((4,4))-1
17. __w2 = 2*np.random.random((4,4))-1
18. __w3 = 2*np.random.random((4,1))-1

36. for i in xrange(10):
37. self.epoch()

50. def epoch(self):
51. __z=0
52. #train
53. for t in xrange(len(self.__y)/4):
54. #forward propagation
55. __l0 = self.__x[__z:(__z+5)]
56. __l1 = self.sigma(np.dot(__l0, self.__w0))
57. __l2 = self.sigma(np.dot(__l1, self.__w1))
58. __l3 = self.sigma(np.dot(__l2, self.__w2))
59. __l4 = self.sigma(np.dot(__l3, self.__w3))
60. #error + change calc
61. __l4_error = self.__y[__z:(__z+5)] - __l4
62. __l4_change = __l4_error*self.sigmaDeriv(__l4)
63. __l3_error = __l4_change.dot(self.__w3.T)
64. __l3_change = __l3_error * self.sigmaDeriv(__l3)
65. __l2_error = __l3_change.dot(self.__w2.T)
66. __l2_change = __l2_error * self.sigmaDeriv(__l2)
67. __l1_error= __l2_change.dot(self.__w1.T)

Laurence Brown Godalming College

20
Centre No: 64395 Candidate No: 4146

68. __l1_change = __l1_error * self.sigmaDeriv(__l1)
69. #update weights
70. self.__w3 += np.dot(__l3.T, __l4_change)
71. self.__w2 += np.dot(__l2.T, __l3_change)
72. self.__w1 += np.dot(__l1.T, __l2_change)
73. self.__w0 += np.dot(__l0.T, __l1_change)
74. __z += 5

(The full code can be found in appendix B)

Unlike the standard gradient descent neural network this method trains itself off chunks of

the dataset at a time.

After I had solved the AI element I then needed to create a poker game for the AI to play

against someone on. The following are some of the major algorithms in the game.

The playGame() function calls betting rounds in the right order, reveals table cards as they
are needed, calls on the card comparison to determine the winner and returns the winner
once run through.

1. def playGame(self):
2. self.__human.setMoney(-self.__table.getEntryMoney())
3. self.__ai.setMoney(-self.__table.getEntryMoney())
4. self.__table.setPot(2*self.__table.getEntryMoney())
5. self.__table.setNextPlayer('r')

This is the preflop betting round.
6. if self.bettingRound() == False:
7. print "The table's cards are: " + str(self.__table.getCards(0)+",

"+self.__table.getCards(1)+", "+self.__table.getCards(2))
8. self.__human.setAction('-')
9. self.__ai.setAction('-')

This is the flop betting round.
10. if self.bettingRound() == False:
11. print "The table's cards are: " + str(self.__table.getCards(0)+",

"+self.__table.getCards(1)+", "+self.__table.getCards(2)+", "+self.__table.getCards(3))
12. self.__human.setAction('-')
13. self.__ai.setAction('-')

This is the turn betting round.
14. if self.bettingRound() == False:
15. print "The table's cards are: " + str(self.__table.getCards(0)+",

"+self.__table.getCards(1)+", "+self.__table.getCards(2)+", "+self.__table.getCards(3)+",
"+self.__table.getCards(4))

16. self.__human.setAction('-')
17. self.__ai.setAction('-')

This is the river betting round.
18. if self.bettingRound() == False:

If neither player folds nor runs out of money during any of the betting rounds then the card
comparison function is called to determine the winner.

19. self.__table.setWinner(Compare().cardCompare(self.__human.getCard(),
self.__ai.getCard(),[self.__table.getCards(0),self.__table.getCards(1),self.__table.getCards(
2),self.__table.getCards(3),self.__table.getCards(4)]))

20. if self.__table.getWinner() == 'Human':
21. self.__human.setMoney(self.__table.getPot())
22. self.__table.setPot(0)
23. self.__human.setScore(1)
24. self.__table.setWinnersCards(str(self.__human.getCard()))
25. return str(self.__human.getName())
26. elif self.__table.getWinner() == 'AI':
27. self.__ai.setMoney(self.__table.getPot())
28. self.__table.setPot(0)
29. self.__ai.setScore(1)
30. self.__table.setWinnersCards(str(self.__ai.getCard()))
31. return 'AI'

Laurence Brown Godalming College

21
Centre No: 64395 Candidate No: 4146

32. else:
33. self.__human.setMoney(self.__table.getPot()/2)
34. self.__ai.setMoney(self.__table.getPot()/2)
35. self.__table.setPot(0)
36. self.__table.setWinnersCards('')
37. return 'no-one'

If a player runs out of money or folds a winner will be chosen in this section.
38. else:
39. if self.__gameOver == 'ai':
40. return str(self.__human.getName())
41. if self.__gameOver == 'human':
42. return 'AI'
43. elif self.__table.getWinner() == 'Human':
44. self.__table.setWinnersCards(str(self.__human.getCard()))
45. return str(self.__human.getName())
46. elif self.__table.getWinner() == 'AI':
47. self.__table.setWinnersCards(str(self.__ai.getCard()))
48. return 'AI'
49. else:
50. self.__table.setWinnersCards('')
51. return 'no-one'

This function checks that both players still have money to play with else it will end the game.
52. def checkMoney(self,flag):
53. if int(self.__human.getMoney()) < 0 and flag == False:
54. self.__gameOver = 'human'
55. self.__table.setWinner('AI')
56. self.__table.setWon('t')
57. self.__ai.setScore(1)
58. return True
59. elif int(self.__ai.getMoney()) < 0 and flag == False:
60. self.__gameOver = 'ai'
61. self.__table.setWinner('Human')
62. self.__table.setWon('t')
63. self.__human.setScore(1)
64. return True
65. elif flag == True: return True
66. else: return False

This function is the base level of the betting rounds, it displays each players money, checks
that no one has folded and calls the checkMoney() algorithm as well as call each players
individual betting round in the correct order.

1. def bettingRound(self):
2. self.__table.setWon('f')
3. __flag = False
4. if self.__table.getNextPlayer() == 1:
5. while __flag == False:
6. __flag = self.checkMoney(__flag)
7. print "Your money: " + str(self.__human.getMoney())
8. print "AI money: " + str(self.__ai.getMoney())
9. print "Pot: " + str(self.__table.getPot())
10. if __flag == False:
11. if self.bettingRoundHuman()== True and __flag == False:
12. self.__table.setNextPlayer('a')
13. __flag = True
14. __flag = self.checkMoney(__flag)
15. print "Your money: " + str(self.__human.getMoney())
16. print "AI money: " + str(self.__ai.getMoney())
17. print "Pot: " + str(self.__table.getPot())
18. if __flag == False:
19. if self.bettingRoundAi() == True and __flag == False:
20. self.__table.setNextPlayer('h')
21. __flag = True
22. elif self.__table.getNextPlayer() == 2:

Laurence Brown Godalming College

22
Centre No: 64395 Candidate No: 4146

23. while __flag == False:
24. __flag = self.checkMoney(__flag)
25. print "Your money: " + str(self.__human.getMoney())
26. print "AI money: " + str(self.__ai.getMoney())
27. print "Pot: " + str(self.__table.getPot())
28. if __flag == False:
29. if self.bettingRoundAi()== True and __flag == False:
30. self.__table.setNextPlayer('h')
31. __flag = True
32. __flag = self.checkMoney(__flag)
33. print "Your money: " + str(self.__human.getMoney())
34. print "AI money: " + str(self.__ai.getMoney())
35. print "Pot: " + str(self.__table.getPot())
36. if __flag == False:
37. if self.bettingRoundHuman() == True and __flag == False:
38. self.__table.setNextPlayer('a')
39. __flag = True
40. if self.__table.getWon() == True:
41. return True
42. else:
43. return False

This is the AI betting round, it requests moves from the AI object and deals with the
movement of money between players.

