
Cameron Zack Number:189285 Godalming College: 64395

NEA Project

Hex

Centre: Godalming college

Centre Number:64395

Cameron Zack

Cameron Zack Number:189285 Godalming College: 64395

Contents

Research-3

Analysis-10

Requirments-20

Design-23

Testing-44

Evaluatiom-54

Code-61

Cameron Zack Number:189285 Godalming College: 64395

NEA research

Hex is a strategy board game that is played by two players. It can be played on a piece of

paper using a pen or on a board using hexagonal tiles. It is typically played on a 11 by 11

rhombus made up of hexagonal shapes, the board can theoretically be of any size or a

multitude of shapes. The other typical sizes of board are 13 by 13 and 19 by 19. However

one of the games inventors thinks that a 14 by 14 grid would be the optimal size.

There are multiple variants on the hex game one where the hex tiles are replaced with

rectangles this means that there can be no diagonal directions gone so must be vertical and

horizontal. Another variation on the game is Misère hex where you want your opponent to

make a chain. Another variation is Y which is played on a triangular grid of hexagons and the

object is to connect all three sides of the triangle Y.

A typical 11 by 11 hex grid

A Y game board

A rectangular hex board

Cameron Zack Number:189285 Godalming College: 64395

Game Play

Each player has an allocated colour, conventionally Red and Blue or White and Black but can be

any two different colours. Players take turns placing a stone of their colour on a single cell within

the overall playing board. Once placed, stones are not moved, captured or removed from the

board. The goal for each player is to form a connected path of their own stones linking the

opposing sides of the board marked by their colours, before their opponent connects his or her

sides in a similar fashion. The first player to complete his or her connection wins the game. The

four corner hexagons each belong to both adjacent sides. The game does not need to have all the

spaces filled for a game to be won.

Strategies

There are a wide range of strategies to Hex as it has a complex type of connectivity. Play consists of

creating small patterns which have a simpler type of connectivity called safely connected. Joining

these safely connected patterns creates a path and eventually a player will end up creating a path

of tiles of their colour to his opponent’s side.

Different Strategies

This is called a bridge where two stones of the same colour have been placed with a gap of two in-

between the opponent can play in either space but the other player will play in the other which

will create a continuous path. There can also just be a simplified bridge called the two bridge

where it’s just two tiles that have a two gap in-between

Blocking moves is also an integral part of the game. When you have no pieces in the area, it is

usually best to start blocking broadly close to at least one of your edges and not too close to the

opponent's piece. If your blocking move has too little influence on both your edges then the

opponent has more room to manoeuvre there chain around. The most important thing for a player

to do is to avoid the mistake of repeatedly trying to block by playing adjacent to the head of the

chain. Playing ahead of the chain gives you a move or two to place your pieces before the

advancing chain meets your pieces. Thereby eliminating more paths to use.

In hex a good offense and a good defence are equivalent as if you can form a connection between

your sides then they cannot create their own unbroken path. When playing you will want to focus

on your opponents weakest link and reinforce your own weakest link. This is due to the fact that if

they can block of your weakest point then your whole chain will become less usable.

Cameron Zack Number:189285 Godalming College: 64395

Momentum is also a big component of the game as the player that has to respond to his

opponents moves won’t be able to further his own chain which means that they can’t win as

easily. Therefore the player with the momentum typically has a large advantage and this

advantage normally wins you the game

Whenever a player can they should make each of their moves achieve at least two different goals

or threats. As a move that creates multiple threats will typically be hard to stop and could end up

wining you the game. The central region of the board is strategically the most important area.

From the centre, connections can spread out in many directions giving you more flexibility and

options than starting from an edge. Furthermore, centrally played pieces are more nearly

equidistant from both of your edges which will end up making your weakest links in the chain not

as bad.

A bad block as the opponent can still easily manoeuvre his chain around your piece

A good block as the chain can’t get around piece 1 as you can block on your turn

Cameron Zack Number:189285 Godalming College: 64395

Two bridges set up in a row

Type of game

A sequential game is a game where one player chooses their action before the others choose theirs.

Hex is an example of a sequential game as

Hex is a game with perfect information. This is where a sequential game has perfect information if each

player, when making any decision, is perfectly informed of all the events that have previously occurred.

Games with perfect information make the games entirely based on skill as there is no luck in guessing

what everyone else has done but relies on you looking at the information and making the best move

As hex has a symmetric board there is no advantage for which side you start on other than the starting

player having a slight advantage. However there are ways to make this advantage less impactful on the

game

Hex is a strategy game in which the player’s decision-making skills have a high significance in

determining the outcome. Almost all strategy games require internal decision tree style thinking, and

typically very high situational awareness. It is also an abstract strategy game which is where the theme

is not important to the playing experience. Combinatorial games have no randomizers such as dice, no

simultaneous movement, nor hidden information.

Cameron Zack Number:189285 Godalming College: 64395

Theory’s and proofs

There are a lot of mathematical proofs and theory’s linked to the Hex game

The Hex theorem consists of stating that a game of hex cannot be ended in a draw as connecting and

blocking the opponents is an equivalent act

1. Begin with a Hex board completely filled with hexagons marked with either X or O (indicating
which player played on that hexagon).

2. Starting at a hexagon vertex at the corner of the board where the X side and O sides meet,
draw a path along the edges between hexagons with different X/O markings.

3. Since every vertex of the path is surrounded by three hexagons, the path cannot self-
intersect or loop, since the intersecting portion of the path would have to approach between
two hexagons of the same marking. So, the path must terminate.

4. The path cannot terminate in the middle of the board since every edge of the path ends in a
node surrounded by three hexagons—two of which have to be differently marked by
construction. The third hexagon must be differently marked from the two adjacent to the
path, so the path can continue to one side or the other of the third hexagon.

5. Similarly, if the sides of the board are considered to be a solid wall of X or O hexagons,
depending on which player is trying to connect there, then the path cannot terminate on the
sides.

6. Thus the path can only terminate on another corner.

7. The hexagons on either side of the line form an unbroken chain of X hexagons on one side
and O hexagons on the other by construction.

8. The path cannot terminate on the opposite corner because the X and O markings would be
reversed at that corner, violating the construction rule of the path.

9. Since the path connects adjacent corners, the side of the board between the two corners
(say, an X side) is cut off from the rest of the board by an unbroken chain of the opposite
markings (O in this case). That unbroken chain necessarily connects the other two sides
adjacent to the corners.

10. Thus, the completely filled Hex board must have a winner.

(Taken from Wikipedia the proof that there can’t be a draw)

Due to the above proof it was concluded that there must be a winning proof that if you follow it you will

always win. IT was also concluded that the first player must have a winning strategy.

1. Either the first or second player must win, therefore there must be a winning strategy for
either the first or second player.

2. Let us assume that the second player has a winning strategy.

3. The first player can now adopt the following defense. He makes an arbitrary move.
Thereafter he plays the winning second player strategy assumed above. If in playing this
strategy, he is required to play on the cell where an arbitrary move was made, he makes
another arbitrary move. In this way he plays the winning strategy with one extra piece
always on the board.

4. This extra piece cannot interfere with the first player's imitation of the winning strategy, for an
extra piece is always an asset and never a handicap. Therefore, the first player can win.

5. Because we have now contradicted our assumption that there is a winning strategy for the
second player, we are forced to drop this assumption.

6. Consequently, there must be a winning strategy for the first player.

(Taken from Wikipedia first player must win)

The winning strategies have been found for smaller board sizes but for larger are still being found. The 7

by 7 grid was found using a decomposition method with a set of reusable local patterns

Cameron Zack Number:189285 Godalming College: 64395

A decision tree like this will be the simplest way of

calculating a few moves ahead to see what the

best moves available are. This allows you to look

at the future states of the board and decide what

moves give you the best chance of winning later

on

Cameron Zack Number:189285 Godalming College: 64395

Interview

I am interviewing Colin Zack who will be the client for the game he would like a way to play Hex at a varying

degree of difficulty without having to need another person and would like an easy way to play it without

needing to setup and find someone to play with. Having a computerized version of the game will mean

that he won’t need to worry about setting it up or putting it away, Having a computer to play against will

make it so he can play at any time he wants as well.

What difficulty would you like the computer to play with?

I would like the computer to be a able to play a variety of different levels this way I can gradually improve

my understanding and techniques of the game. Having different levels of opponents can also make me

know which strategies should be used when

What do you want the options for the board to be?

I would like to be able to change the board sizes up to a certain size. This will allow me to play either a

quicker game on a shorter board or a longer game on a bigger board. It would be nice to have it so you can

choose the colour you play as.

Do you want a two player option as well?

Yes a two player option would be helpful

What sort of rules do you want?

The pie rule would be a must have as it can help balance out the advantage of starting first. But other than

that the typical rules will be fine

(The pie rule is where the second player gets two options after the first player has made his move. These

options are letting the move stand and switching places. Letting it stand is where the second player

remains the second player and moves immediately. Switching places is where the second player becomes

the first-moving player, and the "new" second player then makes their "first" move. (I.e., the game

proceeds from the opening move already made, with roles reversed.)

Do you want custom board shapes?

Yes custom Board shapes would be a nice feature but only shapes like a game of Y or a rectangular board

would really be needed

Do you want to know what the optimal moves are when you are playing?

Having an option which shows you the optimal move would be a helpful tool to improve my strategies and

help me win the game

Cameron Zack Number:189285 Godalming College: 64395

Analysis

To the left is a level 0 data flow

diagram. It shows the basic flow of

data from the player and game. This

diagram shows that the player will

make a move then process called

turn will output the new board state

where it is stored as the new board.

This board state will then be show to

the player where they can then

make the decision on move. The

flow of data will then continue till a

player has won the game. This data

flow diagram is a very basic

representation of hex with none of

the extra features I will add to the

game

To the right is a level 1 data flow diagram.

It is a much more complex version of the

data flow diagram. This one includes the

more custom settings for the Hex game I

would like to make. This data flow

diagram includes the options for game

mode and board size. These options will

drastically change the amount and type of

data that will flow around as a smaller

board size will. Different shaped boards

will then also have a much different game

display as the game display wouldn’t be

the same. The Player board and game

data flow is basically the same but I

changed move to mouse click as I will

have the player click a button to make

their move. Other than that the flow of

game display will be the same. There is

also more detail added onto what

happens when the game has been won. It

includes a thing to show the player who

has won as this would be an important

feature to have as it provides a clear

Cameron Zack Number:189285 Godalming College: 64395

ISPO’s

ISPO diagrams are input, process, store and output diagrams. They show what an input will cause

and all the different processes that will occur due to that input. It will then show the different

outputs that can occur from the output

ISPO For Game turn

Input Process

 Player Moves (Mouse Click) Check colour of player

 Colour space of move made

 Check if a path has been made

 Update current player

Store Output

 Board State

 Player Turn

 Series score

 Has the game been won

 Display board

 Display who’s turn it is

 Display series score

This ISPO tells us that the display will be quite simple but there will be many processes that occur

ISPO for AI

Input Process

 Player Moves (Mouse Click) Gets Board state

 Figure out best move for AI

 Update board state

 Check if game has been won

 Update current player

Store Output

 Board State

 Player Turn

 Series score

 Has the game been won

 AI move

Level 1 DFD Continued

Message in case the players didn’t know who won. There is also a way to have a series of multiple

games so that you could compete over a few games if the players want a longer experience. Again

it will show the series score and winner at the end to affirm who’s won and to remind the players of

the series score. These data flow diagrams are designed for two human players playing against each

other and not to have any computerized players.

Cameron Zack Number:189285 Godalming College: 64395

ISPO for front end

Input Process

 Clicks on different settings Switch between one and two players

 Change the difficulty of the AI

 Change the size of the boards

 Change the shape of the board

 Choose the amount of games in the
series

 Which player goes first

Store Output

 AI difficulty

 Board size

 Board shape

 Amount of games in the series

 Who goes first

 Board size changes

 Board shape changes

 AI difficulty changes

 Which player goes first

 Amount of games in series

ISPO after series has been played

Input Process

 Clicks on play or quit Reset game score

 Reset Game board

 Use last games settings

 Quit game

Store Output

 Last games settings New settings if that option is chosen

Cameron Zack Number:189285 Godalming College: 64395

Flowcharts

Flowchart for basic game

This is a basic flowchart for a generic

Hex game it has no user choice for

different board sizes and board types.

It’s a very basic version of hex where

you just play the game. Complexity is

hidden as play hex contains all the

actual playing of the game

Cameron Zack Number:189285 Godalming College: 64395

Flowchart for more complex game

This hex diagram is more specific for my game of hex as it includes an option for an AI player.

This allows you to have a single player. This flowchart also contains a process that would allow

for different game details. This is what I would do in the coding part where I have a way to get

all the different game details such as AI difficulty, board size and board shape. This is a very

surface level flowchart that just shows the basic actions of what my hex game would entail.

Again such complexities such as how the game has been won is hidden

Cameron Zack Number:189285 Godalming College: 64395

Game tree diagram

A game tree diagram is a tree diagram that has its nodes as positions in a game and the edges as

moves. A complete game tree will contain all possible moves from each position. The number of leafs

on a tree diagram represents the total possible number of ways the game can be played. Game trees

are important in artificial intelligence because one way to pick the best move in a game is to search

the game tree using any of numerous tree search algorithms, combined with minimax-like rules to

prune the tree.

When a game has a complete game tree then it is possible to solve the game which means to play it

perfectly where either the first or second player will win every time.

At the moment there are two different ways that I could have the program play the first is to use

MiniMax and the second is to use a shortest path diagram

Cameron Zack Number:189285 Godalming College: 64395

The game tree above shows the possible ways the top three tiles of a 3 by 3 hex grid could be played. It is

an incomplete game tree as it is missing some of the possible moves. It lists that at first there are three

possible moves for the AI then the human can take one of the remaining two options and then the Ai can

only choose one remaining option. The numbers on the lines connecting the nodes are an arbitrary

number that I’ve used to show the likelihood of winning. The AI will then choose the path that gives them

the highest chance of winning. In the case above I’ve used random numbers where the higher the number

the higher the chance of winning. From this the Ai would always play the right square first and would then

want the player to take the middle square. However the difficulty of the AI can be changed by changing

how far it looks ahead in the tree diagram. As if in the one above the AI only looked at the outcome of the

next move then it would play middle square half the time and would play the right square half the time.

However if the Ai was going second in the diagram above the AI would want to find the smallest values

connecting the nodes as that makes it have a higher chance of winning. This means that the game tree

diagram would be different depending on whether the AI will play first or second

Alpha beta pruning on a two person game tree of 4 plies

Cameron Zack Number:189285 Godalming College: 64395

Dijkstra’s Diagram

This diagram shows how a Dijkstra search would occur. This flowchart says that the start of the

search starts at one unique point then searches all the possible points around it. From all the

possible points that are around it the one with the smallest weight is chosen. Then the next

closest point is found out and the length is the two points added together if this new paths

shortest point comes off of the point that was found. This search will keep happening until either

all the points are found or the shortest distance to each is found or until the point you want to

reach is found.

In my game the weightings of the paths would be determined on whether they are already clicked

by a player or not. A tile clicked by your opponent would have the highest weighting and a tile

clicked by yourself would have the lowest weighting. In hex the Dijkstra’s would try to get from

either left to right or top to bottom in the least amount of moves.

Cameron Zack Number:189285 Godalming College: 64395

Data Dictionary

Data dictionary for set up of game

Name: Data Type: Length: Purpose:

SeriesLength integer This is used to hold
how many games the
series will be made up
of

BoardSize Integer This is used to draw
the board by creating
the right amount of
buttons for length and
width

BoardShape string This is where you
choose from some
premade shapes for
the board

AI difficulty Integer 1-? This is where the
difficulty of the ai will
be stored so that the
Ai will know how far to
look on the tree
diagram

StartingPlayer Char R or B This decides what
player is set as the
current player at the
start of the game

NumberofPlayer Integer 1-2 This holds how many
players will be playing
which determines if an
AI is needed

PiRule boolean This will hold whether
the player has chosen
to play using the Pi
rule or just normally

A set of information describing the contents, format, and structure of a database

and the relationship between its elements, used to control access to and

manipulation of the database.

Cameron Zack Number:189285 Godalming College: 64395

Data dictionary for Playing game

Name: Data Type: Length: Purpose:

CurrentPlayer Character This is where the
player is represented
by the starting letter of
their colour so you
know what player is
going

ButtonsPressed Boolean This holds whether a
button has been
pressed so can’t be
pressed again

GameWon boolean This holds whether a
game has been won or
if it needs to continue

SeriesScore Integer This holds the score of
the series of games so
far

Data Dictionary for playing again

Name: Data Type: Length: Purpose:

Playagain Boolean This holds whether the
players want to play
again

FinalScore Integer This holds the final
score of the series and
will show who won

SettingsBefore This holds all the
settings of the
previous series

Cameron Zack Number:189285 Godalming College: 64395

Requirements

Dialogue

One of the first things I was thinking about with the hex game was how to create and AI player for

the game. I decided to make it have a range of difficulty options where the computer would play at

varying degrees of efficiency. My first problem with creating an ai was on how to actually create one.

I had two different options Minimax and shortest path algorithm. In the end I decided to use a

shortest path algorithm. After researching different path finding algorithms I decided I would use a

Dijkstra’s algorithm this is because I could simply turn the board into a undirected graph with

weights. This path finding algorithm would also be able to work on all sizes of the board which would

allow me to not have to create multiple different algorithms to make the computer play. The next

thing I would have to figure out after choosing a path finding algorithm was how to have different

difficulty levels. After a while I realised that I could do the shortest path algorithm for both players as

the game is about creating paths and blocking paths. This means that for the highest difficulty I could

have a shortest path algorithm run for both players as this will allow you to find the combinatory

best move of blocking your opponent and helping your path. While lower difficulties could only look

at finding the best move to progress your path

Another thing I had to decide was how to display the board and get the inputs from the user. At first

I was contemplating between using the console and VB forms. I decided against using the console as

I feel like it would have detracted from the game by making it slower and having a less aesthetically

pleasing display. I decided to use VB forms where it will have buttons that could be pressed. This

allows much better interaction with the game as you can easily tell what space you are going

without having to search across on a grid. I also feel like having buttons being pressed could speed

up the play of the game which would make it more enjoyable. Buttons are also very easy to change

the colour of when they have been clicked which makes a great visual representation of the different

moves. However the problem with buttons is that they don’t have a prebuilt hexagon shaped button

and only have squares or rectangles. In the end I was able to get hexagon shaped buttons by finding

a command that switched the number of sides.

After deciding to use VB forms I decided to use a range of buttons and labels for my front end. The

use of labels and buttons allows easy reading of the different options. The use of buttons also makes

it easy to tell which options you have chosen and would mean that there could be no options that

weren’t right from a typo. I then decided to only have the options be there when the game isn’t

being played this means that I put all the options in the middle of the form so that they would be

seen much easier. I then decided to have the options chosen to be displayed as small labels to the

side of the game so that you can see when the games loaded that you chose the options that you

wanted to

I had to figure out how to determine if someone had won the game or not. My first thoughts at this

was checking all the different buttons and seeing whether the colours matched. However this would

result in my code being extremely long to compensate for the buttons that I must call different

names as to not get them mixed up. However this would have made determining the paths that the

buttons take quite simple. The next idea I had was to determine the colour of certain spots on the

Cameron Zack Number:189285 Godalming College: 64395

board to check what colour those buttons are. However I couldn’t get it to work and if I had it would

make it so I had to have different checks depending on the size of the board. My last idea was that I

would create a list of the different rows of buttons and when one was pressed the value of it in the

list would change to the colour of the player who pressed it. This way I only needed to determine

which button was being pressed by finding the location of the press and then assigning the colour

when it’s been pressed. After this it would then have a check where I would compare the different

layers of the array. I decided to use the last idea as it would make it so my method of creating

buttons would still work and the lists would be very easy to compare between

The last few things that I needed to decide on I could just try out on the form itself and decide which

I liked best. I looked at different button sizes and decided on quite big buttons so that the game is

more of the focus of the screen. I also looked at different colours of the buttons and chose the

original blue and red colours that the game typically comes with. I also looked at the spacing

between the buttons and made it so they had gaps between so you can more easily tell where the

buttons are separated.

Requirements

1. Game is launched

1.1. Options are displayed

1.1.1. Board size

1.1.2. AI difficulty

1.1.3. Number of games

1.1.4. Who goes first

1.1.5. Use Pi rule

1.1.6. Load Game

1.2. User can press options

1.3. Buttons change colour when they are chosen

2. Hex board is created

2.1. Board is the shape that the user picked

2.2. Board is the size the user picked

2.3. Options that were chosen are displayed on the side

3. Player chosen to go first goes

3.1. Button changes colour to their colour

3.1.1. The button pressed changes colour to the current player

4. Second player is asked about pie rule

4.1. They let the play stand

4.2. They switch goes with the original player

5. Second player now goes

6. Game goes until someone wins

7. Has different difficulties

7.1. Difficulty one is the easiest difficulty to beat- Moves chosen at random

7.2. Difficulty two uses Dijkstra’s for the current player to find the shortest path

7.2.1. Runs Dijkstra for yourself

7.2.2. Chooses a move which is on the shortest path

7.3. Difficulty three uses a Dijkstra for your opponent and yourself

Cameron Zack Number:189285 Godalming College: 64395

7.3.1. Runs Dijkstra for yourself

7.3.2. Runs Dijkstra for opponent

7.3.3. Also considers which pieces are around it in order to prioritize making bridges

7.3.4. Combines all three to form a move which best blocks your opponent, creates a bridge

and helps complete your path

7.3.5. Chooses the move that does all the things above

8. Player Chooses save game

8.1. Allows User to choose a Name to save the game as

8.1.1. Saves the current player

8.1.2. Saves The board size, difficulty of computer, Number of players, tiles already chosen

9. Load Game

9.1. Game is loaded with all the relevant information

Uses the name of the file to load the game

10. Game checks if a player has won

10.1. Looks at button that was just pressed

10.1.1. If it has any of the same colour next to it checks the buttons around that one

10.1.2. Goes through the lists to see if there is a straight path through

10.2. If the game hasn’t been won then players keep making moves until it has

10.3. When game has been won displays who won

11. If there are more games in the series

11.1. Repeat steps from 2 to 7

11.2. Once the series has been won display the score and winner

12. Ask the player if they want to play again

12.1. If they say no exit the game

12.2. If they say yes give options

12.2.1. They can either play with same settings

12.2.2. Or take them back to step 1

Cameron Zack Number:189285 Godalming College: 64395

Design

Algorithms used

One of the big algorithms I used in my project is the one used to check whether a player has won the

game of Hex or not. This is a very important algorithm as it will determine whether the game will

work properly or not. This is because if the game doesn’t actually tell you who has won correctly

then the game wouldn’t work properly. When I was figuring out how to do make the check work

properly I decided to use recursion to figure out whether someone had won or not this is because

there could be multiple paths that you could take from one tile clicked. This means with recursion

you could take those multiple paths quite easily

Pseudocode of algorithm for board size of 5

WinCheck(i)

CharacterInteger

WhichlistString(Boardsize)

NextListString(Boardsize

For I = 1 to BoardSize

 If Character = 1 Then

 Whichlist = ButtonListA

 Nextlist = ButtonlistB

 ElseIf Character = 2 Then

 Whichlist = ButtonlistB

 Nextlist = ButtonlistC

 ElseIf Character = 3 Then

 Whichlist = ButtonlistC

 Nextlist = ButtonlistD

 ElseIf Character = 4 Then

 Whichlist = ButtonlistD

 Nextlist = ButtonlistF

 End If

 Character = Character + 1

If CurrentPlayer = "R" Then

 If Whichlist(i) = "R" Then

 If Whichlist(i) = Nextlist(i - 1) Then

Cameron Zack Number:189285 Godalming College: 64395

 If Character = 5 Then

 MessageBox.Show("Red Wins")

 CurrentPlayer = "N"

 Character = 1

 End If

 WinCheck(i - 1)

 End If

 If Whichlist(i) = Nextlist(i) Then

 If Character = 5 Then

 MessageBox.Show("Red wins")

 Character = 1

 CurrentPlayer = "N"

 End If

 WinCheck(i)

 End If

If i <> BoardSize Then

 If Whichlist(i) = Whichlist(i + 1) And Whichlist(i) = "R" Then

 Character = Character - 1

 WinCheck(i + 1)

 End If

 If Whichlist(i) = Whichlist(i - 1) And Whichlist(i) = "R" Then

 Character = Character - 1

 Checkleft(i - 1)

 End If

 ElseIf Whichlist(i) = Whichlist(i - 1) And Whichlist(i) = "R" Then

 Character = Character - 1

 WinCheck(i - 1)

Cameron Zack Number:189285 Godalming College: 64395

 End If

 End If

This algorithm shows that there are multiple paths that you can check along which is what you want

to happen as I stated earlier that many paths can be taken to win. It utilizes checking different lists

and comparing the values given in the lists. This works by assigning such values when the buttons

are pressed. It will then check the equivalent of the surrounding buttons of the other lists and see if

they too are the same colour as then that will be part of the path the path to win can take. For the

blue player the algorithm is the same as I made it so they had an equivalent list where it to can use

these checks to determine the different routes.

At the beginning I assign the two lists I will compare as two of the lists that I have determined the

values of earlier when the button was actually pressed. This means that there will be less checks as I

can just use the same check to compare the two lists as the values will be changed by having a

different value of “Character”. This algorithm is called after a button press this means that every

button pressed will cause this algorithm to have at least one pass through. If there has been a

winner I declare the current player as N to make it so that the algorithm won’t run anymore as this

will lead to less passes through as it will know that there are no more checks that need to be made

as there is already a path that has been completed

The validation I used was the if i<>Boardsize then, this is because VB can’t check a value of an array

greater than the upper limit of the arrays which would cause an error to occur. However you still will

want it to check the value to the left in that arrays. I used a lot of arrays in my pseudocode as that

was the best way for me to visualize the board as each array could represent a column or a row and

the value assigned could be what colour that tile was. I also used a few integers the I is to determine

how far along the array you go so specifically which button you are looking at while the character is

meant to represent the row you are on if you are the red player and the column you are on if you

are the blue player. I also check at the beginning what the current player is and check that the value

of the buttons around are red.

Pseudocode for generic Dijkstra’s search

 function Dijkstra(Graph, source):

 create vertex set Q

 for each vertex v in Graph:

 dist[v] ← INFINITY

 prev[v] ← UNDEFINED

Cameron Zack Number:189285 Godalming College: 64395

 add v to Q

 dist[source] ← 0

 while Q is not empty:

 u ← vertex in Q with min dist[u]

 remove u from Q

 for each neighbor v of u: // only v that are still in Q

 alt ← dist[u] + length(u, v)

 if alt < dist[v]:

 dist[v] ← alt

 prev[v] ← u

 return dist[], prev[]

This algorithm is very similar to the one I will use as mine will find the shortest distance but each

node will be represented by a set of coordinates. The algorithm works by considering all the nodes

of the unvisited neighbours and calculates their tentative distance to the current distance and if the

distance is smaller than the old distance then replace it with the tentative distance. For example, if

the current node A is marked with a distance of 6, and the edge connecting it with a neighbour B has

length 2, then the distance to B through A will be 6 + 2 = 8. If B was previously marked with a

distance greater than 8 then change it to 8. Otherwise, the current value will be kept. Once all the

neighbours of the current node are visited then the node is considered visited and won’t be checked

again. If the destination node has been marked visited (when planning a route between two specific

nodes) or if the smallest tentative distance among the nodes in the unvisited set is infinity then stop.