44. def bettingRoundAi(self):
45. self.__ai.setAction('x')
46. if self.__ai.getAction() == 'f':
47. print "AI folds with the cards: " + str(self.__ai.getCard())
48. self.__human.setMoney(self.__table.getPot())
49. self.__table.setPot(0)
50. self.__human.setScore(1)
51. self.__table.setWinner('Human')
52. self.__table.setWon('t')
53. return True
54. elif self.__ai.getAction() == 'r':
55. self.__ai.setRaiseAmount()
56. self.__ai.setMoney(-self.__ai.getRaiseAmount())
57. self.__table.setPot(self.__ai.getRaiseAmount())
58. print "AI raises by " + str(self.__ai.getRaiseAmount())
59. if self.__human.getAction() == 'r':
60. self.__ai.setMoney(-self.__human.getRaiseAmount())
61. self.__table.setPot(self.__human.getRaiseAmount())
62. self.__table.setWon('f')
63. return False
64. elif self.__human.getAction() == 'c':
65. self.__table.setWon('f')
66. return False
67. else:
68. self.__table.setWon('f')
69. return False
70. elif self.__ai.getAction() == 'c':
71. print "AI calls"
72. if self.__human.getAction() == 'r':
73. self.__ai.setMoney(-self.__human.getRaiseAmount())
74. self.__table.setPot(self.__human.getRaiseAmount())
75. self.__table.setWon('f')
76. return False
77. elif self.__human.getAction() == 'c':
78. self.__table.setWon('f')
79. return True
80. else:
81. self.__table.setWon('f')
82. return False

This is the human betting round, it requests moves from the user and deals with the
movement of money between players.

83. def bettingRoundHuman(self):

Laurence Brown Godalming College

23
Centre No: 64395 Candidate No: 4146

84. print str(self.__human.getName())+", your cards are: " + str(self.__human.getCard())
85. self.__human.setAction(raw_input("What is your move? (r/c/f): "))
86. if self.__human.getAction() == 'f':
87. self.__ai.setMoney(self.__table.getPot())
88. self.__table.setPot(0)
89. self.__ai.setScore(1)
90. self.__table.setWinner('AI')
91. self.__table.setWon('t')
92. return True
93. elif self.__human.getAction() == 'r':
94. self.__human.setRaiseAmount(input("Raise by: "))
95. self.__human.setMoney(-self.__human.getRaiseAmount())
96. self.__table.setPot(self.__human.getRaiseAmount())
97. if self.__ai.getAction() == 'r':
98. self.__human.setMoney(-self.__ai.getRaiseAmount())
99. self.__table.setPot(self.__ai.getRaiseAmount())
100. self.__table.setWon('f')
101. return False
102. elif self.__ai.getAction() == 'c':
103. self.__table.setWon('f')
104. return False
105. else:
106. self.__table.setWon('f')
107. return False
108. elif self.__human.getAction() == 'c':
109. if self.__ai.getAction() == 'c':
110. self.__table.setWon('f')
111. return True
112. elif self.__ai.getAction() == 'r':
113. self.__human.setMoney(-self.__ai.getRaiseAmount())
114. self.__table.setPot(self.__ai.getRaiseAmount())
115. self.__table.setWon('f')
116. return False
117. else:
118. self.__table.setWon('f')
119. return False

This is the card comparison function that decides which players hand was stronger.
1. class Compare:
2. __allHcards = []
3. __allAcards = []

First it creates two arrays; one for the humans and table cards and one for the AI and table
cards.

4. def cardCompare(self,hc,ac,tblc):
5. self.__allHcards = [hc[0], hc[1], tblc[0], tblc[1], tblc[2], tblc[3], tblc[4]]
6. self.__allAcards = [ac[0], ac[1], tblc[0], tblc[1], tblc[2], tblc[3], tblc[4]]

Here it decides which player had the highest rated hand by comparing tuples.
7. if self.evaluateCard(self.__allHcards) > self.evaluateCard(self.__allAcards): return

'Human'
8. elif self.evaluateCard(self.__allAcards) > self.evaluateCard(self.__allHcards): retur

n 'AI'
9. else: return "no-one"
10.

This function creates a tuple that represents the players hand strength.
11. def evaluateCard(self,hand):
12. __groups = self.group(['--23456789TJQKA'.index(r) for r, s in hand])
13. __counts, __ranks = zip(*__groups)
14. if __ranks == (14, 5, 4, 3, 2):
15. __ranks = (5, 4, 3, 2, 1)
16. __straight = len(__ranks) == 5 and max(__ranks)-min(__ranks) == 4
17. __flush = len(set([s for r, s in hand])) == 1
18. return (
19. 9 if (5,) == __counts else

Laurence Brown Godalming College

24
Centre No: 64395 Candidate No: 4146

20. 8 if __straight and __flush else
21. 7 if (4, 1) == __counts else
22. 6 if (3, 2) == __counts else
23. 5 if __flush else
24. 4 if __straight else
25. 3 if (3, 1, 1) == __counts else
26. 2 if (2, 2, 1) == __counts else
27. 1 if (2, 1, 1, 1) == __counts else
28. 0), __ranks
29.
30. def group(self,items):
31. __groups = [(items.count(x), x) for x in set(items)]
32. return sorted(__groups, reverse = True)

Since the card comparison algorithm is a difficult one to code and there are only a few
certain ways to perform it I made use of a card comparison algorithm found on Udacity’s
“Design of Computer Programs” course.

This is the card pile class that contains the deck array and distributes cards to players and
the table.

1. class CardPile:
2. __deck = [r+s for r in '23456789TJQKA' for s in 'SHDC']
3. __usedCards = []
4. def getCard(self):
5. while True:
6. __randCard = self.__deck[randint(0,51)]
7. if __randCard not in self.__usedCards:
8. self.__usedCards.append(__randCard)
9. return __randCard
10. break
11. def reset(self):
12. self.__usedCards = []
13.
14. game = Game('One')
15. game.menu()

After I had finished coding each separate algorithm I combined them all into one python file,
added linking pieces of code and converted it into OOP style programming. The final result
can be found in appendix E.

Here is an overview guide of the program:

Laurence Brown Godalming College

25
Centre No: 64395 Candidate No: 4146

TESTING:

I then moved onto the testing where I could verify that all the algorithms were working

correctly and where I could start to investigate if it is possible for a poker AI to beat a human

player. I started with testing the actual functionality of the game, to ensure that it was

correctly dealing with inputs and playing through the game of poker correctly.

Game Functionality testing:

No Purpose Test Data Expected result Actual
Result
(evidence
appendix F)

1.1 The game launches without
errors.

N/A. Games launches and prints
welcome text.

Pass.
(1.1)

1.2 The game successfully
creates a new player object.

Enter “Player
name” in the
name field.

Game starts the first round of
betting.

Pass.
(1.2)

1.3a
1.3b
1.3c

The game is able to
interpret a player’s move.

Enter:
“f”
“r”
“c”
In the move
field.

a. Game recognises you wanted
to fold and ends the round,
declaring the AI as the winner.

b. Game asks how much you want
to raise by.

c. Game proceeds with the betting
round

a. Pass.
(1.3a)

b. Pass.
(1.3b)

c. Pass.
(1.3c)

1.4 To see if the game correctly
handles money.

Enter “1000” in
the raise field.

The game deducts 1000 from the
player’s wallet when raising.