The algorithm has finished. Otherwise, select the unvisited node that is marked with the smallest

tentative distance set it as the new current node and repeat looking thorough the surrounding

nodes

Cameron Zack Number:189285 Godalming College: 64395

 This is my actual djikstras code.

This checks the coordinates around all the point that was passed in. It has four different checks for

around the point to the left of it, to the right of it and down left and right from it. However not all

coordinates have tiles in all these places so this will check only the places that a tile is at(outside the

range of the board) . This is why it has Dijkstra right and left as Boolean as when these are true then

the code knows that there is a tile to the left/ right of the current tile.

This code works by comparing the shortest value set so far (on the first point it is set as a number

higher than anything you could get this way the first valid move will become the shortest path

straight away. This shortest value is then compared to the path length of the current node plus the

distance to the node it is looking at. This way you can get the full path length of the surrounding

nodes

The validation for this code is to make it so that the code doesn’t loop infinitely by always just going

to the same point this is stopped by the IF NOT statement. This works by looking at the coordinate

that was just found out to be the shortest distance away so far. This coordinate is then compared to

a list of coordinates that is called found. This found contains all the coordinates that have been

visited so far by the algorithm. If the coordinate that was currently just looked at is in the list then it

doesn’t change the value of shortest value and doesn’t make the shortest value part of that list . This

means that this coordinate won’t be put in found again.

Cameron Zack Number:189285 Godalming College: 64395

After it has been checked that the point isn’t in the list of coordinates that have already looked at then it will

change the shortest value to the value of the path length up to this new point. Next it sets the shortest point

equal to the point that it is looking at this is so that the coordinates of the point is saved so that at the end you

can add it to the list of found coordinates and search from that point in future loops of the algorithm if this ends

up being the shortest point.

The last point is the tile which has been used to get to the shortest path. This saves it so that at the end of looking

around all the found points you know which found point was used to get to the shortest point away.

Cameron Zack Number:189285 Godalming College: 64395

This is the loop used to look at all the nodes that

are in the found list

This means that the Dijkstra’s will run for the amount of Nodes that are in the list of found

coordinates. Coords is set to the current nodes coordinates so that when you run the Dijkstra’s

algorithm you have the cords you are currently looking at. Coords is set as a tuple as you can then

split it into its x and y components (row and column) and use those values to look at the

coordinates around that point.

This For loop will run multiple times as each step through Found will increase by 1 until the whole

board has been found. This way as it steps through each coordinate that has been found so far it is

able to search through all the surroundings of all the coordinates

Shortest value is reset each loop on the outside so that the shortest point doesn’t stay as shortest

point of the first run through of dijkstras

Cameron Zack Number:189285 Godalming College: 64395

This is the code that gets all the path lengths of the first row. This way the Dijkstra’s will have a

start point to look from.

This looks at the whole of the first row for the current player and gets the value of those

coordinates it then adds the points to the found list so that it can search around all those points.

This works for all any board size because of the for loop uses the value of board size.

This is where the path length of the point that was found to be the shortest away from the first row

of points is added to the path length array so that all the points that come from this can use this

value without recalculating it again.

This is also where the other coordinates are added to the found list.

The Paths list holds the coordinates of the point that was used to get to that point. This way you

can transverse the path backwards to find all the coordinates that lie on it

Cameron Zack Number:189285 Godalming College: 64395

This piece of code is called after Dijkstra’s has been run and all the path lengths of each individual

tile is found

This is used to determine from all the path lengths that were gathered which path is he shortest

out of them all. First the code runs through all of the last row/ column of the path length array and

finds the lowest out of that list. There is some code to stop the program from having an out of

range error by having it so that the last row can’t have a path length of 0 as this would mean that a

player would have already won. This stops the code from returning the path of the 0 index as my

code is indexed at 1

Next the ShortestPathCoords sub uses a for loop in order to find out if more than one point on the

last row of buttons has the shortest path length. This is done as multiple points can have the same

path length and if they do and the path length is the shortest then you would want to map out the

multiple paths as they will have the same level of quality of move. These points are all added to a

list which contains there coordinates

After this the sub uses the array paths which contains the node that was used to get to the node

you currently are on. This is stuck on a for loop so that you can reuse this code so that it can be

used for all of the endpoints. It will then transverse down this path to get all the coordinates that

lie on the path again using paths to find the tile that was used to get to it. The nodes which are

found to be on the shortest path are all added to a list of coordinates (tuples). This list will contain

the complete path of all the coordinates that lie on all the different paths

Cameron Zack Number:189285 Godalming College: 64395

Small amount of validation to stop an index out or range occurring this is because the algorithm would

try and check the spaces that don’t exit next to the edges of the board

This is used to see if the shortest path to the whole last row has been found. This is useful

especially for difficulty 3 as it is a combination of two different Dijkstra’s and the addition of a

general value this means that you need to find the path values for the whole board in order to

do this.

This works by having a value for each end row at the start of the Dijkstra’s and if the value for

the path length of the last row is still equal to the value it was given at the start then the

Dijkstra’s algorithm will continue running

Cameron Zack Number:189285 Godalming College: 64395

Cameron Zack Number:189285 Godalming College: 64395

This is the code for the difficulty 3 level

The code first switches player to the human and then runs a Dijkstra’s for the humans go (Runs a Dijkstra

for the opposite player and nothing else). This will find the best moves for the human player which will

put them closer to winning. After this it changes player back to the computer and runs a Dijkstra’s again

for this player. However as my Dijkstra code only goes up to down the Dijkstra for the blue player will

need to be rotated 90 degrees anticlockwise. Flipboard takes care of this as it rotates the coordinates of

the board 90 degrees anticlockwise

Next we find out how many times each coordinate is in the list of coordinates for both Dijkstra’s appears.

We then assign how many times each coordinate appears in the Dijkstra’s to an array. After wards we

combine this array with all the coordinates that can make bridges from the tiles of both players. This is

because the bridges are the strongest strategy option you can make. This way as you look at both players

Dijkstra’s and bridges you will be able to find the tile which appears most in both your and the opponents

shortest path and if those points will be able to make any bridges

After we have given every tile a value we find which tile/ tiles are the highest value (aka the best move).

As there could be multiple tiles which have the same highest value then we get a random one of these

tiles and get the computer to click it. We have made sure that the tile is free in the sub where you find the

bridges that can be made. This stops it from clicking on a tile that has already been taken by giving them a

negative value which will mean that they will never be chosen

As the final coordinates are set up that the blue player was going up and down. This will require you to

need to flip the coordinates around if the red player is the computer. This is why there is a final if

statement where if the current player is red then the first value of the coordinate is actually the second

value of that coordinates and vice versa

This then calls a sub which will use those coordinates to click the button that the computer has found to

be the best move

Bridges are explained on page 5

Cameron Zack Number:189285 Godalming College: 64395

This is the code used for the difficulty level 2.

In this code it calls the Dijkstra sub straight away. Next it flips the board as in Dijkstra’s it will go create a

path from top to bottom. However as my Dijkstra code only goes up to down the Dijkstra for the blue

player will need to be rotated 90 degrees anticlockwise. Flipboard takes care of this as it rotates the

coordinates of the board 90 degrees anticlockwise

Next we find out how many times each coordinate is in the list of coordinates that make up the shortest

paths. We then assign how many times each coordinate appears in that to an array. After wards we

combine this array with all the coordinates that can make bridges from the tiles of both players. This is

because the bridges are the strongest strategy option you can make. This way as you look at only your

Dijkstra but checks both yours and your opponents bridges

After we have given every tile a value we find which tile/ tiles are the highest value. As there could be

multiple tiles which have the same highest value then we get a random one of these tiles and get the

computer to click it.

As the final coordinates are set up that the blue player was going up and down. This will require you to

need to flip the coordinates around if the red player is the computer. This is why there is a final if

statement where if the current player is red then the first value of the coordinate is actually the second

value of that coordinates and vice versa

Cameron Zack Number:189285 Godalming College: 64395

This is the sub for the difficulty level 1

This difficulty is comprised of finding random coordinates and pressing the

corresponding button

To do this I find two random numbers one for the y coordinate and one for the x

coordinate. Next I loop through creating the random numbers till they correspond

to a button which isn’t already been pressed.

This then calls a sub which will use those coordinates to click the button that the computer

has found to be the best move

Bridges are explained on page 5

Cameron Zack Number:189285 Godalming College: 64395

This is the code for creating the actual buttons of the board it loops through for the board size and

increments the buttons so that they appear at regular intervals

You can see that I have a handler for when the buttons are clicked. This only creates one handler

however all the buttons created from it will be able to use this handler. This means that there will be

less repeated code. This code also has buttons which aren’t able to be clicked when run these are for

the edges of the board so that you know which direction the colours need to go.

There is also a check to see that if the game is being loaded from a saved game. So that if the board is

being gotten from a file it will have the same colour when created as it did when the game was first

saved.

Each button is given a unique name when it is created the name consists of the column number

followed by the row number. The names are unique so that you can distinguish between the buttons

when pressed. So when the computer has to click a button that it can find the right button to press

just by having a column number and a row number.

Cameron Zack Number:189285 Godalming College: 64395

In my code as well I decided to hardcode the title screen to appear when the game first loads up. This

way it is much easier to transfer to other people as they don’t need to set up the home screen

themselves using the same Variable names I use

I also group my creating of the parts as it makes it much easier for other people to read and more

fluent. It also will make it easier to change any of the values of the options as you can just look for the

variable name and choose from there

I reuse a lot of the variables and group most of the button handlers together as it will reduce the

amount of code that is needed and allows people to look at the button groups together so that they

can get a better understanding of what each button does

(These are only a few of the buttons of the start screen)

Cameron Zack Number:189285 Godalming College: 64395

This is the method used when a button is

clicked. It checks at the beginning if the

button is already pressed. It also calls

the aftermath of a move

This also comes up with a message to affirm to the players that the button has already been pressed

in case they didn’t realise that their move wasn’t valid.

I also made it so that the switching of the players was in an if statement so that if you clicked a

button already that had already been chosen then you could still make a move.

I use a little check here as well to assign the correct value to the correct part of the array. I use a

combination of an if statement and a for loop. It uses the same style of creating the buttons but

checks if the button was pressed was equivalent to the point it’s being compared to.

This use the check of seeing if the button is already coloured to see if the button has been pressed

before as if the button isn’t red or blue then the button won’t be pressed. I also made sure to not

assign a value to the lists if this check wasn’t met as if it just didn’t visually show but counted the

move as valid then the game wouldn’t be working properly.

It also assigns the colour of the button pressed in the loop so that the button will only change colour

if it hasn’t been pressed already.

Cameron Zack Number:189285 Godalming College: 64395

This is the sub for the aftermath of each move.

The first thing it does is check if the move that was made has won the game and if it has then it will

either reset the game if there are still more games in the series that need to be played but if there

are no more games that need to be played then the player will be asked if they want to play again or

exit the game.

After the check to see if anyone has won then the player is switched so that the next player can make

a move. Next it checks if it is the computers turn to move if it is then it goes to the sub of the

difficulty that the player chose.

This sub is called when either a computer presses a button or when the human player clicks a button

this means that there will be less repeated code and this works as the aftermaths for a human and

computer should be the same as they both want to check if someone has won or not first as

everything after that becomes irrelevant if there is a winner

Cameron Zack Number:189285 Godalming College: 64395

The picture above shows what my board looks like for a board size of 5. I decided to use the colours

the game typically used of blue and red and kept the buttons that aren’t pressed grey. This means it

is very obvious which buttons have been pressed and which haven’t as the colours are very different

from one another. The grey from the background and the buttons is also different which makes is

easy to tell the limits of the board. The buttons also have a little space in-between them as this can

make it easier to distinguish which button you are actually pressing so there will be less chance of

you pressing the wrong one.

All the buttons are the same size and shape and the lines parallel to each other this in my opinion

makes the board nicer to look at and easier to understand. The choose game type and Board size

wouldn’t be there in the actual finished display of the board and would instead have the image

below to the side of it. When the game has been won there will then be a message box that appears

and says who the winner of the game was. The Edges of the board will also be changed so that it is

very easy to tell which direction the different players want to go in.

Cameron Zack Number:189285 Godalming College: 64395

GUI when game is first loaded

When the game is first loaded there will be the title of the game in the middle at the top in big

letters. The grey boxes represent buttons and the yellow boxes represent boxes where the user

enters a numerical value.

All the buttons and text will be coded in to show up when the form is loaded. This way the player

can see all the different options that they can change between for unique games.

I decided to make Ai difficulty and board size where the user changes a slider as if they were

represented by buttons it would require a large amount of buttons as there is a range of board sizes

that could be chosen and a range of difficulties.

The buttons change colour once pressed so that you can see which choices you have clicked on and

if you actually have clicked on them.

The GUI will just be composed of labels buttons, sliders and input boxes so should be quite simple

and easy for people to understand. They will also have the labels for what they are on them or above

them so you can easily tell what goes where.

Validation

Cameron Zack Number:189285 Godalming College: 64395

I use some validation when the buttons are pressed to see if they have been pressed before this

makes it so you can’t go where someone else has gone before which is important as you can’t do

that in the actual game as well

I also have validation for when the user enters board size and ai difficulty as there will be only

certain values that work. This is because too large of a board will not be able to fit properly onto a

computer screen and a small board wouldn’t really be a game of hex. The ai difficulty also will be

from 1-3 So there can’t be any values inputted that are below 1

There is also validation that if no values are entered into game then a game will still run but with

default values so that way you don’t have to change every single option once to get a working game

Storage

There is also a save game and load game feature. This allows the player to come back and try

different strategies. It allows the person to enter a name that they want to save the game as and a

name that they want to load. This means that the person can assign whatever names to games that

have interested them.

There is a try statement for the load up of the game which allows the program not to crash if it loads

up a file that doesn’t exist

The save game features stores the size of the board of the game, how many players the game

consisted of, Difficulty of the computer, player it currently is, which game you are on, how many

games are in the series and what the board looks like.