Pass.
(1.4)

1.5 To see if the card
comparison algorithm works
correctly.

Play until the
end of a round.

The player who had the better set
of cards wins.

Pass, the
human won
with two
pairs.
(1.5)

1.6 To see if the game is able to
reset itself.

Enter “y” in the
reset field.

The game resets each player’s
money, score and game round.

Pass.
(1.6)

1.7 To see if the game quits
successfully.

Enter “y” in the
quit field.

The game exits. Pass.
(1.7)

1.8 To see if the game displays
relevant information about
the game.

N/A a. It displays information about the
money.

b. It displays information about the
game score and round.

c. The game displays information
about player’s cards and the
table cards.

d. The game shows information
about the winner.

a. Pass.
(1.8a)

b. Pass.
(1.8b)

c. Pass.
(1.8c)

d. Pass.
(1.8d)

Laurence Brown Godalming College

26
Centre No: 64395 Candidate No: 4146

1.9 The game is able to
correctly carry out an entire
betting round

Play normally
until the end of a
betting round.

The game displays relevant
information and doesn’t run into
any errors as I play.

Pass.
(1.9)

Then I moved on to test the integration of the AI within the poker game to ensure that both

algorithms were able to communicate successfully and effectively.

AI-Game communication testing:

No Purpose Test Data Expected result Actual Result
(evidence
appendix F)

2.1 To see if the AI can make a
move within the game.

N/A AI calls / folds / raises. Pass.
(2.1)

2.2 To see if the AI can handle
the human player folding.

Run the
program and
fold on the first
turn. Then see if
the AI functions
next game.

Human folds, AI wins.
You are now on round 2 of the
game.
AI plays as normal.

Pass.
(2.2)

2.3 To see if the AI is able to
play after multiple resets.

Fold several
times over and
reset the game
multiple times.

AI plays as normal. Pass.
(2.3)

Afterwards I then tested that the dataset was being read correctly by the AI and to see if the

AI was learning off of it.

Tests to see if the AI is reading the dataset correctly.

No Purpose Test Data Expected result Actual Result
(evidence
appendix F)

3.1a
3.1b

To see if the AI makes the
correct move according to
the dataset given.

Give the AI
cards that you
would expect it
to bet on:
a. 8D, QH
b. 3H, 2H

a. AI raises.
b. AI folds.

a. Pass.
(3.1a)

b. Pass.
(3.1b)

Laurence Brown Godalming College

27
Centre No: 64395 Candidate No: 4146

Finally I tested whether it is possible for a poker AI to beat a human player in order to get a

conclusion for my investigation.

Tests to see if the AI can outperform a human:

Round
No

Cards Method of
winning

Players money Game results
(evidence
appendix F)

1 AI: QH, 2D
Human: 2H, 2C
Table: ?

Fold. AI: 1,000,100
Human: 999,900

AI wins.
(4.1)

2 AI: JD, 5D
Human: JS, TS
Table: KH, 2S, KD, 5H, 5C

Showdown. AI: 995,168
Human: 994,958

Human wins.
(4.2)

3 AI: 8S, KC
Human: 9S, JH
Table: 6H, 3C, TH, QC, 4D

Showdown. AI: 1,000,131
Human: 999,869

AI wins.
(4.3)

4 AI: JC, QD
Human: QS, 8D
Table: 4S, 9C, TC, 7C, 8C

Showdown. AI: 1,050,523
Human: 944,807

AI wins.
(4.4)

5 AI: 9D, 6D
Human: 3S, KS
Table: TD, 9H, 7D, 6S, 7H

Showdown. AI: 1,058,863
Human: 940,037

AI wins.
(4.5)

6 AI: JS, 2D
Human: KH, 7C
Table: 4C, 4H, 3D, QH, 3S

Showdown. AI: 1,039,868
Human: 953,821

Human wins.
(4.6)

7 AI: 4C, 7H
Human: 9H, 8S
Table: 6H, AD, QC, 5S, 8H

Showdown. AI: 1,055,066
Human: 938,623

AI wins.
(4.7)

8 AI: 2S, JH
Human: 3D, 7D
Table: ?

Fold. AI: 1,055,166
Human: 938,523

AI wins.
(4.8)

9 AI: 9S, 6S
Human: KS, JC
Table: 2C, TS, QS, 7C, TD

Showdown. AI: 1,054,066
Human: 939,623

Human wins.
(4.9)

10 AI: 5H, 6C
Human: 7S, 5D
Table: KH, KC, 5C, AC, 2D

Showdown. AI: 1,048,775
Human: 951,225

Human wins.
(4.10)

Laurence Brown Godalming College

28
Centre No: 64395 Candidate No: 4146

EVALUATION:

To evaluate and assess how well I carried out this investigation I must see if my solution

meets the requirements.

I feel that my solution meets most, if not all, requirements I set out to complete. The testing

shows that the following requirements were met.

Requirement Met? Explanation

1 ✓ As evidenced in the screenshot the user was clearly able to see
their cards and the table cards as well as input there desired
action.

2 ✓ The program was successfully able to deal cards to all positions
and not draw duplicates.

3 ✓ The second stage of testing showed that the AI was successfully
able to communicate with the game.

4 ✓ As it was demonstrated all throughout my testing that the game
was able to constantly transfer money between the players and the
pot, rewarding the winner with all the money acquired in the pot at
the end of a game.

5 ✓ The game was successfully able to determine a winner, as shown
in the final stage of testing, if a player folded, if a player’s money
ran out or if it came to the showdown, a winner was picked.

6 ✓ It was shown that in the last stage of testing as the game was
clearly able to determine when a round of betting was over.

7 ✓ The testing in stage 2 and 4 shows that the AI could make moves
within the game and receive its cards and money.

8 ✓ In the 3rd stage of testing where I tested if the AI was able to
access a dataset and make a correct move when asked.

Since all of my requirements were met this provides a fair platform to put my investigation to

test. However if I were to revisit this investigation I would have introduced more validation

into the poker game to insure no foul input could be made. I would also create my own hand

evaluation algorithm that would be more tailored to my game of poker. In addition to this I

would have created a better dataset that does not just work off probabilities. Finally if I had

extra time I would make the AI self-learning, so that after each game it played it would

update the dataset appropriately according to what happened during that previous game.

I also received feedback from Mr. M, a poker player at Godalming College. He liked the

game and was impressed that it was more successful than an average human player. He

also gave me suggestions of creating my own dataset and have the AI update itself as it

plays so the AI becomes more self-improving over time. He also suggest I look into using

more complex neural network models like deep learning algorithms.

To conclude, my investigation was to find out if it is possible to produce an AI that will earn

more money from playing Texas hold’em than a human in 10 games. To test this I played my

best against the AI for the duration of 10 games of poker and measured the amount of

money each player had at the end of it. The final testing stage showed that AI is capable of

playing poker better than an average human poker player as it beat me by making a profit of

48,775 over the duration of 10 games.

Laurence Brown Godalming College

29
Centre No: 64395 Candidate No: 4146

APPENDICIES:

A: Higher lower standard gradient descent neural network.