When a game is loaded the board state is changed to look what liked when it was saved

Cameron Zack Number:189285 Godalming College: 64395

Testing strategy

Input for Board size

https://www.youtube.com/watch?v=9lEJW-1tg6c

Test Number Input Description Data type Expected
Result

Pass Fail

1 7 Test how to
make the size
of the board

Typical Creates a 7
by 7 board

Pass

2 6 Typical Creates a 6
by 6 board

Pass

3 Erroneous Creates a 5
by 5 board

Pass

The above picture is what a saved game is stored as

The first row contains the size of the board of the game

The second row contains how many players the game consisted of

The third row Shows the Difficulty of the computer

The fourth row Contains which player it currently is

Fourth row conatins which game you are on

Fifth row contains how many games are in the series

The last block of letters is what the board looks like the E represents a button that hasn’t been pressed

yet so doesn’t have a colour.

https://www.youtube.com/watch?v=9lEJW-1tg6c

Cameron Zack Number:189285 Godalming College: 64395

4 5 Extreme Creates a 5
by 5 board

Pass

5 9 Extreme Creates a 8
by 8 board

Pass

Input for AI difficulty

https://www.youtube.com/watch?v=9lEJW-1tg6c

Test Number Input Description Data type Expected
Result

Pass Fail

1 2 Test that the
path finding
algorithm with
look for the
shortest path
for the current
player

Typical Performs 1
Dijkstra
algorithm

Pass

4 Typical Performs 1
Dijkstra
algorithm

Pass

5 3 Extreme Performs 2
Dijkstra
algorithm on
the board

Pass

7 1 Extreme Generates
random
coordinates
to make a
move

Pass

Input for series length

https://www.youtube.com/watch?v=9lEJW-1tg6c

Test Number Input Description Data type Expected
Result

Pass Fail

1 1 Test that the
amount of
games in the
series will be
equal to what
the user
enters or if no

Typical 1 game then
asks about
playing again
or rule
changes

Pass

https://www.youtube.com/watch?v=9lEJW-1tg6c
https://www.youtube.com/watch?v=9lEJW-1tg6c

Cameron Zack Number:189285 Godalming College: 64395

valid entry 1
games

2 3 Typical 3 game then
asks about
playing again
or rule
changes

Pass

3 Erroneous 1 game then
asks about
playing again
or rule
changes

Pass

4 5 Extreme 5 game then
asks about
playing again
or rule
changes

Pass

Check to see if pi rule works

https://www.youtube.com/watch?v=9lEJW-1tg6c

Test Number Input Description Data type Expected
Result

Pass Fail

1 Clicked
button to
give pi rule

Test that the
pi rule will be
activated for
the game

Typical Button
changes
colour and
gives you a
choice to
switch or stay
after the first
move

Pass

2 Didn’t click Typical Doesn’t give
you the
option to
switch or stay

Pass

3 Clicks
button for
Pi rule
twice

 Button
changes
colour and
gives you a
choice to
switch or stay
after the first
move

Pass

https://www.youtube.com/watch?v=9lEJW-1tg6c

Cameron Zack Number:189285 Godalming College: 64395

Check to see if Save game works

https://www.youtube.com/watch?v=sYUPDtZewe0

Test Number Input Description Data type Expected
Result

Pass Fail

1 Typed Hex1
and clicked
save game

Test that a file
will be saved
with the name
of the thing
that was typed
in

Typical File appears
with the
necessary
details that
need to be
loaded to
recreate the
game. File
has the name
Hex1

Pass

2 Typed 2
and clicked
save game

 Typical File appears
with the
necessary
details that
need to be
loaded to
recreate the
game. File
has the name
2

Pass

3 Typed Hex1
and clicked
save game
when
already a
Hex 1 saved

 File appears
with the
necessary
details that
need to be
loaded to
recreate the
game. File
has the name
Hex1 and has
overwritten
the old hex 1

Pass

4 Saved a
game with
no text
where you
enter the
name you
are going to
save it as

 File appears
with the
necessary
details that
need to be
loaded to
recreate the
game. File
has no name

Pass

https://www.youtube.com/watch?v=sYUPDtZewe0

Cameron Zack Number:189285 Godalming College: 64395

Check to see if load Game works.

https://www.youtube.com/watch?v=sYUPDtZewe0

Test Number Input Description Data type Expected
Result

Pass Fail

1 Typed Hex1
and clicked
load game

Test that a file
will be loaded
with the name
of the thing
that was typed
in. And has the
game from
when it was
clicked save

Typical Loads the
game Hex1
that was
saved
already.
Current
player was
what it was
when the
game was
loaded, board
was in the
same state
and difficulty
and numbers
of players are
the same.
Number of
games in the
series is also
the same

Pass

2 Typed 2
and clicked
load game

 Typical Loads the
game 2 that
was saved
already.
Current
player was
what it was
when the
game was
loaded, board
was in the
same state
and difficulty
and numbers
of players are
the same.
Number of
games in the
series is also
the same

Pass

https://www.youtube.com/watch?v=sYUPDtZewe0

Cameron Zack Number:189285 Godalming College: 64395

3 Typed Hex2
and clicked
save game
when there
isn’t a file
called Hex 2
saved

 Nothing
happens, No
game is
loaded and
no message
appears

Pass

4 Typed and
clicked load
game

 Loads the
game that
has a file
name of no
characters
that was
saved
already.
Current
player was
what it was
when the
game was
loaded, board
was in the
same state
and difficulty
and numbers
of players are
the same.
Number of
games in the
series is also
the same

Pass

Check if can change starting player

https://www.youtube.com/watch?v=9lEJW-1tg6c

Test Number Input Description Data type Expected
Result

Pass Fail

https://www.youtube.com/watch?v=9lEJW-1tg6c

Cameron Zack Number:189285 Godalming College: 64395

1 Clicked on
blue starts

Test that the
starting player
will be the
player that
button was
pressed

Typical Blue player
starts

Pass

2 Clicked on
red starts
when it is
one player

 Typical Red button
changes
colour and
computer
goes first and
is red

Pass

3 Clicked on
red goes
first when it
is two
players

 Red button
changes
colour and
red player
will start the
game.

Pass

Cameron Zack Number:189285 Godalming College: 64395

Check To see if gamewon sub works

https://www.youtube.com/watch?v=K4R-DEmxfMc

Test Number Input Description Data type Expected
Result

Pass Fail

1 Straight line
down with
a winning
move

These tests are
designed to
show that all
paths will
return a win if
a player has
just made a
winning move

Typical Returns the
colour of the
player who
has won

Pass

2 Straight line
with a
different
board size

This test is to
show that it
works for all
different
board sizes
and will return
if someone
has won

Typical Returns the
colour of the
player who
has won

Pass

3 Have a
winning
path that
goes right
and is a
complete
path

 Returns the
colour of the
player who
has won

Pass

4 Have a
winning
path that
that goes
left at one
point

 Returns the
colour of the
player who
has won

Pass

5 Have a
winning
path that
that goes
left at one
point and
then right a
later point

 Returns the
colour of the
player who
has won

Pass

6 Have a
winning
path that
that goes
left at one
point and
then left
again at a
later point

 Returns the
colour of the
player who
has won

Pass

https://www.youtube.com/watch?v=K4R-DEmxfMc

Cameron Zack Number:189285 Godalming College: 64395

on the path

7 Have a
winning
path that
that goes
right at one
point and
then right a
later point

 Returns the
colour of the
player who
has won

Pass

8 Have a
winning
path that
that goes
right at one
point and
then left
again at a
later point
on the path

 Returns the
colour of the
player who
has won

Pass

Check to see that clicking yes after playing a game then instantly clicking generate game will give you

the same rules that you just played with-

https://www.youtube.com/watch?v=9lEJW-1tg6c

https://www.youtube.com/watch?v=9lEJW-1tg6c

Cameron Zack Number:189285 Godalming College: 64395

Step through of Dijkstra’s to see that it works

https://www.youtube.com/watch?v=YR2eVCtuzKE&t=1s

https://www.youtube.com/watch?v=CsyVf3an4PI&t=436s

Full step through of won game check to show it works

https://www.youtube.com/watch?v=pjW7bOD0EkI

https://www.youtube.com/watch?v=XBjo4G5uJWM

https://www.youtube.com/watch?v=YR2eVCtuzKE&t=1s
https://www.youtube.com/watch?v=CsyVf3an4PI&t=436s
https://www.youtube.com/watch?v=pjW7bOD0EkI
https://www.youtube.com/watch?v=XBjo4G5uJWM

Cameron Zack Number:189285 Godalming College: 64395

Requirements

Requirements Met Proof
1. Game is launched

1.1. Options are displayed
1.1.1. Board size
1.1.2. AI difficulty
1.1.3. Number of games
1.1.4. Who goes first
1.1.5. Use Pi rule
1.1.6. Load Game

All the requirements in step
one have been fulfilled as all
the options that are wanted
are displayed.

Proof is in design showing
game when loaded up

1.1. User can press options
1.2. Buttons change colour

when they are chosen

All the buttons which you
can choose between do
change colour to give the
person that pressed them
an idea of what has been
pressed.

Proof is in test -Check to see if
pi rule works and red player
goes first

2. Hex board is created
2.1. Board is the shape

that the user picked
2.2. Board is the size the

user picked

Board is also generated
correctly each time a game
is loaded which means that
the requirement to have a
board that the user wanted
has been fulfilled. And the
board also has visual clues
on which way the colours go
so that it is easier on load up
to see how to play your
colour.

Proof in testing board size
https://www.youtube.com/wa
tch?v=9lEJW-1tg6c

3. Player chosen to go first
goes
3.1. Button changes colour

to their colour
3.1.1. The button

pressed changes
colour to the
current player

The game also plays
correctly as the buttons on
the board will change colour
depending on the player
whose go it is. You can also
not over click someone
else’s button once it’s been
clicked. This means that the
game plays like it would in
person. The computer can
also play against a person
with three different levels of
difficulty. This will meet the
requirement of having it so
that you can play the game

https://www.youtube.com/wa
tch?v=9lEJW-1tg6c

https://www.youtube.com/watch?v=9lEJW-1tg6c
https://www.youtube.com/watch?v=9lEJW-1tg6c
https://www.youtube.com/watch?v=9lEJW-1tg6c
https://www.youtube.com/watch?v=9lEJW-1tg6c

Cameron Zack Number:189285 Godalming College: 64395

by yourself. The game also
works as it would in real life
if there is only one player as
you still can’t override other
people’s moves and the
computer can’t override
moves as well.

4. Second player is asked

about pie rule
4.1. They let the play

stand
4.2. They switch goes with

the original player

Game presents you with two
buttons after the first move
if the pie rule is active. The
buttons state stay or switch.
If you click the stay button
then the game continues
onwards from there.
However if switch is pressed
then the second player now
takes the role of the first
player and gets there move
while the first player will
then have to go again

https://www.youtube.com/wa
tch?v=9lEJW-1tg6c

5. Second player now goes

Second player will be able to
make a move after the first
player and will have
whatever button they press
turn to the associated colour
with them

6. Game goes until someone
wins

The game will also
automatically stop when a
player has won. This means
that you don’t have to say
yourself if there is a winner.

https://www.youtube.com/wa
tch?v=pjW7bOD0EkI

7. Has different difficulties
7.1. Difficulty one is the

easiest difficulty to
beat- Moves chosen at
random

7.2. Difficulty two uses
Dijkstra’s for the
current player to find
the shortest path

7.2.1. Runs Dijkstra for
yourself

7.2.2. Chooses a move
which is on the
shortest path

7.3. Difficulty three uses a
Dijkstra for your
opponent and yourself

The game has three
difficulties which you can
choose between on a slider.
The first difficulty consists of
the tile that the computer
choosing is random. The tile
is always free and hasn’t
been pressed yet

The second difficulty runs a
Dijkstra algorithm on the
board and finds the path
lengths of all the tiles on the
board. Next a random tile
which lies on any of the
shortest paths is chosen at
random that is free

https://www.youtube.com/wa
tch?v=YR2eVCtuzKE&t=1s

https://www.youtube.com/watch?v=9lEJW-1tg6c
https://www.youtube.com/watch?v=9lEJW-1tg6c
https://www.youtube.com/watch?v=pjW7bOD0EkI
https://www.youtube.com/watch?v=pjW7bOD0EkI
https://www.youtube.com/watch?v=YR2eVCtuzKE&t=1s
https://www.youtube.com/watch?v=YR2eVCtuzKE&t=1s

Cameron Zack Number:189285 Godalming College: 64395

7.3.1. Runs Dijkstra for
yourself

7.3.2. Runs Dijkstra for
opponent

7.3.3. Also considers
which pieces are
around it in order
to prioritize
making bridges

7.3.4. Combines all
three to form a
move which best
blocks your
opponent,
creates a bridge
and helps
complete your
path

7.3.5. Chooses the
move that does
all the things
above

The third difficulty consists
of running a Dijkstra for you
and your opponent. These
two Dijkstra’s are then
combined to find the
shortest path lengths
between them (tiles which
appear in both shortest
paths). These values are
then combined with all the
places that bridges (for what
bridges are look at research
and strategy) can be made.
After all these vlasue are
calculated they are then
added together to find
which tile can create the
most bridges and lie on the
shortest paths.