1. import numpy as np
2.
3. #make sigma
4. def sigma(x):
5. return 1/(1+np.exp(-x))
6.
7. #sigma gradient
8. def sigma_deriv(x):
9. return x*(1-x)
10.
11. #define datasets
12. x = np.array(([[0],[12],[4],[7]]), dtype=float)
13. y = np.array([[1],[0],[1],[0]])
14.
15. #normalise
16. x = x/12
17.
18. #weights
19. w0 = 2*np.random.random((1,4))-1
20. w1 = 2*np.random.random((4,4))-1
21. w2 = 2*np.random.random((4,4))-1
22. w3 = 2*np.random.random((4,1))-1
23.
24. #train
25. for t in xrange(100000):
26.
27. #forward propagation
28. l0 = x
29. l1 = sigma(np.dot(l0, w0))
30. l2 = sigma(np.dot(l1, w1))
31. l3 = sigma(np.dot(l2, w2))
32. l4 = sigma(np.dot(l3, w3))
33.
34. #error + change calc
35. l4_error = y - l4
36. l4_change = l4_error*sigma_deriv(l4)
37. l3_error = l4_change.dot(w3.T)
38. l3_change = l3_error * sigma_deriv(l3)
39. l2_error = l3_change.dot(w2.T)
40. l2_change = l2_error * sigma_deriv(l2)
41. l1_error= l2_change.dot(w1.T)
42. l1_change = l1_error * sigma_deriv(l1)
43.
44. #update weights
45. w3 += np.dot(l3.T, l4_change)
46. w2 += np.dot(l2.T, l3_change)
47. w1 += np.dot(l1.T, l2_change)
48. w0 += np.dot(l0.T, l1_change)
49.
50. print "Output after training"
51. print l4
52.
53. #user entry
54. c = raw_input("Card: ")
55. C = np.array(([[c]]), dtype=float)
56.
57. #normalise
58. C = C/12
59.
60. print sigma(np.dot(sigma(np.dot(sigma(np.dot(sigma(np.dot(C, w0)), w1)), w2)), w3))

Laurence Brown Godalming College

30
Centre No: 64395 Candidate No: 4146

B: datatrain.py – dataset creation.

1. import itertools, random, sys, math, time, csv
2. from random import randint
3. from time import sleep
4. import numpy as np
5.
6. def main():
7. setup()
8. train()
9. DataSet().csvList()
10.
11. def setup():
12. CardPile().reset()
13. CardPile().setList()
14.
15. def train():
16. for x in xrange(0,52):
17. for y in xrange(0,52):
18. if x!=y:
19. tp = TrainPlayer((x,y))
20. tp.setCards((CardPile().getSpecCard(tp.getCardNo()[0]),CardPile().getSpecCard

(tp.getCardNo()[1])))
21. for i in xrange(0,52):
22. for j in xrange(0,52):
23. if i!=j and i!=x and i!=y and j!=x and j!=y and x!=y:
24. op = OppPlayer((i,j))
25. op.setCards((CardPile().getSpecCard(op.getCardNo()[0]),CardPile()

.getSpecCard(op.getCardNo()[1])))
26. for epoch in xrange(0,100):
27. tbl = Table([CardPile().getRandCard(),CardPile().getRandCard(

),CardPile().getRandCard(),CardPile().getRandCard(),CardPile().getRandCard()])
28. tp.setPoints(int(Compare().cardCompare(tp.getCards(),op.getCa

rds(),tbl.getCards())))
29. CardPile().reset()
30. CardPile().usedCardAdd(tp.getCards()[0])
31. CardPile().usedCardAdd(tp.getCards()[1])
32. CardPile().usedCardAdd(op.getCards()[0])
33. CardPile().usedCardAdd(op.getCards()[1])
34. del op
35. DataSet().setPoint(tp.getCards()[0],tp.getCards()[1],tp.getPoints())
36. print tp.getCards()
37. del tp
38.
39.
40. class Compare:
41. __allTcards = []
42. __all0cards = []
43. def cardCompare(self,tpc,opc,tblc):
44. self.__allTcards = [tpc[0], tpc[1], tblc[0], tblc[1], tblc[2], tblc[3], tblc[4]]
45. self.__allOcards = [opc[0], opc[1], tblc[0], tblc[1], tblc[2], tblc[3], tblc[4]]
46. if self.evaluateCard(self.__allTcards) > self.evaluateCard(self.__allOcards):
47. return 1
48. elif self.evaluateCard(self.__allOcards) > self.evaluateCard(self.__allTcards):
49. return 0
50. else:
51. return 0
52.
53. def evaluateCard(self,hand):
54. groups = self.group(['--23456789TJQKA'.index(r) for r, s in hand])
55. counts, ranks = zip(*groups)

Laurence Brown Godalming College

31
Centre No: 64395 Candidate No: 4146

56. if ranks == (14, 5, 4, 3, 2):
57. ranks = (5, 4, 3, 2, 1)
58. straight = len(ranks) == 5 and max(ranks)-min(ranks) == 4
59. flush = len(set([s for r, s in hand])) == 1
60. return (
61. 9 if (5,) == counts else
62. 8 if straight and flush else
63. 7 if (4, 1) == counts else
64. 6 if (3, 2) == counts else
65. 5 if flush else
66. 4 if straight else
67. 3 if (3, 1, 1) == counts else
68. 2 if (2, 2, 1) == counts else
69. 1 if (2, 1, 1, 1) == counts else
70. 0), ranks
71.
72. def group(self,items):
73. groups = [(items.count(x), x) for x in set(items)]
74. return sorted(groups, reverse = True)
75.
76. class Table:
77. __flop1 = []
78. __flop2 = []
79. __flop3 = []
80. __turn = []
81. __river = []
82. def __init__(self,cards):
83. self.__flop1 = cards[0]
84. self.__flop2 = cards[1]
85. self.__flop3 = cards[2]
86. self.__turn = cards[3]
87. self.__river = cards[4]
88. def getCards(self):
89. return [self.__flop1, self.__flop2, self.__flop3, self.__turn, self.__river]
90.
91. class Player:
92. __cardNo = []
93. __cards = []
94. def __init__(self, cardNo):
95. self.__cardNo = cardNo
96. def getCardNo(self):
97. return self.__cardNo
98. def setCards(self,cards):
99. self.__cards = cards
100. def getCards(self):
101. return self.__cards
102.
103. class TrainPlayer(Player):
104. __points = 0
105. def __init__(self, cardNo):
106. Player.__init__(self, cardNo)
107. def getCardNo(self):
108. return Player.getCardNo(self)
109. def setCards(self,cards):
110. Player.setCards(self,cards)
111. def getCards(self):
112. return Player.getCards(self)
113. def setPoints(self, points):
114. self.__points += points
115. def getPoints(self):
116. return self.__points
117.
118. class OppPlayer(Player):
119. def __init__(self, cardNo):
120. Player.__init__(self, cardNo)
121. def getCardNo(self):