8. Player Chooses save game
8.1. Allows User to choose

a Name to save the
game as

8.1.1. Saves the current
player

8.1.2. Saves The board
size, difficulty of
computer,
Number of
players, tiles
already chosen

There is also a save game
feature in my code which
allows you to save multiple
games at any state. This will
allow the player to come
back and try multiple
strategies to see how
different ways of playing
compare against each
other.. You can also create
your own names for the files
this means that you set up
your own system that you
remember them by.

https://www.youtube.com/wa
tch?v=sYUPDtZewe0

9. Load Game
9.1. Game is loaded with

all the relevant
information

9.2. Uses the name of the
file to load the game

You can also load the games
up and the features of those
games are saved so that
everything is like how it
would be if you didn’t stop
playing. The way the games
are loaded is by typing the
name of the game and
hitting load game. This will
then create a board which is
identical to when the game
was saved

https://www.youtube.com/wa
tch?v=sYUPDtZewe0

https://www.youtube.com/watch?v=sYUPDtZewe0
https://www.youtube.com/watch?v=sYUPDtZewe0
https://www.youtube.com/watch?v=sYUPDtZewe0
https://www.youtube.com/watch?v=sYUPDtZewe0

Cameron Zack Number:189285 Godalming College: 64395

10. Game checks if a player has
won
10.1. Looks at

button that was just
pressed

10.1.1. If it has any of
the same colour
next to it checks
the buttons
around that one

10.1.2. Goes through
the lists to see if
there is a straight
path through

10.2. If the game
hasn’t been won then
players keep making
moves until it has

10.3. When game
has been won displays
who won

Uses recursion to check all
the available paths from a
piece to see if there is a
complete path from one
side to another. It first
checks downwards then
checks to the left and finally
to the right of the tile it is
on.

If there has been a winner a
sub is called which displays
the colour of the person
who won.

https://www.youtube.com/wa
tch?v=pjW7bOD0EkI

11. If there are more games in
the series
11.1. Repeat steps

from 2 to 7
11.2. Once the series

has been won display
the score and winner

The series element also
works mostly. The series will
consist of the right number
of games that the person
has typed in and each of
those games will have the
same board size, difficulty of
computer, number of
players. However only the
first game will have the pi
rule if the pi rule is chosen
and the first game and only
the first game will have red
go first if red is chosen to go
first.

https://www.youtube.com/wa
tch?v=9lEJW-1tg6c

12. Ask the player if they want
to play again
12.1. If they say no

exit the game
12.2. If they say yes

give options
12.2.1. They can either

play with same
settings

12.2.2. Or take them
back to step 1

Once a series is done the
user is presented with two
options play again or don’t
play again. If they play again
and instantly press generate
game then they will have
the same settings so the
requirement to play with
the same settings is met.

https://www.youtube.com/wa
tch?v=9lEJW-1tg6c

https://www.youtube.com/watch?v=pjW7bOD0EkI
https://www.youtube.com/watch?v=pjW7bOD0EkI
https://www.youtube.com/watch?v=9lEJW-1tg6c
https://www.youtube.com/watch?v=9lEJW-1tg6c
https://www.youtube.com/watch?v=9lEJW-1tg6c
https://www.youtube.com/watch?v=9lEJW-1tg6c

Cameron Zack Number:189285 Godalming College: 64395

Cameron Zack Number:189285 Godalming College: 64395

Improvements

Improvements- If I revisited this problem I would change up the difficulties and add a fourth

difficulty which adds one extra option to consider choosing a best move this option would consist of

constant values for the place on the board. For example having the middle tile be the highest value

and decreasing value from the middle of the board. This would help the ai at the beginning of the

game to have a stronger start as they would start from the middle which can give a better option for

paths to go along.

Other options in the menu I would add if I revisited this is to add a way to change the boards shape

and to have different colours. However the colours won’t change gameplay at all but can just be

added to make the game more intriguing. However having a way to change board shape would need

a new way to check if someone has won due to the fact that it won’t be across or down to win the

game but some other direction.

Cameron Zack Number:189285 Godalming College: 64395

 Interview for final piece

I am interviewing Colin Zack who is the client for the game about how he finds the final product of the

game of hex I made.

How do you feel about the different levels of difficulty?

I am happy with the different levels of difficulty that come with the game. They can play well and are quite

hard to beat if they are on the highest level if you know the strategies to play the game. The lowest level I

feel is quite good for beginners as it allows them to experiment with different strategies and the second

difficulty is nice to help develop those strategies. I also like the use of a slider to have the choice for

difficulty as it is very easy to change between them

How do you like the interface for the game and options?

I like the interface as it is quite simple and minimalistic which makes it very easy to find all the different

settings to choose from at the beginning of the game. I particularly like how the buttons change colour

when they are pressed this makes it very nice to see what options are chosen. There are lots of different

options as well which makes the replay ability of the game quite high. Once the game is actually loaded up

the board looks quite nice and having it so that the colours of the sides are there makes it easy to see what

direction the colours need to go which makes it easy to find out when you only just start using this.

Is the Pi rule added as you would like?

Pi rule was implemented very well as you get the options to switch or stay and even the computer player

has a choice of these. This can add a new level of complexity which allows you to think even more about

the start of the game and how to play around having the ability to have your move taken from you. I also

like how the pi rule isn’t on by default as it isn’t typically a naturally a rule in most common games of hex

that I play this way I don’t need to turn it off when I start a game all the time

How do you feel about no custom board shapes?

I’m not too disappointed about not having custom board shapes as they change up the game at a very

structural level so it still has lots of playability and different ways of playing with just regular hex instead of

having different shapes.

Do you like the Save and load feature of the game?

Yes I am very happy that these features are in the game as it allows me to play over games multiple times if

I want to. I also like the way that the names are saved to what you want to call them which means that I

can group games into different ways depending on what’s happened in them so that I can look at multiple

games which are similar. The fact that the games are loaded up as they were left up and you can load up

the same state multiple times is very nice as it means you can redo it multiple times

Cameron Zack Number:189285 Godalming College: 64395

Code

Public Class Form1

 Dim BoardSize As Integer = 5

 Private CurrentPlayer As Char = "B"

 Dim Difficulty As Integer = 2

 Dim NoOfGames As Integer = 1

 Dim GameNumber As Integer = 1

 Dim WinnerOfGames(NoOfGames - 1)

 Dim BoardState(BoardSize, BoardSize)

 Dim BoardGraph(BoardSize, BoardSize)

 Dim NumberOfplayers As Integer = 1

 Dim ComputersGo As Boolean = True

 Dim Board As New Button

 Dim UsePiRule As Boolean = False

 Dim SavedFileName As String

 Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 Me.WindowState = FormWindowState.Maximized

 CreateMenu()

 End Sub

 Sub CreateMenu()

 'Sets up the menu for the game

Cameron Zack Number:189285 Godalming College: 64395

 Dim Title As New Label

 Title.Location = New Point(700, 30)

 Title.Size = New Size(500, 100)

 Title.Font = New Font("Comic Sans MS", 40, FontStyle.Bold Or FontStyle.Underline)

 Title.Text = "Hex"

 Me.Controls.Add(Title)

 Title = New Label

 Title.Location = New Point(50, 140)

 Title.Size = New Size(300, 60)

 Title.Font = New Font("Comic Sans MS", 22, FontStyle.Bold Or FontStyle.Underline)

 Title.Text = "How many Players"

 Me.Controls.Add(Title)

 Dim PlayerNumberButton As New Button

 PlayerNumberButton.Name = "Two"

 PlayerNumberButton.Location = New Point(200, 200)

 PlayerNumberButton.Size = New Size(120, 90)

 PlayerNumberButton.Font = New Font("Comic Sans MS", 18)

 PlayerNumberButton.Text = "Two Players"

 AddHandler PlayerNumberButton.Click, AddressOf PlayerNumberButton_Click

 Me.Controls.Add(PlayerNumberButton)

 PlayerNumberButton = New Button

 PlayerNumberButton.Name = "One"

 PlayerNumberButton.Location = New Point(40, 200)

 PlayerNumberButton.Size = New Size(120, 90)

 PlayerNumberButton.Font = New Font("Comic Sans MS", 18)

 PlayerNumberButton.Text = "One Player"

 AddHandler PlayerNumberButton.Click, AddressOf PlayerNumberButton_Click

Cameron Zack Number:189285 Godalming College: 64395

 Me.Controls.Add(PlayerNumberButton)

 Dim PlayGame As New Button

 PlayGame.Location = New Point(700, 700)

 PlayGame.Size = New Size(130, 90)

 PlayGame.Font = New Font("Comic Sans MS", 18)

 PlayGame.Text = "Generate Game"

 AddHandler PlayGame.Click, AddressOf PlayGame_Click

 Me.Controls.Add(PlayGame)

 Dim LoadGame As New Button

 LoadGame.Location = New Point(100, 600)

 LoadGame.Size = New Size(130, 90)

 LoadGame.Font = New Font("Comic Sans MS", 18)

 LoadGame.Text = "Load Game"

 AddHandler LoadGame.Click, AddressOf LoadGame_Click

 Me.Controls.Add(LoadGame)

 Dim PiRule As New Button

 PiRule.Location = New Point(1400, 600)

 PiRule.Size = New Size(130, 90)

 PiRule.Font = New Font("Comic Sans MS", 18)

 PiRule.Text = "Have Pi rule"

 AddHandler PiRule.Click, AddressOf PiRule_Click

 Me.Controls.Add(PiRule)

 Dim StartingPlayer As New Button

 StartingPlayer.Name = "Red"

 StartingPlayer.Location = New Point(1000, 450)

 StartingPlayer.Size = New Size(100, 90)

 StartingPlayer.Font = New Font("Comic Sans MS", 18)

Cameron Zack Number:189285 Godalming College: 64395

 StartingPlayer.Text = "Red Starts"

 AddHandler StartingPlayer.Click, AddressOf StartingPlayer_Click

 Me.Controls.Add(StartingPlayer)

 StartingPlayer = New Button

 StartingPlayer.Name = "Blue"

 StartingPlayer.Location = New Point(1100, 450)

 StartingPlayer.Size = New Size(100, 90)

 StartingPlayer.Font = New Font("Comic Sans MS", 18)

 StartingPlayer.Text = "Blue Starts"

 AddHandler StartingPlayer.Click, AddressOf StartingPlayer_Click

 Me.Controls.Add(StartingPlayer)

 Title = New Label

 Title.Location = New Point(1020, 200)

 Title.Size = New Size(200, 50)

 Title.Font = New Font("Comic Sans MS", 22, FontStyle.Bold Or FontStyle.Underline)

 Title.Text = "Board Size"

 Me.Controls.Add(Title)

 Dim Slider As New TrackBar

 Slider.Location = New Point(950, 300)

 Slider.Size = New Size(300, 60)

 Slider.Minimum = 5

 Slider.Maximum = 9

 Slider.SmallChange = 1

 Slider.LargeChange = 1

 Me.Controls.Add(Slider)

 AddHandler Slider.ValueChanged, AddressOf Slider_Change

Cameron Zack Number:189285 Godalming College: 64395

 Title = New Label

 Title.Location = New Point(955, 280)

 Title.Text = "5"

 Me.Controls.Add(Title)

 Title = New Label

 Title.Location = New Point(1025, 280)

 Title.Text = "6"

 Me.Controls.Add(Title)

 Title.BringToFront()

 Title = New Label

 Title.Location = New Point(1095, 280)

 Title.Text = "7"

 Me.Controls.Add(Title)

 Title.BringToFront()

 Title = New Label

 Title.Location = New Point(1165, 280)

 Title.Text = "8"

 Me.Controls.Add(Title)

 Title.BringToFront()

 Title = New Label

 Title.Location = New Point(1235, 280)

 Title.Text = "9"

 Me.Controls.Add(Title)

 Title.BringToFront()

 Slider = New TrackBar

Cameron Zack Number:189285 Godalming College: 64395

 Slider.Location = New Point(950, 700)

 Slider.Size = New Size(300, 60)

 Slider.Minimum = 1

 Slider.Maximum = 3

 Slider.Value = 2

 Slider.SmallChange = 1

 Slider.LargeChange = 1

 Me.Controls.Add(Slider)

 AddHandler Slider.ValueChanged, AddressOf ComputerLevel

 Title = New Label

 Title.Location = New Point(955, 680)

 Title.Text = "1"

 Me.Controls.Add(Title)

 Title = New Label

 Title.Location = New Point(1095, 680)

 Title.Text = "2"

 Me.Controls.Add(Title)

 Title.BringToFront()

 Title = New Label

 Title.Location = New Point(1235, 680)

 Title.Text = "3"

 Me.Controls.Add(Title)

 Title.BringToFront()

 Title = New Label

 Title.Location = New Point(1020, 600)

 Title.Size = New Size(200, 50)

Cameron Zack Number:189285 Godalming College: 64395

 Title.Font = New Font("Comic Sans MS", 22, FontStyle.Bold Or FontStyle.Underline)

 Title.Text = "Difficulty"

 Me.Controls.Add(Title)

 Dim FileName As New TextBox

 FileName.Location() = New Point(120, 720)

 AddHandler FileName.Leave, AddressOf FileName_Click

 Me.Controls.Add(FileName)

 Title = New Label

 Title.Location = New Point(120, 300)

 Title.Size = New Size(200, 100)

 Title.Font = New Font("Comic Sans MS", 22, FontStyle.Bold Or FontStyle.Underline)

 Title.Text = "Series Length"

 Me.Controls.Add(Title)

 Dim GameCount As New TextBox

 GameCount.Location() = New Point(120, 400)

 AddHandler GameCount.Leave, AddressOf GameCount_Click

 Me.Controls.Add(GameCount)

 End Sub

 Private Sub StartingPlayer_Click(sender As Object, e As EventArgs)

 Dim StartingPlayer As Button = DirectCast(sender, Button)

 If StartingPlayer.Name = "Blue" Then

 CurrentPlayer = "B"

 ComputersGo = True

Cameron Zack Number:189285 Godalming College: 64395

 StartingPlayer.BackColor = Color.DimGray

 Board = FindFromButtons("Red")

 Board.UseVisualStyleBackColor = True

 Else

 CurrentPlayer = "R"

 StartingPlayer.BackColor = Color.DimGray

 Board = FindFromButtons("Blue")

 Board.UseVisualStyleBackColor = True

 End If

 End Sub

 Private Sub PiRule_Click(sender As Object, e As EventArgs)

 Dim PiRule As Button = DirectCast(sender, Button)

 If UsePiRule = False Then

 UsePiRule = True

 PiRule.BackColor = Color.DimGray

 Else

 UsePiRule = False

 PiRule.UseVisualStyleBackColor = True

 End If

 End Sub

 Private Sub GameCount_Click(sender As Object, e As EventArgs)