Laurence Brown Godalming College

32
Centre No: 64395 Candidate No: 4146

122. return Player.getCardNo(self)
123. def setCards(self,cards):
124. Player.setCards(self, cards)
125. def getCards(self):
126. return Player.getCards(self)
127.
128. class CardPile:
129. __deck = [r+s for r in '23456789TJQKA' for s in 'SHDC']
130. __usedCards = []
131. __list = []
132. def getSpecCard(self,cardneeded):
133. __specCard = self.__deck[cardneeded]
134. self.__usedCards.append(__specCard)
135. return __specCard
136. def getRandCard(self):
137. while True:
138. __randCard = self.__deck[randint(0,51)]
139. if __randCard not in self.__usedCards:
140. self.__usedCards.append(__randCard)
141. return __randCard
142. break
143. def setList(self):
144. for x in xrange(0,52):
145. for y in xrange(0,52):
146. if y != x:
147. self.__list.append((x,y))
148. def getList(self):
149. return self.__list
150. def reset(self):
151. del self.__usedCards[:]
152. def usedCardAdd(self, card):
153. self.__usedCards.append(card)
154.
155. class DataSet:
156. __cardList = []
157. __pointList = []
158. __floatList = []
159. __predList = []
160. def setPoint(self,card1,card2,point):
161. self.__cardList.append(self.processCards(card1,card2))
162. self.__pointList.append([point])
163. def getPoint(self,pos):
164. return (self.__cardList[pos], self.__pointList[pos])
165. def processCards(self,card1,card2):
166. if card1[:1] == 'T': c1 = 10
167. elif card1[:1] == 'J': c1 = 11
168. elif card1[:1] == 'Q': c1 = 12
169. elif card1[:1] == 'K': c1 = 13
170. elif card1[:1] == 'A': c1 = 14
171. else: c1 = int(card1[:1])
172. if card2[:1] == 'T': c2 = 10
173. elif card2[:1] == 'J': c2 = 11
174. elif card2[:1] == 'Q': c2 = 12
175. elif card2[:1] == 'K': c2 = 13
176. elif card2[:1] == 'A': c2 = 14
177. else: c2 = int(card2[:1])
178. if card1[-1:]==card2[-1:]: s = 1
179. else: s = 0
180. c1 = float(c1)/14
181. c2 = float(c2)/14
182. return [c1,c2,s]
183. def pointFloat(self):
184. maxPoint = max(self.__pointList)[0]
185. self.__floatList = [[float(j)/maxPoint for j in i] for i in self.__pointLis

t]
186. def makePred(self, x):

Laurence Brown Godalming College

33
Centre No: 64395 Candidate No: 4146

187. return(
188. 1 if x >= 0.6 else
189. 0)
190. def makePredList(self):
191. self.__predList = [[self.makePred(x) for x in z] for z in self.__floatList]
192. def csvList(self):
193. with open('handstrained.csv', 'wb') as myfile:
194. wr = csv.writer(myfile, delimiter=',')
195. for z in xrange(0,len(self.__cardList)):
196. wr.writerow(self.__cardList[z])
197. with open('correctpredtrainedUN.csv', 'wb') as myfile:
198. wr = csv.writer(myfile, delimiter=',')
199. for z in xrange(0,len(self.__pointList)):
200. wr.writerow(self.__pointList[z])
201. self.pointFloat()
202. self.makePredList()
203. with open('correctpredtrainedfloat.csv', 'wb') as myfile:
204. wr = csv.writer(myfile, delimiter=',')
205. for z in xrange(0,len(self.__floatList)):
206. wr.writerow(self.__floatList[z])
207. with open('correctpredtrained.csv', 'wb') as myfile:
208. wr = csv.writer(myfile, delimiter=',')
209. for z in xrange(0,len(self.__predList)):
210. wr.writerow(self.__predList[z])
211.
212. main()

Laurence Brown Godalming College

34
Centre No: 64395 Candidate No: 4146

C: Dataset

correctpredtrained.csv:

Card1 float value (rank/14) Card2 float value (rank/14) Suited (1= suited, 0 = not suited)

0.1428571429 0.1428571429 0

0.1428571429 0.1428571429 0

0.1428571429 0.1428571429 0

0.1428571429 0.2142857143 1

0.1428571429 0.2142857143 0

0.1428571429 0.2142857143 0

(Continued)

handstrained.csv:

Correct prediction (1 = raise, 0 = fold)

0

0

0

0

0

0

(Continued)

Laurence Brown Godalming College

35
Centre No: 64395 Candidate No: 4146

D: Higher lower stochastic gradient descent neural network.

1. import numpy as np
2. import csv, random, itertools
3. from random import randint
4.
5. class sdg_nn:
6. __action = ''
7.
8. #define datasets
9. __x = np.genfromtxt('handstrained.csv', delimiter=',')
10. __y = np.genfromtxt('correctpredtrained.csv', delimiter=',')[np.newaxis]
11. __y = __y.T
12. #seed
13. np.random.seed(1)
14. #weights
15. __w0 = 2*np.random.random((3,4))-1
16. __w1 = 2*np.random.random((4,4))-1
17. __w2 = 2*np.random.random((4,4))-1
18. __w3 = 2*np.random.random((4,1))-1
19. #raise check
20. __allReadyRaise = False
21.
22. __move = 0
23.
24. def setAction(self,card1,card2):
25. self.__action = self.predict(card1,card2)
26. def getAction(self):
27. return self.__action
28.
29. def sigma(self,x):
30. return 1/(1+np.exp(-x))
31. #sigma gradient
32. def sigmaDeriv(self,x):
33. return x*(1-x)
34. def predict(self,c01,c02):
35. __carray = self.processCards(c01,c02)
36. for i in xrange(10):
37. self.epoch()
38. #predict
39. __c1 = __carray[0]
40. __c2 = __carray[1]
41. __s = __carray[2]
42. __C = np.array([[__c1,__c2,__s]])
43. self.__move = self.sigma(np.dot(self.sigma(np.dot(self.sigma(np.dot(self.sigma(np.dot

(__C, self.__w0)), self.__w1)), self.__w2)),self.__w3))
44.
45. if self.__move >= 0.7 and self.__allReadyRaise == False:
46. self.__allReadyRaise = True
47. return 'r'
48. elif self.__move >=0.5: return 'c'
49. else: return 'f'
50. def epoch(self):
51. __z=0
52. #train
53. for t in xrange(len(self.__y)/4):
54. #forward propagation
55. __l0 = self.__x[__z:(__z+5)]
56. __l1 = self.sigma(np.dot(__l0, self.__w0))
57. __l2 = self.sigma(np.dot(__l1, self.__w1))
58. __l3 = self.sigma(np.dot(__l2, self.__w2))
59. __l4 = self.sigma(np.dot(__l3, self.__w3))
60. #error + change calc
61. __l4_error = self.__y[__z:(__z+5)] - __l4
62. __l4_change = __l4_error*self.sigmaDeriv(__l4)
63. __l3_error = __l4_change.dot(self.__w3.T)

Laurence Brown Godalming College

36
Centre No: 64395 Candidate No: 4146

64. __l3_change = __l3_error * self.sigmaDeriv(__l3)
65. __l2_error = __l3_change.dot(self.__w2.T)
66. __l2_change = __l2_error * self.sigmaDeriv(__l2)
67. __l1_error= __l2_change.dot(self.__w1.T)
68. __l1_change = __l1_error * self.sigmaDeriv(__l1)
69. #update weights
70. self.__w3 += np.dot(__l3.T, __l4_change)
71. self.__w2 += np.dot(__l2.T, __l3_change)
72. self.__w1 += np.dot(__l1.T, __l2_change)
73. self.__w0 += np.dot(__l0.T, __l1_change)
74. __z += 5
75. def processCards(self,card01,card02):
76. if card01[:1] == 'T': __c1 = 10
77. elif card01[:1] == 'J': __c1 = 11
78. elif card01[:1] == 'Q': __c1 = 12
79. elif card01[:1] == 'K': __c1 = 13
80. elif card01[:1] == 'A': __c1 = 14
81. else: __c1 = int(card01[:1])
82. if card02[:1] == 'T': __c2 = 10
83. elif card02[:1] == 'J': __c2 = 11
84. elif card02[:1] == 'Q': __c2 = 12
85. elif card02[:1] == 'K': __c2 = 13
86. elif card02[:1] == 'A': __c2 = 14
87. else: __c2 = int(card02[:1])
88. if card01[-1:]==card02[-1:]: __s = 1
89. else: __s = 0
90. __c1 = float(__c1)/14
91. __c2 = float(__c2)/14
92. return [__c1,__c2,__s]
93.
94. card1 = raw_input("Card 1: ")
95. card2 = raw_input("Card 2: ")
96. sdg_nn().setAction(card1,card2)
97. print str(sdg_nn().getAction())

Laurence Brown Godalming College

37
Centre No: 64395 Candidate No: 4146

E: poker.py – The final solution.

1. #Import dependancies
2. import sys
3. from random import randint
4. import numpy as np
5.
6. class Game:
7. __gRound = 1 #game round
8. __quit = False
9. __reset = False
10. __gName = '' #game name
11. __ai = None
12. __human = None
13. __gameOver = ''
14. __table = None
15.
16. def __init__(self, gName):
17. self.__gName = gName
18. print "Welcome to texas holdem!"
19. def setupGame(self):
20. self.__human = Player(raw_input("Please enter your name: "))
21. self.__ai = AI()
22. self.__table = Table()
23. self.__human.setMoney(1000000)
24. self.__ai.setMoney(1000000)
25. def menu(self):
26. while self.__quit == False:
27. if self.__gRound == 1 or self.__reset == True:
28. self.setupGame()
29. self.__gRound = 1
30. print "You are on round: " + str(self.__gRound)
31. CardPile().reset()
32. self.setupCards()
33. print "Congratulations " + str(self.playGame()) + ", you won!"
34. print "The AI's cards were: " + str(self.__ai.getCard())
35. print str(self.__human.getName()) + ", your cards were:

" + str(self.__human.getCard())
36. print "The score is: AI: " + str(self.__ai.getScore()) + " |

" + str(self.__human.getScore()) + " :" + str(self.__human.getName()).upper()
37. if self.__gameOver == 'ai' or self.__gameOver == 'human':
38. print "Since " + str(self.__gameOver) + " ran out of money the game is over.

The game will now be reset."
39. self.__reset = True
40. if raw_input("Would you like to quit the game?

(y/n):") == 'y': self.__quit = True
41. else: self.__quit = False
42. else:
43. self.__gRound = self.__gRound + 1
44. if raw_input("Would you like to reset the game?

(y/n):") == 'y': self.__reset = True
45. else: self.__reset = False
46. if raw_input("Would you like to quit the game?

(y/n):") == 'y': self.__quit = True
47. else: self.__quit = False
48. sys.exit()
49. def setupCards(self):
50. self.__table.setCards()
51. self.__human.setCard()
52. self.__ai.setCard()
53. self.__ai.reset()
54. def playGame(self):
55. self.__human.setMoney(-self.__table.getEntryMoney())
56. self.__ai.setMoney(-self.__table.getEntryMoney())
57. self.__table.setPot(2*self.__table.getEntryMoney())
58. self.__table.setNextPlayer('r')

Laurence Brown Godalming College

38
Centre No: 64395 Candidate No: 4146

59. if self.bettingRound() == False:
60. print "The table's cards are: " + str(self.__table.getCards(0)+",

"+self.__table.getCards(1)+", "+self.__table.getCards(2))
61. self.__human.setAction('-')
62. self.__ai.setAction('-')
63. if self.bettingRound() == False:
64. print "The table's cards are: " + str(self.__table.getCards(0)+",

"+self.__table.getCards(1)+", "+self.__table.getCards(2)+", "+self.__table.getCards(3))
65. self.__human.setAction('-')
66. self.__ai.setAction('-')
67. if self.bettingRound() == False:
68. print "The table's cards are: " + str(self.__table.getCards(0)+",

"+self.__table.getCards(1)+", "+self.__table.getCards(2)+", "+self.__table.getCards(3)+",
"+self.__table.getCards(4))

69. self.__human.setAction('-')
70. self.__ai.setAction('-')
71. if self.bettingRound() == False:
72. self.__table.setWinner(Compare().cardCompare(self.__human.getCard(),

self.__ai.getCard(),[self.__table.getCards(0),self.__table.getCards(1),self.__table.getCards(
2),self.__table.getCards(3),self.__table.getCards(4)]))

73. if self.__table.getWinner() == 'Human':
74. self.__human.setMoney(self.__table.getPot())
75. self.__table.setPot(0)
76. self.__human.setScore(1)
77. self.__table.setWinnersCards(str(self.__human.getCard()))
78. return str(self.__human.getName())
79. elif self.__table.getWinner() == 'AI':
80. self.__ai.setMoney(self.__table.getPot())
81. self.__table.setPot(0)
82. self.__ai.setScore(1)
83. self.__table.setWinnersCards(str(self.__ai.getCard()))
84. return 'AI'
85. else:
86. self.__human.setMoney(self.__table.getPot()/2)
87. self.__ai.setMoney(self.__table.getPot()/2)
88. self.__table.setPot(0)
89. self.__table.setWinnersCards('')
90. return 'no-one'
91. else:
92. if self.__gameOver == 'ai':
93. return str(self.__human.getName())
94. if self.__gameOver == 'human':
95. return 'AI'
96. elif self.__table.getWinner() == 'Human':
97. self.__table.setWinnersCards(str(self.__human.getCard()))
98. return str(self.__human.getName())
99. elif self.__table.getWinner() == 'AI':
100. self.__table.setWinnersCards(str(self.__ai.getCard()))
101. return 'AI'
102. else:
103. self.__table.setWinnersCards('')
104. return 'no-one'
105. def checkMoney(self,flag):
106. if int(self.__human.getMoney()) < 0 and flag == False:
107. self.__gameOver = 'human'
108. self.__table.setWinner('AI')
109. self.__table.setWon('t')
110. self.__ai.setScore(1)
111. return True
112. elif int(self.__ai.getMoney()) < 0 and flag == False:
113. self.__gameOver = 'ai'
114. self.__table.setWinner('Human')
115. self.__table.setWon('t')
116. self.__human.setScore(1)
117. return True
118. elif flag == True: return True

Laurence Brown Godalming College

39
Centre No: 64395 Candidate No: 4146

119. else: return False
120. def bettingRound(self):
121. self.__table.setWon('f')
122. __flag = False
123. if self.__table.getNextPlayer() == 1:
124. while __flag == False:
125. __flag = self.checkMoney(__flag)
126. print "Your money: " + str(self.__human.getMoney())
127. print "AI money: " + str(self.__ai.getMoney())
128. print "Pot: " + str(self.__table.getPot())
129. if __flag == False:
130. if self.bettingRoundHuman()== True and __flag == False:
131. self.__table.setNextPlayer('a')
132. __flag = True
133. __flag = self.checkMoney(__flag)
134. print "Your money: " + str(self.__human.getMoney())
135. print "AI money: " + str(self.__ai.getMoney())
136. print "Pot: " + str(self.__table.getPot())
137. if __flag == False:
138. if self.bettingRoundAi() == True and __flag == False:
139. self.__table.setNextPlayer('h')
140. __flag = True
141. elif self.__table.getNextPlayer() == 2:
142. while __flag == False:
143. __flag = self.checkMoney(__flag)
144. print "Your money: " + str(self.__human.getMoney())
145. print "AI money: " + str(self.__ai.getMoney())
146. print "Pot: " + str(self.__table.getPot())
147. if __flag == False:
148. if self.bettingRoundAi()== True and __flag == False:
149. self.__table.setNextPlayer('h')
150. __flag = True
151. __flag = self.checkMoney(__flag)
152. print "Your money: " + str(self.__human.getMoney())
153. print "AI money: " + str(self.__ai.getMoney())
154. print "Pot: " + str(self.__table.getPot())
155. if __flag == False:
156. if self.bettingRoundHuman() == True and __flag == False:
157. self.__table.setNextPlayer('a')
158. __flag = True
159. if self.__table.getWon() == True:
160. return True
161. else:
162. return False
163. def bettingRoundAi(self):
164. self.__ai.setAction('x')
165. if self.__ai.getAction() == 'f':
166. print "AI folds with the cards: " + str(self.__ai.getCard())
167. self.__human.setMoney(self.__table.getPot())
168. self.__table.setPot(0)
169. self.__human.setScore(1)
170. self.__table.setWinner('Human')
171. self.__table.setWon('t')
172. return True
173. elif self.__ai.getAction() == 'r':
174. self.__ai.setRaiseAmount()
175. self.__ai.setMoney(-self.__ai.getRaiseAmount())
176. self.__table.setPot(self.__ai.getRaiseAmount())
177. print "AI raises by " + str(self.__ai.getRaiseAmount())
178. if self.__human.getAction() == 'r':
179. self.__ai.setMoney(-self.__human.getRaiseAmount())
180. self.__table.setPot(self.__human.getRaiseAmount())
181. self.__table.setWon('f')
182. return False
183. elif self.__human.getAction() == 'c':
184. self.__table.setWon('f')