 Dim GameCount As TextBox = DirectCast(sender, TextBox)

 GameCount.Update()

 NoOfGames = GameCount.Text()

 ReDim WinnerOfGames(NoOfGames - 1)

 End Sub

 Private Sub ComputerLevel(sender As Object, e As EventArgs)

 'Sets the difficulty of the computer

Cameron Zack Number:189285 Godalming College: 64395

 Dim Slider As TrackBar = DirectCast(sender, TrackBar)

 Difficulty = Slider.Value

 End Sub

 Private Sub LoadGame_Click()

 Dim Load As System.IO.StreamReader

 Try

 Load = My.Computer.FileSystem.OpenTextFileReader(SavedFileName & ".txt")

 BoardSize = Load.ReadLine()

 'ReDim HoldLastRow(BoardSize)

 'ReDim Paths(BoardSize, BoardSize)

 'ReDim Pathlength(BoardSize, BoardSize)

 ReDim BoardState(BoardSize, BoardSize)

 ReDim BoardGraph(BoardSize, BoardSize)

 NumberOfplayers = Load.ReadLine()

 Difficulty = Load.ReadLine()

 CurrentPlayer = Load.ReadLine()

 GameNumber = Load.ReadLine()

 NoOfGames = Load.ReadLine()

 ReDim WinnerOfGames(NoOfGames)

 For i = 0 To WinnerOfGames.Count - 1

 WinnerOfGames(i) = Chr(Load.Read())

 Next

 For Column = 1 To BoardSize

 For Row As Integer = 1 To BoardSize

 BoardState(Column, Row) = Chr(Load.Read())

 Next

 Load.ReadLine()

 Next

Cameron Zack Number:189285 Godalming College: 64395

 Load.Close()

 For Column = 1 To BoardSize

 For Row As Integer = 1 To BoardSize

 If BoardState(Column, Row) = "E" Then

 BoardState(Column, Row) = Nothing

 End If

 Next

 Next

 Me.Controls.Clear()

 MakeBoard()

 Catch Exception As Exception

 End Try

 End Sub

 Private Sub PlayGame_Click(sender As Object, e As EventArgs)

 'Clears menu and calls the make board sub

 Me.Controls.Clear()

 MakeBoard()

 End Sub

 Private Sub Slider_Change(sender As Object, e As EventArgs)

 'Changes the size of the board according to the value of the slider and resets all things that rely

on boardsize so they fit the new boardsize

 Dim Slider As TrackBar = DirectCast(sender, TrackBar)

 BoardSize = Slider.Value

 'ReDim HoldLastRow(BoardSize)

 'ReDim Paths(BoardSize, BoardSize)

 'ReDim Pathlength(BoardSize, BoardSize)

 ReDim BoardState(BoardSize, BoardSize)

 ReDim BoardGraph(BoardSize, BoardSize)

Cameron Zack Number:189285 Godalming College: 64395

 End Sub

 Private Sub PlayerNumberButton_Click(sender As Object, e As EventArgs)

 'Gets the button that was pressed and sees if it was one player or two player then makes the

game that number of players

 Dim NoOfPlayers As Button = DirectCast(sender, Button)

 If NoOfPlayers.Name = "One" Then

 NumberOfplayers = 1

 NoOfPlayers.BackColor = Color.DimGray

 Board = FindFromButtons("Two")

 Board.UseVisualStyleBackColor = True

 Else

 NumberOfplayers = 2

 NoOfPlayers.BackColor = Color.DimGray

 Board = FindFromButtons("One")

 Board.UseVisualStyleBackColor = True

 End If

 End Sub

 Private Function FindFromButtons(ByVal Name As String)

 Dim buttons = From c In Controls Where TypeOf (c) Is Button Select c

 Dim G = (From C In buttons Where C.Name() = Name Select C).FirstOrDefault

 Board = G

 Return Board

 End Function

 Sub MakeBoard()

 'This Creates a board where the buttons can all be generated using less code and all have the

same handler for being clicked so less code overall

 For Column = 0 To BoardSize + 1

 For Row As Integer = 0 To BoardSize + 1

Cameron Zack Number:189285 Godalming College: 64395

 Board = New Button

 Board.Name() = Column & Row

 ' Uses the name to distinguish between the buttons

 Board.Location = New Point(Row * 100 + 300 + Column * 50, 100 + Column * 85)

 Board.Size = New Size(110, 110)

 Board.Shape(6, 31)

 If (Row = 0 Or Row = BoardSize + 1) And (Column = 0 Or Column = BoardSize + 1) Then

 ElseIf Column = 0 Or Column = BoardSize + 1 Then

 Board.BackColor = Color.Red

 Board.Enabled = False

 Me.Controls.Add(Board)

 ElseIf Row = 0 Or Row = BoardSize + 1 Then

 Board.BackColor = Color.Blue

 Board.Enabled = False

 Me.Controls.Add(Board)

 Else

 If BoardState(Column, Row) = "R" Then

 Board.BackColor = Color.Red

 ElseIf BoardState(Column, Row) = "B" Then

 Board.BackColor = Color.Blue

 End If

 Me.Controls.Add(Board)

 End If

 AddHandler Board.Click, AddressOf Board_click

 Next

 Next

 Dim SaveGame As New Button

Cameron Zack Number:189285 Godalming College: 64395

 SaveGame.Location() = New Point(100, 100)

 SaveGame.Size = New Size(110, 110)

 SaveGame.Text = "Save Game"

 SaveGame.Font = New Font("Comic Sans MS", 18)

 AddHandler SaveGame.Click, AddressOf SaveGame_Click

 Me.Controls.Add(SaveGame)

 Dim FileName As New TextBox

 FileName.Location() = New Point(100, 240)

 AddHandler FileName.Leave, AddressOf FileName_Click

 Me.Controls.Add(FileName)

 If CurrentPlayer = "R" Then

 CurrentPlayer = "B"

 MoveAftermath()

 If UsePiRule = True Then

 Dim Switch As New Button

 Switch.Location = New Point(800, 800)

 Switch.Size = New Size(130, 90)

 Switch.Font = New Font("Comic Sans MS", 18)

 Switch.Text = "Switch"

 Switch.Name = "Switch"

 AddHandler Switch.Click, AddressOf Switch_Click

 Me.Controls.Add(Switch)

 Dim Stay As New Button

 Stay.Location = New Point(500, 800)

 Stay.Size = New Size(130, 90)

 Stay.Font = New Font("Comic Sans MS", 18)

 Stay.Text = "Stay"

 Stay.Name = "Stay"

 AddHandler Stay.Click, AddressOf Stay_Click

Cameron Zack Number:189285 Godalming College: 64395

 Me.Controls.Add(Stay)

 UsePiRule = False

 End If

 End If

 End Sub

 Private Sub Switch_Click(sender As Object, e As EventArgs)

 Dim Switch As Button = DirectCast(sender, Button)

 Board = FindFromButtons("Stay")

 Me.Controls.Remove(Board)

 Me.Controls.Remove(Switch)

 If CurrentPlayer = "B" Then

 CurrentPlayer = "R"

 Else

 CurrentPlayer = "B"

 End If

 MoveAftermath()

 End Sub

 Private Sub Stay_Click(sender As Object, e As EventArgs)

 Dim Stay As Button = DirectCast(sender, Button)

 Board = FindFromButtons("Switch")

 Me.Controls.Remove(Board)

 Me.Controls.Remove(Stay)

 End Sub

 Private Sub FileName_Click(sender As Object, e As EventArgs)

 Dim FileName As TextBox = DirectCast(sender, TextBox)

 FileName.Update()

 SavedFileName = FileName.Text()

 End Sub

Cameron Zack Number:189285 Godalming College: 64395

 Private Sub SaveGame_Click(sender As Object, e As EventArgs)

 Dim Save As IO.StreamWriter

 Save = New IO.StreamWriter(SavedFileName & ".txt")

 Save.WriteLine(BoardSize)

 Save.WriteLine(NumberOfplayers)

 Save.WriteLine(Difficulty)

 Save.WriteLine(CurrentPlayer)

 Save.WriteLine(GameNumber)

 Save.WriteLine(NoOfGames)

 For i = 0 To WinnerOfGames.Count - 1

 Save.Write(WinnerOfGames(i))

 Next

 Save.WriteLine()

 For Column = 1 To BoardSize

 For Row As Integer = 1 To BoardSize

 Save.Write(BoardState(Column, Row))

 If BoardState(Column, Row) = Nothing Then

 Save.Write("E")

 End If

 Next

 Save.WriteLine()

 Next

 Save.Close()

 End Sub

 Private Sub Board_click(sender As Object, e As EventArgs)

 'This sub handles when one of the butttons on the board is clicked

 Dim ButtonClicked As Button = DirectCast(sender, Button)

 If Not (ButtonClicked.BackColor = Color.Red Or ButtonClicked.BackColor = Color.Blue Or

CurrentPlayer = "N") Then

Cameron Zack Number:189285 Godalming College: 64395

 'This if statemnet checks if the button was already pressed so you cant overwrite someone

elses move

 For Column = 1 To BoardSize

 For Row As Integer = 1 To BoardSize

 If ButtonClicked.Location = New Point(Row * 100 + 300 + Column * 50, 100 + Column *

85) Then

 BoardState(Column, Row) = CurrentPlayer

 'Determines which button was pressed so you can set the board state equal to the

player who pressed it

 End If

 Next

 Next

 If CurrentPlayer = "R" Then

 ButtonClicked.BackColor = Color.Red

 Else

 ButtonClicked.BackColor = Color.Blue

 End If

 'This Changes the colour of the button

 If (NumberOfplayers = 2 Or NumberOfplayers = 1 And CurrentPlayer = "R") And UsePiRule =

True Then

 Dim Switch As New Button

 Switch.Location = New Point(800, 800)

 Switch.Size = New Size(130, 90)

 Switch.Font = New Font("Comic Sans MS", 18)

 Switch.Text = "Switch"

 Switch.Name = "Switch"

 AddHandler Switch.Click, AddressOf Switch_Click

 Me.Controls.Add(Switch)

 Dim Stay As New Button

 Stay.Location = New Point(500, 800)

 Stay.Size = New Size(130, 90)

Cameron Zack Number:189285 Godalming College: 64395

 Stay.Font = New Font("Comic Sans MS", 18)

 Stay.Text = "Stay"

 Stay.Name = "Stay"

 AddHandler Stay.Click, AddressOf Stay_Click

 Me.Controls.Add(Stay)

 UsePiRule = False

 End If

 If NumberOfplayers = 1 And UsePiRule = True Then

 UsePiRule = False

 If ButtonClicked.Name.Contains(BoardSize) Or ButtonClicked.Name.Contains(1) Or

ButtonClicked.Name.Contains(BoardSize - 1) Or ButtonClicked.Name.Contains(2) Then

 MessageBox.Show("Computer chose stay")

 Else

 MessageBox.Show("Computer chose switch")

 CurrentPlayer = "R"

 Exit Sub

 End If

 End If

 MoveAftermath()

 ElseIf CurrentPlayer = "N" Then

 MessageBox.Show("Game Over")

 Else

 MessageBox.Show("Already clicked")

 End If

 End Sub

 Sub MoveAftermath()

 'This decides what happens after a button is pressed

 Dim Nextlist(BoardSize) As String

Cameron Zack Number:189285 Godalming College: 64395

 'Nextlist is the current row(Column if blue) you are on

 Dim Whichlist(BoardSize) As String

 'Whichlist is the next row(Column if blue)

 Dim Column As Integer = 1

 For i = 1 To BoardSize

 WinCheck(i, Whichlist, Nextlist, Column)

 ' This checks whether anyone has won yet

 Column = 1

 If CurrentPlayer = "N" Then

 'When Currentplayer is N that means someone has won so this calls the sub that will reset

the game

 If GameNumber < NoOfGames Then

 GameNumber = GameNumber + 1

 Me.Controls.Clear()

 ReDim BoardState(BoardSize, BoardSize)

 CurrentPlayer = "B"

 MakeBoard()

 Else

 GameNumber = 1

 ResetGame()

 End If

 Exit Sub

 End If

 Next

 If CurrentPlayer = "R" Then

 CurrentPlayer = "B"

 Else

 CurrentPlayer = "R"

 End If

Cameron Zack Number:189285 Godalming College: 64395

 'Above changes the player to the next player

 If ComputersGo = True Then

 If NumberOfplayers = 1 Then

 'This checks if the game is two player or one player and if its one player calls the sub

according to the difficulty

 If Difficulty = 3 Then

 Difficulty3()

 End If

 If Difficulty = 2 Then

 Difficulty2()

 End If

 If Difficulty = 1 Then

 Difficulty1()

 End If

 'ReDim Pathlength(BoardSize, BoardSize)

 End If

 ComputersGo = True

 'This will stop the computer pressing a button looping

 End If

 End Sub

 Sub ResetGame()

 If NoOfGames <> 1 Then

 Dim SeriesWinner As Integer

 For i = 0 To WinnerOfGames.Count - 1

 If WinnerOfGames(i) = "R" Then

 SeriesWinner = SeriesWinner + 1

 Else

 SeriesWinner = SeriesWinner - 1

 End If

Cameron Zack Number:189285 Godalming College: 64395

 Next

 If SeriesWinner > 0 Then

 MessageBox.Show("Red won the series")

 ElseIf SeriesWinner = 0 Then

 MessageBox.Show("Series was a draw")

 Else

 MessageBox.Show("Blue won the series")

 End If

 End If

 'Creates the buttons to reset the game

 Dim TextForPlayAgain As New Label

 TextForPlayAgain.Location = New Point(200, 300)

 TextForPlayAgain.Size = New Size(300, 50)

 TextForPlayAgain.Font = New Font("Comic Sans MS", 18, FontStyle.Bold Or FontStyle.Underline)

 TextForPlayAgain.Text = "Play Again"

 Me.Controls.Add(TextForPlayAgain)

 Dim PlayAgainYes As New Button

 PlayAgainYes.Location = New Point(150, 400)