Laurence Brown Godalming College

40
Centre No: 64395 Candidate No: 4146

185. return False
186. else:
187. self.__table.setWon('f')
188. return False
189. elif self.__ai.getAction() == 'c':
190. print "AI calls"
191. if self.__human.getAction() == 'r':
192. self.__ai.setMoney(-self.__human.getRaiseAmount())
193. self.__table.setPot(self.__human.getRaiseAmount())
194. self.__table.setWon('f')
195. return False
196. elif self.__human.getAction() == 'c':
197. self.__table.setWon('f')
198. return True
199. else:
200. self.__table.setWon('f')
201. return False
202. def bettingRoundHuman(self):
203. print str(self.__human.getName())+", your cards are:

" + str(self.__human.getCard())
204. self.__human.setAction(raw_input("What is your move? (r/c/f): "))
205. if self.__human.getAction() == 'f':
206. self.__ai.setMoney(self.__table.getPot())
207. self.__table.setPot(0)
208. self.__ai.setScore(1)
209. self.__table.setWinner('AI')
210. self.__table.setWon('t')
211. return True
212. elif self.__human.getAction() == 'r':
213. self.__human.setRaiseAmount(input("Raise by: "))
214. self.__human.setMoney(-self.__human.getRaiseAmount())
215. self.__table.setPot(self.__human.getRaiseAmount())
216. if self.__ai.getAction() == 'r':
217. self.__human.setMoney(-self.__ai.getRaiseAmount())
218. self.__table.setPot(self.__ai.getRaiseAmount())
219. self.__table.setWon('f')
220. return False
221. elif self.__ai.getAction() == 'c':
222. self.__table.setWon('f')
223. return False
224. else:
225. self.__table.setWon('f')
226. return False
227. elif self.__human.getAction() == 'c':
228. if self.__ai.getAction() == 'c':
229. self.__table.setWon('f')
230. return True
231. elif self.__ai.getAction() == 'r':
232. self.__human.setMoney(-self.__ai.getRaiseAmount())
233. self.__table.setPot(self.__ai.getRaiseAmount())
234. self.__table.setWon('f')
235. return False
236. else:
237. self.__table.setWon('f')
238. return False
239. class Table:
240. __flop1 = []
241. __flop2 = []
242. __flop3 = []
243. __turn = []
244. __river = []
245. __entryMoney = 100
246. __pot = 0
247. __won = None
248. __winner = ''
249. __nextPlayer = None

Laurence Brown Godalming College

41
Centre No: 64395 Candidate No: 4146

250. __winnersCards = ''
251.
252. def setCards(self):
253. self.__flop1 = CardPile().getCard()
254. self.__flop2 = CardPile().getCard()
255. self.__flop3 = CardPile().getCard()
256. self.__turn = CardPile().getCard()
257. self.__river = CardPile().getCard()
258. def getCards(self, amount):
259. return [self.__flop1, self.__flop2, self.__flop3, self.__turn, self.__river

][amount]
260. def getEntryMoney(self):
261. return self.__entryMoney
262. def setPot(self, amount):
263. if amount == 0: self.__pot = amount
264. else: self.__pot += amount
265. def getPot(self):
266. return self.__pot
267. def setWinner(self,winner):
268. self.__winner = str(winner)
269. def getWinner(self):
270. return self.__winner
271. def setWon(self,tf):
272. if tf == 't': self.__won = True
273. elif tf == 'f': self.__won = False
274. def getWon(self):
275. return self.__won
276. def setNextPlayer(self, x):
277. if x == 'r':
278. if randint(0,100) >= 50:
279. self.__nextPlayer = 1
280. else:
281. self.__nextPlayer = 2
282. elif x == 'h':
283. self.__nextPlayer = 1
284. else:
285. self.__nextPlayer = 2
286. def getNextPlayer(self):
287. return self.__nextPlayer
288. def setWinnersCards(self,x):
289. self.__winnersCards = str(x)
290. def getWinnersCards(self):
291. return self.__winnersCards
292.
293. class Player:
294. __card1 = []
295. __card2 = []
296. __money = 0
297. __score = 0
298. __action = ''
299. __raiseAmount = 0
300. __name = ''
301.
302. def __init__(self, name):
303. self.__name = name
304. def setCard(self):
305. self.__card1 = CardPile().getCard()
306. self.__card2 = CardPile().getCard()
307. def getCard(self):
308. return [self.__card1, self.__card2]
309. def setMoney(self, amount):
310. self.__money += amount
311. def getMoney(self):
312. return self.__money
313. def setScore(self, amount):
314. self.__score += amount

Laurence Brown Godalming College

42
Centre No: 64395 Candidate No: 4146

315. def getScore(self):
316. return self.__score
317. def setAction(self, action):
318. self.__action = action
319. def getAction(self):
320. return self.__action
321. def setRaiseAmount(self, amount):
322. self.__raiseAmount = amount
323. def getRaiseAmount(self):
324. return self.__raiseAmount
325. def setName(self, name):
326. self.__name = name
327. def getName(self):
328. return self.__name
329.
330. class AI(Player):
331. #define datasets
332. __x = np.genfromtxt('handstrained.csv', delimiter=',')
333. __y = np.genfromtxt('correctpredtrained.csv', delimiter=',')[np.newaxis]
334. __y = __y.T
335. #seed
336. np.random.seed(1)
337. #weights
338. __w0 = 2*np.random.random((3,4))-1
339. __w1 = 2*np.random.random((4,4))-1
340. __w2 = 2*np.random.random((4,4))-1
341. __w3 = 2*np.random.random((4,1))-1
342. #raise check
343. __allReadyRaise = False
344.
345. __move = 0
346.
347. def __init__(self):
348. Player.__init__(self, 'AI')
349. def setCard(self):
350. Player.setCard(self)
351. def getCard(self):
352. return Player.getCard(self)
353. def setMoney(self, amount):
354. Player.setMoney(self, amount)
355. def getMoney(self):
356. return Player.getMoney(self)
357. def setScore(self, amount):
358. Player.setScore(self, amount)
359. def getScore(self):
360. return Player.getScore(self)
361. def setAction(self,x):
362. if x == '-':
363. Player.setAction(self, x)
364. else:
365. Player.setAction(self, self.predict(Player.getCard(self)[0],Player.getC

ard(self)[1]))
366. def getAction(self):
367. return Player.getAction(self)
368. def setRaiseAmount(self):
369. Player.setRaiseAmount(self, int(*(self.__move)*(Player.getMoney(self)/2

))/100)
370. def getRaiseAmount(self):
371. return Player.getRaiseAmount(self)
372. def reset(self):
373. self.__allReadyRaise = False
374. #make sigma
375. def sigma(self,x):
376. return 1/(1+np.exp(-x))
377. #sigma gradient
378. def sigmaDeriv(self,x):