 PlayAgainYes.Size = New Size(100, 50)

 PlayAgainYes.Font = New Font("Comic Sans MS", 14)

 PlayAgainYes.Text = "Yes"

 AddHandler PlayAgainYes.Click, AddressOf Yes_click

 Me.Controls.Add(PlayAgainYes)

 Dim PlayAgainNo As New Button

Cameron Zack Number:189285 Godalming College: 64395

 PlayAgainNo.Location = New Point(300, 400)

 PlayAgainNo.Size = New Size(100, 50)

 PlayAgainNo.Font = New Font("Comic Sans MS", 14)

 PlayAgainNo.Text = "No"

 AddHandler PlayAgainNo.Click, AddressOf No_click

 Me.Controls.Add(PlayAgainNo)

 End Sub

 Private Sub Yes_click(sender As Object, e As EventArgs)

 'If they click play agian this clears board and resets the boardstate back to the beginning. it then

calls the sub that creates the menu again

 Dim ButtonClicked As Button = DirectCast(sender, Button)

 Me.Controls.Clear()

 ReDim BoardState(BoardSize, BoardSize)

 CreateMenu()

 CurrentPlayer = "B"

 End Sub

 Private Sub No_click(sender As Object, e As EventArgs)

 'This will close the form if they dont want to play again

 Dim ButtonClicked As Button = DirectCast(sender, Button)

 Close()

 End Sub

 Sub CreateRowOrColumn(ByRef Whichlist, ByRef NextList, ByRef Column)

 If CurrentPlayer = "R" Then

 'This finds the current row and next row you are on and sets each element equal to the

equatible element in boardstate

 For i = 1 To BoardSize

 Whichlist(i) = BoardState(Column, i)

 NextList(i) = BoardState(Column + 1, i)

Cameron Zack Number:189285 Godalming College: 64395

 Next

 ElseIf CurrentPlayer = "B" Then

 'This finds the current Column and next column you are on and sets each element equal to

the equatible element in boardstate

 For i = 1 To BoardSize

 Whichlist(i) = BoardState(i, Column)

 NextList(i) = BoardState(i, Column + 1)

 Next

 End If

 End Sub

 Public Sub WinCheck(ByVal Row, ByVal Whichlist, ByVal Nextlist, ByVal Column)

 If CurrentPlayer = "R" Or CurrentPlayer = "B" Then

 CreateRowOrColumn(Whichlist, Nextlist, Column)

 'The call above gets the current and next row or column

 If Whichlist(Row) = CurrentPlayer Then

 Column = Column + 1

 If Whichlist(Row) = Nextlist(Row - 1) Or Whichlist(Row) = Nextlist(Row) Then

 'Sees if the tile in the same row and below is the same as the one your on

 If Whichlist(Row) = Nextlist(Row - 1) Then

 If Column >= BoardSize Then

 DisplayWinner()

 'This tells if there is a complete path from top to bottom or left to right

 End If

 WinCheck(Row - 1, Whichlist, Nextlist, Column)

 'Calls this sub again using the new value of what tile you are on

Cameron Zack Number:189285 Godalming College: 64395

 ElseIf Whichlist(Row) = Nextlist(Row) Then

 If Column >= BoardSize Then

 DisplayWinner()

 End If

 WinCheck(Row, Whichlist, Nextlist, Column)

 End If

 End If

 End If

 If Row <> BoardSize Then

 'Checks to the left and right of the current tile

 'Makes it so the program doesnt break by having it be out of the array

 If (Whichlist(Row) = Whichlist(Row + 1) Or Whichlist(Row) = Whichlist(Row - 1)) And

Whichlist(Row) = CurrentPlayer Then

 If Whichlist(Row) = Whichlist(Row + 1) Then

 Column = Column - 1

 WinCheck(Row + 1, Whichlist, Nextlist, Column)

 End If

 'Calls this sub again if the tile to the right of the current tile is the same colour

 If Whichlist(Row) = Whichlist(Row - 1) Then

 Column = Column - 1

 Checkleft(Row - 1, Whichlist, Column)

 'Calls the checkleft sub if the tile to the left is the same colour as the current tile

 End If

 End If

 End If

Cameron Zack Number:189285 Godalming College: 64395

 End If

 'Whichlist(Row) = "D"

 'Column = Column - 1

 End Sub

 Sub Checkleft(ByVal Row, ByVal Whichlist, ByVal Column)

 Dim Nextlist(BoardSize) As String

 If CurrentPlayer = "R" Or CurrentPlayer = "B" Then

 CreateRowOrColumn(Whichlist, Nextlist, Column)

 'This sub does nearly the same as WinCheck but this doesnt check right so it doesnt cause an

infinite loop of checking right and left

 Column = Column + 1

 If Whichlist(Row) = "R" Or Whichlist(Row) = "B" Then

 If Whichlist(Row) = Nextlist(Row - 1) Or Whichlist(Row) = Nextlist(Row) Then

 If Whichlist(Row) = Nextlist(Row - 1) Then

 If Column >= BoardSize Then

 DisplayWinner()

 'This tells if there is a complete path from top to bottom or left to right so if someone

has won

 End If

 WinCheck(Row - 1, Whichlist, Nextlist, Column)

 ElseIf Whichlist(Row) = Nextlist(Row) Then

 If Column >= BoardSize Then

 DisplayWinner()

 End If

 WinCheck(Row, Whichlist, Nextlist, Column)

 End If

 End If

Cameron Zack Number:189285 Godalming College: 64395

 End If

 If Row > 0 Then

 If Whichlist(Row) = Whichlist(Row - 1) Then

 Column = Column - 1

 Checkleft(Row - 1, Whichlist, Column)

 'Calls check left again if the left tile is again the same as the current tile

 End If

 End If

 End If

 End Sub

 Sub DisplayWinner()

 If CurrentPlayer = "R" Then

 WinnerOfGames(GameNumber - 1) = "R"

 MessageBox.Show("Red wins")

 Else

 WinnerOfGames(GameNumber - 1) = "B"

 MessageBox.Show("Blue wins")

 End If

 CurrentPlayer = "N"

 End Sub

 Sub ComputerPlayer(ByRef CoordOnPath)

 'This sets boardgraph and then calls djikstra algortihm

 If NumberOfplayers = 1 Then

 SetBoardGarph()

 Dim FindPath As New path(BoardSize, BoardGraph)

 FindPath.SetupDjikstra(CoordOnPath)

 End If

 End Sub

Cameron Zack Number:189285 Godalming College: 64395

 Sub Difficulty3()

 Dim GeneralValue(BoardSize, BoardSize) As Integer

 Dim CoordOnPathHold1 As List(Of Tuple(Of Integer, Integer)) = New List(Of Tuple(Of Integer,

Integer))

 Dim CoordOnPathHold2 As List(Of Tuple(Of Integer, Integer)) = New List(Of Tuple(Of Integer,

Integer))

 Dim HighestMoveValue As Integer

 Dim UniqueCoords(BoardSize, BoardSize) As Integer

 Dim CoordTuple As Tuple(Of Integer, Integer)

 Dim FinalList As List(Of Tuple(Of Integer, Integer)) = New List(Of Tuple(Of Integer, Integer))

 Dim RandomCoord As Integer

 If CurrentPlayer = "R" Then

 CurrentPlayer = "B"

 Else

 CurrentPlayer = "R"

 End If

 'Changes player so it does a djikstra for the oponent and stores the shortest paths in

CoorOnPathHold1

 ComputerPlayer(CoordOnPathHold1)

 'CoordOnPathHold1 = FlipBoard(CoordOnPathHold1)

 FindGoodMove(CoordOnPathHold1, UniqueCoords)

 'Calls FindGoodMove sub

 If CurrentPlayer = "R" Then

 CurrentPlayer = "B"

 Else

 CurrentPlayer = "R"

 End If

 'Chnages player so it does a djikstra for itself and stores the shortest paths in CoorOnPathHold2

 ComputerPlayer(CoordOnPathHold2)

Cameron Zack Number:189285 Godalming College: 64395

 CoordOnPathHold2 = FlipBoard(CoordOnPathHold2)

 'Flips the board so that board orietation is the same for both

 FindGoodMove(CoordOnPathHold2, UniqueCoords)

 GeneralValue = BasicMoveValues(GeneralValue)

 For column = 1 To BoardSize

 For row = 1 To BoardSize

 UniqueCoords(column, row) = UniqueCoords(column, row) + GeneralValue(column, row)

 Next

 Next

 'Combines the djikstras and the values of coords around the board to find highest value of all

spaces on the board

 For column = 1 To BoardSize

 For Row = 1 To BoardSize

 If UniqueCoords(column, Row) > HighestMoveValue Then

 HighestMoveValue = UniqueCoords(column, Row)

 End If

 Next

 Next

 'Above finds the highest value of all tiles on board

 For column = 1 To BoardSize

 For Row = 1 To BoardSize

 If UniqueCoords(column, Row) = HighestMoveValue Then

 CoordTuple = New Tuple(Of Integer, Integer)(column, Row)

 FinalList.Add(CoordTuple)

 'All coords with the highest value are added to a list to find all best moves

 End If

 Next

 Next

Cameron Zack Number:189285 Godalming College: 64395

 'Gets one set of coords from the sub

 If CurrentPlayer = "R" Then

 ClickComputerMove(FinalList(RandomCoord).Item2, FinalList(RandomCoord).Item1)

 Else

 ClickComputerMove(FinalList(RandomCoord).Item1, FinalList(RandomCoord).Item2)

 End If

 'Calls sub that actually clicks the button

 End Sub

 Sub FindGoodMove(ByVal CoordOnPathHold, ByRef UniqueCoords)

 For column = 1 To BoardSize

 For Row = 1 To BoardSize

 For FindOverlap = 0 To CoordOnPathHold.Count - 1

 If CoordOnPathHold(FindOverlap) IsNot Nothing Then

 If CoordOnPathHold(FindOverlap).Item1 = column And

CoordOnPathHold(FindOverlap).Item2 = Row Then

 UniqueCoords(column, Row) = UniqueCoords(column, Row) + 1

 End If

 End If

 Next

 Next

 Next

 'Finds overlap of points to see which points come up where on each djikstra

 End Sub

 Function FindMoveInList(CoordOnPathHold)

 Dim RandomCoord As Integer

 Dim ValidCoord As Boolean = False

 Randomize()

 Do

Cameron Zack Number:189285 Godalming College: 64395

 RandomCoord = Int((CoordOnPathHold.Count - 1) * Rnd())

 If CoordOnPathHold(RandomCoord) IsNot Nothing Then

 If BoardGraph(CoordOnPathHold(RandomCoord).Item1,

CoordOnPathHold(RandomCoord).Item2) = 1 Then

 ValidCoord = True

 End If

 End If

 Loop Until ValidCoord = True

 'Randomly selects a coord from the list of coords put in

 Return RandomCoord

 End Function

 Function FlipBoard(CoordOnPathHold)

 If CurrentPlayer = "B" Then

 For Reverse = 0 To CoordOnPathHold.Count - 1

 If CoordOnPathHold(Reverse) IsNot Nothing Then

 CoordOnPathHold(Reverse) = New Tuple(Of Integer,

Integer)(CoordOnPathHold(Reverse).Item2, CoordOnPathHold(Reverse).Item1)

 End If

 Next

 End If

 'this flips the columns and rows for the djikstra so that the rows and columns are the same for

both djikstras

 Return CoordOnPathHold

 End Function

 Sub Difficulty2()

 Dim FinalList As List(Of Tuple(Of Integer, Integer)) = New List(Of Tuple(Of Integer, Integer))

 Dim GeneralValue(BoardSize, BoardSize) As Integer

 Dim RandomCoord As Integer

 Dim CoordOnPathHold1 As List(Of Tuple(Of Integer, Integer)) = New List(Of Tuple(Of Integer,

Integer))

Cameron Zack Number:189285 Godalming College: 64395

 Dim HighestMoveValue As Integer

 Dim CoordTuple As Tuple(Of Integer, Integer)

 ComputerPlayer(CoordOnPathHold1)

 CoordOnPathHold1 = FlipBoard(CoordOnPathHold1)

 BasicMoveValues(GeneralValue)

 FindGoodMove(CoordOnPathHold1, GeneralValue)

 RandomCoord = FindMoveInList(CoordOnPathHold1)

 'Does djikstras once and then finds a random coord on the shortest path then has it clicked

 For column = 1 To BoardSize

 For Row = 1 To BoardSize

 If GeneralValue(column, Row) > HighestMoveValue Then

 HighestMoveValue = GeneralValue(column, Row)

 End If

 Next

 Next

 'Above finds the highest value of all tiles on board

 For column = 1 To BoardSize

 For Row = 1 To BoardSize

 If GeneralValue(column, Row) = HighestMoveValue Then

 CoordTuple = New Tuple(Of Integer, Integer)(column, Row)

 FinalList.Add(CoordTuple)

 'All coords with the highest value are added to a list to find all best moves

 End If

 Next

 Next

 RandomCoord = FindMoveInList(FinalList)

 'Gets one set of coords from the sub

 If CurrentPlayer = "R" Then

 ClickComputerMove(FinalList(RandomCoord).Item2, FinalList(RandomCoord).Item1)

 Else

 ClickComputerMove(FinalList(RandomCoord).Item1, FinalList(RandomCoord).Item2)

Cameron Zack Number:189285 Godalming College: 64395

 End If

 'Calls sub that actually clicks the button

 End Sub

 Sub Difficulty1()

 Dim RandomXCoord As Integer

 Dim RandomYCoord As Integer

 SetBoardGarph()

 Do

 Randomize()

 RandomXCoord = Int((BoardSize) * Rnd() + 1)

 RandomYCoord = Int((BoardSize) * Rnd() + 1)

 Loop Until BoardGraph(RandomYCoord, RandomXCoord) = 1

 ClickComputerMove(RandomXCoord, RandomYCoord)

 'Finds a random coord that isnt pressed on the board and then presses it

 End Sub

 Sub ClickComputerMove(ByVal XCoord, ByVal YCoord)