Laurence Brown Godalming College

43
Centre No: 64395 Candidate No: 4146

379. return x*(1-x)
380. def predict(self,card1,card2):
381. __carray = self.processCards(card1,card2)
382. for i in xrange(10):
383. self.epoch()
384. #predict
385. __c1 = __carray[0]
386. __c2 = __carray[1]
387. __s = __carray[2]
388. __C = np.array([[__c1,__c2,__s]])
389. self.__move = self.sigma(np.dot(self.sigma(np.dot(self.sigma(np.dot(self.si

gma(np.dot(__C, self.__w0)), self.__w1)), self.__w2)),self.__w3))
390.
391. if self.__move >= 0.7 and self.__allReadyRaise == False:
392. self.__allReadyRaise = True
393. return 'r'
394. elif self.__move >=0.5: return 'c'
395. else: return 'f'
396. def epoch(self):
397. __z=0
398. #train
399. for t in xrange(len(self.__y)/4):
400. #forward propagation
401. __l0 = self.__x[__z:(__z+5)]
402. __l1 = self.sigma(np.dot(__l0, self.__w0))
403. __l2 = self.sigma(np.dot(__l1, self.__w1))
404. __l3 = self.sigma(np.dot(__l2, self.__w2))
405. __l4 = self.sigma(np.dot(__l3, self.__w3))
406. #error + change calc
407. __l4_error = self.__y[__z:(__z+5)] - __l4
408. __l4_change = __l4_error*self.sigmaDeriv(__l4)
409. __l3_error = __l4_change.dot(self.__w3.T)
410. __l3_change = __l3_error * self.sigmaDeriv(__l3)
411. __l2_error = __l3_change.dot(self.__w2.T)
412. __l2_change = __l2_error * self.sigmaDeriv(__l2)
413. __l1_error= __l2_change.dot(self.__w1.T)
414. __l1_change = __l1_error * self.sigmaDeriv(__l1)
415. #update weights
416. self.__w3 += np.dot(__l3.T, __l4_change)
417. self.__w2 += np.dot(__l2.T, __l3_change)
418. self.__w1 += np.dot(__l1.T, __l2_change)
419. self.__w0 += np.dot(__l0.T, __l1_change)
420. __z += 5
421. def processCards(self,card1,card2):
422. if card1[:1] == 'T': __c1 = 10
423. elif card1[:1] == 'J': __c1 = 11
424. elif card1[:1] == 'Q': __c1 = 12
425. elif card1[:1] == 'K': __c1 = 13
426. elif card1[:1] == 'A': __c1 = 14
427. else: __c1 = int(card1[:1])
428. if card2[:1] == 'T': __c2 = 10
429. elif card2[:1] == 'J': __c2 = 11
430. elif card2[:1] == 'Q': __c2 = 12
431. elif card2[:1] == 'K': __c2 = 13
432. elif card2[:1] == 'A': __c2 = 14
433. else: __c2 = int(card2[:1])
434. if card1[-1:]==card2[-1:]: __s = 1
435. else: __s = 0
436. __c1 = float(__c1)/14
437. __c2 = float(__c2)/14
438. return [__c1,__c2,__s]
439.
440. class Compare:
441. __allHcards = []
442. __allAcards = []
443. def cardCompare(self,hc,ac,tblc):

Laurence Brown Godalming College

44
Centre No: 64395 Candidate No: 4146

444. self.__allHcards = [hc[0], hc[1], tblc[0], tblc[1], tblc[2], tblc[3], tblc[
4]]

445. self.__allAcards = [ac[0], ac[1], tblc[0], tblc[1], tblc[2], tblc[3], tblc[
4]]

446. if self.evaluateCard(self.__allHcards) > self.evaluateCard(self.__allAcards
): return 'Human'

447. elif self.evaluateCard(self.__allAcards) > self.evaluateCard(self.__allHcar
ds): return 'AI'

448. else: return "no-one"
449.
450. def evaluateCard(self,hand):
451. __groups = self.group(['--23456789TJQKA'.index(r) for r, s in hand])
452. __counts, __ranks = zip(*__groups)
453. if __ranks == (14, 5, 4, 3, 2):
454. __ranks = (5, 4, 3, 2, 1)
455. __straight = len(__ranks) == 5 and max(__ranks)-min(__ranks) == 4
456. __flush = len(set([s for r, s in hand])) == 1
457. return (
458. 9 if (5,) == __counts else
459. 8 if __straight and __flush else
460. 7 if (4, 1) == __counts else
461. 6 if (3, 2) == __counts else
462. 5 if __flush else
463. 4 if __straight else
464. 3 if (3, 1, 1) == __counts else
465. 2 if (2, 2, 1) == __counts else
466. 1 if (2, 1, 1, 1) == __counts else
467. 0), __ranks
468.
469. def group(self,items):
470. __groups = [(items.count(x), x) for x in set(items)]
471. return sorted(__groups, reverse = True)
472.
473. class CardPile:
474. __deck = [r+s for r in '23456789TJQKA' for s in 'SHDC']
475. __usedCards = []
476. def getCard(self):
477. while True:
478. __randCard = self.__deck[randint(0,51)]
479. if __randCard not in self.__usedCards:
480. self.__usedCards.append(__randCard)
481. return __randCard
482. break
483. def reset(self):
484. self.__usedCards = []
485.
486. game = Game('One')
487. game.menu()

Laurence Brown Godalming College

45
Centre No: 64395 Candidate No: 4146

F: Testing evidence.

No Purpose Screenshot

1.1 The game
launches
without errors.

1.2 The game
successfully
creates a new
player object.

1.3a The game is
able to
interpret a
player’s move.

1.3b The game is
able to
interpret a
player’s move.

1.3c The game is
able to
interpret a
player’s move.

Laurence Brown Godalming College

46
Centre No: 64395 Candidate No: 4146

1.4 To see if the
game correctly
handles
money.

1.5 To see if the
card
comparison
algorithm
works
correctly.

1.6 To see if the
game is able to
reset itself.

1.7 To see if the
game quits
successfully.

1.8a To see if the
game displays
relevant
information
about the
game.

Laurence Brown Godalming College

47
Centre No: 64395 Candidate No: 4146

1.8b To see if the
game displays
relevant
information
about the
game.

1.8c To see if the
game displays
relevant
information
about the
game.

1.8d To see if the
game displays
relevant
information
about the
game.

Laurence Brown Godalming College

48
Centre No: 64395 Candidate No: 4146

1.9 The game is
able to
correctly carry
out an entire
betting round

2.1 To see if the AI
can make a
move within
the game.

Laurence Brown Godalming College

49
Centre No: 64395 Candidate No: 4146

2.2 To see if the AI
can handle the
human player
folding.

Laurence Brown Godalming College

50
Centre No: 64395 Candidate No: 4146

2.3 To see if the AI
is able to play
after multiple
resets.

Laurence Brown Godalming College

51
Centre No: 64395 Candidate No: 4146

3.1a To see if the AI
makes the
correct move
according to
the dataset
given.

3.1b To see if the AI
makes the
correct move
according to
the dataset
given.

4.1 Game v AI

4.2 Game v AI

Laurence Brown Godalming College

52
Centre No: 64395 Candidate No: 4146

4.3 Game v AI

4.4 Game v AI

4.5 Game v AI

4.6 Game v AI

Laurence Brown Godalming College

53
Centre No: 64395 Candidate No: 4146

4.7 Game v AI

4.8 Game v AI

4.9 Game v AI

4.10 Game v AI