 ComputersGo = False

 Board = FindFromButtons(YCoord & XCoord)

 Board.PerformClick()

 'Finds the button with the name of the coords that are chosen and then sets a button equal to

that and clicks it

 End Sub

 Sub SetBoardGarph()

 If CurrentPlayer = "R" Then

 For P = 0 To BoardSize

 For y = 0 To BoardSize

 If CurrentPlayer = BoardState(P, y) Then

 BoardGraph(P, y) = 0

 ElseIf P = 0 Or y = 0 Then

Cameron Zack Number:189285 Godalming College: 64395

 BoardGraph(P, y) = 9999999999999

 ElseIf BoardState(P, y) = "" Then

 BoardGraph(P, y) = 1

 Else

 BoardGraph(P, y) = 1000

 End If

 Next

 Next

 End If

 'Above finds the values of the tiles in the way we look at it

 If CurrentPlayer = "B" Then

 For y = 0 To BoardSize

 For p = 0 To BoardSize

 If CurrentPlayer = BoardState(p, y) Then

 BoardGraph(y, p) = 0

 ElseIf p = 0 Or y = 0 Then

 BoardGraph(y, p) = 9999999999999

 ElseIf BoardState(p, y) = "" Then

 BoardGraph(y, p) = 1

 Else

 BoardGraph(y, p) = 1000

 End If

 Next

 Next

 End If

 'Above finds the values of the tiles rotated 90 degrees so the first column is now the top row

 End Sub

Cameron Zack Number:189285 Godalming College: 64395

 Function BasicMoveValues(ByRef GeneralValue)

 For column = 1 To BoardSize

 For Row = 1 To BoardSize

 If BoardGraph(column, Row) <> 1 Then

 BoardGraph(column, Row) = -1000

 Try

 If BoardGraph(column + 2, Row) = 1 Then

 GeneralValue(column + 2, Row) = 3 + BoardGraph(column + 2, Row)

 If BoardGraph(column + 1, Row) = 1 Then

 GeneralValue(column + 1, Row) = 2 + BoardGraph(column + 1, Row)

 End If

 If BoardGraph(column, Row + 1) = 1 Then

 GeneralValue(column, Row + 1) = 2 + BoardGraph(column, Row + 1)

 End If

 End If

 Catch ex As Exception

 End Try

 Try

 If BoardGraph(column + 1, Row + 1) = 1 Then

 GeneralValue(column + 1, Row + 1) = 3 + BoardGraph(column + 1, Row + 1)

 If BoardGraph(column + 1, Row) = 1 Then

 GeneralValue(column + 1, Row) = 2 + BoardGraph(column + 1, Row)

 End If

 If BoardGraph(column, Row + 1) = 1 Then

 GeneralValue(column, Row + 1) = 2 + BoardGraph(column, Row + 1)

 End If

 End If

Cameron Zack Number:189285 Godalming College: 64395

 Catch ex As Exception

 End Try

 Try

 If BoardGraph(column - 1, Row + 2) = 1 Then

 GeneralValue(column - 1, Row + 2) = 3 + BoardGraph(column - 1, Row + 2)

 If BoardGraph(column - 1, Row) = 1 Then

 GeneralValue(column - 1, Row) = 2 + BoardGraph(column - 1, Row)

 End If

 If BoardGraph(column, Row + 1) = 1 Then

 GeneralValue(column, Row + 1) = 2 + BoardGraph(column, Row + 1)

 End If

 End If

 Catch ex As Exception

 End Try

 Try

 If BoardGraph(column - 1, Row - 1) = 1 Then

 GeneralValue(column - 1, Row - 1) = 3 + BoardGraph(column - 1, Row - 1)

 If BoardGraph(column - 1, Row) = 1 Then

 GeneralValue(column - 1, Row) = 2 + BoardGraph(column - 1, Row)

 End If

 If BoardGraph(column, Row - 1) = 1 Then

 GeneralValue(column, Row - 1) = 2 + BoardGraph(column, Row - 1)

 End If

 End If

 Catch ex As Exception

 End Try

Cameron Zack Number:189285 Godalming College: 64395

 Try

 If BoardGraph(column + 1, Row - 2) = 1 Then

 GeneralValue(column + 1, Row - 2) = 3 + BoardGraph(column + 1, Row - 2)

 If BoardGraph(column - 1, Row) = 1 Then

 GeneralValue(column - 1, Row) = 2 + BoardGraph(column - 1, Row)

 End If

 If BoardGraph(column, Row - 1) = 1 Then

 GeneralValue(column, Row - 1) = 2 + BoardGraph(column, Row - 1)

 End If

 End If

 Catch ex As Exception

 End Try

 End If

 Next

 Next

 'Finds general good values of moves as they are generally just good to make

 Return GeneralValue

 End Function

End Class

Class path

 Dim Pathlength(boardsize, boardsize) As Integer

 Dim ShortestValue As Integer = 10000000

 Dim ShortestPoint As Tuple(Of Integer, Integer)

 Dim ValidPath As Boolean = False

 Dim Found As List(Of Tuple(Of Integer, Integer))

Cameron Zack Number:189285 Godalming College: 64395

 Dim Paths(boardsize, boardsize) As Tuple(Of Integer, Integer)

 Dim Coords As Tuple(Of Integer, Integer)

 Dim LastPoint As Tuple(Of Integer, Integer)

 Dim DijkstraLeft As Boolean

 Dim DijkstraRight As Boolean

 Dim HoldLastRow(boardsize) As Integer

 Dim boardsize As Integer

 Dim boardgraph(boardsize, boardsize)

 Sub New(ByVal boardsize As Integer, ByVal boardgraph(,) As Object)

 Me.boardsize = boardsize

 Me.boardgraph = boardgraph

 ReDim Paths(boardsize, boardsize)

 ReDim Pathlength(boardsize, boardsize)

 ReDim HoldLastRow(boardsize)

 End Sub

 Sub SetupDjikstra(ByRef CoordOnPath)

 If Found Is Nothing Then

 Found = New List(Of Tuple(Of Integer, Integer))

 'This initializes found so that you can add items to the list

 End If

 For FirstRow = 1 To boardsize

 Pathlength(1, FirstRow) = boardgraph(1, FirstRow)

 Found.Add(New Tuple(Of Integer, Integer)(1, FirstRow))

 Next

 'Above for loop gets all the coordinates of the first row or column depending on the current

player

 For FindLastRow = 1 To boardsize

Cameron Zack Number:189285 Godalming College: 64395

 HoldLastRow(FindLastRow) = 0

 'Finds the value of the last row for a later check to see if all the paths have been found

 Next

 While ValidPath = False

 ShortestValue = 100000000

 For CurrentNode = 0 To Found.Count - 1

 Coords = Found.Item(CurrentNode)

 If Coords.Item1 <> boardsize Then

 If Coords.Item2 <> boardsize And Coords.Item2 >= 1 Then

 DijkstraLeft = True

 DijkstraRight = True

 Dijkstras()

 ElseIf Coords.Item2 = boardsize Then

 DijkstraLeft = True

 DijkstraRight = False

 Dijkstras()

 ElseIf Coords.Item2 <= 1 Then

 DijkstraRight = True

 DijkstraLeft = False

 Dijkstras()

 End If

 End If

 'Sees if the thing can check left or right so that it doesnt crash if the value is out of the array

 Next

 Pathlength(ShortestPoint.Item1, ShortestPoint.Item2) = ShortestValue

 Found.Add(ShortestPoint)

 Paths(ShortestPoint.Item1, ShortestPoint.Item2) = LastPoint

 'Adds the point which is shortest to get to to the list of coords found

Cameron Zack Number:189285 Godalming College: 64395

 For PathlengthAllLastRow = 1 To boardsize

 If Pathlength(boardsize, PathlengthAllLastRow) = HoldLastRow(PathlengthAllLastRow) Then

 ValidPath = False

 PathlengthAllLastRow = boardsize

 Else

 ValidPath = True

 End If

 'Checks if all paths to the furhtest point possible has been found

 Next

 End While

 ShortestPathCoords(CoordOnPath)

 'Calls shortestpointsCOords sub

 ValidPath = False

 Found.Clear()

 'Above two lines resets this so it can run again for the next move the computer makes

 End Sub

 Sub Dijkstras()

 If DijkstraLeft = True Then

 If boardgraph(Coords.Item1, Coords.Item2 - 1) + Pathlength(Coords.Item1, Coords.Item2) <

ShortestValue Then

 If Not Found.Contains(New Tuple(Of Integer, Integer)(Coords.Item1, Coords.Item2 - 1))

Then

 ShortestValue = boardgraph(Coords.Item1, Coords.Item2 - 1) + Pathlength(Coords.Item1,

Coords.Item2)

 ShortestPoint = (New Tuple(Of Integer, Integer)(Coords.Item1, Coords.Item2 - 1))

 LastPoint = Coords

 End If

 End If

 If boardgraph(Coords.Item1 + 1, Coords.Item2 - 1) + Pathlength(Coords.Item1, Coords.Item2)

< ShortestValue Then

 If Not Found.Contains(New Tuple(Of Integer, Integer)(Coords.Item1 + 1, Coords.Item2 - 1))

Then

Cameron Zack Number:189285 Godalming College: 64395

 ShortestValue = boardgraph(Coords.Item1 + 1, Coords.Item2 - 1) +

Pathlength(Coords.Item1, Coords.Item2)

 ShortestPoint = (New Tuple(Of Integer, Integer)(Coords.Item1 + 1, Coords.Item2 - 1))

 LastPoint = Coords

 End If

 End If

 End If

 If boardgraph(Coords.Item1 + 1, Coords.Item2) + Pathlength(Coords.Item1, Coords.Item2) <

ShortestValue Then

 If Not Found.Contains(New Tuple(Of Integer, Integer)(Coords.Item1 + 1, Coords.Item2)) Then

 ShortestValue = boardgraph(Coords.Item1 + 1, Coords.Item2) + Pathlength(Coords.Item1,

Coords.Item2)

 ShortestPoint = (New Tuple(Of Integer, Integer)(Coords.Item1 + 1, Coords.Item2))

 LastPoint = Coords

 End If

 End If

 If DijkstraRight = True Then

 If boardgraph(Coords.Item1, Coords.Item2 + 1) + Pathlength(Coords.Item1, Coords.Item2) <

ShortestValue Then

 If Not Found.Contains(New Tuple(Of Integer, Integer)(Coords.Item1, Coords.Item2 + 1))

Then

 ShortestValue = boardgraph(Coords.Item1, Coords.Item2 + 1) + Pathlength(Coords.Item1,

Coords.Item2)

 ShortestPoint = (New Tuple(Of Integer, Integer)(Coords.Item1, Coords.Item2 + 1))

 LastPoint = Coords

 End If

 End If

 End If

 'Does djikstras algorithm to find shortest next point to get to is

 End Sub

 Dim EndPoints As List(Of Tuple(Of Integer, Integer)) = New List(Of Tuple(Of Integer, Integer))

Cameron Zack Number:189285 Godalming College: 64395

 Sub ShortestPathCoords(ByRef CoordOnPath)

 Dim Pathcount As Integer

 Dim StopRepeat As Integer = 0

 Dim Small As Integer = 1000

 For Column = 0 To boardsize - 1

 If Pathlength(boardsize, boardsize - Column) < Small And Pathlength(boardsize, boardsize -

Column) <> 0 Then

 Small = Pathlength(boardsize, boardsize - Column)

 End If

 Next

 'Finds the smallest value of the end column to see which column ends in the lowest amount of

moves needed to reach

 For CoordFind = 0 To boardsize - 1

 If Pathlength(boardsize, boardsize - CoordFind) = Small Then

 Pathcount = Pathcount + 1

 CoordOnPath.Add(New Tuple(Of Integer, Integer)(boardsize, boardsize - CoordFind))

 End If

 Next

 EndPoints = CoordOnPath

 For holdname = 0 To EndPoints.Count - 1

 CoordOnPath.Add(Paths(CoordOnPath(holdname).Item1, CoordOnPath(holdname).Item2))

 Do Until CoordOnPath(CoordOnPath.Count - 1) Is Nothing

 CoordOnPath.Add(Paths(CoordOnPath(CoordOnPath.Count - 1).Item1,

CoordOnPath(CoordOnPath.Count - 1).Item2))

 Loop

 Next

 'Finds all the coords that are needed for the shortest path and puts them in a list

 ReDim Pathlength(boardsize, boardsize)

 End Sub

Cameron Zack Number:189285 Godalming College: 64395

End Class

Shaped Controls

Imports System.Runtime.CompilerServices

Module ShapedControls

 Public Const Pi As Double = Math.PI

 Public Const DegreesToRadians As Double = 180 / Pi

 <Extension()>

 Public Sub Shape(ByVal ctrl As Control,

 Optional ByVal NumberOfSides As Integer = 3,

 Optional ByVal OffsetAngleInDegrees As Double = 0)

 If NumberOfSides < 3 Then Throw New Exception("Number of sides can only be 3 or

more.")

 Dim MyAngle As Double = OffsetAngleInDegrees / DegreesToRadians

 Dim radius1 As Integer = ctrl.Height \ 2

 Dim radius2 As Integer = ctrl.Width \ 2

 Dim xInt, yInt As Integer

 Dim xDoub, yDoub As Double

 Dim MyPath As New Drawing2D.GraphicsPath

Cameron Zack Number:189285 Godalming College: 64395

 For angle As Double = MyAngle To ((2 * Pi) + MyAngle) Step ((2 * Pi) / NumberOfSides)

 xDoub = radius2 * Math.Cos(angle) + radius2

 yDoub = radius1 * Math.Sin(angle) + radius1

 xInt = CInt(Int(xDoub))

 yInt = CInt(Int(yDoub))

 MyPath.AddLine(New Point(xInt, yInt), New Point(xInt, yInt))

 Next

 MyPath.CloseFigure()

 ctrl.Region = New Region(MyPath)

 MyPath.Dispose()

 End Sub

 End Module

